101
|
Trevisan S, Manoli A, Begheldo M, Nonis A, Enna M, Vaccaro S, Caporale G, Ruperti B, Quaggiotti S. Transcriptome analysis reveals coordinated spatiotemporal regulation of hemoglobin and nitrate reductase in response to nitrate in maize roots. THE NEW PHYTOLOGIST 2011; 192:338-52. [PMID: 21762167 DOI: 10.1111/j.1469-8137.2011.03822.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Given the importance of nitrogen for plant growth and the environmental costs of intense fertilization, an understanding of the molecular mechanisms underlying the root adaptation to nitrogen fluctuations is a primary goal for the development of biotechnological tools for sustainable agriculture. This research aimed to identify the molecular factors involved in the response of maize roots to nitrate. cDNA-amplified fragment length polymorphism was exploited for comprehensive transcript profiling of maize (Zea mays) seedling roots grown with varied nitrate availabilities; 336 primer combinations were tested and 661 differentially regulated transcripts were identified. The expression of selected genes was studied in depth through quantitative real-time polymerase chain reaction and in situ hybridization. Over 50% of the genes identified responded to prolonged nitrate starvation and a few were identified as putatively involved in the early nitrate signaling mechanisms. Real-time results and in situ localization analyses demonstrated co-regulated transcriptional patterns in root epidermal cells for genes putatively involved in nitric oxide synthesis/scavenging. Our findings, in addition to strengthening already known mechanisms, revealed the existence of a new complex signaling framework in which brassinosteroids (BRI1), the module MKK2-MAPK6 and the fine regulation of nitric oxide homeostasis via the co-expression of synthetic (nitrate reductase) and scavenging (hemoglobin) components may play key functions in maize responses to nitrate.
Collapse
Affiliation(s)
- S Trevisan
- Agricultural Biotechnology Department, University of Padua, Viale dell'Università 16, Legnaro, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, Nicolás C. Functional analysis in Arabidopsis of FsPTP1, a tyrosine phosphatase from beechnuts, reveals its role as a negative regulator of ABA signaling and seed dormancy and suggests its involvement in ethylene signaling modulation. PLANTA 2011; 234:589-597. [PMID: 21567167 DOI: 10.1007/s00425-011-1426-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/26/2011] [Indexed: 05/30/2023]
Abstract
By means of an RT-PCR approach we isolated a specific tyrosine phosphatase (FsPTP1) induced by abscisic acid (ABA) and correlated with seed dormancy in Fagus sylvatica seeds. To provide genetic evidence of FsPTP1 function in seed dormancy and ABA signal transduction pathway, we overexpressed this gene in Cape Verde Island ecotype of Arabidopsis thaliana, which shows the deepest degree of seed dormancy among Arabidopsis accessions. As a result, 35S:FsPTP1 transgenic seeds showed a reduced dormancy and insensitivity to ABA and osmotic stress conditions accompanied by a reduction in the level of expression of RAB18 and RD29, well-known ABA-responsive genes. Taken together, all these data are consistent with a role of this tyrosine phosphatase as a negative regulator of ABA signaling. In addition, phenotypes of FsPTP1 transgenic plants resemble those observed in ethylene constitutive mutants, accompanied by an increase in the level of expression of a key gene involved in ethylene signaling such as EIN2. All the data presented along the paper suggest that the effect of tyrosine phosphatases in ABA action during the transition from seed dormancy to germination may be through modulation of ethylene signaling.
Collapse
Affiliation(s)
- Ana Alonso-Ramírez
- Departamento de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, Campus de Villamayor, 37185 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
103
|
Francia D, Chiltz A, Lo Schiavo F, Pugin A, Bonfante P, Cardinale F. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:963-9. [PMID: 21561784 DOI: 10.1016/j.plaphy.2011.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 04/18/2011] [Indexed: 05/30/2023]
Abstract
The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity.
Collapse
Affiliation(s)
- Doriana Francia
- DiVaPRA, Patologia Vegetale, Università degli Studi di Torino, Via L. da Vinci, 44, 10095 Grugliasco (TO), Italy
| | | | | | | | | | | |
Collapse
|
104
|
M-Hamvas M, Máthé C, Vasas G, Jámbrik K, Papp M, Beyer D, Mészáros I, Borbély G. Cylindrospermopsin and microcystin-LR alter the growth, development and peroxidase enzyme activity of white mustard (Sinapis alba L.) seedlings, a comparative analysis. ACTA BIOLOGICA HUNGARICA 2011; 61 Suppl:35-48. [PMID: 21565763 DOI: 10.1556/abiol.61.2010.suppl.5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This work focuses on the comparative analysis of the effects of two cyanobacterial toxins of different chemical structure cylindrospermopsin (CYN) and microcystin-LR (MC-LR) on the white mustard (Sinapis alba L.) seedlings. Both cyanotoxins reduced significantly the fresh mass and the length of cotyledons, hypocotyls and main roots of seedlings in a concentration dependent manner. For various mustard organs the 50% inhibitory concentration values (IC50) of growth were between 3-5 μg ml(-1) for MC-LR and between 5-10 μg ml-1 for CYN, respectively. Cyanotoxins altered the development of cotyledons, the accumulation of photosynthetically active pigments and anthocyanins. Low MC-LR concentrations (0.01 and 0.1 μg ml(-1)) stimulated anthocyanin formation in the cotyledons but higher than 1 μg ml(-1) MC-LR concentrations strongly inhibited it. The CYN treated chlorotic cotyledons were violet coloured in consequence of high level of anthocyanins, while MC-LR induced chlorosis was accompanied by the appearance of necrotic patches. Necrosis and increases of peroxidase enzyme activity (POD) are general stress responses but these alterations were characteristic only for MC-LR treated mustard plants. These findings provide experimental evidences of developmental alterations induced by protein synthesis and protein phosphatase inhibitory cyanotoxins (CYN and MC-LR) in a model dicotyledonous plant.
Collapse
Affiliation(s)
- Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Eyetem tér 1 H-4010 Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Huang Z, van der Knaap E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:465-74. [PMID: 21541852 DOI: 10.1007/s00122-011-1599-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/12/2011] [Indexed: 05/23/2023]
Abstract
Fruit weight is an important character in many crops. In tomato (Solanum lycopersicum), fruit weight is controlled by many loci, some of which have a major effect on the trait. Fruit weight 11.3 (fw11.3) and fasciated (fas) have been mapped to the same region on chromosome 11. We sought to determine whether these loci represent alleles of the same or separate genes. We show that fas and fw11.3 are not allelic and instead represent separate genes. The fw11.3 locus was fine-mapped to a 149-kb region comprised of 22 predicted genes. Unlike most fruit weight loci, gene action at fw11.3 indicates that the mutant allele is partially dominant over the wild allele. We also investigate the nature of the genome rearrangement at the fas locus and demonstrate that the mutation is due to a 294-kb inversion disrupting the YABBY gene known to underlie the fas locus.
Collapse
Affiliation(s)
- Zejun Huang
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | |
Collapse
|
106
|
Antolín-Llovera M, Leivar P, Arró M, Ferrer A, Boronat A, Campos N. Modulation of plant HMG-CoA reductase by protein phosphatase 2A: positive and negative control at a key node of metabolism. PLANT SIGNALING & BEHAVIOR 2011; 6:1127-31. [PMID: 21701259 PMCID: PMC3260709 DOI: 10.4161/psb.6.8.16363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B" regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.
Collapse
Affiliation(s)
- Meritxell Antolín-Llovera
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Pablo Leivar
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Montserrat Arró
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Farmàcia; Universitat de Barcelona; Barcelona, Spain
| | - Albert Ferrer
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Farmàcia; Universitat de Barcelona; Barcelona, Spain
| | - Albert Boronat
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Narciso Campos
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| |
Collapse
|
107
|
Schliebner I, Pribil M, Zühlke J, Dietzmann A, Leister D. A Survey of Chloroplast Protein Kinases and Phosphatases in Arabidopsis thaliana. Curr Genomics 2011; 9:184-90. [PMID: 19440515 PMCID: PMC2679645 DOI: 10.2174/138920208784340740] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 03/20/2008] [Accepted: 03/22/2008] [Indexed: 01/09/2023] Open
Abstract
Protein phosphorylation is a major mode of regulation of metabolism, gene expression and cell architecture. In chloroplasts, reversible phosphorylation of proteins is known to regulate a number of prominent processes, for instance photosynthesis, gene expression and starch metabolism. The complements of the involved chloroplast protein kinases (cpPKs) and phosphatases (cpPPs) are largely unknown, except 6 proteins (4 cpPKs and 2 cpPPs) which have been experimentally identified so far. We employed combinations of programs predicting N-terminal chloroplast transit peptides (cTPs) to identify 45 tentative cpPKs and 21 tentative cpPPs. However, test sets of 9 tentative cpPKs and 13 tentative cpPPs contain only 2 and 7 genuine cpPKs and cpPPs, respectively, based on experimental subcellular localization of their N-termini fused to the reporter protein RFP. Taken together, the set of enzymes known to be involved in the reversible phosphorylation of chloroplast proteins in A. thaliana comprises altogether now 6 cpPKs and 9 cpPPs, the function of which needs to be determined in future by functional genomics approaches. This includes the calcium-regulated PK CIPK13 which we found to be located in the chloroplast, indicating that calcium-dependent signal transduction pathways also operate in this organelle.
Collapse
Affiliation(s)
- I Schliebner
- Lehrstuhl für Botanik, Department Biologie, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany
| | | | | | | | | |
Collapse
|
108
|
Ghelis T. Signal processing by protein tyrosine phosphorylation in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:942-51. [PMID: 21628997 PMCID: PMC3257767 DOI: 10.4161/psb.6.7.15261] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 05/05/2023]
Abstract
Protein phosphorylation is a reversible post-translational modification controlling many biological processes. Most phosphorylation occurs on serine and threonine, and to a less extend on tyrosine (Tyr). In animals, Tyr phosphorylation is crucial for the regulation of many responses such as growth or differentiation. Only recently with the development of mass spectrometry, it has been reported that Tyr phosphorylation is as important in plants as in animals. The genes encoding protein Tyr kinases and protein Tyr phosphatases have been identified in the Arabidopsis thaliana genome. Putative substrates of these enzymes, and thus Tyr-phosphorylated proteins have been reported by proteomic studies based on accurate mass spectrometry analysis of the phosphopeptides and phosphoproteins. Biochemical approaches, pharmacology and genetic manipulations have indicated that responses to stress and developmental processes involve changes in protein Tyr phosphorylation. The aim of this review is to present an update on Tyr phosphorylation in plants in order to better assess the role of this post-translational modification in plant physiology.
Collapse
Affiliation(s)
- Thanos Ghelis
- UPMC Université Paris 06, Sorbonne Universités, UR5 EAC 7180 CNRS, Physiologie Cellulaire et Moléculaire des Plantes, Paris, France.
| |
Collapse
|
109
|
Dick CF, Dos-Santos ALA, Meyer-Fernandes JR. Inorganic phosphate as an important regulator of phosphatases. Enzyme Res 2011; 2011:103980. [PMID: 21755037 PMCID: PMC3132463 DOI: 10.4061/2011/103980] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022] Open
Abstract
Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate (Pi). Pi starvation-responsive genes appear to be involved in multiple metabolic pathways, implying a complex Pi regulation system in microorganisms and plants. A group of enzymes is required for absorption and maintenance of adequate phosphate levels, which is released from phosphate esters and anhydrides. The phosphatase system is particularly suited for the study of regulatory mechanisms because phosphatase activity is easily measured using specific methods and the difference between the repressed and derepressed levels of phosphatase activity is easily detected. This paper analyzes the protein phosphatase system induced during phosphate starvation in different organisms.
Collapse
Affiliation(s)
- Claudia Fernanda Dick
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | - André Luiz Araújo Dos-Santos
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
110
|
Samofalova DA, Karpov PA, Nuporko AY, Blume YB. Reconstruction of the spatial structure of plant phosphatases types 1 and 2A in complexes with okadaic acid. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711030108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
111
|
Jámbrik K, Máthé C, Vasas G, Beyer D, Molnár E, Borbély G, M-Hamvas M. Microcystin-LR induces chromatin alterations and modulates neutral single-strand-preferring nuclease activity in Phragmites australis. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:678-686. [PMID: 21145617 DOI: 10.1016/j.jplph.2010.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 05/30/2023]
Abstract
Microcystin-LR (MCY-LR), a toxin produced mainly by freshwater cyanobacteria, is a potent inhibitor of type 1 and 2A protein phosphatases. As such, it induces biochemical, cellular and tissue alterations in vascular plants, including cell death. The aim of this study was the analysis of MCY-LR induced changes in the activity of single-strand preferring nuclease (SSP nuclease) isoenzymes that are possibly involved in programmed cell death (PCD) of Phragmites australis (common reed, an aquatic macrophyte) cells. We analyzed both single-stranded DNA (ssDNase) and double-stranded DNA (dsDNase) cleaving activities. Activity gels revealed a number of seven isoenzymes named bands A-G in control reed shoots and roots. Their activity was organ- and age-dependent. We stained nuclei of root tip meristematic cells and found total and marginal chromatin condensations at relatively short-term (2-10 days) cyanotoxin exposure. At 10-20 days of cyanotoxin treatment, the number of cells with condensed chromatin decreased, which coincided with the occurrence of necrotic cell death. In parallel, overall ssDNase activity increased in the short term (five days) and gradually decreased at 10-20 days of MCY-LR treatment. In this context, the most important changes occurred for isoenzyme G of 28-32kDa in roots and isoenzyme F of 35-38kDa in shoots. dsDNase activity of isoenzyme E was decreased by MCY-LR in shoots, but increased in roots at 10 days of exposure. We conclude that the early induction of chromatin condensation and increase of SSP nuclease activities is related to PCD that will lead to necrosis with the cease of all cellular activities, including a decrease in nuclease activity.
Collapse
Affiliation(s)
- Katalin Jámbrik
- Department of Botany, University of Debrecen, Faculty of Science and Technology, P.O. Box 14, H-4010 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
112
|
Leivar P, Antolín-Llovera M, Ferrero S, Closa M, Arró M, Ferrer A, Boronat A, Campos N. Multilevel control of Arabidopsis 3-hydroxy-3-methylglutaryl coenzyme A reductase by protein phosphatase 2A. THE PLANT CELL 2011; 23:1494-511. [PMID: 21478440 PMCID: PMC3101556 DOI: 10.1105/tpc.110.074278] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/02/2011] [Accepted: 03/23/2011] [Indexed: 05/18/2023]
Abstract
Plants synthesize a myriad of isoprenoid products that are required both for essential constitutive processes and for adaptive responses to the environment. The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes a key regulatory step of the mevalonate pathway for isoprenoid biosynthesis and is modulated by many endogenous and external stimuli. In spite of that, no protein factor interacting with and regulating plant HMGR in vivo has been described so far. Here, we report the identification of two B'' regulatory subunits of protein phosphatase 2A (PP2A), designated B''α and B''β, that interact with HMGR1S and HMGR1L, the major isoforms of Arabidopsis thaliana HMGR. B''α and B''β are Ca²⁺ binding proteins of the EF-hand type. We show that HMGR transcript, protein, and activity levels are modulated by PP2A in Arabidopsis. When seedlings are transferred to salt-containing medium, B''α and PP2A mediate the decrease and subsequent increase of HMGR activity, which results from a steady rise of HMGR1-encoding transcript levels and an initial sharper reduction of HMGR protein level. In unchallenged plants, PP2A is a posttranslational negative regulator of HMGR activity with the participation of B''β. Our data indicate that PP2A exerts multilevel control on HMGR through the five-member B'' protein family during normal development and in response to a variety of stress conditions.
Collapse
Affiliation(s)
- Pablo Leivar
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Meritxell Antolín-Llovera
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Sergi Ferrero
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Marta Closa
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Montserrat Arró
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Albert Ferrer
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Albert Boronat
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Narciso Campos
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
- Address correspondence to
| |
Collapse
|
113
|
Lin KC, Sun PC, Lin PL. Production of reactive oxygen species and induction of signaling pathways for the ACO gene expressions in tomato plants triggered by the volatile organic compound ether. PLANT CELL REPORTS 2011; 30:599-611. [PMID: 21170714 DOI: 10.1007/s00299-010-0976-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/26/2010] [Accepted: 12/07/2010] [Indexed: 05/27/2023]
Abstract
Diethyl ether (ether), a volatile organic compound, is widely used as an industrial solvent and easily released to the environment. Acute exposure of tomato plants to high concentrations of ether caused young leaves to curl. Histochemical analyses revealed that superoxide anion (•O(2-) and hydrogen peroxide were formed sequentially by ether, and that (•O(2-) was the major ROS produced in response to ether exposure. We observed cell death by microscopic inspection of Evans blue-stained samples, following fumigation with ether for 6 h. The ethylene biosynthetic gene, 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), was induced as early as 15-30 min after ether fumigation and could be activated at ether concentration as low as 1 μL/L. Induction of ACO gene expression occurred simultaneously with ROS accumulation and coincided with the occurrence of cell death. Simultaneous treatment of tomato plants with mechanical wounding and ether induced differential expression of the ACO gene family. Ether strongly induced ACO4 and moderately induced ACO1, whereas mechanical wounding strongly induced ACO1 and slightly induced ACO4. Induction of the ACO gene family by ether occurred via different signaling pathways. While the ACO1 gene was induced via protein phosphorylation, the ACO4 gene was induced through protein dephosphorylation. Induction of ACO1 and ACO4 might be through MPK1, MPK2, MPK3, and PP2Ac1. These results suggest that the cellular responses of tomato plants to ether are different from the plant responses to ozone, and that tomato plants respond to different air pollutants through different perceptions and downstream signaling pathways.
Collapse
Affiliation(s)
- Kuo-Chih Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan.
| | | | | |
Collapse
|
114
|
Romá-Mateo C, Sacristán-Reviriego A, Beresford NJ, Caparrós-Martín JA, Culiáñez-Macià FA, Martín H, Molina M, Tabernero L, Pulido R. Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms. Mol Genet Genomics 2011; 285:341-54. [DOI: 10.1007/s00438-011-0611-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 02/27/2011] [Indexed: 11/29/2022]
|
115
|
Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2001-11. [PMID: 21172812 PMCID: PMC3060683 DOI: 10.1093/jxb/erq392] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 05/18/2023]
Abstract
The beneficial element silicon (Si) may affect radial oxygen loss (ROL) of rice roots depending on suberization of the exodermis and lignification of sclerenchyma. Thus, the effect of Si nutrition on the oxidation power of rice roots, suberization and lignification was examined. In addition, Si-induced alterations of the transcript levels of 265 genes related to suberin and lignin synthesis were studied by custom-made microarray and quantitative Real Time-PCR. Without Si supply, the oxidation zone of 12 cm long adventitious roots extended along the entire root length but with Si supply the oxidation zone was restricted to 5 cm behind the root tip. This pattern coincided with enhanced suberization of the exodermis and lignification of sclerenchyma by Si supply. Suberization of the exodermis started, with and without Si supply, at 4-5 cm and 8-9 cm distance from the root tip (drt), respectively. Si significantly increased transcript abundance of 12 genes, while two genes had a reduced transcript level. A gene coding for a leucine-rich repeat protein exhibited a 25-fold higher transcript level with Si nutrition. Physiological, histochemical, and molecular-biological data showing that Si has an active impact on rice root anatomy and gene transcription is presented here.
Collapse
Affiliation(s)
- Alexander T Fleck
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
116
|
Hartings H, Lauria M, Lazzaroni N, Pirona R, Motto M. The Zea mays mutants opaque-2 and opaque-7 disclose extensive changes in endosperm metabolism as revealed by protein, amino acid, and transcriptome-wide analyses. BMC Genomics 2011; 12:41. [PMID: 21241522 PMCID: PMC3033817 DOI: 10.1186/1471-2164-12-41] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/18/2011] [Indexed: 11/16/2022] Open
Abstract
Background The changes in storage reserve accumulation during maize (Zea mays L.) grain maturation are well established. However, the key molecular determinants controlling carbon flux to the grain and the partitioning of carbon to starch and protein are more elusive. The Opaque-2 (O2) gene, one of the best-characterized plant transcription factors, is a good example of the integration of carbohydrate, amino acid and storage protein metabolisms in maize endosperm development. Evidence also indicates that the Opaque-7 (O7) gene plays a role in affecting endosperm metabolism. The focus of this study was to assess the changes induced by the o2 and o7 mutations on maize endosperm metabolism by evaluating protein and amino acid composition and by transcriptome profiling, in order to investigate the functional interplay between these two genes in single and double mutants. Results We show that the overall amino acid composition of the mutants analyzed appeared similar. Each mutant had a high Lys and reduced Glx and Leu content with respect to wild type. Gene expression profiling, based on a unigene set composed of 7,250 ESTs, allowed us to identify a series of mutant-related down (17.1%) and up-regulated (3.2%) transcripts. Several differentially expressed ESTs homologous to genes encoding enzymes involved in amino acid synthesis, carbon metabolism (TCA cycle and glycolysis), in storage protein and starch metabolism, in gene transcription and translation processes, in signal transduction, and in protein, fatty acid, and lipid synthesis were identified. Our analyses demonstrate that the mutants investigated are pleiotropic and play a critical role in several endosperm-related metabolic processes. Pleiotropic effects were less evident in the o7 mutant, but severe in the o2 and o2o7 backgrounds, with large changes in gene expression patterns, affecting a broad range of kernel-expressed genes. Conclusion Although, by necessity, this paper is descriptive and more work is required to define gene functions and dissect the complex regulation of gene expression, the genes isolated and characterized to date give us an intriguing insight into the mechanisms underlying endosperm metabolism.
Collapse
Affiliation(s)
- Hans Hartings
- Unità di Ricerca per la Maiscoltura, Via Stezzano 24, 24126 Bergamo, Italy
| | | | | | | | | |
Collapse
|
117
|
Abstract
Major progress has been made in unravelling of regulatory mechanisms in eukaryotic cells. Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. The phospho-status of a protein is dynamically controlled by protein kinases and counteracting phosphatases. Therefore, monitoring of kinase and phosphatase activities, identification of specific phosphorylation sites, and assessment of their functional significance are of crucial importance to understand development and homeostasis. Recent advances in the area of molecular biology and biochemistry, for instance, mass spectrometry-based phosphoproteomics or fluorescence spectroscopical methods, open new possibilities to reach an unprecidented depth and a proteome-wide understanding of phosphorylation processes in plants and other species. In addition, the growing number of model species allows now deepening evolutionary insights into signal transduction cascades and the use of kinase/phosphatase systems. Thus, this is the age where we move from an understanding of the structure and function of individual protein modules to insights how these proteins are organized into pathways and networks. In this introductory chapter, we briefly review general definitions, methodology, and current concepts of the molecular mechanisms of protein kinase function as a foundation for this methods book. We briefly review biochemistry and structural biology of kinases and provide selected examples for the role of kinases in biological systems.
Collapse
|
118
|
Hu X, Liu L, Xiao B, Li D, Xing X, Kong X, Li D. Enhanced tolerance to low temperature in tobacco by over-expression of a new maize protein phosphatase 2C, ZmPP2C2. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1307-15. [PMID: 20580122 DOI: 10.1016/j.jplph.2010.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 04/17/2010] [Accepted: 04/20/2010] [Indexed: 05/20/2023]
Abstract
Low temperature is one of the most common environmental stresses affecting plant growth and agricultural production. Serine/threonine protein phosphatases 2C (PP2Cs) have been suggested to play an important role in stress signaling. To identify potential new member of the PP2C proteins in maize and investigate its functions for stress responses, the ZmPP2C2 gene, encoding a new PP2C protein from maize roots, was cloned by RT-PCR and RACE-PCR. Its constitutive expression in roots, stems and leaves of maize seedlings was detected by RNA gel blot, and its regulation in response to cold stress was also examined. To further evaluate its function in the cold stress response, we over-expressed the ZmPP2C2 gene in tobacco under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter, and assessed a series of physiological changes in wild type and transgenic plants under low temperatures. Compared with wild type tobacco under cold stress, plants that over-expressed ZmPP2C2 displayed higher germination speed and rate, higher antioxidant enzyme (SOD, POD, CAT) activities, with lower cold-induced electrolyte leakage and malondialdehyde (MDA) contents. These results show that over-expression of ZmPP2C2 in tobacco enhanced tolerance to cold stress, suggesting that this new gene, ZmPP2C2, may act as a positive regulator of cold resistance in plants.
Collapse
Affiliation(s)
- Xiaoli Hu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | | | | | | | | | | | | |
Collapse
|
119
|
Lumbreras V, Vilela B, Irar S, Solé M, Capellades M, Valls M, Coca M, Pagès M. MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:1017-30. [PMID: 20626661 DOI: 10.1111/j.1365-313x.2010.04297.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have important functions in plant stress responses and development and are key players in reactive oxygen species (ROS) signalling and in innate immunity. In Arabidopsis, the transmission of ROS and pathogen signalling by MAPKs involves the coordinated activation of MPK6 and MPK3; however, the specificity of their negative regulation by phosphatases is not fully known. Here, we present genetic analyses showing that MAPK phosphatase 2 (MKP2) regulates oxidative stress and pathogen defence responses and functionally interacts with MPK3 and MPK6. We show that plants lacking a functional MKP2 gene exhibit delayed wilting symptoms in response to Ralstonia solanacearum and, by contrast, acceleration of disease progression during Botrytis cinerea infection, suggesting that this phosphatase plays differential functions in biotrophic versus necrotrophic pathogen-induced responses. MKP2 function appears to be linked to MPK3 and MPK6 regulation, as indicated by BiFC experiments showing that MKP2 associates with MPK3 and MPK6 in vivo and that in response to fungal elicitors MKP2 exerts differential affinity versus both kinases. We also found that MKP2 interacts with MPK6 in HR-like responses triggered by fungal elicitors, suggesting that MPK3 and MPK6 are subject to differential regulation by MKP2 in this process. We propose that MKP2 is a key regulator of MPK3 and MPK6 networks controlling both abiotic and specific pathogen responses in plants.
Collapse
Affiliation(s)
- Victoria Lumbreras
- Departamento de Genética Molecular, CRAG (CSIC-IRTA-UAB), 18-26 Jordi Girona, 08034 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Singh A, Giri J, Kapoor S, Tyagi AK, Pandey GK. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics 2010. [PMID: 20637108 DOI: 10.1186/1471–2164–11-435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein phosphatases are the key components of a number of signaling pathways where they modulate various cellular responses. In plants, protein phosphatases constitute a large gene family and are reportedly involved in the regulation of abiotic stress responses and plant development. Recently, the whole complement of protein phosphatases has been identified in Arabidopsis genome. While PP2C class of serine/threonine phosphatases has been explored in rice, the whole complement of this gene family is yet to be reported. RESULTS In silico investigation revealed the presence of 132-protein phosphatase-coding genes in rice genome. Domain analysis and phylogenetic studies of evolutionary relationship categorized these genes into PP2A, PP2C, PTP, DSP and LMWP classes. PP2C class represents a major proportion of this gene family with 90 members. Chromosomal localization revealed their distribution on all the 12 chromosomes, with 42 genes being present on segmentally duplicated regions and 10 genes on tandemly duplicated regions of chromosomes. The expression profiles of 128 genes under salinity, cold and drought stress conditions, 11 reproductive developmental (panicle and seed) stages along with three stages of vegetative development were analyzed using microarray expression data. 46 genes were found to be differentially expressing in 3 abiotic stresses out of which 31 were up-regulated and 15 exhibited down-regulation. A total of 82 genes were found to be differentially expressing in different developmental stages. An overlapping expression pattern was found for abiotic stresses and reproductive development, wherein 8 genes were up-regulated and 7 down-regulated. Expression pattern of the 13 selected genes was validated employing real time PCR, and it was found to be in accordance with the microarray expression data for most of the genes. CONCLUSIONS Exploration of protein phosphatase gene family in rice has resulted in the identification of 132 members, which can be further divided into different classes phylogenetically. Expression profiling and analysis indicate the involvement of this large gene family in a number of signaling pathways triggered by abiotic stresses and their possible role in plant development. Our study will provide the platform from where; the expression pattern information can be transformed into molecular, cellular and biochemical characterization of members belonging to this gene family.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
| | | | | | | | | |
Collapse
|
121
|
Singh A, Giri J, Kapoor S, Tyagi AK, Pandey GK. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics 2010; 11:435. [PMID: 20637108 PMCID: PMC3091634 DOI: 10.1186/1471-2164-11-435] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 07/16/2010] [Indexed: 11/12/2022] Open
Abstract
Background Protein phosphatases are the key components of a number of signaling pathways where they modulate various cellular responses. In plants, protein phosphatases constitute a large gene family and are reportedly involved in the regulation of abiotic stress responses and plant development. Recently, the whole complement of protein phosphatases has been identified in Arabidopsis genome. While PP2C class of serine/threonine phosphatases has been explored in rice, the whole complement of this gene family is yet to be reported. Results In silico investigation revealed the presence of 132-protein phosphatase-coding genes in rice genome. Domain analysis and phylogenetic studies of evolutionary relationship categorized these genes into PP2A, PP2C, PTP, DSP and LMWP classes. PP2C class represents a major proportion of this gene family with 90 members. Chromosomal localization revealed their distribution on all the 12 chromosomes, with 42 genes being present on segmentally duplicated regions and 10 genes on tandemly duplicated regions of chromosomes. The expression profiles of 128 genes under salinity, cold and drought stress conditions, 11 reproductive developmental (panicle and seed) stages along with three stages of vegetative development were analyzed using microarray expression data. 46 genes were found to be differentially expressing in 3 abiotic stresses out of which 31 were up-regulated and 15 exhibited down-regulation. A total of 82 genes were found to be differentially expressing in different developmental stages. An overlapping expression pattern was found for abiotic stresses and reproductive development, wherein 8 genes were up-regulated and 7 down-regulated. Expression pattern of the 13 selected genes was validated employing real time PCR, and it was found to be in accordance with the microarray expression data for most of the genes. Conclusions Exploration of protein phosphatase gene family in rice has resulted in the identification of 132 members, which can be further divided into different classes phylogenetically. Expression profiling and analysis indicate the involvement of this large gene family in a number of signaling pathways triggered by abiotic stresses and their possible role in plant development. Our study will provide the platform from where; the expression pattern information can be transformed into molecular, cellular and biochemical characterization of members belonging to this gene family.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
| | | | | | | | | |
Collapse
|
122
|
País SM, García MNM, Téllez-Iñón MT, Capiati DA. Protein phosphatases type 2A mediate tuberization signaling in Solanum tuberosum L. leaves. PLANTA 2010; 232:37-49. [PMID: 20358221 DOI: 10.1007/s00425-010-1150-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/14/2010] [Indexed: 05/09/2023]
Abstract
Tuber formation in potato (Solanum tuberosum L.) is regulated by hormonal and environmental signals that are thought to be integrated in the leaves. The molecular mechanisms that mediate the responses to tuberization-related signals in leaves remain largely unknown. In this study we analyzed the roles of protein phosphatase type 2A catalytic subunits (PP2Ac) in the leaf responses to conditions that affect tuberization. The responses were monitored by analyzing the expression of the "tuber-specific" genes Patatin and Pin2, which are induced in tubers and leaves during tuber induction. Experiments using PP2A inhibitors, together with PP2Ac expression profiles under conditions that affect tuberization indicate that high sucrose/nitrogen ratio, which promotes tuber formation, increases the transcript levels of Patatin and Pin2, by increasing the activity of PP2As without affecting PP2Ac mRNA or protein levels. Gibberellic acid (GA), a negative regulator of tuberization, down-regulates the transcription of catalytic subunits of PP2As from the subfamily I and decreases their enzyme levels. In addition, GA inhibits the expression of Patatin and Pin2 possibly by a PP2A-independent mechanism. PP2Ac down-regulation by GA may inhibit tuberization signaling downstream of the inductive effects of high sucrose/nitrogen ratio. These results are consistent with the hypothesis that PP2As of the subfamily I may positively modulate the signaling pathways that lead to the transcriptional activation of "tuber-specific" genes in leaves, and act as molecular switches regulated by both positive and negative modulators of tuberization.
Collapse
Affiliation(s)
- Silvia Marina País
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
123
|
Yang XJ, Finnegan PM. Regulation of phosphate starvation responses in higher plants. ANNALS OF BOTANY 2010; 105:513-26. [PMID: 20181569 PMCID: PMC2850799 DOI: 10.1093/aob/mcq015] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/12/2009] [Accepted: 01/05/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Phosphorus (P) is often a limiting mineral nutrient for plant growth. Many soils worldwide are deficient in soluble inorganic phosphate (P(i)), the form of P most readily absorbed and utilized by plants. A network of elaborate developmental and biochemical adaptations has evolved in plants to enhance P(i) acquisition and avoid starvation. SCOPE Controlling the deployment of adaptations used by plants to avoid P(i) starvation requires a sophisticated sensing and regulatory system that can integrate external and internal information regarding P(i) availability. In this review, the current knowledge of the regulatory mechanisms that control P(i) starvation responses and the local and long-distance signals that may trigger P(i) starvation responses are discussed. Uncharacterized mutants that have P(i)-related phenotypes and their potential to give us additional insights into regulatory pathways and P(i) starvation-induced signalling are also highlighted and assessed. CONCLUSIONS An impressive list of factors that regulate P(i) starvation responses is now available, as is a good deal of knowledge regarding the local and long-distance signals that allow a plant to sense and respond to P(i) availability. However, we are only beginning to understand how these factors and signals are integrated with one another in a regulatory web able to control the range of responses demonstrated by plants grown in low P(i) environments. Much more knowledge is needed in this agronomically important area before real gains can be made in improving P(i) acquisition in crop plants.
Collapse
Affiliation(s)
- Xiao Juan Yang
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Patrick M. Finnegan
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
- For correspondence. E-mail
| |
Collapse
|
124
|
Rodriguez MCS, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:621-49. [PMID: 20441529 DOI: 10.1146/annurev-arplant-042809-112252] [Citation(s) in RCA: 701] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including the Arabidopsis thaliana MAPKs MPK3, 4, and 6 and MAP2Ks MKK1, 2, 4, and 5. Future work needs to focus on identifying substrates of MAPKs, and on understanding how specificity is achieved among MAPK signaling pathways.
Collapse
|
125
|
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:651-79. [PMID: 20192755 DOI: 10.1146/annurev-arplant-042809-112122] [Citation(s) in RCA: 1830] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Abscisic acid (ABA) regulates numerous developmental processes and adaptive stress responses in plants. Many ABA signaling components have been identified, but their interconnections and a consensus on the structure of the ABA signaling network have eluded researchers. Recently, several advances have led to the identification of ABA receptors and their three-dimensional structures, and an understanding of how key regulatory phosphatase and kinase activities are controlled by ABA. A new model for ABA action has been proposed and validated, in which the soluble PYR/PYL/RCAR receptors function at the apex of a negative regulatory pathway to directly regulate PP2C phosphatases, which in turn directly regulate SnRK2 kinases. This model unifies many previously defined signaling components and highlights the importance of future work focused on defining the direct targets of SnRK2s and PP2Cs, dissecting the mechanisms of hormone interactions (i.e., cross talk) and defining connections between this new negative regulatory pathway and other factors implicated in ABA signaling.
Collapse
Affiliation(s)
- Sean R Cutler
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA.
| | | | | | | |
Collapse
|
126
|
Müller J, Beck M, Mettbach U, Komis G, Hause G, Menzel D, Samaj J. Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:234-48. [PMID: 19832943 DOI: 10.1111/j.1365-313x.2009.04046.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The proper spatial and temporal expression and localization of mitogen-activated protein kinases (MAPKs) is essential for developmental and cellular signalling in all eukaryotes. Here, we analysed expression, subcellular localization and function of MPK6 in roots of Arabidopsis thaliana using wild-type plants and three mpk6 knock-out mutant lines. The MPK6 promoter showed two expression maxima in the most apical part of the root meristem and in the root transition zone. This expression pattern was highly consistent with 'no root' and 'short root' phenotypes, as well as with ectopic cell divisions and aberrant cell division planes, resulting in disordered cell files in the roots of these mpk6 knock-out mutants. In dividing root cells, MPK6 was localized on the subcellular level to distinct fine spots in the pre-prophase band and phragmoplast, representing the two most important cytoskeletal structures controlling the cell division plane. By combining subcellular fractionation and microscopic in situ and in vivo co-localization methods, MPK6 was localized to the plasma membrane (PM) and the trans-Golgi network (TGN). In summary, these data suggest that MPK6 localizing to mitotic microtubules, secretory TGN vesicles and the PM is involved in cell division plane control and root development in Arabidopsis.
Collapse
Affiliation(s)
- Jens Müller
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
127
|
País SM, Téllez-Iñón MT, Capiati DA. Serine/threonine protein phosphatases type 2A and their roles in stress signaling. PLANT SIGNALING & BEHAVIOR 2009; 4:1013-5. [PMID: 20009558 PMCID: PMC2819506 DOI: 10.4161/psb.4.11.9783] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 08/08/2009] [Indexed: 05/18/2023]
Abstract
Serine/threonine protein phosphatases are ubiquitous enzymes in all eukaryotes but many of their physiological roles in plants remain unknown. The available results have demonstrated critical functions for these enzymes in the regulation of adaptive stress responses, and recent studies have directed attention to the functional roles of Ser/Thr phosphatases type 2A (PP2A) as components of stress signaling pathways. This review is focused primarily on plant PP2As and their participation in the control of biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Silvia Marina País
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
128
|
País SM, González MA, Téllez-Iñón MT, Capiati DA. Characterization of potato (Solanum tuberosum) and tomato (Solanum lycopersicum) protein phosphatases type 2A catalytic subunits and their involvement in stress responses. PLANTA 2009; 230:13-25. [PMID: 19330349 DOI: 10.1007/s00425-009-0923-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/11/2009] [Indexed: 05/09/2023]
Abstract
Protein phosphorylation/dephosphorylation plays critical roles in stress responses in plants. This report presents a comparative characterization of the serine/threonine PP2A catalytic subunit family in Solanum tuberosum (potato) and S. lycopersicum (tomato), two important food crops of the Solanaceae family, based on the sequence analysis and expression profiles in response to environmental stress. Sequence homology analysis revealed six isoforms in potato and five in tomato clustered into two subfamilies (I and II). The data presented in this work show that the expression of different PP2Ac genes is regulated in response to environmental stresses in potato and tomato plants and suggest that, in general, mainly members of the subfamily I are involved in stress responses in both species. However, the differences found in the expression profiles between potato and tomato suggest divergent roles of PP2A in the plant defense mechanisms against stress in these closely related species.
Collapse
Affiliation(s)
- Silvia Marina País
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490, Ciudad de Buenos Aires 1428, Argentina
| | | | | | | |
Collapse
|
129
|
Balu B, Chauhan C, Maher SP, Shoue DA, Kissinger JC, Fraser MJ, Adams JH. piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome. BMC Microbiol 2009; 9:83. [PMID: 19422698 PMCID: PMC2686711 DOI: 10.1186/1471-2180-9-83] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 05/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Much of the Plasmodium falciparum genome encodes hypothetical proteins with limited homology to other organisms. A lack of robust tools for genetic manipulation of the parasite limits functional analysis of these hypothetical proteins and other aspects of the Plasmodium genome. Transposon mutagenesis has been used widely to identify gene functions in many organisms and would be extremely valuable for functional analysis of the Plasmodium genome. RESULTS In this study, we investigated the lepidopteran transposon, piggyBac, as a molecular genetic tool for functional characterization of the Plasmodium falciparum genome. Through multiple transfections, we generated 177 unique P. falciparum mutant clones with mostly single piggyBac insertions in their genomes. Analysis of piggyBac insertion sites revealed random insertions into the P. falciparum genome, in regards to gene expression in parasite life cycle stages and functional categories. We further explored the possibility of forward genetic studies in P. falciparum with a phenotypic screen for attenuated growth, which identified several parasite genes and pathways critical for intra-erythrocytic development. CONCLUSION Our results clearly demonstrate that piggyBac is a novel, indispensable tool for forward functional genomics in P. falciparum that will help better understand parasite biology and accelerate drug and vaccine development.
Collapse
Affiliation(s)
- Bharath Balu
- Department of Global Health, University of South Florida, Tampa, Florida 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
130
|
Takemiya A, Ariyoshi C, Shimazaki KI. Identification and functional characterization of inhibitor-3, a regulatory subunit of protein phosphatase 1 in plants. PLANT PHYSIOLOGY 2009; 150:144-56. [PMID: 19329567 PMCID: PMC2675749 DOI: 10.1104/pp.109.135335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 03/24/2009] [Indexed: 05/23/2023]
Abstract
Protein phosphatase 1 (PP1) is a eukaryotic serine/threonine protein phosphatase, and mediates diverse cellular processes in animal systems via the association of a catalytic subunit (PP1c) with multiple regulatory subunits that determine the catalytic activity, the subcellular localization, and the substrate specificity. However, no regulatory subunit of PP1 has been identified in plants so far. In this study, we identified inhibitor-3 (Inh3) as a regulatory subunit of PP1 and characterized a functional role of Inh3 in Vicia faba and Arabidopsis (Arabidopsis thaliana). We found Inh3 as one of the proteins interacting with PP1c using a yeast two-hybrid system. Biochemical analyses demonstrated that Arabidopsis Inh3 (AtInh3) bound to PP1c via the RVxF motif of AtInh3, a consensus PP1c-binding sequence both in vitro and in vivo. AtInh3 inhibited the PP1c phosphatase activity in the nanomolar range in vitro. AtInh3 was localized in both the nucleus and cytoplasm, and it colocalized with Arabidopsis PP1c in these compartments. Disruption mutants of AtINH3 delayed the progression of early embryogenesis, arrested embryo development at the globular stage, and eventually caused embryo lethality. Furthermore, reduction of AtINH3 expression by RNA interference led to a decrease in fertility. Transformation of the lethal mutant of inh3 with wild-type AtINH3 restored the phenotype, whereas that with the AtINH3 gene having a mutation in the RVxF motif did not. These results define Inh3 as a regulatory subunit of PP1 in plants and suggest that Inh3 plays a crucial role in early embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Atsushi Takemiya
- Department of Biology, Faculty of Science, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
131
|
Quiapim AC, Brito MS, Bernardes LAS, Dasilva I, Malavazi I, DePaoli HC, Molfetta-Machado JB, Giuliatti S, Goldman GH, Goldman MHS. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. PLANT PHYSIOLOGY 2009; 149:1211-30. [PMID: 19052150 PMCID: PMC2649396 DOI: 10.1104/pp.108.131573] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 11/28/2008] [Indexed: 05/22/2023]
Abstract
The success of plant reproduction depends on pollen-pistil interactions occurring at the stigma/style. These interactions vary depending on the stigma type: wet or dry. Tobacco (Nicotiana tabacum) represents a model of wet stigma, and its stigmas/styles express genes to accomplish the appropriate functions. For a large-scale study of gene expression during tobacco pistil development and preparation for pollination, we generated 11,216 high-quality expressed sequence tags (ESTs) from stigmas/styles and created the TOBEST database. These ESTs were assembled in 6,177 clusters, from which 52.1% are pistil transcripts/genes of unknown function. The 21 clusters with the highest number of ESTs (putative higher expression levels) correspond to genes associated with defense mechanisms or pollen-pistil interactions. The database analysis unraveled tobacco sequences homologous to the Arabidopsis (Arabidopsis thaliana) genes involved in specifying pistil identity or determining normal pistil morphology and function. Additionally, 782 independent clusters were examined by macroarray, revealing 46 stigma/style preferentially expressed genes. Real-time reverse transcription-polymerase chain reaction experiments validated the pistil-preferential expression for nine out of 10 genes tested. A search for these 46 genes in the Arabidopsis pistil data sets demonstrated that only 11 sequences, with putative equivalent molecular functions, are expressed in this dry stigma species. The reverse search for the Arabidopsis pistil genes in the TOBEST exposed a partial overlap between these dry and wet stigma transcriptomes. The TOBEST represents the most extensive survey of gene expression in the stigmas/styles of wet stigma plants, and our results indicate that wet and dry stigmas/styles express common as well as distinct genes in preparation for the pollination process.
Collapse
Affiliation(s)
- Andréa C Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Aceti DJ, Bitto E, Yakunin AF, Proudfoot M, Bingman CA, Frederick RO, Sreenath HK, Vojtik FC, Wrobel RL, Fox BG, Markley JL, Phillips GN. Structural and functional characterization of a novel phosphatase from the Arabidopsis thaliana gene locus At1g05000. Proteins 2009; 73:241-53. [PMID: 18433060 DOI: 10.1002/prot.22041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The crystal structure of the protein product of the gene locus At1g05000, a hypothetical protein from A. thaliana, was determined by the multiple-wavelength anomalous diffraction method and was refined to an R factor of 20.4% (R(free) = 24.9%) at 3.3 A. The protein adopts the alpha/beta fold found in cysteine phosphatases, a superfamily of phosphatases that possess a catalytic cysteine and form a covalent thiol-phosphate intermediate during the catalytic cycle. In At1g05000, the analogous cysteine (Cys(150)) is located at the bottom of a positively-charged pocket formed by residues that include the conserved arginine (Arg(156)) of the signature active site motif, HCxxGxxRT. Of 74 model phosphatase substrates tested, purified recombinant At1g05000 showed highest activity toward polyphosphate (poly-P(12-13)) and deoxyribo- and ribonucleoside triphosphates, and less activity toward phosphoenolpyruvate, phosphotyrosine, phosphotyrosine-containing peptides, and phosphatidyl inositols. Divalent metal cations were not required for activity and had little effect on the reaction.
Collapse
Affiliation(s)
- David J Aceti
- Department of Biochemistry, The Center for Eukaryotic Structural Genomics, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Roche J, Hewezi T, Bouniols A, Gentzbittel L. Real-time PCR monitoring of signal transduction related genes involved in water stress tolerance mechanism of sunflower. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:139-145. [PMID: 19054682 DOI: 10.1016/j.plaphy.2008.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 10/19/2008] [Indexed: 05/27/2023]
Abstract
The study deals with the quantitative expression pattern of genes involved in signaling transduction pathways in response to water stress in leaves and embryos of a water stress tolerant genotype compared to a non-tolerant genotype using real-time quantitative PCR. The experiment was conducted in the field. The results showed a high quantitative up-regulation of genes belonging to protein kinase, phosphatase and transcription factor pathways (from two to 70 fold) only in leaves of the tolerant genotype compared to the non-tolerant genotype. Moreover, genes related to the protein kinase pathway were down-regulated in leaves of the non-tolerant genotype. On the contrary, in seeds, our study showed that the positive regulation of genes related to the signal transduction pathway observed in leaves of the tolerant genotype is turned off, suggesting different transcriptional control of signaling water stress in reproductive organs compared to vegetative organs.
Collapse
Affiliation(s)
- Jane Roche
- UMR 1248 France INRA/ENSAT Centre de Toulouse, Chemin de Borde Rouge, BP 27 31326, Auzeville, Castanet-Tolosan, France.
| | | | | | | |
Collapse
|
134
|
Sheremet YA, Yemets AI, Verbelen JP, Blume YB. The effect of okadaic acid on Arabidopsis thaliana root morphology and microtubule organization in its cells. CYTOL GENET+ 2009. [DOI: 10.3103/s0095452709010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
135
|
Abstract
Protein phosphorylation appears to be a universal mechanism of protein regulation. Genomics has provided the means to compile inventories of protein phosphatases across a wide selection of organisms and this has supplied insights into the evolution of this group of enzymes. Protein phosphatases evolved independently several times yielding the groups we observe today. Starting from a core catalytic domain, phosphatases evolved by a series of gene duplication events and by adopting the use of regulatory subunits and/or fusion with novel functional modules or domains. Recent analyses also suggest that the serine/threonine specific enzymes are more ancient than the PTPs (protein tyrosine phosphatases). It is likely that the latter played a key role at the onset of metazoan evolution in conjunction with the tremendous expansion of tyrosine kinases and PTPs at this point. In the present review, we discuss the evolution of the PTPs, the serine/threonine specific PPP (phosphoprotein phosphatase) and PPM (metallo-dependent protein phosphatase) families and the more recently discovered phosphatases that utilize an aspartate-based catalytic mechanism. We will also highlight examples of convergent evolution and several phosphatases which are unique to plants.
Collapse
|
136
|
Panthee DR, Marois JJ, Wright DL, Narváez D, Yuan JS, Stewart CN. Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:359-70. [PMID: 18853130 DOI: 10.1007/s00122-008-0905-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/23/2008] [Indexed: 05/07/2023]
Abstract
Understanding plant host response to a pathogen such as Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), under different environmental conditions and growth stages is crucial for developing a resistant plant variety. The main objective of this study was to perform global transcriptome profiling of P. pachyrhizi-exposed soybean (Glycine max) with susceptible reaction to the pathogen from two distinct developmental growth stages using whole genome Affymetrix microarrays of soybean followed by confirmation using a resistant genotype. Soybean cv. 5601T (susceptible to ASR) at the V(4) and R(1) growth stages and Glycine tomentella (resistant to ASR) plants were inoculated with P. pachyrhizi and leaf samples were collected after 72 h of inoculation for microarray analysis. Upon analyzing the data using Array Assist software at 5% false discovery rate (FDR), a total of 5,056 genes were found significantly differentially expressed at V(4) growth stage, of which 2,401 were up-regulated, whereas 579 were found differentially expressed at R(1) growth stage, of which 264 were up-regulated. There were 333 differentially expressed common genes between the V(4) and R(1) growth stages, of which 125 were up-regulated. A large difference in number of differentially expressed genes between the two growth stages indicates that the gene expression is growth-stage-specific. We performed real-time RT-PCR analysis on nine of these genes from both growth stages and both plant species and found results to be congruent with those from the microarray analysis.
Collapse
Affiliation(s)
- Dilip R Panthee
- Department of Plant Sciences, 252 Ellington Plant Sciences, The University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA.
| | | | | | | | | | | |
Collapse
|
137
|
Kötting O, Santelia D, Edner C, Eicke S, Marthaler T, Gentry MS, Comparot-Moss S, Chen J, Smith AM, Steup M, Ritte G, Zeeman SC. STARCH-EXCESS4 is a laforin-like Phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. THE PLANT CELL 2009; 21:334-46. [PMID: 19141707 PMCID: PMC2648081 DOI: 10.1105/tpc.108.064360] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/18/2008] [Accepted: 12/23/2008] [Indexed: 05/18/2023]
Abstract
Starch is the major storage carbohydrate in plants. It is comprised of glucans that form semicrystalline granules. Glucan phosphorylation is a prerequisite for normal starch breakdown, but phosphoglucan metabolism is not understood. A putative protein phosphatase encoded at the Starch Excess 4 (SEX4) locus of Arabidopsis thaliana was recently shown to be required for normal starch breakdown. Here, we show that SEX4 is a phosphoglucan phosphatase in vivo and define its role within the starch degradation pathway. SEX4 dephosphorylates both the starch granule surface and soluble phosphoglucans in vitro, and sex4 null mutants accumulate phosphorylated intermediates of starch breakdown. These compounds are linear alpha-1,4-glucans esterified with one or two phosphate groups. They are released from starch granules by the glucan hydrolases alpha-amylase and isoamylase. In vitro experiments show that the rate of starch granule degradation is increased upon simultaneous phosphorylation and dephosphorylation of starch. We propose that glucan phosphorylating enzymes and phosphoglucan phosphatases work in synergy with glucan hydrolases to mediate efficient starch catabolism.
Collapse
Affiliation(s)
- Oliver Kötting
- Institute of Plant Sciences, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Guo L, Urban JF, Zhu J, Paul WE. Elevating calcium in Th2 cells activates multiple pathways to induce IL-4 transcription and mRNA stabilization. THE JOURNAL OF IMMUNOLOGY 2008; 181:3984-93. [PMID: 18768853 DOI: 10.4049/jimmunol.181.6.3984] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PMA and ionomycin cause T cell cytokine production. We report that ionomycin alone induces IL-4 and IFN-gamma, but not IL-2, from in vivo- and in vitro-generated murine Th2 and Th1 cells. Ionomycin-induced cytokine production requires NFAT, p38, and calmodulin-dependent kinase IV (CaMKIV). Ionomycin induces p38 phosphorylation through a calcium-dependent, cyclosporine A-inhibitable pathway. Knocking down ASK1 inhibits ionomycin-induced p38 phosphorylation and IL-4 production. Ionomycin also activates CaMKIV, which, together with p38, induces AP-1. Cooperation between AP-1 and NFAT leads to Il4 gene transcription. p38 also regulates IL-4 production by mRNA stabilization. TCR stimulation also phosphorylates p38, partially through the calcium-dependent pathway; activated p38 is required for optimal IL-4 and IFN-gamma.
Collapse
Affiliation(s)
- Liying Guo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
139
|
Kaida R, Hayashi T, Kaneko TS. Purple acid phosphatase in the walls of tobacco cells. PHYTOCHEMISTRY 2008; 69:2546-51. [PMID: 18762304 DOI: 10.1016/j.phytochem.2008.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 07/10/2008] [Accepted: 07/18/2008] [Indexed: 05/09/2023]
Abstract
Purple acid phosphatase isolated from the walls of tobacco cells appears to be a 220kDa homotetramer composed of 60kDa subunits, which is purple in color and which contains iron as its only metal ion. Although the phosphatase did not require dithiothreitol for activity and was not inhibited by phenylarsine oxide, the enzyme showed a higher catalytic efficiency (k(cat)/K(m)) for phosphotyrosine-containing peptides than for other substrates including p-nitrophenyl-phosphate and ATP. The phosphatase formed as a 120kDa dimer in the cytoplasm and as a 220kDa tetramer in the walls, where Brefeldin A blocked its secretion during wall regeneration. According to our double-immunofluorescence labeling results, the enzyme might be translocated through the Golgi apparatus to the walls at the interphase and to the cell plate during cytokinesis.
Collapse
Affiliation(s)
- Rumi Kaida
- Department of Chemical and Biological Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | | | | |
Collapse
|
140
|
Aguiar R, Fiore MF, Franco MW, Ventrella MC, Lorenzi AS, Vanetti CA, Alfenas AC. A NOVEL EPIPHYTIC CYANOBACTERIAL SPECIES FROM THE GENUS BRASILONEMA CAUSING DAMAGE TO EUCALYPTUS LEAVES(1). JOURNAL OF PHYCOLOGY 2008; 44:1322-1334. [PMID: 27041729 DOI: 10.1111/j.1529-8817.2008.00584.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A cyanobacterial mat colonizing the leaves of Eucalyptus grandis was determined to be responsible for serious damage affecting the growth and development of whole plants under the clonal hybrid nursery conditions. The dominant cyanobacterial species was isolated in BG-11 medium lacking a source of combined nitrogen and identified by cell morphology characters and molecular phylogenetic analysis (16S rRNA gene and cpcBA-IGS sequences). The isolated strain represents a novel species of the genus Brasilonema and is designated Brasilonema octagenarum strain UFV-E1. Thin sections of E. grandis leaves analyzed by light and electron microscopy showed that the B. octagenarum UFV-E1 filaments penetrate into the leaf mesophyll. The depth of infection and the mechanism by which the cyanobacterium invades leaf tissue were not determined. A major consequence of colonization by this cyanobacterium is a reduction in photosynthesis in the host since the cyanobacterial mats decrease the amount of light incident on leaf surfaces. Moreover, the cyanobacteria also interfere with stomatal gas exchange, decreasing CO2 assimilation. To our knowledge, this is the first report of an epiphytic cyanobacterial species causing damage to E. grandis leaves.
Collapse
Affiliation(s)
- Rosane Aguiar
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marli Fatima Fiore
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maione Wittig Franco
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marília Contin Ventrella
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Adriana Sturion Lorenzi
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Cláudia A Vanetti
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Acelino Couto Alfenas
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
141
|
Ueda A, Li P, Feng Y, Vikram M, Kim S, Kang CH, Kang JS, Bahk JD, Lee SY, Fukuhara T, Staswick PE, Pepper AE, Koiwa H. The Arabidopsis thaliana carboxyl-terminal domain phosphatase-like 2 regulates plant growth, stress and auxin responses. PLANT MOLECULAR BIOLOGY 2008; 67:683-97. [PMID: 18506580 DOI: 10.1007/s11103-008-9348-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 05/08/2008] [Indexed: 05/08/2023]
Abstract
More than 20 genes in the Arabidopsis genome encode proteins similar to phosphatases that act on the carboxyl-terminal domain (CTD) of RNA polymerase II. One of these CTD-phosphatase-like (CPL) proteins, CPL2, dephosphorylates CTD-Ser5-PO4 in an intact RNA polymerase II complex and contains a double-stranded (ds)-RNA-binding motif (DRM). Although the dsRNA-binding activity of CPL2 DRM has not been shown to date, T-DNA insertion mutants that express CPL2 variants lacking either a part of DRM (cpl2-1) or the entire DRM (cpl2-2) exhibited leaf expansion defects, early flowering, low fertility, and increased salt sensitivity. cpl2 mutant plants produced shorter hypocotyls than wild-type plants in the light, but were indistinguishable from wild type in the dark. CPL2 was expressed in shoot and root meristems and vasculatures, expanding rosette leaves, and floral organs suggesting a focal role for growth. Microarray and RT-PCR analyses revealed that basal levels of several auxin-responsive transcripts were reduced in cpl2. On the other hand, the levels of endogenous auxin and its conjugates were similar in wild type and cpl2. Overexpression of ARF5 but not all activator ARF transcription factors restored the auxin-responsive DR5-GUS reporter gene expression and the leaf expansion of cpl2 mutant plants but not early flowering phenotype. These results establish CPL2 as a multifunctional regulator that modulates plant growth, stress, and auxin responses.
Collapse
Affiliation(s)
- Akihiro Ueda
- Department of Horticultural Science and Vegetable and Fruit Improvement Center, Texas A&M University, College Station, TX 77843-2133, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 2008; 413:217-26. [PMID: 18570633 DOI: 10.1042/bj20080625] [Citation(s) in RCA: 486] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many changes in environmental conditions and hormones are mediated by MAPK (mitogen-activated protein kinase) cascades in all eukaryotes, including plants. Studies of MAPK pathways in genetic model organisms are especially informative in revealing the molecular mechanisms by means of which MAPK cascades are controlled and modulate cellular processes. The present review highlights recent insights into MAPK-based signalling in Arabidopsis thaliana (thale cress), revealing the complexity and future challenges to understanding signal-transduction networks on a global scale.
Collapse
|
143
|
Baldwin JC, Karthikeyan AS, Cao A, Raghothama KG. Biochemical and molecular analysis of LePS2;1: a phosphate starvation induced protein phosphatase gene from tomato. PLANTA 2008; 228:273-80. [PMID: 18458947 DOI: 10.1007/s00425-008-0736-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 04/05/2008] [Indexed: 05/08/2023]
Abstract
Adaptation of plants to phosphate (Pi) deficiency is a complex process involving host of biochemical changes. These changes are integrated at transcriptional level by Pi starvation mediated signal transduction pathway. Many of the signaling processes are regulated by reversible protein phosphorylation directed by protein kinases and protein phosphatases. In this study, we report the characterization of a protein phosphatase gene (LePS2;1) from tomato induced during phosphate starvation. The bacterially expressed recombinant LePS2;1 protein readily dephosphorylated a synthetic phospho-Ser/Thr peptide. Okadaic acid, an inhibitor of Ser/Thr protein phosphatases, suppressed the enzyme activity. Western blot analysis revealed the Pi starvation dependent accumulation of LePS2;1 protein. Over-expression of LePS2;1 in tomato plants resulted in increased anthocyanin accumulation and acid phosphatase activity under Pi sufficient condition. Transgenic plants exhibited distinct changes in morphology and delayed flower initiation. These results provide evidence that the protein phosphatase LePS2;1, plays an important role in phosphate starvation induced processes in tomato. To our knowledge this is the first comprehensive analysis of a protein phosphatase induced during phosphate starvation.
Collapse
Affiliation(s)
- James C Baldwin
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
144
|
Kutuzov MA, Andreeva AV. Protein Ser/Thr phosphatases of parasitic protozoa. Mol Biochem Parasitol 2008; 161:81-90. [PMID: 18619495 DOI: 10.1016/j.molbiopara.2008.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 12/17/2022]
Abstract
Protein phosphorylation is an important mechanism implicated in physiology of any organism, including parasitic protozoa. Enzymes that control protein phosphorylation (kinases and phosphatases) are considered promising targets for drug development. This review attempts to provide the first account of the current understanding of the structure, regulation and biological functions of protein Ser/Thr phosphatases in unicellular parasites. We have examined the complements of phosphatases ("phosphatomes") of the PPP and PPM families in several species of Apicomplexa (including malaria parasite Plasmodium), as well as Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis and a microsporidium Encephalitozoon cuniculi. Apicomplexans have homologues (in most cases represented by single isoforms) of all human PPP subfamilies. Some apicomplexan PPP phosphatases have no orthologues in their vertebrate hosts, including a previously unrecognised group of pseudo-phosphatases with putative Ca(2+)-binding domains, which we designate as EFPP. We also describe the presence of previously undetected Zn finger motifs in PPEF phosphatases from kinetoplastids, and a likely case of convergent evolution of tetratricopeptide repeat domain-containing phosphatases in G. lamblia. Among the parasites examined, E. cuniculi has the smallest Ser/Thr phosphatome (5 PPP and no PPM), while T. vaginalis shows the largest expansion of the PPP family (169 predicted phosphatases). Most protozoan PPM phosphatases cluster separately from human sequences. The structural peculiarities or absence of human orthologues of a number of protozoan protein Ser/Thr phosphatases makes them potentially suitable targets for chemotherapy and thus warrants their functional assessment.
Collapse
Affiliation(s)
- Mikhail A Kutuzov
- Department of Pharmacology, University of Illinois at Chicago, 909 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | | |
Collapse
|
145
|
Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 2008; 4:193. [PMID: 18463617 PMCID: PMC2424297 DOI: 10.1038/msb.2008.32] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/04/2008] [Indexed: 01/17/2023] Open
Abstract
Protein phosphorylation regulates a wide range of cellular processes. Here, we report the proteome-wide mapping of in vivo phosphorylation sites in Arabidopsis by using complementary phosphopeptide enrichment techniques coupled with high-accuracy mass spectrometry. Using unfractionated whole cell lysates of Arabidopsis, we identified 2597 phosphopeptides with 2172 high-confidence, unique phosphorylation sites from 1346 proteins. The distribution of phosphoserine, phosphothreonine, and phosphotyrosine sites was 85.0, 10.7, and 4.3%. Although typical tyrosine-specific protein kinases are absent in Arabidopsis, the proportion of phosphotyrosines among the phospho-residues in Arabidopsis is similar to that in humans, where over 90 tyrosine-specific protein kinases have been identified. In addition, the tyrosine phosphoproteome shows features distinct from those of the serine and threonine phosphoproteomes. Taken together, we highlight the extent and contribution of tyrosine phosphorylation in plants.
Collapse
Affiliation(s)
- Naoyuki Sugiyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | | | | | | | | | | | | |
Collapse
|
146
|
Sreelakshmi Y, Sharma R. Differential regulation of phenylalanine ammonia lyase activity and protein level by light in tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:444-51. [PMID: 18343145 DOI: 10.1016/j.plaphy.2008.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Indexed: 05/05/2023]
Abstract
Red light, acting via phytochrome, stimulates phenylalanine ammonia lyase (PAL) activity in cotyledons and hypocotyls of tomato seedlings. The time course of photoinduction of PAL activity has a peak level at 4 h after which activity declines significantly. In tomato seedlings PAL activity comprised of three isoforms and light stimulated activity of all three isoforms. A polyclonal antibody raised against PAL purified from tomato leaves recognized PAL protein belonging to PAL-II and PAL-III isoforms. The mode of increase in PAL activity was investigated by immunochemical techniques. The photostimulated increase in PAL activity appeared to be dependent on de novo synthesis of protein and nucleic acid. However, inhibition of protein phosphatase activity blocked increase in PAL activity without affecting the increase in PAL protein levels. The results indicate that in addition to de novo synthesis, the photostimulation of PAL activity likely requires dephosphorylation by a type 2C protein phosphatase.
Collapse
|
147
|
Oetjen K, Reusch TBH. Genome scans detect consistent divergent selection among subtidal vs. intertidal populations of the marine angiosperm Zostera marina. Mol Ecol 2007; 16:5156-67. [PMID: 17986196 DOI: 10.1111/j.1365-294x.2007.03577.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genome scans are a powerful tool to detect natural selection in natural populations among a larger sample of marker loci. We used replicated habitat comparisons to search for consistent signals of selection among contrasting populations of the seagrass Zostera marina, a marine flowering plant with important ecological functions. We compared two different habitat types in the North Frisian Wadden Sea, either permanently submerged (subtidal) or subjected to aerial exposure (intertidal). In three independent population pairs, each consisting of one tidal creek and one tidal flat population each, we carried out a genome scan with 14 expressed sequence tag (EST)-derived microsatellites situated in 5'- or 3'-untranslated regions of putative genes, in addition to 11 anonymous genomic microsatellites. By using two approaches for outlier identification, one anonymous and two EST-derived microsatellites showed population differentiation patterns not consistent with neutrality. These microsatellites were detected in several parallel population comparisons, suggesting that they are under diverging selection. One of these loci is linked to a putative nodulin gene, which is responsible for water channelling across cellular membranes, suggesting a functional link of the observed genetic divergence with habitat characteristics.
Collapse
Affiliation(s)
- Katharina Oetjen
- Max-Planck-Institute for Limnology, Department of Ecophysiology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | | |
Collapse
|
148
|
Pernas M, García-Casado G, Rojo E, Solano R, Sánchez-Serrano JJ. A protein phosphatase 2A catalytic subunit is a negative regulator of abscisic acid signalling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:763-78. [PMID: 17617176 DOI: 10.1111/j.1365-313x.2007.03179.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The key regulatory role of abscisic acid (ABA) in many physiological processes in plants is well established. However, compared with other plant hormones, the molecular mechanisms underlying ABA signalling are poorly characterized. In this work, a specific catalytic subunit of protein phosphatase 2A (PP2Ac-2) has been identified as a component of the signalling pathway that represses responses to ABA. A loss-of-function pp2ac-2 mutant is hypersensitive to ABA. Moreover, pp2ac-2 plants have altered responses in developmental and environmental processes that are mediated by ABA, such as primary and lateral root development, seed germination and responses to drought and high salt and sugar stresses. Conversely, transgenic plants overexpressing PP2Ac-2 are less sensitive to ABA than wild type, a phenotype that is manifested in all the above-mentioned physiological processes. DNA microarray hybridization experiments reveal that PP2Ac-2 is negatively involved in ABA responses through regulation of ABA-dependent gene expression. Moreover, the results obtained indicate that ABA antagonistically regulates PP2Ac-2 expression and PP2Ac-2 activity thus allowing plant sensitivity to the hormone to be reset after induction. Phenotypic, genetic and gene expression data strongly suggest that PP2Ac-2 is a negative regulator of the ABA pathway. Activity of protein phosphatase 2A thus emerges as a key element in the control of ABA signalling.
Collapse
Affiliation(s)
- Mónica Pernas
- Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco UAM, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
149
|
Pedmale UV, Liscum E. Regulation of Phototropic Signaling in Arabidopsis via Phosphorylation State Changes in the Phototropin 1-interacting Protein NPH3. J Biol Chem 2007; 282:19992-20001. [PMID: 17493935 DOI: 10.1074/jbc.m702551200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phototropism, or the directional growth (curvature) of various organs toward or away from incident light, represents a ubiquitous adaptive response within the plant kingdom. This response is initiated through the sensing of directional blue light (BL) by a small family of photoreceptors known as the phototropins. Of the two phototropins present in the model plant Arabidopsis thaliana, phot1 (phototropin 1) is the dominant receptor controlling phototropism. Absorption of BL by the sensory portion of phot1 leads, as in other plant phototropins, to activation of a C-terminal serine/threonine protein kinase domain, which is tightly coupled with phototropic responsiveness. Of the five phot1-interacting proteins identified to date, only one, NPH3 (non-phototropic hypocotyl 3), is essential for all phot1-dependent phototropic responses, yet little is known about how phot1 signals through NPH3. Here, we show that, in dark-grown seedlings, NPH3 exists as a phosphorylated protein and that BL stimulates its dephosphorylation. phot1 is necessary for this response and appears to regulate the activity of a type 1 protein phosphatase that catalyzes the reaction. The abrogation of both BL-dependent dephosphorylation of NPH3 and development of phototropic curvatures by protein phosphatase inhibitors further suggests that this post-translational modification represents a crucial event in phot1-dependent phototropism. Given that NPH3 may represent a core component of a CUL3-based ubiquitin-protein ligase (E3), we hypothesize that the phosphorylation state of NPH3 determines the functional status of such an E3 and that differential regulation of this E3 is required for normal phototropic responsiveness.
Collapse
Affiliation(s)
- Ullas V Pedmale
- Division of Biological Sciences and the Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
150
|
Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C. Arabidopsis PPP family of serine/threonine phosphatases. TRENDS IN PLANT SCIENCE 2007; 12:169-76. [PMID: 17368080 DOI: 10.1016/j.tplants.2007.03.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/25/2007] [Accepted: 03/02/2007] [Indexed: 05/14/2023]
Abstract
Serine/threonine-specific phosphoprotein phosphatases (PPPs) are ubiquitous enzymes in all eukaryotes, but their regulatory functions are largely unknown in higher plants. The Arabidopsis genome encodes 26 PPP catalytic subunits related to type 1, type 2A and so-called novel phosphatases, including four plant-specific enzymes carrying large N-terminal kelch-domains, but no apparent homologue of the PP2B family. The catalytic subunits of PPPs associate with regulatory protein partners that target them to well defined cellular locations and modulate their activity. Recent studies of phosphatase partners and their interactions have directed attention again to functional dissection of plant PPP families, and highlight their intriguing roles in the regulation of metabolism, cell cycle and development, as well as their roles in light, stress and hormonal signalling.
Collapse
Affiliation(s)
- Ilona Farkas
- Department of Medical Chemistry, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | | | | | | | | |
Collapse
|