101
|
Khacho M, Slack RS. Mitochondrial and Reactive Oxygen Species Signaling Coordinate Stem Cell Fate Decisions and Life Long Maintenance. Antioxid Redox Signal 2018; 28:1090-1101. [PMID: 28657337 DOI: 10.1089/ars.2017.7228] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Recent discoveries in mitochondrial biology have transformed and further solidified the importance of mitochondria in development, aging, and disease. Within the realm of regenerative and stem cell research, these recent advances have brought forth new concepts that revolutionize our understanding of metabolic and redox states in the establishment of cellular identity and fate decisions. Recent Advances: Mitochondrial metabolism, morphology, and cellular redox states are dynamic characteristics that undergo shifts during stem cell differentiation. Although it was once thought that this was solely because of changing metabolic needs of differentiating cells, it is now clear that these events are driving forces in the regulation of stem cell identity and fate decisions. Critical Issues: Although recent discoveries have placed mitochondrial function and physiological reactive oxygen species (ROS) at the forefront for the regulation of stem cell self-renewal, how this may impact tissue homeostasis and regenerative capacity is poorly understood. In addition, the role of mitochondria and ROS on the maintenance of a stem cell population in many degenerative diseases and during aging is not clear, despite the fact that mitochondrial dysfunction and elevated ROS levels are commonly observed in these conditions. Future Directions: Given the newly established role for mitochondria and ROS in stem cell self-renewal capacity, special attention should now be directed in understanding how this would impact the development and progression of aging and diseases, whereby mitochondrial and ROS defects are a prominent factor. Antioxid. Redox Signal. 28, 1090-1101.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
102
|
Fonseca AFB, Scheffer JP, Giraldi-Guimarães A, Coelho BP, Medina RM, Oliveira ALA. Comparison among bone marrow mesenchymal stem and mononuclear cells to promote functional recovery after spinal cord injury in rabbits. Acta Cir Bras 2018; 32:1026-1035. [PMID: 29319731 DOI: 10.1590/s0102-865020170120000004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/16/2017] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the efficacy of allogeneic mesenchymal stem-cells and autologous mononuclear cells to promote sensorimotor recovery and tissue rescue. METHODS Female rabbits were submitted to the epidural balloon inflation method and the intravenous cells administrations were made after 8 hours or seven days after injury induction. Sensorimotor evaluation of the hindlimbs was performed, and the euthanasia was made thirty days after the treatment. Spinal cords were stained with hematoxylin and eosin. RESULTS Both therapies given 8 hours after the injury promoted the sensorimotor recovery after a week. Only the group treated after a week with mononuclear cells showed no significant recovery at post-injury day 14. In the days 21 and 28, all treatments promoted significant recovery. Histopathological analysis showed no difference among the experimental groups. Our results showed that both bone marrow-derived cell types promoted significant sensorimotor recovery after injury, and the treatment made at least a week after injury is efficient. CONCLUSION The possibilities of therapy with bone marrow-derived cells are large, increasing the therapeutic arsenal for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Antônio Filipe Braga Fonseca
- PhD in Sciences, Laboratory of Animal Health, Center for Agricultural Sciences and Technologies, Animal Experimentation Unit, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes-RJ, Brazil. Intellectual, scientific, conception and design of the study; technical procedures; aquisition and analysis of data; manuscript writing
| | - Jussara Peters Scheffer
- Fellow PhD degree, Laboratory of Animal Health, Center for Agricultural Sciences and Technologies, Animal Experimentation Unit, UENF, Campos dos Goytacazes-RJ, Brazil. Conception and design of the estudy, technical procedures, critical revision
| | - Arthur Giraldi-Guimarães
- PhD in Sciences, Associate Professor, Laboratory of Cell and Tissue Biology, Center for Biosciences and Biotechnology, UENF, Campos dos Goytacazes-RJ, Brazil. Analysis and interpretation of data
| | - Bárbara Paula Coelho
- PhD in Sciences, Laboratory of Cell and Tissue Biology, Center for Biosciences and Biotechnology, UENF, Campos dos Goytacazes-RJ, Brazil. Acquisition of data
| | - Raphael Mansur Medina
- PhD in Sciences, Laboratory of Animal Health; Center for Agricultural Sciences and Technologies, Animal Experimentation Unit, UENF, Campos dos Goytacazes-RJ, Brazil. Acquisition of data
| | - André Lacerda Abreu Oliveira
- PhD in Sciences, Associate Professor, Laboratory of Animal Health; Center for Agricultural Sciences and Technologies, Animal Experimentation Unit, UENF, Campos dos Goytacazes-RJ, Brazil. Critical revision, final approval the manuscript
| |
Collapse
|
103
|
Megakaryocyte ontogeny: Clinical and molecular significance. Exp Hematol 2018; 61:1-9. [PMID: 29501467 DOI: 10.1016/j.exphem.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
Fetal megakaryocytes (Mks) differ from adult Mks in key parameters that affect their capacity for platelet production. However, despite being smaller, more proliferative, and less polyploid, fetal Mks generally mature in the same manner as adult Mks. The phenotypic features unique to fetal Mks predispose patients to several disease conditions, including infantile thrombocytopenia, infantile megakaryoblastic leukemias, and poor platelet recovery after umbilical cord blood stem cell transplantations. Ontogenic Mk differences also affect new strategies being developed to address global shortages of platelet transfusion units. These donor-independent, ex vivo production platforms are hampered by the limited proliferative capacity of adult-type Mks and the inferior platelet production by fetal-type Mks. Understanding the molecular programs that distinguish fetal versus adult megakaryopoiesis will help in improving approaches to these clinical problems. This review summarizes the phenotypic differences between fetal and adult Mks, the disease states associated with fetal megakaryopoiesis, and recent advances in the understanding of mechanisms that determine ontogenic Mk transitions.
Collapse
|
104
|
Shim JH. Human Dermal Stem/Progenitor Cell-derived Conditioned Medium Ameliorates Ultraviolet A-induced Damage of Normal Human Epidermal Keratinocytes. ACTA ACUST UNITED AC 2018. [DOI: 10.20402/ajbc.2017.0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
105
|
Liu PZ, Nusslock R. Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Front Neurosci 2018; 12:52. [PMID: 29467613 PMCID: PMC5808288 DOI: 10.3389/fnins.2018.00052] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Exercise is known to have numerous neuroprotective and cognitive benefits, especially pertaining to memory and learning related processes. One potential link connecting them is exercise-mediated hippocampal neurogenesis, in which new neurons are generated and incorporated into hippocampal circuits. The present review synthesizes the extant literature detailing the relationship between exercise and hippocampal neurogenesis, and identifies a key molecule mediating this process, brain-derived neurotrophic factor (BDNF). As a member of the neurotrophin family, BDNF regulates many of the processes within neurogenesis, such as differentiation and survival. Although much more is known about the direct role that exercise and BDNF have on hippocampal neurogenesis in rodents, their corresponding cognitive benefits in humans will also be discussed. Specifically, what is known about exercise-mediated hippocampal neurogenesis will be presented as it relates to BDNF to highlight the critical role that it plays. Due to the inaccessibility of the human brain, much less is known about the role BDNF plays in human hippocampal neurogenesis. Limitations and future areas of research with regards to human neurogenesis will thus be discussed, including indirect measures of neurogenesis and single nucleotide polymorphisms within the BDNF gene.
Collapse
Affiliation(s)
- Patrick Z. Liu
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | | |
Collapse
|
106
|
DNA methylation profile is associated with the osteogenic potential of three distinct human odontogenic stem cells. Signal Transduct Target Ther 2018. [PMID: 29527327 PMCID: PMC5837092 DOI: 10.1038/s41392-017-0001-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Among the various sources of human autologous stem cells, stem cells isolated from dental tissues exhibit excellent properties in tissue engineering and regenerative medicine. However, the distinct potential of these odontogenic cell lines remains unclear. In this study, we analyzed DNA methylation patterns to determine whether specific differences existed among three different odontogenic cell types. Using the HumanMethylation450 Beadchip, the whole genomes of human dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and dental follicle progenitor cells (DFPCs) were compared. Then, the osteogenic potential of these cells was evaluated both in vitro and in vivo, and the methylation levels of certain genes related to bone formation differed among the three cell lines. P values less than 0.05 were considered to indicate statistical significance. The three cell types showed highly similar DNA methylation patterns, although specific differences were identified. Gene ontology analysis revealed that one of the most significantly different gene categories was related to bone formation. Thus, expression of cell surface epitopes and osteogenic-related transcription factors as well as the bone formation capacity were compared. The results showed that compared with DFPCs and DPSCs, PDLSCs had higher transcription levels of osteogenic-related factors, a higher in vitro osteogenic potential, and an increased new bone formation capacity in vivo. In conclusion, the results of this study suggested that the differential DNA methylation profiles could be related to the osteogenic potential of these human odontogenic cell populations. Additionally, the increased osteogenic potential of PDLSCs might aid researchers or clinicians in making better choices regarding tissue regeneration and clinical therapies.
Collapse
|
107
|
Corbet C. Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight. Front Pharmacol 2018; 8:958. [PMID: 29403375 PMCID: PMC5777397 DOI: 10.3389/fphar.2017.00958] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
Normal and cancer stem cells (CSCs) share the remarkable potential to self-renew and differentiate into many distinct cell types. Although most of the stem cells remain under quiescence to maintain their undifferentiated state, they can also undergo cell divisions as required to regulate tissue homeostasis. There is now a growing evidence that cell fate determination from stem cells implies a fine-tuned regulation of their energy balance and metabolic status. Stem cells can shift their metabolic substrate utilization, between glycolysis and mitochondrial oxidative metabolism, during specification and/or differentiation, as well as in order to adapt their microenvironmental niche. Pyruvate appears as a key metabolite since it is at the crossroads of cytoplasmic glycolysis and mitochondrial oxidative phosphorylation. This Review describes how metabolic reprogramming, focusing on pyruvate utilization, drives the fate of normal and CSCs by modulating their capacity for self-renewal, clonal expansion/differentiation, as well as metastatic potential and treatment resistance in cancer. This Review also explores potential therapeutic strategies to restore or manipulate stem cell function through the use of small molecules targeting the pyruvate metabolism.
Collapse
Affiliation(s)
- Cyril Corbet
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
108
|
Yoder MC. Endothelial stem and progenitor cells (stem cells): (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893217743950. [PMID: 29099663 PMCID: PMC5731724 DOI: 10.1177/2045893217743950] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
The capacity of existing blood vessels to give rise to new blood vessels via endothelial cell sprouting is called angiogenesis and is a well-studied biologic process. In contrast, little is known about the mechanisms for endothelial cell replacement or regeneration within established blood vessels. Since clear definitions exist for identifying cells with stem and progenitor cell properties in many tissues and organs of the body, several groups have begun to accumulate evidence that endothelial stem and progenitor cells exist within the endothelial intima of existing blood vessels. This paper will review stem and progenitor cell definitions and highlight several recent papers purporting to have identified resident vascular endothelial stem and progenitor cells.
Collapse
Affiliation(s)
- Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
109
|
Pediatric brain repair from endogenous neural stem cells of the subventricular zone. Pediatr Res 2018; 83:385-396. [PMID: 29028220 DOI: 10.1038/pr.2017.261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the germinal zones of the immature brain. Studies using animal models of pediatric brain injuries have provided a clearer understanding of the responses of these progenitors to injury. In this review, we have compared and contrasted the responses of the endogenous neural stem cells and progenitors of the subventricular zone in animal models of neonatal cerebral hypoxia-ischemia, neonatal stroke, congenital cardiac disease, and pediatric traumatic brain injury. We have reviewed the dynamic shifts that occur within this germinal zone with injury as well as changes in known signaling molecules that affect these progenitors. Importantly, we have summarized data on the extent to which cell replacement occurs in response to each of these injuries, opportunities available, and obstacles that will need to be overcome to improve neurological outcomes in survivors.
Collapse
|
110
|
Epigenetic and microenvironmental alterations in bone marrow associated with ROS in experimental aplastic anemia. Eur J Cell Biol 2018; 97:32-43. [DOI: 10.1016/j.ejcb.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/04/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
|
111
|
Khacho M, Slack RS. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation. Curr Opin Cell Biol 2017; 49:1-8. [DOI: 10.1016/j.ceb.2017.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 12/19/2022]
|
112
|
Mujoo K, Pandita RK, Tiwari A, Charaka V, Chakraborty S, Singh DK, Hambarde S, Hittelman WN, Horikoshi N, Hunt CR, Khanna KK, Kots AY, Butler EB, Murad F, Pandita TK. Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination. Stem Cell Reports 2017; 9:1660-1674. [PMID: 29103969 PMCID: PMC5831054 DOI: 10.1016/j.stemcr.2017.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
The nitric oxide (NO)-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR) to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR) repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1). Differentiated cells also had relatively increased fork stalling and R-loop formation after DNA replication stress. Treatment with NO donor (NOC-18), which causes stem cell differentiation has no effect on double-strand break (DSB) repair by non-homologous end-joining but reduced DSB repair by HR. Present studies suggest that DNA repair by HR is impaired in differentiated cells. Spontaneous and S-phase-specific chromosome aberrations in differentiated cells Higher frequency of residual γ-H2AX foci after exposure to DNA-damaging agents Higher frequency of cells with 53BP1 and RIF1 co-localization in differentiated cells Higher frequency of cells with a reduced number of RAD51 or BRCA1 foci
Collapse
Affiliation(s)
- Kalpana Mujoo
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA; Institute of Molecular Medicine, University of Texas Health at Houston, Houston, TX 77030, USA.
| | - Raj K Pandita
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Anjana Tiwari
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Vijay Charaka
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Sharmistha Chakraborty
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Dharmendra Kumar Singh
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Shashank Hambarde
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Walter N Hittelman
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | | | - E Brian Butler
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Ferid Murad
- The George Washington University, Washington, DC 20037, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
113
|
Angelica sinensis Polysaccharides Ameliorate Stress-Induced Premature Senescence of Hematopoietic Cell via Protecting Bone Marrow Stromal Cells from Oxidative Injuries Caused by 5-Fluorouracil. Int J Mol Sci 2017; 18:ijms18112265. [PMID: 29143796 PMCID: PMC5713235 DOI: 10.3390/ijms18112265] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023] Open
Abstract
Myelosuppression is the most common complication of chemotherapy. Decline of self-renewal capacity and stress-induced premature senescence (SIPS) of hematopoietic stem cells (HSCs) induced by chemotherapeutic agents may be the cause of long-term myelosuppression after chemotherapy. Whether the mechanism of SIPS of hematopoietic cells relates to chemotherapeutic injury occurred in hematopoietic microenvironment (HM) is still not well elucidated. This study explored the protective effect of Angelica sinensis polysaccharide (ASP), an acetone extract polysaccharide found as the major effective ingredients of a traditional Chinese medicinal herb named Chinese Angelica (Dong Quai), on oxidative damage of homo sapiens bone marrow/stroma cell line (HS-5) caused by 5-fluorouracil (5-FU), and the effect of ASP relieving oxidative stress in HM on SIPS of hematopoietic cells. Tumor-suppressive doses of 5-FU inhibited the growth of HS-5 in a dose-dependent and time-dependent manner. 5-FU induced HS-5 apoptosis and also accumulated cellular hallmarks of senescence including cell cycle arrest and typical senescence-associated β-galactosidase positive staining. The intracellular reactive oxygen species (ROS) was increased in 5-FU treated HS-5 cells and coinstantaneous with attenuated antioxidant capacity marked by superoxide dismutase and glutathione peroxidase. Oxidative stress initiated DNA damage indicated by increased γH2AX and 8-OHdG. Oxidative damage of HS-5 cells resulted in declined hematopoietic stimulating factors including stem cell factor (SCF), stromal cell-derived factor (SDF), and granulocyte-macrophage colony-stimulating factor (GM-CSF), however, elevated inflammatory chemokines such as RANTES. In addition, gap junction channel protein expression and mediated intercellular communications were attenuated after 5-FU treatment. Significantly, co-culture on 5-FU treated HS-5 feeder layer resulted in less quantity of human umbilical cord blood-derived hematopoietic cells and CD34+ hematopoietic stem/progenitor cells (HSPCs), and SIPS of hematopoietic cells. However, it is noteworthy that ASP ameliorated SIPS of hematopoietic cells by the mechanism of protecting bone marrow stromal cells from chemotherapeutic injury via mitigating oxidative damage of stromal cells and improving their hematopoietic function. This study provides a new strategy to alleviate the complication of conventional cancer therapy using chemotherapeutic agents.
Collapse
|
114
|
Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression. Int J Mol Sci 2017; 18:ijms18102167. [PMID: 29039805 PMCID: PMC5666848 DOI: 10.3390/ijms18102167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022] Open
Abstract
Erythroid differentiation is a complex and multistep process during which an adequate supply of iron for hemoglobinization is required. The role of ferritin heavy subunit, in this process, has been mainly attributed to its capacity to maintain iron in a non-toxic form. We propose a new role for ferritin heavy subunit (FHC) in controlling the erythroid commitment of K562 erythro-myeloid cells. FHC knockdown induces a change in the balance of GATA transcription factors and significantly reduces the expression of a repertoire of erythroid-specific genes, including α- and γ-globins, as well as CD71 and CD235a surface markers, in the absence of differentiation stimuli. These molecular changes are also reflected at the morphological level. Moreover, the ability of FHC-silenced K562 cells to respond to the erythroid-specific inducer hemin is almost completely abolished. Interestingly, we found that this new role for FHC is largely mediated via regulation of miR-150, one of the main microRNA implicated in the cell-fate choice of common erythroid/megakaryocytic progenitors. These findings shed further insight into the biological properties of FHCand delineate a role in erythroid differentiation where this protein does not act as a mere iron metabolism-related factor but also as a critical regulator of the expression of genes of central relevance for erythropoiesis.
Collapse
|
115
|
Li B, Sierra A, Deudero JJ, Semerci F, Laitman A, Kimmel M, Maletic-Savatic M. Multitype Bellman-Harris branching model provides biological predictors of early stages of adult hippocampal neurogenesis. BMC SYSTEMS BIOLOGY 2017; 11:90. [PMID: 28984196 PMCID: PMC5629620 DOI: 10.1186/s12918-017-0468-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adult hippocampal neurogenesis, the process of formation of new neurons, occurs throughout life in the hippocampus. New neurons have been associated with learning and memory as well as mood control, and impaired neurogenesis has been linked to depression, schizophrenia, autism and cognitive decline during aging. Thus, understanding the biological properties of adult neurogenesis has important implications for human health. Computational models of neurogenesis have attempted to derive biologically relevant knowledge, hard to achieve using experimentation. However, the majority of the computational studies have predominantly focused on the late stages of neurogenesis, when newborn neurons integrate into hippocampal circuitry. Little is known about the early stages that regulate proliferation, differentiation, and survival of neural stem cells and their immediate progeny. RESULTS Here, based on the branching process theory and biological evidence, we developed a computational model that represents the early stage hippocampal neurogenic cascade and allows prediction of the overall efficiency of neurogenesis in both normal and diseased conditions. Using this stochastic model with a simulation program, we derived the equilibrium distribution of cell population and simulated the progression of the neurogenic cascade. Using BrdU pulse-and-chase experiment to label proliferating cells and their progeny in vivo, we quantified labeled newborn cells and fit the model on the experimental data. Our simulation results reveal unknown but meaningful biological parameters, among which the most critical ones are apoptotic rates at different stages of the neurogenic cascade: apoptotic rates reach maximum at the stage of neuroblasts; the probability of neuroprogenitor cell renewal is low; the neuroblast stage has the highest temporal variance within the cell types of the neurogenic cascade, while the apoptotic stage is short. CONCLUSION At a practical level, the stochastic model and simulation framework we developed will enable us to predict overall efficiency of hippocampal neurogenesis in both normal and diseased conditions. It can also generate predictions of the behavior of the neurogenic system under perturbations such as increase or decrease of apoptosis due to disease or treatment.
Collapse
Affiliation(s)
- Biao Li
- Departments of Bioengineering and Statistics, Rice University, Houston, Texas, 77005 USA
| | - Amanda Sierra
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
| | - Juan Jose Deudero
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
| | - Fatih Semerci
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - Andrew Laitman
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - Marek Kimmel
- Departments of Bioengineering and Statistics, Rice University, Houston, Texas, 77005 USA
- Systems Engineering Group, Silesian University of Technology, Gliwice, 44–100 Poland
- Department of Statistics, Rice University, Houston, Texas, 77005 USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, 77030 USA
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, 77030 USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, 77030 USA
| |
Collapse
|
116
|
Redondo PA, Pavlou M, Loizidou M, Cheema U. Elements of the niche for adult stem cell expansion. J Tissue Eng 2017; 8:2041731417725464. [PMID: 28890779 PMCID: PMC5574483 DOI: 10.1177/2041731417725464] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.
Collapse
Affiliation(s)
- Patricia A Redondo
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Marina Pavlou
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Umber Cheema
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| |
Collapse
|
117
|
Zhu Q, Li M, Yan C, Lu Q, Wei S, Gao R, Yu M, Zou Y, Sriram G, Tong HJ, Hunziker W, Seneviratne CJ, Gong Z, Olsen BR, Cao T. Directed Differentiation of Human Embryonic Stem Cells to Neural Crest Stem Cells, Functional Peripheral Neurons, and Corneal Keratocytes. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Qian Zhu
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Mingming Li
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Chuan Yan
- Department of Biological Sciences; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Qiqi Lu
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Shunhui Wei
- Epithelial Cell Biology Laboratory; Institute of Molecular and Cell Biology; Singapore Singapore
| | - Rong Gao
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Mengfei Yu
- The Affiliated Stomatology Hospital; Zhejiang University; Hangzhou 310003 China
| | - Yu Zou
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Gopu Sriram
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- Institute of Medical Biology; Agency for Science Technology and Research; Singapore Singapore
| | - Huei J. Tong
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Walter Hunziker
- The Affiliated Stomatology Hospital; Zhejiang University; Hangzhou 310003 China
| | | | - Zhiyuan Gong
- Department of Biological Sciences; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Bjorn R. Olsen
- Harvard Medical School, and Harvard School of Dental Medicine; Boston MA 02115 USA
| | - Tong Cao
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
- National University of Singapore Tissue Engineering Program (NUSTEP), Life Sciences Institute; National University of Singapore; Singapore Singapore
| |
Collapse
|
118
|
Yousefi M, Li L, Lengner CJ. Hierarchy and Plasticity in the Intestinal Stem Cell Compartment. Trends Cell Biol 2017; 27:753-764. [PMID: 28732600 DOI: 10.1016/j.tcb.2017.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023]
Abstract
Somatic stem cells maintain tissue homeostasis by organizing themselves in such a way that they can maintain proliferative output while simultaneously protecting themselves from DNA damage that may lead to oncogenic transformation. There is considerable debate about how such stem cell compartments are organized. Burgeoning evidence from the small intestine and colon provides support for a two-stem cell model involving an actively proliferating but injury-sensitive stem cell and a rare, injury-resistant pool of quiescent stem cells. Parallel with this evidence, recent studies have revealed considerable plasticity within the intestinal stem cell (ISC) compartment. We discuss the evidence for plasticity and hierarchy within the ISC compartment and how these properties govern tissue regeneration and contribute to oncogenic transformation leading to colorectal cancers.
Collapse
Affiliation(s)
- Maryam Yousefi
- Department of Biomedical Sciences, School of Veterinary Medicine and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, Missouri, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66101, USA.
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
119
|
Miousse IR, Chang J, Shao L, Pathak R, Nzabarushimana É, Kutanzi KR, Landes RD, Tackett AJ, Hauer-Jensen M, Zhou D, Koturbash I. Inter-Strain Differences in LINE-1 DNA Methylation in the Mouse Hematopoietic System in Response to Exposure to Ionizing Radiation. Int J Mol Sci 2017; 18:ijms18071430. [PMID: 28677663 PMCID: PMC5535921 DOI: 10.3390/ijms18071430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons are the major repetitive elements in mammalian genomes. LINE-1s are well-accepted as driving forces of evolution and critical regulators of the expression of genetic information. Alterations in LINE-1 DNA methylation may lead to its aberrant activity and are reported in virtually all human cancers and in experimental carcinogenesis. In this study, we investigated the endogenous DNA methylation status of the 5′ untranslated region (UTR) of LINE-1 elements in the bone marrow hematopoietic stem cells (HSCs), hematopoietic progenitor cells (HPCs), and mononuclear cells (MNCs) in radioresistant C57BL/6J and radiosensitive CBA/J mice and in response to ionizing radiation (IR). We demonstrated that basal levels of DNA methylation within the 5′-UTRs of LINE-1 elements did not differ significantly between the two mouse strains and were negatively correlated with the evolutionary age of LINE-1 elements. Meanwhile, the expression of LINE-1 elements was higher in CBA/J mice. At two months after irradiation to 0.1 or 1 Gy of 137Cs (dose rate 1.21 Gy/min), significant decreases in LINE-1 DNA methylation in HSCs were observed in prone to radiation-induced carcinogenesis CBA/J, but not C57BL/6J mice. At the same time, no residual DNA damage, increased ROS, or changes in the cell cycle were detected in HSCs of CBA/J mice. These results suggest that epigenetic alterations may potentially serve as driving forces of radiation-induced carcinogenesis; however, future studies are needed to demonstrate the direct link between the LINE-1 DNA hypomethylation and radiation carcinogenesis.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Jianhui Chang
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Lijian Shao
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Étienne Nzabarushimana
- Department of Bioinformatics, School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA.
| | - Kristy R Kutanzi
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Alan J Tackett
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Martin Hauer-Jensen
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
120
|
Neuroprotective Effects of Stem Cells in Ischemic Stroke. Stem Cells Int 2017; 2017:4653936. [PMID: 28757878 PMCID: PMC5512103 DOI: 10.1155/2017/4653936] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/11/2017] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke, the most common subtype of stroke, has been one of the leading causes of mobility and mortality worldwide. However, it is still lacking of efficient agents. Stem cell therapy, with its vigorous advantages, has attracted researchers around the world. Numerous experimental researches in animal models of stroke have demonstrated the promising efficacy in treating ischemic stroke. The underlying mechanism involved antiapoptosis, anti-inflammation, promotion of angiogenesis and neurogenesis, formation of new neural cells and neuronal circuitry, antioxidation, and blood-brain barrier (BBB) protection. This review would focus on the types and neuroprotective actions of stem cells and its potential mechanisms for ischemic stroke.
Collapse
|
121
|
Systemic Transplantation of Bone Marrow Mononuclear Cells Promotes Axonal Regeneration and Analgesia in a Model of Wallerian Degeneration. Transplantation 2017; 101:1573-1586. [DOI: 10.1097/tp.0000000000001478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
122
|
Allen KJ, Cheah DMY, Lee XL, Pettigrew-Buck NE, Vadolas J, Mercer JFB, Ioannou PA, Williamson R. The Potential of Bone Marrow Stem Cells to Correct Liver Dysfunction in a Mouse Model of Wilson's Disease. Cell Transplant 2017; 13:765-73. [PMID: 15690978 DOI: 10.3727/000000004783983341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Metabolic liver diseases are excellent targets for correction using novel stem cell, hepatocyte, and gene therapies. In this study, the use of bone marrow stem cell transplantation to correct liver disease in the toxic milk (tx) mouse, a murine model for Wilson's disease, was evaluated. Preconditioning with sublethal irradiation, dietary copper loading, and the influence of cell transplantation sites were assessed. Recipient tx mice were sublethally irradiated (4 Gy) prior to transplantation with bone marrow stem cells harvested from normal congenic (DL) littermates. Of 46 transplanted tx mice, 11 demonstrated genotypic repopulation in the liver. Sublethal irradiation was found to be essential for donor cell engraftment and liver repopulation. Dietary copper loading did not improve cell engraftment and repopulation results. Both intravenously and intrasplenically transplanted cells produced similar repopulation successes. Direct evidence of functionality and disease correction following liver repopulation was observed in the 11 mice where liver copper levels were significantly reduced when compared with mice with no liver repopulation. The reversal of copper loading with bone marrow cells is similar to the level of correction seen when normal congenic liver cells are used. Transplantation of bone marrow cells partially corrects the metabolic phenotype in a mouse model for Wilson's disease.
Collapse
Affiliation(s)
- Katrina J Allen
- Cell and Gene Therapy Group, Murdoch Childrens Research Institute, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Avinash K, Malaippan S, Dooraiswamy JN. Methods of Isolation and Characterization of Stem Cells from Different Regions of Oral Cavity Using Markers: A Systematic Review. Int J Stem Cells 2017; 10:12-20. [PMID: 28531913 PMCID: PMC5488772 DOI: 10.15283/ijsc17010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Background Periodontitis is a destructive inflammatory disorder of the periodontium caused by the destruction of periodontal tissues namely the PDL, cementum, alveolar bone, and gingiva. Once these tissues are lost, the foremost goal of periodontal therapy is to regenerate the diseased tissues if possible to their original form, architecture, and function. Various regenerative procedures were employed and still a gap was found in achieving the goal. As stem cells are characterized by their ability to self-renew and differentiate to produce specialized cells, there could be a possibility of using them for regenerative therapy. Recently, dental tissues such as the PDL, the dental pulp and the tooth follicle have been recognized as readily available sources of adult stem cells. Aim The aim was to identify the various sources and methodologies in isolation of stem cells from human oral cavity and its differentiation into various lineages using markers. Materials and Methods The electronic databases PUBMED, GOOGLE SCHOLAR, SCIENCE DIRECT, COCHRANE LIBRARY along with a complimentary manual search of all periodontics journal till the year 2016. Thirteen articles were selected on the basis of the inclusion criteria. Isolation of stem cells from oral cavity through various methods has been evaluated and similarly characterization to different lineages were tabulated as variables of interest. They included human in-vitro and ex-vivo studies. Results The results showed that PDLSC’s and pulpal stem cells are the most common source from where stem cells were isolated. Each source has used different methodology in isolating the stem cells and it was found that STRO-1 was the commonly used marker in all the studies mentioned. Conclusions The studies showed that there is no standard protocol existed in isolating the stem cells from different sources of oral cavity. Moreover, there was no standard marker or methodology used in characterization.
Collapse
Affiliation(s)
| | - Sankari Malaippan
- Department of Periodontology, Saveetha Dental College, Chennai, India
| | | |
Collapse
|
124
|
Yao X, Huang H, Li Z, Liu X, Fan W, Wang X, Sun X, Zhu J, Zhou H, Wei H. Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro. Neurochem Res 2017; 42:2344-2353. [PMID: 28397071 DOI: 10.1007/s11064-017-2252-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/16/2017] [Accepted: 03/29/2017] [Indexed: 01/07/2023]
Abstract
Taurine has been reported to influence osteogenic differentiation, but the role of taurine on cartilaginous differentiation using human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) remains unclear. In this study, we investigated the effect of taurine (0, 1, 5 and 10 mM) on the proliferation and chondrogenesis of hUC-MSCs by analyzing cell proliferation, accumulation of glycosaminoglycans and expression of cartilage specific mRNA. The results show though taurine did not affected the proliferation of hUC-MSCs, 5 mM of taurine is sufficient to enhanced the accumulation of glycosaminoglycans and up-regulate cartilage specific mRNA expression, namely collagen type II, aggrecan and SOX9. Taurine also inhibits chondrocyte dedifferentiation by reducing expression of collagen type I mRNA. Taken together, our study reveals that taurine promotes and maintains the chondrogenesis of hUC-MSCs.
Collapse
Affiliation(s)
- Xiuhua Yao
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China
| | - Huiling Huang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China.
| | - Zhou Li
- NewScen Coast Bio-Pharmaceutical Co., Ltd., 65 sixth Ave., TEDA, Tianjin, 300457, People's Republic of China
| | - Xiaohua Liu
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| | - Weijia Fan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China
| | - Xinping Wang
- Departement of Neurology, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China
| | - Xuelian Sun
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| | - Jianmin Zhu
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| | - Hongrui Zhou
- NewScen Coast Bio-Pharmaceutical Co., Ltd., 65 sixth Ave., TEDA, Tianjin, 300457, People's Republic of China
| | - Huaying Wei
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| |
Collapse
|
125
|
Erythropoietin Modification Enhances the Protection of Mesenchymal Stem Cells on Diabetic Rat-Derived Schwann Cells: Implications for Diabetic Neuropathy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6352858. [PMID: 28299330 PMCID: PMC5337339 DOI: 10.1155/2017/6352858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022]
Abstract
Diabetes-triggered apoptosis of Schwann cells (SC) contributes to the degradation of diabetic peripheral neuropathy (DNP). In recent years, mesenchymal stem cells (MSC) were applied to DPN repair and it was demonstrated that paracrine secretion played a key role in neuroprotection exerted by MSC. Erythropoietin (EPO) is a potent cytokine capable of reducing apoptosis of SC. However, the expression of EPO in MSC is limited. In this study, we hypothesized that overexpression of EPO in MSC (EPO-MSC) may significantly improve their neuroprotective potentials. The EPO overexpression in MSC was achieved by lentivirus transduction. SC derived from the periphery nerve of diabetic rats were cocultured with MSC or EPO-MSC in normal or high glucose culture condition, respectively. In normal glucose culture condition, the overexpression of EPO in MSC promoted the MSC-induced restoration of SC from diabetic rats, including increases in GSH level and cell viability, decrease in TUNEL apoptosis, upregulation of antiapoptotic proteins, p-Akt, and Bcl-2, and downregulation of proapoptotic proteins, cleaved caspase-3, and Bax. The subsequent results in high glucose culture condition showed similar promotions achieved by EPO-MSC. Thus, it could be concluded that EPO-MSC possessed a potent potential in hampering apoptosis of SC, and the suppression was probably attributed to attenuating oxidative stress and regulating apoptosis related protein factors.
Collapse
|
126
|
Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflugers Arch 2017; 469:561-572. [DOI: 10.1007/s00424-017-1965-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
|
127
|
Gasch C, Ffrench B, O'Leary JJ, Gallagher MF. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention. Mol Cancer 2017; 16:43. [PMID: 28228161 PMCID: PMC5322629 DOI: 10.1186/s12943-017-0601-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022] Open
Abstract
It is widely believed that targeting the tumour-initiating cancer stem cell (CSC) component of malignancy has great therapeutic potential, particularly in therapy-resistant disease. However, despite concerted efforts, CSC-targeting strategies have not been efficiently translated to the clinic. This is partly due to our incomplete understanding of the mechanisms underlying CSC therapy-resistance. In particular, the relationship between therapy-resistance and the organisation of CSCs as Stem-Progenitor-Differentiated cell hierarchies has not been widely studied. In this review we argue that modern clinical strategies should appreciate that the CSC hierarchy is a dynamic target that contains sensitive and resistant components and expresses a collection of therapy-resisting mechanisms. We propose that the CSC hierarchy at primary presentation changes in response to clinical intervention, resulting in a recurrent malignancy that should be targeted differently. As such, addressing the hierarchical organisation of CSCs into our bench-side theory should expedite translation of CSC-targeting to bed-side practice. In conclusion, we discuss strategies through which we can catch these moving clinical targets to specifically compromise therapy-resistant disease.
Collapse
Affiliation(s)
- Claudia Gasch
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - Brendan Ffrench
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - Michael F Gallagher
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland. .,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland.
| |
Collapse
|
128
|
Zheng D, Neoh KG, Kang ET. Immobilization of alendronate on titanium via its different functional groups and the subsequent effects on cell functions. J Colloid Interface Sci 2017; 487:1-11. [PMID: 27743540 DOI: 10.1016/j.jcis.2016.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
Immobilization of alendronate on orthopedic implants offers the possibility of enhancing osteogenesis without potentially adverse effects associated with systemic administration of this drug. In this work, alendronate was immobilized on titanium (Ti) via either its phosphate (Method 1) or amino (Method 2) groups, and responses of osteoblasts and human mesenchymal stem cells (hMSCs) on these surfaces were investigated. These modified substrates have similar surface roughness and are negatively charged. With similar amounts of immobilized alendronate, these two types of modified substrates showed comparable osteogenic stimulating effects in enhancing osteoblasts' alkaline phosphatase (ALP) activity and calcium deposition for the first 10days. However, alendronate immobilized via its phosphate groups was less stable, and gradually leached into the medium. As a result, its stimulating effect on osteoblast differentiation diminished with time. On the other hand, alendronate immobilized via its amino group stimulated osteoblast differentiation over 21days, and with 1655ng/cm2 of immobilized alendronate on the Ti substrate, calcium deposition by osteoblasts and hMSCs increased by 30% and 69%, respectively, compared to pristine Ti after 21days. The expressions of runt-related transcription factor 2, osterix, osteopontin and osteocalcin in hMSCs cultured on this substrate were monitored. The up-regulation of these genes is postulated to play a role in the acceleration of osteogenic differentiation of hMSCs cultured on the alendronate-modified substrate over those on pristine Ti.
Collapse
Affiliation(s)
- Dong Zheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore.
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| |
Collapse
|
129
|
Chmelova M, Geci I, Talian I, Bober P, Bacenkova D, Rosocha J, Urdzik P, Benckova M, Semancikova E, Kruzliak P, Sabo J. Proteomic Analysis of Chorion-Derived Mesenchymal Stem Cells: Combination of 2D Nano-HPLC in Tandem with ESI Mass Spectrometry. Chromatographia 2017. [DOI: 10.1007/s10337-017-3246-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
130
|
Alptekin A, Ye B, Ding HF. Transcriptional Regulation of Stem Cell and Cancer Stem Cell Metabolism. CURRENT STEM CELL REPORTS 2017; 3:19-27. [PMID: 28920013 DOI: 10.1007/s40778-017-0071-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Metabolism is increasingly recognized as a major player in control of stem cell function and fate. How stem cell metabolism is established, maintained, and regulated is a fundamental question of biology and medicine. In this review, we discuss major metabolic programs in stem cells and cancer stem cells, with a focus on key transcription factors that shape the stem cell metabolic phenotype. RECENT FINDINGS Cancer stem cells primarily use oxidative phosphorylation for energy generation, in contrast to normal stem cells, which rely on glycolytic metabolism with the exception of mouse embryonic stem cells. Transcription factors control the metabolic phenotype of stem cells by modulating the expression of enzymes and thus the activity of metabolic pathways. It is evident that HIF1α and PGC1α function as master regulators of glycolytic and mitochondrial metabolism, respectively. SUMMARY Transcriptional regulation is a key mechanism for establishing specific metabolic programs in stem cells and cancer stem cells.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA
| | - Bingwei Ye
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA
| | - Han-Fei Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA.,Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA
| |
Collapse
|
131
|
Hao M, Wang R, Wang W. Cell Therapies in Cardiomyopathy: Current Status of Clinical Trials. Anal Cell Pathol (Amst) 2017; 2017:9404057. [PMID: 28194324 PMCID: PMC5282433 DOI: 10.1155/2017/9404057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/28/2022] Open
Abstract
Because the human heart has limited potential for regeneration, the loss of cardiomyocytes during cardiac myopathy and ischaemic injury can result in heart failure and death. Stem cell therapy has emerged as a promising strategy for the treatment of dead myocardium, directly or indirectly, and seems to offer functional benefits to patients. The ideal candidate donor cell for myocardial reconstitution is a stem-like cell that can be easily obtained, has a robust proliferation capacity and a low risk of tumour formation and immune rejection, differentiates into functionally normal cardiomyocytes, and is suitable for minimally invasive clinical transplantation. The ultimate goal of cardiac repair is to regenerate functionally viable myocardium after myocardial infarction (MI) to prevent or heal heart failure. This review provides a comprehensive overview of treatment with stem-like cells in preclinical and clinical studies to assess the feasibility and efficacy of this novel therapeutic strategy in ischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Ming Hao
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| | - Richard Wang
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| | - Wen Wang
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| |
Collapse
|
132
|
Ghourichaee SS, Powell EM, Leach JB. Enhancement of human neural stem cell self-renewal in 3D hypoxic culture. Biotechnol Bioeng 2016; 114:1096-1106. [PMID: 27869294 DOI: 10.1002/bit.26224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/19/2016] [Accepted: 11/15/2016] [Indexed: 12/16/2022]
Abstract
The pathology of neurological disorders is associated with the loss of neuronal and glial cells that results in functional impairments. Human neural stem cells (hNSCs), due to their self-renewing and multipotent characteristics, possess enormous tissue-specific regenerative potential. However, the efficacy of clinical applications is restricted due to the lack of standardized in vitro cell production methods with the capability of generating hNSC populations with well-defined cellular compositions. At any point, a population of hNSCs may include undifferentiated stem cells, intermediate and terminally differentiated progenies, and dead cells. Due to the plasticity of hNSCs, environmental cues play crucial roles in determining the cellular composition of hNSC cultures over time. Here, we investigated the independent and synergistic effect of three important environmental factors (i.e., culture dimensionality, oxygen concentration, and growth factors) on the survival, renewal potential, and differentiation of hNSCs. Our experimental design included two dimensional (2D) versus three dimensional (3D) cultures and normoxic (21% O2 ) versus hypoxic (3% O2 ) conditions in the presence and absence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Additionally, we discuss the feasibility of mathematical models that predict hNSC growth and differentiation under these culture conditions by adopting a negative feedback regulatory term. Our results indicate that the synergistic effect of culture dimensionality and hypoxic oxygen concentration in the presence of growth factors enhances the proliferation of viable, undifferentiated hNSCs. Moreover, the same synergistic effect in the absence of growth factors promotes the differentiation of hNSCs. Biotechnol. Bioeng. 2017;114: 1096-1106. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sasan Sharee Ghourichaee
- Department of Chemical, Biochemical & Environmental Engineering, UMBC, 1000 Hilltop Circle, Baltimore, Maryland, 21250
| | - Elizabeth M Powell
- Departments of Anatomy and Neurobiology, Psychiatry, and Bioengineering, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jennie B Leach
- Department of Chemical, Biochemical & Environmental Engineering, UMBC, 1000 Hilltop Circle, Baltimore, Maryland, 21250
| |
Collapse
|
133
|
Guest I, Ilic Z, Scrable H, Sell S. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice. Aging (Albany NY) 2016; 7:1212-23. [PMID: 26796640 PMCID: PMC4712343 DOI: 10.18632/aging.100867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.
Collapse
Affiliation(s)
- Ian Guest
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Zoran Ilic
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Heidi Scrable
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stewart Sell
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| |
Collapse
|
134
|
Brown G, Sanchez-Garcia I. Is lineage decision-making restricted during tumoral reprograming of haematopoietic stem cells? Oncotarget 2016; 6:43326-41. [PMID: 26498146 PMCID: PMC4791235 DOI: 10.18632/oncotarget.6145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 01/11/2023] Open
Abstract
Within the past years there have been substantial changes to our understanding of haematopoiesis and cells that initiate and sustain leukemia. Recent studies have revealed that developing haematopoietic stem and progenitor cells are much more heterogeneous and versatile than has been previously thought. This versatility includes cells using more than one route to a fate and cells having progressed some way towards a cell type retaining other lineage options as clandestine. These notions impact substantially on our understanding of the origin and nature of leukemia. An important question is whether leukemia stem cells are as versatile as their cell of origin as an abundance of cells belonging to a lineage is often a feature of overt leukemia. In this regard, we examine the coming of age of the "leukemia stem cell" theory and the notion that leukemia, like normal haematopoiesis, is a hierarchically organized tissue. We examine evidence to support the notion that whilst cells that initiate leukemia have multi-lineage potential, leukemia stem cells are reprogrammed by further oncogenic insults to restrict their lineage decision-making. Accordingly, evolution of a sub-clone of lineage-restricted malignant cells is a key feature of overt leukemia.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. de Unamuno s/n, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
135
|
G-CSF-mobilized Bone Marrow Mesenchymal Stem Cells Replenish Neural Lineages in Alzheimer's Disease Mice via CXCR4/SDF-1 Chemotaxis. Mol Neurobiol 2016; 54:6198-6212. [PMID: 27709493 DOI: 10.1007/s12035-016-0122-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
Abstract
Recent studies reported granulocyte colony-stimulating factor (G-CSF) treatment can improve the cognitive function of Alzheimer's disease (AD) mice, and the mobilized hematopoietic stem cells (HSCs) or bone marrow mesenchymal stem cells (BM-MSCs) are proposed to be involved in this recovery effect. However, the exact role of mobilized HSC/BM-MSC in G-CSF-based therapeutic effects is still unknown. Here, we report that C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor 1 (SDF-1) chemotaxis was a key mediator in G-CSF-based therapeutic effects, which was involved in the recruitment of repair-competent cells. Furthermore, we found both mobilized HSCs and BM-MSCs were able to infiltrate into the brain, but only BM-MSCs replenished the neural lineage cells and contributed to neurogenesis in the brains of AD mice. Together, our data show that mobilized BM-MSCs are involved in the replenishment of neural lineages following G-CSF treatment via CXCR4/SDF-1 chemotaxis and further support the potential use of BM-MSCs for further autogenically therapeutic applications.
Collapse
|
136
|
Zhu YP, Thomas GD, Hedrick CC. 2014 Jeffrey M. Hoeg Award Lecture: Transcriptional Control of Monocyte Development. Arterioscler Thromb Vasc Biol 2016; 36:1722-33. [PMID: 27386937 PMCID: PMC5828163 DOI: 10.1161/atvbaha.116.304054] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/24/2016] [Indexed: 01/01/2023]
Abstract
Monocytes and macrophages are key immune cells involved in the early progression of atherosclerosis. Transcription factors that control their development in the bone marrow are important therapeutic targets to control the numbers and functions of these cells in disease. This review highlights what is currently known about the transcription factors that are critical for monocyte development.
Collapse
Affiliation(s)
- Yanfang Peipei Zhu
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA
| | - Graham D Thomas
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA
| | - Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA.
| |
Collapse
|
137
|
LncSox4 promotes the self-renewal of liver tumour-initiating cells through Stat3-mediated Sox4 expression. Nat Commun 2016; 7:12598. [PMID: 27553854 PMCID: PMC4999516 DOI: 10.1038/ncomms12598] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
Liver cancer has a tendency to develop asymptomatically in patients, so most patients are diagnosed at a later stage. Accumulating evidence implicates that liver tumour-initiating cells (TICs) as being responsible for liver cancer initiation and recurrence. However, the molecular mechanism of liver TIC self-renewal is poorly understood. Here we discover that a long noncoding RNA (lncRNA) termed LncSox4 is highly expressed in hepatocellular carcinoma (HCC) tissues and in liver TICs. We find that LncSox4 is required for liver TIC self-renewal and tumour initiation. LncSox4 interacts with and recruits Stat3 to the Sox4 promoter to initiate the expression of Sox4, which is highly expressed in liver TICs and required for liver TIC self-renewal. The expression level of Sox4 correlates with HCC development, clinical severity and prognosis of patients. Altogether, we find that LncSox4 is highly expressed in liver TICs and is required for their self-renewal. Liver tumour-initiating cells (TICs) may be responsible for liver cancer initiation and recurrence. In this article, the authors show that a previously unidentified lncRNA, LncSox4, is highly expressed in liver cancer TICs and regulates TIC self-renewal through the Stat3/SOX4 axis.
Collapse
|
138
|
Schmutz S, Valente M, Cumano A, Novault S. Spectral Cytometry Has Unique Properties Allowing Multicolor Analysis of Cell Suspensions Isolated from Solid Tissues. PLoS One 2016; 11:e0159961. [PMID: 27500930 PMCID: PMC4976887 DOI: 10.1371/journal.pone.0159961] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Flow cytometry, initially developed to analyze surface protein expression in hematopoietic cells, has increased in analytical complexity and is now widely used to identify cells from different tissues and organisms. As a consequence, data analysis became increasingly difficult due the need of large multi-parametric compensation matrices and to the eventual auto-fluorescence frequently found in cell suspensions obtained from solid organs. In contrast with conventional flow cytometry that detects the emission peak of fluorochromes, spectral flow cytometry distinguishes the shapes of emission spectra along a large range of continuous wave lengths. The data is analyzed with an algorithm that replaces compensation matrices and treats auto-fluorescence as an independent parameter. Thus, spectral flow cytometry should be capable to discriminate fluorochromes with similar emission peaks and provide multi-parametric analysis without compensation requirements. Here we show that spectral flow cytometry achieves a 21-parametric (19 fluorescent probes) characterization and deals with auto-fluorescent cells, providing high resolution of specifically fluorescence-labeled populations. Our results showed that spectral flow cytometry has advantages in the analysis of cell populations of tissues difficult to characterize in conventional flow cytometry, such as heart and intestine. Spectral flow cytometry thus combines the multi-parametric analytical capacity of the highest performing conventional flow cytometry without the requirement for compensation and enabling auto-fluorescence management.
Collapse
Affiliation(s)
| | - Mariana Valente
- Institut Pasteur, Immunology Department, Lymphopoiesis Unit, Paris, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Inserm U1223, Paris, France
- Instituto de Investigação e Inovação em Saúde (i3s) & INEB–Instituto de Engenharia Biomédica, Stem-Cell Microenvironments in Repair/Regeneration Team, Microenvironment for Newtherapies Group, Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Cumano
- Institut Pasteur, Immunology Department, Lymphopoiesis Unit, Paris, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Inserm U1223, Paris, France
- * E-mail:
| | - Sophie Novault
- Institut Pasteur, Flow Cytometry Core Facility, Paris, France
| |
Collapse
|
139
|
Abstract
Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461; .,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461; .,Department of Medicine, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, New York 10461.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461.,Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
140
|
Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9758729. [PMID: 27429988 PMCID: PMC4939182 DOI: 10.1155/2016/9758729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 01/13/2023]
Abstract
Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass) was coated on sintered hydroxyapatite (HA) and HA-TCP (TCP stands for tricalcium phosphate) samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs). Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin) were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs.
Collapse
|
141
|
Mujoo K, Butler EB, Pandita RK, Hunt CR, Pandita TK. Pluripotent Stem Cells and DNA Damage Response to Ionizing Radiations. Radiat Res 2016; 186:17-26. [PMID: 27332952 PMCID: PMC4963261 DOI: 10.1667/rr14417.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells (PSCs) hold great promise in regenerative medicine, disease modeling, functional genomics, toxicological studies and cell-based therapeutics due to their unique characteristics of self-renewal and pluripotency. Novel methods for generation of pluripotent stem cells and their differentiation to the specialized cell types such as neuronal cells, myocardial cells, hepatocytes and beta cells of the pancreas and many other cells of the body are constantly being refined. Pluripotent stem cell derived differentiated cells, including neuronal cells or cardiac cells, are ideal for stem cell transplantation as autologous or allogeneic cells from healthy donors due to their minimal risk of rejection. Radiation-induced DNA damage, ultraviolet light, genotoxic stress and other intrinsic and extrinsic factors triggers a series of biochemical reactions known as DNA damage response. To maintain genomic stability and avoid transmission of mutations into progenitors cells, stem cells have robust DNA damage response signaling, a contrast to somatic cells. Stem cell transplantation may protect against radiation-induced late effects. In particular, this review focuses on differential DNA damage response between stem cells and derived differentiated cells and the possible pathways that determine such differences.
Collapse
Affiliation(s)
- Kalpana Mujoo
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - E. Brian Butler
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Raj K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Clayton R. Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Tej K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| |
Collapse
|
142
|
Götz M. Glial Cells Generate Neurons—Master Control within CNS Regions: Developmental Perspectives on Neural Stem Cells. Neuroscientist 2016; 9:379-97. [PMID: 14580122 DOI: 10.1177/1073858403257138] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A common problem in neural stem cell research is the poor generation of neuronal or oligodendroglial descendants. The author takes a developmental perspective to propose solutions to this problem. After a general overview of the recent progress in developmental neurobiology, she highlights the necessity of the sequential and hierarchical specification of CNS precursors toward the generation of specific cell types, for example, neurons. In the developing as well as the adult CNS, multipotent stem cells do not directly generate neurons but give rise to precursors that are specified and restricted toward the generation of neurons. Some molecular determinants of this fate restriction have been identified during recent years and reveal that progression via this fate-restricted state is a necessary step of neurogenesis. These discoveries also demonstrate that neuronal fate specification is inseparably linked at the molecular level to regionalization of the developing CNS. These fate determinants and their specific action in distinct region-specific con-texts are essential to direct the progeny of stem cells more efficiently toward the generation of the desired cell types. Recent data are discussed that demonstrate the common identity of precursors and stem cells in the developing and adult nervous system as radial glia, astroglia, or non-myelinating glia. A novel line-age model is proposed that incorporates these new views and explains why the default pathway of stem cells is astroglia. These new insights into the cellular and molecular mechanisms of neurogenesis help to design novel approaches for reconstitutive therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Götz
- Max-Planck Institute of Neurobiology, Planegg-Martinsried/Munich, Germany.
| |
Collapse
|
143
|
Bajek A, Olkowska J, Walentowicz-Sadłecka M, Walentowicz P, Sadłecki P, Grabiec M, Bodnar M, Marszałek A, Dębski R, Porowińska D, Czarnecka J, Kaźmierski Ł, Drewa T. High Quality Independent From a Donor: Human Amniotic Fluid Derived Stem Cells-A Practical Analysis Based on 165 Clinical Cases. J Cell Biochem 2016; 118:116-126. [DOI: 10.1002/jcb.25618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Anna Bajek
- Department of Tissue Engineering; Nicolaus Copernicus University; Bydgoszcz 85-092 Poland
| | - Joanna Olkowska
- Department of Tissue Engineering; Nicolaus Copernicus University; Bydgoszcz 85-092 Poland
| | | | - Paweł Walentowicz
- Department of Obstetrics and Gynecology; Nicolaus Copernicus University; Bydgoszcz 85-168 Poland
| | - Paweł Sadłecki
- Department of Obstetrics and Gynecology; Nicolaus Copernicus University; Bydgoszcz 85-168 Poland
| | - Marek Grabiec
- Department of Obstetrics and Gynecology; Nicolaus Copernicus University; Bydgoszcz 85-168 Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology; Nicolaus Copernicus University; Bydgoszcz 85-094 Poland
| | - Andrzej Marszałek
- Department of Clinical Pathomorphology; Nicolaus Copernicus University; Bydgoszcz 85-094 Poland
| | - Robert Dębski
- Department of Experimental Oncology; Nicolaus Copernicus University; Bydgoszcz 85-094 Poland
| | - Dorota Porowińska
- Department of Biochemistry; Nicolaus Copernicus University; Toruń 87-100 Poland
| | - Joanna Czarnecka
- Department of Biochemistry; Nicolaus Copernicus University; Toruń 87-100 Poland
| | - Łukasz Kaźmierski
- Department of Tissue Engineering; Nicolaus Copernicus University; Bydgoszcz 85-092 Poland
| | - Tomasz Drewa
- Department of Tissue Engineering; Nicolaus Copernicus University; Bydgoszcz 85-092 Poland
- Department of Urology; Nicolaus Copernicus Hospital; Toruń 87-100 Poland
| |
Collapse
|
144
|
Wu Y, Zhang S, Yuan Q. N(6)-Methyladenosine Methyltransferases and Demethylases: New Regulators of Stem Cell Pluripotency and Differentiation. Stem Cells Dev 2016; 25:1050-9. [PMID: 27216987 DOI: 10.1089/scd.2016.0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The discovery of mammalian N(6)-methyladenosine (m(6)A) methyltransferases and demethylases has enriched our knowledge of the dynamic regulation of the most prevalent posttranscriptional RNA modification, m(6)A methylation. This reversible methylation process of adding and removing m(6)A marks on RNA has been shown to have broad biological functions in fine tuning cellular processes and gene expression. Recent studies have revealed a critical role for the currently known m(6)A methyltransferases and demethylases in regulating the pluripotency and differentiation of stem cells. These data establish a novel dimension in epigenetic regulation at the RNA level to affect mammalian cell fate.
Collapse
Affiliation(s)
- Yunshu Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| |
Collapse
|
145
|
Silva LB, Neto APDS, Pacheco RGP, Júnior SA, de Menezes RF, Carneiro VSM, Araújo NC, da Silveira MMF, de Albuquerque DS, Gerbi MEMDM, Álvares PR, de Arruda JAA, Sobral APV. The Promising Applications of Stem Cells in the Oral Region: Literature Review. Open Dent J 2016; 10:227-35. [PMID: 27386008 PMCID: PMC4911749 DOI: 10.2174/1874210601610010227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION For a long time researchers have tried to find out a way to grow tissues back to the human body in order to solve transplantation problems by offering the unique opportunity to have their organs back, working properly, in search of life dignity. LITERATURE REVIEW Stem cells seem to be present in many other tissues than researchers had once thought; and in some specific sites they can be easily collected, without the need of expensive interventions. The oral cavity is one of these regions where their collection can be accomplished, with plenty of accessible sites enriched with these precious cells. AIM The aim of this literature review is to research where in the mouth can scientists find stem cells to be used in the near future. KEY-MESSAGE The aim of this literature review is to research where stem cells can be found and collected in the oral cavity.
Collapse
Affiliation(s)
- Luciano Barreto Silva
- Department of Operative Dentistry and Endodontics, Dental College of Pernambuco Camaragibe, Pernambuco, Brazil
| | | | - Rachel Gomes Pelozo Pacheco
- Department of Operative Dentistry and Endodontics, Dental College of Pernambuco Camaragibe, Pernambuco, Brazil
| | | | - Rebeca Ferraz de Menezes
- Department of Operative Dentistry and Endodontics, Dental College of Pernambuco Camaragibe, Pernambuco, Brazil
| | | | - Natália Costa Araújo
- Department of Operative Dentistry and Endodontics, Dental College of Pernambuco Camaragibe, Pernambuco, Brazil
| | | | | | | | - Pamella Recco Álvares
- Department of Operative Dentistry and Endodontics, Dental College of Pernambuco Camaragibe, Pernambuco, Brazil
| | | | - Ana Paula Veras Sobral
- Department of Operative Dentistry and Endodontics, Dental College of Pernambuco Camaragibe, Pernambuco, Brazil
| |
Collapse
|
146
|
Li J, Zhang J, Tang M, Xin J, Xu Y, Volk A, Hao C, Hu C, Sun J, Wei W, Cao Q, Breslin P, Zhang J. Hematopoietic Stem Cell Activity Is Regulated by Pten Phosphorylation Through a Niche-Dependent Mechanism. Stem Cells 2016; 34:2130-44. [PMID: 27096933 DOI: 10.1002/stem.2382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/19/2016] [Accepted: 03/26/2016] [Indexed: 12/21/2022]
Abstract
The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-p-Pten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. Stem Cells 2016;34:2130-2144.
Collapse
Affiliation(s)
- Jing Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Jun Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Minghui Tang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Junping Xin
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Yan Xu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Andrew Volk
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Caiqin Hao
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Chenglong Hu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Jiewen Sun
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Wei Wei
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Quichan Cao
- Department of Public Health Sciences, Loyola University Chicago, Chicago, Illinois, USA
| | - Peter Breslin
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA.,Department of Molecular and Cellular Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA.,Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
147
|
Psaila B, Barkas N, Iskander D, Roy A, Anderson S, Ashley N, Caputo VS, Lichtenberg J, Loaiza S, Bodine DM, Karadimitris A, Mead AJ, Roberts I. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biol 2016; 17:83. [PMID: 27142433 PMCID: PMC4855892 DOI: 10.1186/s13059-016-0939-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/08/2016] [Indexed: 01/09/2023] Open
Abstract
Background Recent advances in single-cell techniques have provided the opportunity to finely dissect cellular heterogeneity within populations previously defined by “bulk” assays and to uncover rare cell types. In human hematopoiesis, megakaryocytes and erythroid cells differentiate from a shared precursor, the megakaryocyte-erythroid progenitor (MEP), which remains poorly defined. Results To clarify the cellular pathway in erythro-megakaryocyte differentiation, we correlate the surface immunophenotype, transcriptional profile, and differentiation potential of individual MEP cells. Highly purified, single MEP cells were analyzed using index fluorescence-activated cell sorting and parallel targeted transcriptional profiling of the same cells was performed using a specifically designed panel of genes. Differentiation potential was tested in novel, single-cell differentiation assays. Our results demonstrate that immunophenotypic MEP comprise three distinct subpopulations: “Pre-MEP,” enriched for erythroid/megakaryocyte progenitors but with residual myeloid differentiation capacity; “E-MEP,” strongly biased towards erythroid differentiation; and “MK-MEP,” a previously undescribed, rare population of cells that are bipotent but primarily generate megakaryocytic progeny. Therefore, conventionally defined MEP are a mixed population, as a minority give rise to mixed-lineage colonies while the majority of cells are transcriptionally primed to generate exclusively single-lineage output. Conclusions Our study clarifies the cellular hierarchy in human megakaryocyte/erythroid lineage commitment and highlights the importance of using a combination of single-cell approaches to dissect cellular heterogeneity and identify rare cell types within a population. We present a novel immunophenotyping strategy that enables the prospective identification of specific intermediate progenitor populations in erythro-megakaryopoiesis, allowing for in-depth study of disorders including inherited cytopenias, myeloproliferative disorders, and erythromegakaryocytic leukemias. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0939-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bethan Psaila
- Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.,Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Nikolaos Barkas
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Deena Iskander
- Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Anindita Roy
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK.,Department of Paediatrics, Weatherall Institute of Molecular Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, OX3 9DU, UK
| | - Stacie Anderson
- Flow Cytometry Core, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Neil Ashley
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Valentina S Caputo
- Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Jens Lichtenberg
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Loaiza
- Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - David M Bodine
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Mead
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK.
| | - Irene Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK. .,Department of Paediatrics, Weatherall Institute of Molecular Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, OX3 9DU, UK.
| |
Collapse
|
148
|
Coyle R, Jia J, Mei Y. Polymer microarray technology for stem cell engineering. Acta Biomater 2016; 34:60-72. [PMID: 26497624 PMCID: PMC4811723 DOI: 10.1016/j.actbio.2015.10.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. STATEMENT OF SIGNIFICANCE Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering.
Collapse
Affiliation(s)
- Robert Coyle
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
149
|
PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun 2016; 7:10633. [PMID: 26843124 PMCID: PMC4743006 DOI: 10.1038/ncomms10633] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to tumour heterogeneity, therapy resistance and metastasis. However, the regulatory mechanisms of cancer cell stemness remain elusive. Here we identify PCNA-associated factor (PAF) as a key molecule that controls cancer cell stemness. PAF is highly expressed in breast cancer cells but not in mammary epithelial cells (MECs). In MECs, ectopic expression of PAF induces anchorage-independent cell growth and breast CSC marker expression. In mouse models, conditional PAF expression induces mammary ductal hyperplasia. Moreover, PAF expression endows MECs with a self-renewing capacity and cell heterogeneity generation via Wnt signalling. Conversely, ablation of endogenous PAF induces the loss of breast cancer cell stemness. Further cancer drug repurposing approaches reveal that NVP-AUY922 downregulates PAF and decreases breast cancer cell stemness. Our results unveil an unsuspected role of the PAF-Wnt signalling axis in modulating cell plasticity, which is required for the maintenance of breast cancer cell stemness. Stem cells are found in many tumour types and are thought to be partially responsible for cell survival following therapy. Here, the authors show that PCNA-associated factor, PAF, contributes to stemness in breast cancer cells and pharmacological targeting of PAF reduces mammosphere formation.
Collapse
|
150
|
Abstract
T cell development is a complex multistep process that requires the coordinated activation of distinct signaling responses and the regulated progression of developing cells (thymocytes) through key stages of maturation. Although sophisticated techniques such as fetal thymus organ culture, in vitro thymocyte culture, and multi-parameter flow cytometric analysis are now widely employed to evaluate thymocyte maturation by experienced laboratories, defects in T cell development can usually be identified with more simplified screening methods. Here, we provide a basic protocol for assessment of T cell development that will enable laboratories with access to a four parameter flow cytometer to screen mouse strains, including those generated from embryonic stem cells with targeted gene mutations, for thymocyte maturation defects.
Collapse
Affiliation(s)
- Jan Y M Lee
- Section for Cellular and Developmental Biology, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | |
Collapse
|