101
|
Clark CA, Yang ES. Harnessing DNA Repair Defects to Augment Immune-Based Therapies in Triple-Negative Breast Cancer. Front Oncol 2021; 11:703802. [PMID: 34631532 PMCID: PMC8497895 DOI: 10.3389/fonc.2021.703802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has poor prognosis with limited treatment options, with little therapeutic progress made during the past several decades. DNA damage response (DDR) associated therapies, including radiation and inhibitors of DDR, demonstrate potential efficacy against TNBC, especially under the guidance of genomic subtype-directed treatment. The tumor immune microenvironment also contributes greatly to TNBC malignancy and response to conventional and targeted therapies. Immunotherapy represents a developing trend in targeted therapies directed against TNBC and strategies combining immunotherapy and modulators of the DDR pathways are being pursued. There is increasing understanding of the potential interplay between DDR pathways and immune-associated signaling. As such, the question of how we treat TNBC regarding novel immuno-molecular strategies is continually evolving. In this review, we explore the current and upcoming treatment options of TNBC in the context of DNA repair mechanisms and immune-based therapies, with a focus on implications of recent genomic analyses and clinical trial findings.
Collapse
Affiliation(s)
- Curtis A. Clark
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
| |
Collapse
|
102
|
Ishihara H, Kondo T, Nakamura K, Nemoto Y, Tachibana H, Fukuda H, Yoshida K, Kobayashi H, Iizuka J, Shimmura H, Hashimoto Y, Tanabe K, Takagi T. Association of tumor burden with outcome in first-line therapy with nivolumab plus ipilimumab for previously untreated metastatic renal cell carcinoma. Jpn J Clin Oncol 2021; 51:1751-1756. [PMID: 34492101 DOI: 10.1093/jjco/hyab142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the prognostic impact of tumor burden in patients receiving nivolumab plus ipilimumab as first-line therapy for previously untreated metastatic renal cell carcinoma (mRCC). METHODS We retrospectively evaluated 62 patients with IMDC intermediate- or poor-risk mRCC, treated with nivolumab plus ipilimumab as first-line therapy at five affiliated institutions. Tumor burden was defined as the sum of diameters of baseline targeted lesions according to the RECIST version.1.1. We categorized the patients into two groups based on the median value of tumor burden (i.e., high vs. low). The association of tumor burden with progression-free survival (PFS), overall survival (OS) and objective response rate (ORR) with nivolumab plus ipilimumab treatment was analyzed. RESULTS The median tumor burden was 63.0 cm (interquartile range: 34.2-125.8). PFS was significantly shorter in patients with high tumor burden (n = 31) than in those with low tumor burden (n = 31) (median: 6.08 [95% CI: 2.73-9.70] vs. 12.5 [4.77-24.0] months, P = 0.0134). In addition, OS tended to be shorter in patients with high tumor burden; however, there was no statistically significant difference (1-year rate: 77.3 vs. 96.7%, P = 0.166). ORR was not significantly different between patients with high and low tumor burden (35 vs. 55%, P = 0.202). Multivariate analysis of PFS further showed that tumor burden was an independent factor (HR: 2.22 [95% CI: 1.11-4.45], P = 0.0242). CONCLUSIONS Tumor burden might be a useful factor for outcome prediction, at least for PFS prediction, in patients receiving nivolumab plus ipilimumab for mRCC. Further prospective studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Urology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Tsunenori Kondo
- Department of Urology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | | | - Yuki Nemoto
- Department of Urology, Saiseikai Kawaguchi General Hospital, Saitama, Japan
| | - Hidekazu Tachibana
- Department of Urology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan.,Department of Urology, Saiseikai Kurihashi Hospital, Saitama, Japan
| | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuhiko Yoshida
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hirohito Kobayashi
- Department of Urology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Junpei Iizuka
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroaki Shimmura
- Department of Urology, Tokiwakai Jyoban Hospital, Fukushima, Japan
| | - Yasunobu Hashimoto
- Department of Urology, Saiseikai Kawaguchi General Hospital, Saitama, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshio Takagi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
103
|
García-Fernández C, Saz A, Fornaguera C, Borrós S. Cancer immunotherapies revisited: state of the art of conventional treatments and next-generation nanomedicines. Cancer Gene Ther 2021; 28:935-946. [PMID: 33837365 DOI: 10.1038/s41417-021-00333-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Nowadays, the landscape of cancer treatments has broadened thanks to the clinical application of immunotherapeutics. After decades of failures, cancer immunotherapy represents an exciting alternative for those patients suffering from a wide variety of cancers, especially for those skin cancers, such as the early stages of melanoma. However, those cancers affecting internal organs still face a long way to success, because of the poor biodistribution of immunotherapies. Here, nanomedicine appears as a hopeful strategy to modulate the biodistribution aiming at target organ accumulation. In this way, efficacy will be improved, while reducing the side effects at the same time. In this review, we aim to highlight the most promising cancer immunotherapeutic strategies. From monoclonal antibodies and their traditional use as targeted therapies to their current use as immune checkpoint inhibitors; as well as adoptive cell transfer therapies; oncolytic viruses, and therapeutic cancer vaccination. Then, we aim to discuss the important role of nanomedicine to improve the performance of these immunotherapeutic tools to finally review the already marketed nanomedicine-based cancer immunotherapies.
Collapse
Affiliation(s)
- Coral García-Fernández
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Anna Saz
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain.
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| |
Collapse
|
104
|
Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet 2021; 398:535-554. [PMID: 34273294 DOI: 10.1016/s0140-6736(21)00312-3] [Citation(s) in RCA: 1062] [Impact Index Per Article: 354.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Lung cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths worldwide with an estimated 2 million new cases and 1·76 million deaths per year. Substantial improvements in our understanding of disease biology, application of predictive biomarkers, and refinements in treatment have led to remarkable progress in the past two decades and transformed outcomes for many patients. This seminar provides an overview of advances in the screening, diagnosis, and treatment of non-small-cell lung cancer and small-cell lung cancer, with a particular focus on targeted therapies and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alesha A Thai
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia
| | - Benjamin J Solomon
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia
| | - Lecia V Sequist
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Justin F Gainor
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca S Heist
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
105
|
PIP4Ks impact on PI3K, FOXP3, and UHRF1 signaling and modulate human regulatory T cell proliferation and immunosuppressive activity. Proc Natl Acad Sci U S A 2021; 118:2010053118. [PMID: 34312224 DOI: 10.1073/pnas.2010053118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) play fundamental roles in maintaining peripheral tolerance to prevent autoimmunity and limit legitimate immune responses, a feature hijacked in tumor microenvironments in which the recruitment of Tregs often extinguishes immune surveillance through suppression of T-effector cell signaling and tumor cell killing. The pharmacological tuning of Treg activity without impacting on T conventional (Tconv) cell activity would likely be beneficial in the treatment of various human pathologies. PIP4K2A, 2B, and 2C constitute a family of lipid kinases that phosphorylate PtdIns5P to PtdIns(4,5)P 2 They are involved in stress signaling, act as synthetic lethal targets in p53-null tumors, and in mice, the loss of PIP4K2C leads to late onset hyperinflammation. Accordingly, a human single nucleotide polymorphism (SNP) near the PIP4K2C gene is linked with susceptibility to autoimmune diseases. How PIP4Ks impact on human T cell signaling is not known. Using ex vivo human primary T cells, we found that PIP4K activity is required for Treg cell signaling and immunosuppressive activity. Genetic and pharmacological inhibition of PIP4K in Tregs reduces signaling through the PI3K, mTORC1/S6, and MAPK pathways, impairs cell proliferation, and increases activation-induced cell death while sparing Tconv. PIP4K and PI3K signaling regulate the expression of the Treg master transcriptional activator FOXP3 and the epigenetic signaling protein Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). Our studies suggest that the pharmacological inhibition of PIP4K can reprogram human Treg identity while leaving Tconv cell signaling and T-helper differentiation to largely intact potentially enhancing overall immunological activity.
Collapse
|
106
|
Zimmermannova O, Caiado I, Ferreira AG, Pereira CF. Cell Fate Reprogramming in the Era of Cancer Immunotherapy. Front Immunol 2021; 12:714822. [PMID: 34367185 PMCID: PMC8336566 DOI: 10.3389/fimmu.2021.714822] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Advances in understanding how cancer cells interact with the immune system allowed the development of immunotherapeutic strategies, harnessing patients' immune system to fight cancer. Dendritic cell-based vaccines are being explored to reactivate anti-tumor adaptive immunity. Immune checkpoint inhibitors and chimeric antigen receptor T-cells (CAR T) were however the main approaches that catapulted the therapeutic success of immunotherapy. Despite their success across a broad range of human cancers, many challenges remain for basic understanding and clinical progress as only a minority of patients benefit from immunotherapy. In addition, cellular immunotherapies face important limitations imposed by the availability and quality of immune cells isolated from donors. Cell fate reprogramming is offering interesting alternatives to meet these challenges. Induced pluripotent stem cell (iPSC) technology not only enables studying immune cell specification but also serves as a platform for the differentiation of a myriad of clinically useful immune cells including T-cells, NK cells, or monocytes at scale. Moreover, the utilization of iPSCs allows introduction of genetic modifications and generation of T/NK cells with enhanced anti-tumor properties. Immune cells, such as macrophages and dendritic cells, can also be generated by direct cellular reprogramming employing lineage-specific master regulators bypassing the pluripotent stage. Thus, the cellular reprogramming toolbox is now providing the means to address the potential of patient-tailored immune cell types for cancer immunotherapy. In parallel, development of viral vectors for gene delivery has opened the door for in vivo reprogramming in regenerative medicine, an elegant strategy circumventing the current limitations of in vitro cell manipulation. An analogous paradigm has been recently developed in cancer immunotherapy by the generation of CAR T-cells in vivo. These new ideas on endogenous reprogramming, cross-fertilized from the fields of regenerative medicine and gene therapy, are opening exciting avenues for direct modulation of immune or tumor cells in situ, widening our strategies to remove cancer immunotherapy roadblocks. Here, we review current strategies for cancer immunotherapy, summarize technologies for generation of immune cells by cell fate reprogramming as well as highlight the future potential of inducing these unique cell identities in vivo, providing new and exciting tools for the fast-paced field of cancer immunotherapy.
Collapse
Affiliation(s)
- Olga Zimmermannova
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Inês Caiado
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Coimbra, Portugal
| | - Alexandra G. Ferreira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Coimbra, Portugal
| | - Carlos-Filipe Pereira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
107
|
De Luca AJ, Lyons AB, Flies AS. Cytokines: Signalling Improved Immunotherapy? Curr Oncol Rep 2021; 23:103. [PMID: 34269916 DOI: 10.1007/s11912-021-01095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Immune checkpoint immunotherapies (ICI) are now approved for over 20 types of cancer and there are almost 6000 ongoing clinical trials investigating immuno-modulators as cancer therapies. This review investigated the effect of monoclonal antibody-based immune checkpoint immunotherapies when combined with cytokine therapy. We reviewed published clinical trial results from 2005 to 2020 for studies that used approved monoclonal antibody ICI in combination with the cytokines. Studies that met the search criteria were assessed for treatment efficacy and immunological changes associated with treatment. RECENT FINDING ICI often fails to result in improved clinical outcomes for patients and lasting protection from cancer recurrence. The use of pro-inflammatory cytokines alongside ICI has been shown to enhance the efficacy of these therapies in vitro and in animal studies. However, the results in human clinical trials are less clear and many clinical trials do not publish results at the end of the trial. A deeper understanding of the molecular interactions between cytokines, tumors, and immune cells is needed to improve overall ICI outcomes and design combination trials. Critical examination of the design and characteristics of previous clinical trials can provide insight into the lack of effective clinical translation for many immunotherapeutic drugs.
Collapse
Affiliation(s)
- Alana J De Luca
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.,Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
108
|
Zou W, Lu J, Hao Y. Myocarditis Induced by Immune Checkpoint Inhibitors: Mechanisms and Therapeutic Prospects. J Inflamm Res 2021; 14:3077-3088. [PMID: 34267536 PMCID: PMC8275200 DOI: 10.2147/jir.s311616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, immune checkpoint molecules downregulate the activation and effector function of myocardial antigen-reactive T cells through an immunosuppressive pathway, thus enabling myocardial T cells to maintain immune homeostasis under the action of central and peripheral tolerance mechanisms. The PD-1/PD-L1 signalling pathway is particularly important for limiting the ability of T cells to attack the heart. Immune checkpoint inhibitors (ICIs) specifically block this PD-1/PD-L1-mediated restriction of T cell activation and other immunosuppressive pathways by targeting immune checkpoints. In recent years, with the wide use of ICIs in cancer treatment, even though the incidence of immunomyocarditis is low, it has attracted increasing attention because of its complex clinical symptoms, rapid progression of disease and high mortality rates. The pathogenesis, genetic susceptibility factors and predictive biomarkers of immunomyocarditis still need to be understood, and multidisciplinary cooperation in the clinical treatment of this complication is necessary.
Collapse
Affiliation(s)
- Wenlu Zou
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250021, People's Republic of China.,Department of Infectious Disease.,Department of Clinical Laboratory, Shandong University Qilu Hospital, Jinan, Shandong Province, 250012, People's Republic of China
| | - Jie Lu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250117, Shandong Province, People's Republic of China
| | - Yan Hao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, People's Republic of China
| |
Collapse
|
109
|
Chiu LC, Lin SM, Lo YL, Kuo SCH, Yang CT, Hsu PC. Immunotherapy and Vaccination in Surgically Resectable Non-Small Cell Lung Cancer (NSCLC). Vaccines (Basel) 2021; 9:689. [PMID: 34201650 PMCID: PMC8310081 DOI: 10.3390/vaccines9070689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Early-stage NSCLC (stages I and II, and some IIIA diseases) accounts for approximately 30% of non-small cell lung cancer (NSCLC) cases, with surgery being its main treatment modality. The risk of disease recurrence and cancer-related death, however, remains high among NSCLC patients after complete surgical resection. In previous studies on the long-term follow-up of post-operative NSCLC, the results showed that the five-year survival rate was about 65% for stage IB and about 35% for stage IIIA diseases. Platinum-based chemotherapy with or without radiation therapy has been used as a neoadjuvant therapy or post-operative adjuvant therapy in NSCLC, but the improvement of survival is limited. Immune checkpoint inhibitors (ICIs) have effectively improved the 5-year survival of advanced NSCLC patients. Cancer vaccination has also been explored and used in the prevention of cancer or reducing disease recurrence in resected NSCLC. Here, we review studies that have focused on the use of immunotherapies (i.e., ICIs and vaccination) in surgically resectable NSCLC. We present the results of completed clinical trials that have used ICIs as neoadjuvant therapies in pre-operative NSCLC. Ongoing clinical trials investigating ICIs as neoadjuvant and adjuvant therapies are also summarized.
Collapse
Affiliation(s)
- Li-Chung Chiu
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Thoracic Medicine, New Taipei Municipal Tu Cheng Hospital, New Taipei City 23652, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Shu-Min Lin
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yu-Lun Lo
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Scott Chih-Hsi Kuo
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Cheng-Ta Yang
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Department of Internal Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan City 33378, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Ping-Chih Hsu
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
110
|
The Evolution of Cancer Immunotherapy. Vaccines (Basel) 2021; 9:vaccines9060614. [PMID: 34200997 PMCID: PMC8227172 DOI: 10.3390/vaccines9060614] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/28/2022] Open
Abstract
Immunotherapy has changed the environment of cancer treatment by providing new and efficacious therapy options for many solid and hematologic malignancies. Although not a new field of oncology, immunotherapy has quickly developed into one of the most flourishing fields in medicine. In this review article, we explore key discoveries which helped to shape our current understanding of the immune system’s role in neoplasms. Many landmark developments include the advancements in checkpoint inhibitors, monoclonal antibodies, CAR-T cells and anti-cancer vaccines. We also explore the drawbacks and efficacy of various categories of immunotherapy. Ongoing investigations within immunotherapy, such as the gut microbiome, combining checkpoint inhibitors and gene sequencing, continue to personalize treatments for cancer patients, providing exciting and endless possibilities for the future.
Collapse
|
111
|
Xie Q, Ding J, Chen Y. Role of CD8 + T lymphocyte cells: Interplay with stromal cells in tumor microenvironment. Acta Pharm Sin B 2021; 11:1365-1378. [PMID: 34221857 PMCID: PMC8245853 DOI: 10.1016/j.apsb.2021.03.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
CD8+ T lymphocytes are pivotal cells in the host response to antitumor immunity. Tumor-driven microenvironments provide the conditions necessary for regulating infiltrating CD8+ T cells in favor of tumor survival, including weakening CD8+ T cell activation, driving tumor cells to impair immune attack, and recruiting other cells to reprogram the immune milieu. Also in tumor microenvironment, stromal cells exert immunosuppressive skills to avoid CD8+ T cell cytotoxicity. In this review, we explore the universal function and fate decision of infiltrated CD8+ T cells and highlight their antitumor response within various stromal architectures in the process of confronting neoantigen-specific tumor cells. Thus, this review provides a foundation for the development of antitumor therapy based on CD8+ T lymphocyte manipulation.
Collapse
Affiliation(s)
- Qin Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310012, China
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai HaiHe Pharmaceutical Co., Ltd., Shanghai 201203, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
112
|
Takahashi H, Okayama N, Yamaguchi N, Nomura M, Miyahara Y, Mahbub MH, Hase R, Morishima Y, Suehiro Y, Yamasaki T, Tamada K, Takahashi S, Tojo A, Tanabe T. Analysis of Relationships between Immune Checkpoint and Methylase Gene Polymorphisms and Outcomes after Unrelated Bone Marrow Transplantation. Cancers (Basel) 2021; 13:cancers13112752. [PMID: 34206082 PMCID: PMC8199545 DOI: 10.3390/cancers13112752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Hematopoietic stem-cell transplantation (HSCT) is a curative therapy for blood disorders. Unrelated bone marrow transplantation (uBMT) is a type of allogeneic HSCT that uses the bone marrow of an unrelated donor. While HLA mismatch is a risk factor for poor outcomes in HSCT, such as graft-versus-host disease (GVHD), the importance of non-HLA single-nucleotide polymorphisms (SNPs) remains unclear. The clinical application of immune checkpoint and chromatin methylation inhibitors to cancer has been attracting attention. In the present study, we retrospectively genotyped five SNPs in four immune checkpoint genes, BTLA, PD-1, LAG3, and CTLA4, and two SNPs in methylase genes, DNMT1 and EZH2, in 999 uBMT pairs. Although no correlations were observed between these SNPs and post-uBMT outcomes, recipient EZH2 SNP exhibited a low p-value in the analysis of grade 2–4 acute GVHD (p = 0.010). This SNP may be useful for outcome predictions and needs to be confirmed in a larger-scale study. Abstract Unrelated bone marrow transplantation (uBMT) is performed to treat blood disorders, and it uses bone marrow from an unrelated donor as the transplant source. Although the importance of HLA matching in uBMT has been established, that of other genetic factors, such as single-nucleotide polymorphisms (SNPs), remains unclear. The application of immunoinhibitory receptors as anticancer drugs has recently been attracting attention. This prompted us to examine the importance of immunoinhibitory receptor SNPs in uBMT. We retrospectively genotyped five single-nucleotide polymorphisms (SNPs) in the immune checkpoint genes, BTLA, PD-1, LAG3, and CTLA4, and two SNPs in the methylase genes, DNMT1 and EZH2, in 999 uBMT donor–recipient pairs coordinated through the Japan Marrow Donor Program matched at least at HLA-A, -B, and -DRB1. No correlations were observed between these SNPs and post-uBMT outcomes (p > 0.005). This result questions the usefulness of these immune checkpoint gene polymorphisms for predicting post-BMT outcomes. However, the recipient EZH2 histone methyltransferase gene SNP, which encodes the D185H substitution, exhibited a low p-value in regression analysis of grade 2–4 acute graft-versus-host disease (p = 0.010). Due to a low minor allele frequency, this SNP warrants further investigation in a larger-scale study.
Collapse
Affiliation(s)
- Hidekazu Takahashi
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan; (H.T.); (N.Y.); (M.N.); (M.M.); (R.H.)
| | - Naoko Okayama
- Division of Laboratory, Yamaguchi University Hospital, Ube 755-8505, Japan; (N.O.); (Y.M.); (T.Y.)
| | - Natsu Yamaguchi
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan; (H.T.); (N.Y.); (M.N.); (M.M.); (R.H.)
| | - Moe Nomura
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan; (H.T.); (N.Y.); (M.N.); (M.M.); (R.H.)
| | - Yuta Miyahara
- Division of Laboratory, Yamaguchi University Hospital, Ube 755-8505, Japan; (N.O.); (Y.M.); (T.Y.)
| | - MH Mahbub
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan; (H.T.); (N.Y.); (M.N.); (M.M.); (R.H.)
| | - Ryosuke Hase
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan; (H.T.); (N.Y.); (M.N.); (M.M.); (R.H.)
| | - Yasuo Morishima
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan;
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | - Takahiro Yamasaki
- Division of Laboratory, Yamaguchi University Hospital, Ube 755-8505, Japan; (N.O.); (Y.M.); (T.Y.)
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | - Koji Tamada
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | - Satoshi Takahashi
- Department of Hematology and Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan;
| | - Arinobu Tojo
- Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Tsuyoshi Tanabe
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan; (H.T.); (N.Y.); (M.N.); (M.M.); (R.H.)
- Correspondence:
| |
Collapse
|
113
|
Yi H, Li Y, Tan Y, Fu S, Tang F, Deng X. Immune Checkpoint Inhibition for Triple-Negative Breast Cancer: Current Landscape and Future Perspectives. Front Oncol 2021; 11:648139. [PMID: 34094935 PMCID: PMC8170306 DOI: 10.3389/fonc.2021.648139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by the lack of clinically significant levels of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Owing to the aggressive nature and the emergence of resistance to chemotherapeutic drugs, patients with TNBC have a worse prognosis than other subtypes of breast cancer. Currently, immunotherapy using checkpoint blockade has been shown to produce unprecedented rates of long-lasting responses in patients with a variety of cancers. Although breast tumors, in general, are not highly immunogenic, TNBC has a higher level of lymphocyte infiltration, suggesting that TNBC patients may be more responsive to immunotherapy. The identification/characterization of immune checkpoint molecules, i.e., programmed cell death protein 1 (PD1), programmed cell death ligand 1 (PDL1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA4), represents a major advancement in the field of cancer immunotherapy. These molecules function to suppress signals downstream of T cell receptor (TCR) activation, leading to elimination of cytotoxic T lymphocytes (CTLs) and suppression of anti-tumor immunity. For TNBC, which has not seen substantial advances in clinical management for decades, immune checkpoint inhibition offers the opportunity of durable response and potential long-term benefit. In clinical investigations, immune checkpoint inhibition has yielded promising results in patients with early-stage as well as advanced TNBC. This review summarizes the recent development of immune checkpoint inhibition in TNBC, focusing on humanized antibodies targeting the PD1/PDL1 and the CTLA4 pathways.
Collapse
Affiliation(s)
- Huimei Yi
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
| | - Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
| | - Yuan Tan
- Hunan Key Laboratory of Oncotarget Gene, Changsha, China
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene, Changsha, China
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
| |
Collapse
|
114
|
Glycosylation of Immune Receptors in Cancer. Cells 2021; 10:cells10051100. [PMID: 34064396 PMCID: PMC8147841 DOI: 10.3390/cells10051100] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Evading host immune surveillance is one of the hallmarks of cancer. Immune checkpoint therapy, which aims to eliminate cancer progression by reprogramming the antitumor immune response, currently occupies a solid position in the rapidly expanding arsenal of cancer therapy. As most immune checkpoints are membrane glycoproteins, mounting attention is drawn to asking how protein glycosylation affects immune function. The answers to this fundamental question will stimulate the rational development of future cancer diagnostics and therapeutic strategies.
Collapse
|
115
|
Kiaie SH, Sanaei MJ, Heshmati M, Asadzadeh Z, Azimi I, Hadidi S, Jafari R, Baradaran B. Immune checkpoints in targeted-immunotherapy of pancreatic cancer: New hope for clinical development. Acta Pharm Sin B 2021; 11:1083-1097. [PMID: 34094821 PMCID: PMC8144893 DOI: 10.1016/j.apsb.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has been recently considered as a promising alternative for cancer treatment. Indeed, targeting of immune checkpoint (ICP) strategies have shown significant success in human malignancies. However, despite remarkable success of cancer immunotherapy in pancreatic cancer (PCa), many of the developed immunotherapy methods show poor therapeutic outcomes in PCa with no or few effective treatment options thus far. In this process, immunosuppression in the tumor microenvironment (TME) is found to be the main obstacle to the effectiveness of antitumor immune response induced by an immunotherapy method. In this paper, the latest findings on the ICPs, which mediate immunosuppression in the TME have been reviewed. In addition, different approaches for targeting ICPs in the TME of PCa have been discussed. This review has also synopsized the cutting-edge advances in the latest studies to clinical applications of ICP-targeted therapy in PCa.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Masoud Heshmati
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Saleh Hadidi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| |
Collapse
|
116
|
Singh A, Beechinor RJ, Huynh JC, Li D, Dayyani F, Valerin JB, Hendifar A, Gong J, Cho M. Immunotherapy Updates in Advanced Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13092164. [PMID: 33946408 PMCID: PMC8125389 DOI: 10.3390/cancers13092164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Advanced hepatocellular carcinoma (HCC) carries a grim prognosis, which has historically been compounded by a lack of available systemic therapies. Sorafenib monotherapy was the standard of care for front-line treatment of advanced HCC for many years, despite both poor tolerability and lack of durable responses. In the past few years, there have been several clinical trials evaluating the efficacy of immune checkpoint inhibitors for advanced HCC. Use of immune checkpoint inhibitors alone, and in combination with targeted therapies, has led to improved outcomes in both treatment-naïve and subsequent line treatment of advanced HCC. Here we review the role of immunotherapy in the treatment of HCC, describe the mechanistic basis for combination with targeted therapy, and summarize the recent published data as well as ongoing clinical trials for the use of immunotherapy in the treatment of advanced HCC. Abstract Hepatocellular carcinoma (HCC) is the second most common cause of cancer death worldwide. HCC tumor development and treatment resistance are impacted by changes in the microenvironment of the hepatic immune system. Immunotherapy has the potential to improve response rates by overcoming immune tolerance mechanisms and strengthening anti-tumor activity in the tumor microenvironment. In this review, we characterize the impact of immunotherapy on outcomes of advanced HCC, as well as the active clinical trials evaluating novel combination immunotherapy strategies. In particular, we discuss the efficacy of atezolizumab and bevacizumab as demonstrated in the IMbrave150 study, which created a new standard of care for the front-line treatment of advanced HCC. However, there are multiple ongoing trials that may present additional front-line treatment options depending on their efficacy/toxicity results. Furthermore, the preliminary data on the application of chimeric antigen receptor (CAR-T) cell therapy for treatment of HCC suggests this may be a promising option for the future of advanced HCC treatment.
Collapse
Affiliation(s)
- Amisha Singh
- Internal Medicine, University of California, Davis, Sacramento, CA 95817, USA;
| | | | - Jasmine C. Huynh
- Hematology Oncology, University of California, Davis, Sacramento, CA 95817, USA;
| | - Daneng Li
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA;
| | - Farshid Dayyani
- Hematology Oncology, University of California, Irvine, Irvine, CA 92868, USA; (F.D.); (J.B.V.)
| | - Jennifer B. Valerin
- Hematology Oncology, University of California, Irvine, Irvine, CA 92868, USA; (F.D.); (J.B.V.)
| | - Andrew Hendifar
- Hematology Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.H.); (J.G.)
| | - Jun Gong
- Hematology Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.H.); (J.G.)
| | - May Cho
- Hematology Oncology, University of California, Irvine, Irvine, CA 92868, USA; (F.D.); (J.B.V.)
- Correspondence:
| |
Collapse
|
117
|
Patel MV, Shen Z, Rodriguez-Garcia M, Usherwood EJ, Tafe LJ, Wira CR. Endometrial Cancer Suppresses CD8+ T Cell-Mediated Cytotoxicity in Postmenopausal Women. Front Immunol 2021; 12:657326. [PMID: 33968059 PMCID: PMC8103817 DOI: 10.3389/fimmu.2021.657326] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer is the most common gynecological cancer. To investigate how it suppresses host immune function, we isolated CD8+ T cells from endometrial endometroid carcinomas and adjacent non-cancerous endometrium and determined if the tumor environment regulates cytotoxic capacity. Endometrial carcinomas had increased numbers of CD8+ T cells compared to adjacent non-cancerous endometrium. Tumor CD8+ T cells expressed significantly less granzyme A (GZA), B (GZB), and PD-1 than those in adjacent non-cancerous tissues and also had significantly lower cytotoxic killing of allogeneic target cells. CD103-CD8+ T cells, but not CD103+CD8+ T cells, from both adjacent and tumor tissue were primarily responsible for killing of allogeneic target cells. Secretions recovered from endometrial carcinoma tissues suppressed CD8+ cytotoxic killing and lowered perforin, GZB and PD-1 expression relative to non-tumor CD8+ T cells. Furthermore, tumor secretions contained significantly higher levels of immunosuppressive cytokines including TGFβ than non-tumor tissues. Thus, the tumor microenvironment suppresses cytotoxic killing by CD8+ T cells via the secretion of immunosuppressive cytokines leading to decreased expression of intracellular cytolytic molecules. These studies demonstrate the complexity of CD8+ T cell regulation within the endometrial tumor microenvironment and provide a foundation of information essential for the development of therapeutic strategies for gynecological cancers.
Collapse
Affiliation(s)
- Mickey V. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Laura J. Tafe
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
118
|
[Aggressive tumor progression during immunosuppressive therapy with abatacept]. Rev Med Interne 2021; 42:505-508. [PMID: 33838949 DOI: 10.1016/j.revmed.2021.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/08/2021] [Accepted: 03/13/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Co-stimulatory molecule cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibits T-cell activation. Clinically, CTLA-4 has been targeted in opposite ways: its blockade enhances antitumor immunity in the field of oncology, whereas CTLA-4 agonists such as abatacept are used for the treatment of immuno-inflammatory diseases as rheumatoid arthritis (RA). OBSERVATION We herein report the case of a 69-year-old man with a history of severe RA successfully treated with abatacept, who showed unusually rapid progression of undifferentiated multi-metastatic carcinoma. DISCUSSION Although no significant increase in malignancy has been reported in abatacept-treated patients, several case reports have documented the possible association with the acceleration of the progression of malignancy. Here, abatacept may have altered immune surveillance and hence allowed tumor growth.
Collapse
|
119
|
Javadrashid D, Baghbanzadeh A, Derakhshani A, Leone P, Silvestris N, Racanelli V, Solimando AG, Baradaran B. Pancreatic Cancer Signaling Pathways, Genetic Alterations, and Tumor Microenvironment: The Barriers Affecting the Method of Treatment. Biomedicines 2021; 9:373. [PMID: 33918146 PMCID: PMC8067185 DOI: 10.3390/biomedicines9040373] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Genetic alterations, especially the K-Ras mutation, carry the heaviest burden in the progression of pancreatic precursor lesions into pancreatic ductal adenocarcinoma (PDAC). The tumor microenvironment is one of the challenges that hinder the therapeutic approaches from functioning sufficiently and leads to the immune evasion of pancreatic malignant cells. Mastering the mechanisms of these two hallmarks of PDAC can help us in dealing with the obstacles in the way of treatment. In this review, we have analyzed the signaling pathways involved in PDAC development and the immune system's role in pancreatic cancer and immune checkpoint inhibition as next-generation therapeutic strategy. The direct targeting of the involved signaling molecules and the immune checkpoint molecules, along with a combination with conventional therapies, have reached the most promising results in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Patrizia Leone
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Vito Racanelli
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Antonio Giovanni Solimando
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
120
|
Xiao Q, Li X, Li Y, Wu Z, Xu C, Chen Z, He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 2021; 11:941-960. [PMID: 33996408 PMCID: PMC8105778 DOI: 10.1016/j.apsb.2020.12.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.
Collapse
Key Words
- AAs, amino acids
- ACT, adoptive T cell therapy
- AHC, Chlamydia pneumonia
- ALL, acute lymphoblastic leukemia
- AP, ascorbyl palmitate
- APCs, antigen-presenting cells
- AS, atherosclerosis
- ASIT, antigen-specific immunotherapy
- Adoptive cell transfer
- ApoA–I, apolipoprotein A–I
- ApoB LPs, apolipoprotein-B-containing lipoproteins
- Atherosclerosis
- BMPR-II, bone morphogenetic protein type II receptor
- Biologics
- Bregs, regulatory B lymphocytes
- CAR, chimeric antigen receptor
- CCR9–CCL25, CC receptor 9–CC chemokine ligand 25
- CD, Crohn's disease
- CETP, cholesterol ester transfer protein
- CTLA-4, cytotoxic T-lymphocyte-associated protein-4
- CX3CL1, CXXXC-chemokine ligand 1
- CXCL 16, CXC-chemokine ligand 16
- CXCR 2, CXC-chemokine receptor 2
- Cancer immunotherapy
- CpG ODNs, CpG oligodeoxynucleotides
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDS, drug delivery system
- DMARDs, disease-modifying antirheumatic drugs
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
- DSS, dextran sulfate sodium
- Dex, dexamethasone
- Drug delivery
- ECM, extracellular matrix
- ECs, endothelial cells
- EGFR, epidermal growth factor receptor
- EPR, enhanced permeability and retention effect
- ET-1, endothelin-1
- ETAR, endothelin-1 receptor type A
- FAO, fatty acid oxidation
- GM-CSF, granulocyte–macrophage colony-stimulating factor
- HA, hyaluronic acid
- HDL, high density lipoprotein
- HER2, human epidermal growth factor-2
- IBD, inflammatory bowel diseases
- ICOS, inducible co-stimulator
- ICP, immune checkpoint
- IFN, interferon
- IL, interleukin
- IT-hydrogel, inflammation-targeting hydrogel
- Immune targets
- Inflammatory diseases
- JAK, Janus kinase
- LAG-3, lymphocyte-activation gene 3
- LDL, low density lipoprotein
- LPS, lipopolysaccharide
- LTB4, leukotriene B4
- MCP-1, monocyte chemotactic protein-1
- MCT, monocrotaline
- MDSC, myeloid-derived suppressor cell
- MHCs, major histocompatibility complexes
- MHPC, 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine
- MIF, migration inhibitory factor
- MM, multiple myeloma
- MMP, matrix metalloproteinase
- MOF, metal–organic framework
- MPO, myeloperoxidase
- MSCs, mesenchymal stem cells
- NF-κB, nuclear factor κ-B
- NK, natural killer
- NPs, nanoparticles
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PAECs, pulmonary artery endothelial cells
- PAH, pulmonary arterial hypertension
- PASMCs, pulmonary arterial smooth muscle cells
- PBMCs, peripheral blood mononuclear cells
- PCSK9, proprotein convertase subtilisin kexin type 9
- PD-1, programmed death protein-1
- PD-L1, programmed cell death-ligand 1
- PLGA, poly lactic-co-glycolic acid
- Pulmonary artery hypertension
- RA, rheumatoid arthritis
- ROS, reactive oxygen species
- SHP-2, Src homology 2 domain–containing tyrosine phosphatase 2
- SLE, systemic lupus erythematosus
- SMCs, smooth muscle cells
- Src, sarcoma gene
- TCR, T cell receptor
- TGF-β, transforming growth factor β
- TILs, tumor-infiltrating lymphocytes
- TIM-3, T-cell immunoglobulin mucin 3
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- Teff, effector T cell
- Th17, T helper 17
- Tph, T peripheral helper
- Tregs, regulatory T cells
- UC, ulcerative colitis
- VEC, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- VISTA, V-domain immunoglobulin-containing suppressor of T-cell activation
- YCs, yeast-derived microcapsules
- bDMARDs, biological DMARDs
- hsCRP, high-sensitivity C-reactive protein
- mAbs, monoclonal antibodies
- mPAP, mean pulmonary artery pressure
- nCmP, nanocomposite microparticle
- rHDL, recombinant HDL
- rhTNFRFc, recombinant human TNF-α receptor II-IgG Fc fusion protein
- scFv, single-chain variable fragment
- α1D-AR, α1D-adrenergic receptor
Collapse
Affiliation(s)
- Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
121
|
Marín-Jiménez JA, Capasso A, Lewis MS, Bagby SM, Hartman SJ, Shulman J, Navarro NM, Yu H, Rivard CJ, Wang X, Barkow JC, Geng D, Kar A, Yingst A, Tufa DM, Dolan JT, Blatchford PJ, Freed BM, Torres RM, Davila E, Slansky JE, Pelanda R, Eckhardt SG, Messersmith WA, Diamond JR, Lieu CH, Verneris MR, Wang JH, Kiseljak-Vassiliades K, Pitts TM, Lang J. Testing Cancer Immunotherapy in a Human Immune System Mouse Model: Correlating Treatment Responses to Human Chimerism, Therapeutic Variables and Immune Cell Phenotypes. Front Immunol 2021; 12:607282. [PMID: 33854497 PMCID: PMC8040953 DOI: 10.3389/fimmu.2021.607282] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/04/2021] [Indexed: 01/22/2023] Open
Abstract
Over the past decade, immunotherapies have revolutionized the treatment of cancer. Although the success of immunotherapy is remarkable, it is still limited to a subset of patients. More than 1500 clinical trials are currently ongoing with a goal of improving the efficacy of immunotherapy through co-administration of other agents. Preclinical, small-animal models are strongly desired to increase the pace of scientific discovery, while reducing the cost of combination drug testing in humans. Human immune system (HIS) mice are highly immune-deficient mouse recipients rtpeconstituted with human hematopoietic stem cells. These HIS-mice are capable of growing human tumor cell lines and patient-derived tumor xenografts. This model allows rapid testing of multiple, immune-related therapeutics for tumors originating from unique clinical samples. Using a cord blood-derived HIS-BALB/c-Rag2nullIl2rγnullSIRPαNOD (BRGS) mouse model, we summarize our experiments testing immune checkpoint blockade combinations in these mice bearing a variety of human tumors, including breast, colorectal, pancreatic, lung, adrenocortical, melanoma and hematological malignancies. We present in-depth characterization of the kinetics and subsets of the HIS in lymph and non-lymph organs and relate these to protocol development and immune-related treatment responses. Furthermore, we compare the phenotype of the HIS in lymph tissues and tumors. We show that the immunotype and amount of tumor infiltrating leukocytes are widely-variable and that this phenotype is tumor-dependent in the HIS-BRGS model. We further present flow cytometric analyses of immune cell subsets, activation state, cytokine production and inhibitory receptor expression in peripheral lymph organs and tumors. We show that responding tumors bear human infiltrating T cells with a more inflammatory signature compared to non-responding tumors, similar to reports of "responding" patients in human immunotherapy clinical trials. Collectively these data support the use of HIS mice as a preclinical model to test combination immunotherapies for human cancers, if careful attention is taken to both protocol details and data analysis.
Collapse
Affiliation(s)
- Juan A. Marín-Jiménez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO-L’Hospitalet), Barcelona, Spain
| | - Anna Capasso
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Matthew S. Lewis
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Stacey M. Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Sarah J. Hartman
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Jeremy Shulman
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Natalie M. Navarro
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Hui Yu
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
- University of Colorado Cancer Center, Aurora, CO, United States
| | - Chris J. Rivard
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
- University of Colorado Cancer Center, Aurora, CO, United States
| | - Xiaoguang Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Jessica C. Barkow
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Degui Geng
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Adwitiya Kar
- Division of Endocrinology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Ashley Yingst
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Dejene M. Tufa
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - James T. Dolan
- Rocky Vista College of Osteopathic Medicine – OMS3, Rocky Vista University, Parker, CO, United States
| | - Patrick J. Blatchford
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, United States
| | - Brian M. Freed
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Division of Allergy and Clinical Immunology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Raul M. Torres
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
- University of Colorado Cancer Center, Aurora, CO, United States
| | - Eduardo Davila
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
- University of Colorado Cancer Center, Aurora, CO, United States
| | - Jill E. Slansky
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
- University of Colorado Cancer Center, Aurora, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
- University of Colorado Cancer Center, Aurora, CO, United States
| | - S. Gail Eckhardt
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Wells A. Messersmith
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
- University of Colorado Cancer Center, Aurora, CO, United States
| | - Jennifer R. Diamond
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
- University of Colorado Cancer Center, Aurora, CO, United States
| | - Christopher H. Lieu
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Michael R. Verneris
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Jing H. Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
- University of Colorado Cancer Center, Aurora, CO, United States
| | - Katja Kiseljak-Vassiliades
- University of Colorado Cancer Center, Aurora, CO, United States
- Division of Endocrinology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Todd M. Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
- University of Colorado Cancer Center, Aurora, CO, United States
| | - Julie Lang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
122
|
Cabezón-Gutiérrez L, Custodio-Cabello S, Palka-Kotlowska M, Alonso-Viteri S, Khosravi-Shahi P. Biomarkers of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Beyond PD-L1. Clin Lung Cancer 2021; 22:381-389. [PMID: 33875382 DOI: 10.1016/j.cllc.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Immunotherapy has markedly improved the survival rate of patients with non-small cell lung cancer (NSCLC) and has introduced a new era in lung cancer treatment. Although some patients achieve durable responses to checkpoint blockade, not all experience such benefits, and some suffer from significant immunotoxicities. Thus, it is crucial to identify potential biomarkers suitable for screening the population that may benefit from immunotherapy. Based on the current clinical trials, the aim of the present study was to review the biomarkers for immune checkpoint inhibition that may have the potential to predict the response to immunotherapy in patients with lung cancer. A non-systematic literature review was done. We searched for eligible randomized controlled trials (RCTs) from PubMed, Embase, and the Cochrane Central Register of Controlled Trials from January 2015 to January 2021. The keywords included biomarkers, immunotherapy, immune checkpoint inhibition, programmed death ligand 1 (PD-L1), and non-small cell lung cancer. Additional biomarkers beyond PD-L1 that have been shown to have predictive capacity include tumor mutational burden, microsatellite instability, lung immune prognostic index, gut microbiome, and certain alterations in genes (eg, STK11 deletion, LKB1 kinase mutation, MDM2/4 amplification) that confer immunoresistance. The biomarkers reviewed in this article could help us better select the appropriate immunotherapy treatment for patients with NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Parham Khosravi-Shahi
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
123
|
Vathiotis IA, Johnson JM, Argiris A. Enhancing programmed cell death protein 1 axis inhibition in head and neck squamous cell carcinoma: Combination immunotherapy. Cancer Treat Rev 2021; 97:102192. [PMID: 33819755 DOI: 10.1016/j.ctrv.2021.102192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Anti-programmed cell death protein 1 immunotherapy has become the new standard in the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). However, the population that benefits is small, warranting drug combinations and novel approaches. HNSCC is a profoundly immunosuppressive disease, characterized by the interplay among different immune regulatory pathways. As clinical trials evaluating immunotherapy combinations in patients with HNSCC have started producing preliminary results, preclinical evidence on potential new targets for combination immunotherapy continues to accumulate. This review summarizes emerging clinical and preclinical data on immunotherapy combinations for the treatment of HNSCC.
Collapse
Affiliation(s)
- Ioannis A Vathiotis
- Department of Pathology, Yale University, 310 Cedar Street, New Haven, CT, USA
| | - Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, 1025 Walnut Street, Suite 700, Philadelphia, PA, USA
| | - Athanassios Argiris
- Department of Medical Oncology, Thomas Jefferson University, 1025 Walnut Street, Suite 700, Philadelphia, PA, USA
| |
Collapse
|
124
|
Graney PL, Tavakol DN, Chramiec A, Ronaldson-Bouchard K, Vunjak-Novakovic G. Engineered models of tumor metastasis with immune cell contributions. iScience 2021; 24:102179. [PMID: 33718831 PMCID: PMC7921600 DOI: 10.1016/j.isci.2021.102179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most cancer deaths are due to tumor metastasis rather than the primary tumor. Metastasis is a highly complex and dynamic process that requires orchestration of signaling between the tumor, its local environment, distant tissue sites, and immune system. Animal models of cancer metastasis provide the necessary systemic environment but lack control over factors that regulate cancer progression and often do not recapitulate the properties of human cancers. Bioengineered "organs-on-a-chip" that incorporate the primary tumor, metastatic tissue targets, and microfluidic perfusion are now emerging as quantitative human models of tumor metastasis. The ability of these systems to model tumor metastasis in individualized, patient-specific settings makes them uniquely suitable for studies of cancer biology and developmental testing of new treatments. In this review, we focus on human multi-organ platforms that incorporate circulating and tissue-resident immune cells in studies of tumor metastasis.
Collapse
|
125
|
Ghosh C, Luong G, Sun Y. A snapshot of the PD-1/PD-L1 pathway. J Cancer 2021; 12:2735-2746. [PMID: 33854633 PMCID: PMC8040720 DOI: 10.7150/jca.57334] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells can evade the attack from host immune systems via hijacking the regulatory circuits mediated by immune checkpoints. Therefore, reactivating the antitumor immunity by blockade of immune checkpoints is considered as a promising strategy to treat cancer. Programmed death protein 1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1) are critical immune checkpoint proteins that responsible for negative regulation of the stability and the integrity of T-cell immune function. Anti-PD-1/PD-L1 drugs have been developed for immune checkpoint blockade and can induce clinical responses across different types of cancers, which provides a new hope to cure cancer. However, the patients' response rates to current anti-PD-1 or anti-PD-L1 therapies are still low and many initial responders finally develop resistance to these therapies. In this review, we provides a snapshot of the PD-1/PD-L1 molecular structure, mechanisms controlling their expression, signaling modulated by PD-1/PD-L1, current anti-PD-1/PD-L1 therapies, and the future perspectives to overcome the resistance.
Collapse
Affiliation(s)
- Chinmoy Ghosh
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gary Luong
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
126
|
Fang L, Arvind D, Dowlati A, Mohamed A. Role of immunotherapy in gastro-enteropancreatic neuroendocrine neoplasms (gep-nens): Current advances and future directions. J Neuroendocrinol 2021; 33:e12943. [PMID: 33724586 DOI: 10.1111/jne.12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Neuroendocrine neoplasms (NENs) are heterogeneous tumours originating from neuroendocrine cells (Pearse & Polak, Gut, 1971, 12,783). They were once considered as rare tumours, although their annual incidence has increased significantly and now exceeds seven cases in 100 000 in the USA (Dasari, et al., JAMA oncology, 2017, 3, 1335). They are a group of highly diverse neoplasms and can be classified into the spectrum of well-differentiated neuroendocrine tumours to poorly differentiated neuroendocrine carcinomas. This is entirely based on the tumour differentiation and grade (low, intermediate, high), which is determined by the Ki-67/mitotic index. The lower grades (G1/2) of the well-differentiated group are characterised by a relative indolent clinical course and the ability to secrete a variety of peptide hormones (Kloppel, Visceral medicine, 2017, 33, 324). Higher grades and poorly differentiated tumours tend to be more aggressive and have limited therapeutic options (Sorbye et al., Neuroendocrinology, 2019, 108, 54). In the modern era of immuno-oncology, immune checkpoint inhibitors (ICPIs) that target programmed cell death 1 (pembrolizumab, nivolumab), programmed cell death-ligand1 (avelumab, atezolizumab and durvalumab) or cytotoxic T-lymphocyte-associated protein 4 (ipilimumab) have revolutionised the management of many solid tumours. In patients with gastro-enteropancreatic (GEP)-NENs, there is a limited data regarding the role of ICPIs either as a single agent or in combination regimens. Here, we review the current advances for ICPIs and where they fit in the management of GEP-NENs.
Collapse
Affiliation(s)
- Liu Fang
- Department of Hematology and Medical Oncology, University Hospitals, Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Dasari Arvind
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Afshin Dowlati
- Department of Hematology and Medical Oncology, University Hospitals, Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Amr Mohamed
- Department of Hematology and Medical Oncology, University Hospitals, Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
127
|
Lin RA, Lin JK, Lin S. Mechanisms of immunogenic cell death and immune checkpoint blockade therapy. Kaohsiung J Med Sci 2021; 37:448-458. [DOI: 10.1002/kjm2.12375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Richard A. Lin
- Department of Bioengineering Rice University Houston Texas USA
| | - Jessica K. Lin
- Department of Systems Biology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Shiaw‐Yih Lin
- Department of Systems Biology The University of Texas MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
128
|
Tang L, Zhang Y, Hu Y, Mei H. T Cell Exhaustion and CAR-T Immunotherapy in Hematological Malignancies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6616391. [PMID: 33728333 PMCID: PMC7936901 DOI: 10.1155/2021/6616391] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
T cell exhaustion has been recognized to play an immunosuppressive role in malignant diseases. Persistent tumor antigen stimulation, the presence of inhibitory immune cells and cytokines in tumor microenvironment (TME), upregulated expression of inhibitory receptors, changes in T cell-related transcription factors, and metabolic factors can all result in T cell exhaustion. Strategies dedicated to preventing or reversing T cell exhaustion are required to reduce the morbidity from cancer and enhance the effectiveness of adoptive cellular immunotherapy. Here, we summarize the current findings of T cell exhaustion in hematological malignancies and chimeric antigen receptor T (CAR-T) immunotherapy, as well as the value of novel technologies, to inverse such dysfunction. Our emerging understanding of T cell exhaustion may be utilized to develop personalized strategies to restore antitumor immunity.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022 Hubei, China
| | - Yinqiang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022 Hubei, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022 Hubei, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022 Hubei, China
| |
Collapse
|
129
|
Wong KK, Hassan R, Yaacob NS. Hypomethylating Agents and Immunotherapy: Therapeutic Synergism in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Front Oncol 2021; 11:624742. [PMID: 33718188 PMCID: PMC7947882 DOI: 10.3389/fonc.2021.624742] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Decitabine and guadecitabine are hypomethylating agents (HMAs) that exert inhibitory effects against cancer cells. This includes stimulation of anti-tumor immunity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. Treatment of AML and MDS patients with the HMAs confers upregulation of cancer/testis antigens (CTAs) expression including the highly immunogenic CTA NY-ESO-1. This leads to activation of CD4+ and CD8+ T cells for elimination of cancer cells, and it establishes the feasibility to combine cancer vaccine with HMAs to enhance vaccine immunogenicity. Moreover, decitabine and guadecitabine induce the expression of immune checkpoint molecules in AML cells. In this review, the accumulating knowledge on the immunopotentiating properties of decitabine and guadecitabine in AML and MDS patients are presented and discussed. In summary, combination of decitabine or guadecitabine with NY-ESO-1 vaccine enhances vaccine immunogenicity in AML patients. T cells from AML patients stimulated with dendritic cell (DC)/AML fusion vaccine and guadecitabine display increased capacity to lyse AML cells. Moreover, decitabine enhances NK cell-mediated cytotoxicity or CD123-specific chimeric antigen receptor-engineered T cells antileukemic activities against AML. Furthermore, combination of either HMAs with immune checkpoint blockade (ICB) therapy may circumvent their resistance. Finally, clinical trials of either HMAs combined with cancer vaccines, NK cell infusion or ICB therapy in relapsed/refractory AML and high-risk MDS patients are currently underway, highlighting the promising efficacy of HMAs and immunotherapy synergy against these malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
130
|
Nikolai BC, Jain P, Cardenas DL, York B, Feng Q, McKenna NJ, Dasgupta S, Lonard DM, O'Malley BW. Steroid receptor coactivator 3 (SRC-3/AIB1) is enriched and functional in mouse and human Tregs. Sci Rep 2021; 11:3441. [PMID: 33564037 PMCID: PMC7873281 DOI: 10.1038/s41598-021-82945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/25/2021] [Indexed: 12/02/2022] Open
Abstract
A subset of CD4 + lymphocytes, regulatory T cells (Tregs), are necessary for central tolerance and function as suppressors of autoimmunity against self-antigens. The SRC-3 coactivator is an oncogene in multiple cancers and is capable of potentiating numerous transcription factors in a wide variety of cell types. Src-3 knockout mice display broad lymphoproliferation and hypersensitivity to systemic inflammation. Using publicly available bioinformatics data and directed cellular approaches, we show that SRC-3 also is highly enriched in Tregs in mice and humans. Human Tregs lose phenotypic characteristics when SRC-3 is depleted or pharmacologically inhibited, including failure of induction from resting T cells and loss of the ability to suppress proliferation of stimulated T cells. These data support a model for SRC-3 as a coactivator that actively participates in protection from autoimmunity and may support immune evasion of cancers by contributing to the biology of Tregs.
Collapse
Affiliation(s)
- Bryan C Nikolai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Prashi Jain
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David L Cardenas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77204, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Department of Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
131
|
Eddy K, Shah R, Chen S. Decoding Melanoma Development and Progression: Identification of Therapeutic Vulnerabilities. Front Oncol 2021; 10:626129. [PMID: 33614507 PMCID: PMC7891057 DOI: 10.3389/fonc.2020.626129] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma, a cancer of the skin, arises from transformed melanocytes. Melanoma has the highest mutational burden of any cancer partially attributed to UV induced DNA damage. Localized melanoma is “curable” by surgical resection and is followed by radiation therapy to eliminate any remaining cancer cells. Targeted therapies against components of the MAPK signaling cascade and immunotherapies which block immune checkpoints have shown remarkable clinical responses, however with the onset of resistance in most patients, and, disease relapse, these patients eventually become refractory to treatments. Although great advances have been made in our understanding of the metastatic process in cancers including melanoma, therapy failure suggests that much remains to be learned and understood about the multi-step process of tumor metastasis. In this review we provide an overview of melanocytic transformation into malignant melanoma and key molecular events that occur during this evolution. A better understanding of the complex processes entailing cancer cell dissemination will improve the mechanistic driven design of therapies that target specific steps involved in cancer metastasis to improve clinical response rates and overall survival in all cancer patients.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ, United States.,Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States
| | - Raj Shah
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States.,Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ, United States.,Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
132
|
Abstract
Using a humanized mouse model, we developed melanoma specific CD8 T cells from genetically modified human hematopoietic stem cells (hHSC). The transgenic T cells were functional both in vivo and ex vivo, effectively limiting and clearing tumor growth. Finally, the transduced hHSC stably populated the bone marrow.
Collapse
Affiliation(s)
- Dimitrios Vatakis
- Department of Medicine; Division of Hematology-Oncology; UCLA AIDS Institute; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| |
Collapse
|
133
|
Duwa R, Jeong JH, Yook S. Immunotherapeutic strategies for the treatment of ovarian cancer: current status and future direction. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
134
|
Obi ON, Lower EE, Baughman RP. Biologic and advanced immunomodulating therapeutic options for sarcoidosis: a clinical update. Expert Rev Clin Pharmacol 2021; 14:179-210. [PMID: 33487042 DOI: 10.1080/17512433.2021.1878024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Sarcoidosis is a multi-organ disease with a wide range of clinical manifestations and outcomes. A quarter of sarcoidosis patients require long-term treatment for chronic disease. In this group, corticosteroids and cytotoxic agents be insufficient to control diseaseAreas covered: Several biologic agents have been studied for treatment of chronic pulmonary and extra-pulmonary disease. A review of the available literature was performed searching PubMed and an expert opinion regarding specific therapy was developed.Expert opinion: These agents have the potential of treating patients who have progressive disease. Many of these agents have different mechanisms of action, response rates, and toxicity profiles.
Collapse
Affiliation(s)
- Ogugua Ndili Obi
- Division of Pulmonary Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Elyse E Lower
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Robert P Baughman
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
135
|
Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:105-134. [PMID: 33119878 DOI: 10.1007/978-3-030-49270-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
136
|
The Functional Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells within the Immunosuppressive Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13020210. [PMID: 33430105 PMCID: PMC7827203 DOI: 10.3390/cancers13020210] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/13/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Immunotherapy improved the therapeutic landscape for patients with advanced cancer diseases. However, many patients do not benefit from immunotherapy. The bidirectional crosstalk between myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) contributes to immune evasion, limiting the success of immunotherapy by checkpoint inhibitors. This review aims to outline the current knowledge of the role and the immunosuppressive properties of MDSC and Treg within the tumor microenvironment (TME). Furthermore, we will discuss the importance of the functional crosstalk between MDSC and Treg for immunosuppression, issuing particularly the role of cell adhesion molecules. Lastly, we will depict the impact of this interaction for cancer research and discuss several strategies aimed to target these pathways for tumor therapy. Abstract Immune checkpoint inhibitors (ICI) have led to profound and durable tumor regression in some patients with metastatic cancer diseases. However, many patients still do not derive benefit from immunotherapy. Here, the accumulation of immunosuppressive cell populations within the tumor microenvironment (TME), such as myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), and regulatory T cells (Treg), contributes to the development of immune resistance. MDSC and Treg expand systematically in tumor patients and inhibit T cell activation and T effector cell function. Numerous studies have shown that the immunosuppressive mechanisms exerted by those inhibitory cell populations comprise soluble immunomodulatory mediators and receptor interactions. The latter are also required for the crosstalk of MDSC and Treg, raising questions about the relevance of cell–cell contacts for the establishment of their inhibitory properties. This review aims to outline the current knowledge on the crosstalk between these two cell populations, issuing particularly the potential role of cell adhesion molecules. In this regard, we further discuss the relevance of β2 integrins, which are essential for the differentiation and function of leukocytes as well as for MDSC–Treg interaction. Lastly, we aim to describe the impact of such bidirectional crosstalk for basic and applied cancer research and discuss how the targeting of these pathways might pave the way for future approaches in immunotherapy.
Collapse
|
137
|
Armitage JD, Newnes HV, McDonnell A, Bosco A, Waithman J. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells 2021; 10:E56. [PMID: 33401460 PMCID: PMC7823446 DOI: 10.3390/cells10010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.
Collapse
Affiliation(s)
- Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Alison McDonnell
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
- National Centre for Asbestos Related Diseases, QEII Medical Centre, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| |
Collapse
|
138
|
Feng GS, Hanley KL, Liang Y, Lin X. Improving the Efficacy of Liver Cancer Immunotherapy: The Power of Combined Preclinical and Clinical Studies. Hepatology 2021; 73 Suppl 1:104-114. [PMID: 32715491 PMCID: PMC7854886 DOI: 10.1002/hep.31479] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a most deadly malignant disease worldwide, with no effective mechanism-based therapy available. Therefore, following the "miracle" outcomes seen in a few patients at the advanced stages of melanoma or lung cancer, the immune checkpoint inhibitors (ICIs) immediately entered clinical trials for advanced HCC patients without pre-clinical studies. Emerging data of clinical studies showed manageable toxicity and safety but limited therapeutic benefit to HCC patients, suggesting low response rate. Thus, one urgent issue is how to convert the liver tumors from cold to hot and responsive, which may rely on in-depth mechanistic studies in animal models and large scale data analysis in human patients. One ongoing approach is to design combinatorial treatment of different ICIs with other reagents and modalities. Indeed, a phase 3 clinical trial showed that combination of atezolizumab and bevacizumab achieved better overall and progression-free survival rates than sorafenib in unresectable HCC. This review highlights the value of animal models and the power of combining pre-clinical and clinical studies in efforts to improve HCC immunotherapy.
Collapse
Affiliation(s)
- Gen-Sheng Feng
- Correspondence to: Gen-Sheng Feng, Ph.D., Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093-0864,
| | | | | | | |
Collapse
|
139
|
The application of nano-medicine to overcome the challenges related to immune checkpoint blockades in cancer immunotherapy: Recent advances and opportunities. Crit Rev Oncol Hematol 2021; 157:103160. [DOI: 10.1016/j.critrevonc.2020.103160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
|
140
|
The Landscape of Immunotherapy in Advanced NSCLC: Driving Beyond PD-1/PD-L1 Inhibitors (CTLA-4, LAG3, IDO, OX40, TIGIT, Vaccines). Curr Oncol Rep 2021; 23:126. [PMID: 34453261 PMCID: PMC8397682 DOI: 10.1007/s11912-021-01124-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review, we analyzed the current landscape of non-PD-(L)1 targeting immunotherapy. RECENT FINDINGS The advent of immunotherapy has completely changed the standard approach toward advanced NSCLC. Inhibitors of the PD-1/PD-L1 axis have quickly taken place as first-line treatment for NSCLC patients without targetable "driver" mutations. However, a non-negligible portion of patients derive modest benefit from immune-checkpoint inhibitors, and valid second-line alternatives are lacking, pushing researchers to analyze other molecules and pathways as potentially viable targets in the struggle against NSCLC. Starting from the better characterized CTLA-4 inhibitors, we then critically collected the actual knowledge on NSCLC vaccines as well as on other emerging molecules, many of them in their early phase of testing, to provide to the reader a comprehensive overview of the state of the art of immunotherapy in NSCLC beyond PD-1/PD-L1 inhibitors.
Collapse
|
141
|
De Silva P, Aiello M, Gu-Trantien C, Migliori E, Willard-Gallo K, Solinas C. Targeting CTLA-4 in cancer: Is it the ideal companion for PD-1 blockade immunotherapy combinations? Int J Cancer 2020; 149:31-41. [PMID: 33252786 DOI: 10.1002/ijc.33415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
Immunotherapy approaches boosting spontaneous and durable antitumor immune responses through immune checkpoint blockade are revolutionizing treatment and patient outcomes in solid tumors and hematological malignancies. Among the various inhibitory molecules employed by the immune system to regulate the adaptive immune responses, cytotoxic T lymphocyte antigen-4 (CTLA-4) is the first successfully targeted immune checkpoint molecule in the clinic, giving rise to significant but selective benefit either when targeted alone or in combination with anti-programmed cell death protein-1 (PD-1) antibodies (Abs). However, the use of anti-CTLA-4 Abs was associated with the incidence of autoimmune-like adverse events (AEs), which were particularly frequent and severe with the use of combinational strategies. Nevertheless, the higher incidence of AEs is associated with an improved clinical benefit indicating treatment response. A prompt recognition of AEs followed by early and adequate treatment with immunosuppressive agents allows the management of these potentially serious AEs. This narrative review aims to summarize CTLA-4 biology, the rationale for the use as a companion for anti-PD-1 Abs in humans with results from the most relevant Phase III clinical trials including anti-CTLA-4 Abs in combination with anti-PD-1 Abs in solid tumors.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marco Aiello
- Medical Oncology Unit A.O.U. Policlinico, Vittorio Emanuele di Catania, Catania, Italy
| | - Chunyan Gu-Trantien
- Institute of Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Edoardo Migliori
- Columbia University Medical Center, Columbia Center for Translational Immunology, New York, New York, USA
| | | | - Cinzia Solinas
- Regional Hospital of Valle d'Aosta, Azienda U.S.L. Valle d'Aosta, Aosta, Italy
| |
Collapse
|
142
|
Zhu JJ, Shan NN. Immunomodulatory cytokine interleukin-35 and immune thrombocytopaenia. J Int Med Res 2020; 48:300060520976477. [PMID: 33356722 PMCID: PMC7768574 DOI: 10.1177/0300060520976477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Considerable attention has been paid to interleukin (IL)-35 because of its immunosuppressive effects in a variety of autoimmune diseases. IL-35, a recently identified cytokine of the IL-12 family, is a negative regulatory factor secreted by IL-35-inducible regulatory T cells (iTr35 cells) and the recently reported regulatory B cells (Breg cells). Four biological effects of IL-35 have been discovered in vitro and in vivo: (i) suppression of T cell proliferation; (ii) conversion of naive T cells into iTr35 cells; (iii) downregulation of type 17 helper T (Th17) cells; and (iv) conversion of Breg cells into a Breg subset that produces IL-35 and IL-10. IL-35 plays an important role in a variety of autoimmune diseases, such as rheumatoid arthritis, allergic asthma and systemic lupus erythematosus. Primary immune thrombocytopaenia (ITP), which is characterized by isolated thrombocytopaenia and mild mucocutaneous to life-threatening bleeding, is an autoimmune disease with complex dysregulation of the immune system. Both antibody-mediated and/or T cell-mediated platelet destruction are key processes. In addition, impairment of T cells and cytokine imbalances have now been recognized to be important. This review summarizes the immunomodulatory effects of IL-35 and its role in the pathogenesis of ITP as mediated by T and B cells.
Collapse
Affiliation(s)
- Jing-Jing Zhu
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ning-Ning Shan
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
143
|
Nagai K. Co-inhibitory Receptor Signaling in T-Cell-Mediated Autoimmune Glomerulonephritis. Front Med (Lausanne) 2020; 7:584382. [PMID: 33251233 PMCID: PMC7672203 DOI: 10.3389/fmed.2020.584382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune glomerulonephritis occurs as a consequence of autoantibodies and T-cell effector functions that target autoantigens. Co-signaling through cell surface receptors profoundly influences the optimal activation of T cells. The scope of this review is signaling mechanisms and the functional roles of representative T-cell co-inhibitory receptors in the regulation of autoimmune glomerulonephritis, along with current therapeutic challenges mainly on preclinical trials. Co-inhibitory receptors utilize both shared and unique signaling pathway, suggesting specialized functions that provide the rationale behind therapies for autoimmune glomerulonephritis by targeting these inhibitory receptors. These receptors largely suppress Th1 immunity, modify Th17 and Th2 immune response, and enhance Treg function. Anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) immunoglobulin (Ig), which is able to block both activating CD28 and inhibitory CTLA4 signaling, has been shown in preclinical and clinical investigations to have effects on glomerular disease. Other inhibitory receptors for treating glomerulonephritis have not been clinically tested, and efficacy of manipulating these pathways requires further preclinical investigation. While immune checkpoint inhibition using anti-CTLA4 antibodies and anti-programmed cell death 1 (PD-1)/PD-L1 antibodies has been approved for the treatment of several cancers, blockade of CTLA4 and PD-1/PD-L1 is associated with adverse effects that resemble autoimmune disorders, including systemic vasculitis. A renal autoimmune vasculitis model features an initial Th17 dominancy followed later by a Th1-dominant outcome and Treg cells that attenuate autoreactive T-cell function. Toward the development of effective therapies for T-cell-mediated autoimmune glomerulonephritis, it would be preferable to pay attention to the impact of the inhibitory pathways in immunological renal disease settings.
Collapse
Affiliation(s)
- Kei Nagai
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
144
|
Eddy K, Chen S. Overcoming Immune Evasion in Melanoma. Int J Mol Sci 2020; 21:E8984. [PMID: 33256089 PMCID: PMC7730443 DOI: 10.3390/ijms21238984] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive and dangerous form of skin cancer that develops from transformed melanocytes. It is crucial to identify melanoma at its early stages, in situ, as it is "curable" at this stage. However, after metastasis, it is difficult to treat and the five-year survival is only 25%. In recent years, a better understanding of the etiology of melanoma and its progression has made it possible for the development of targeted therapeutics, such as vemurafenib and immunotherapies, to treat advanced melanomas. In this review, we focus on the molecular mechanisms that mediate melanoma development and progression, with a special focus on the immune evasion strategies utilized by melanomas, to evade host immune surveillances. The proposed mechanism of action and the roles of immunotherapeutic agents, ipilimumab, nivolumab, pembrolizumab, and atezolizumab, adoptive T- cell therapy plus T-VEC in the treatment of advanced melanoma are discussed. In this review, we implore that a better understanding of the steps that mediate melanoma onset and progression, immune evasion strategies exploited by these tumor cells, and the identification of biomarkers to predict treatment response are critical in the design of improved strategies to improve clinical outcomes for patients with this deadly disease.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
145
|
Di Cintio F, Dal Bo M, Baboci L, De Mattia E, Polano M, Toffoli G. The Molecular and Microenvironmental Landscape of Glioblastomas: Implications for the Novel Treatment Choices. Front Neurosci 2020; 14:603647. [PMID: 33324155 PMCID: PMC7724040 DOI: 10.3389/fnins.2020.603647] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary central nervous system tumor. Surgery followed by radiotherapy and chemotherapy with alkylating agents constitutes standard first-line treatment of GBM. Complete resection of the GBM tumors is generally not possible given its high invasive features. Although this combination therapy can prolong survival, the prognosis is still poor due to several factors including chemoresistance. In recent years, a comprehensive characterization of the GBM-associated molecular signature has been performed. This has allowed the possibility to introduce a more personalized therapeutic approach for GBM, in which novel targeted therapies, including those employing tyrosine kinase inhibitors (TKIs), could be employed. The GBM tumor microenvironment (TME) exerts a key role in GBM tumor progression, in particular by providing an immunosuppressive state with low numbers of tumor-infiltrating lymphocytes (TILs) and other immune effector cell types that contributes to tumor proliferation and growth. The use of immune checkpoint inhibitors (ICIs) has been successfully introduced in numerous advanced cancers as well as promising results have been shown for the use of these antibodies in untreated brain metastases from melanoma and from non-small cell lung carcinoma (NSCLC). Consequently, the use of PD-1/PD-L1 inhibitors has also been proposed in several clinical trials for the treatment of GBM. In the present review, we will outline the main GBM molecular and TME aspects providing also the grounds for novel targeted therapies and immunotherapies using ICIs for GBM.
Collapse
Affiliation(s)
- Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
146
|
Cren PY, Bertrand N, Le Deley MC, Génin M, Mortier L, Odou P, Penel N, Chazard E. Is the survival of patients treated with ipilimumab affected by antibiotics? An analysis of 1585 patients from the French National hospital discharge summary database (PMSI). Oncoimmunology 2020; 9:1846914. [PMID: 33299658 PMCID: PMC7714497 DOI: 10.1080/2162402x.2020.1846914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: The gut microbiota has a key role in the regulation of the immune system. Disruption of the gut microbiota’s composition by antibiotics might significantly affect the efficacy of immune checkpoint inhibitors. In a study of patients treated with ipilimumab, we sought to assess the relationship between overall survival and in-hospital antibiotic administration. Methods: Patients having been treated with ipilimumab between January 2012 and November 2014 were selected from the French National Hospital Discharge Summary Database. Exposure to antibiotics was defined as the presence of a hospital stay with a documented systemic bacterial infection in the 2 months before or the month after initiation of the patient’s first ever course of ipilimumab. The primary outcome was overall survival. Results: We studied 43,124 hospital stays involving 1585 patients from 97 centers. All patients had received ipilimumab monotherapy for advanced melanoma. Overall, 117 of the 1585 patients (7.4%) were documented as having received systemic antibiotic therapy in hospital during the defined exposure period. The median overall survival time was shorter in patients with infection (6.3 months, vs. 15.4 months in patients without an infection; hazard ratio (HR) = 1.88, 95% confidence interval [1.46; 2.43], p = 10−6). In a multivariate analysis adjusted for covariates, infection was still significantly associated with overall survival (HR = 1.68, [1.30; 2.18], p = 10−5). Conclusions: In patients treated with ipilimumab for advanced melanoma, infection, and antibiotic administration in hospital at around the time of the patient’s first ever course of ipilimumab appears to be associated with significantly lower clinical benefit.
Collapse
Affiliation(s)
- Pierre-Yves Cren
- CERIM, ULR 2694 METRICS, Univ. Lille, CHU Lille, Lille, France.,Methodology and Biostatistics Unit, Centre Oscar Lambret, Lille, France
| | | | - Marie-Cécile Le Deley
- Methodology and Biostatistics Unit, Centre Oscar Lambret, Lille, France.,CESP, INSERM, Paris-Saclay University, Paris-Sud University, UVSQ, Villejuif, France
| | - Michaël Génin
- CERIM, ULR 2694 METRICS, Univ. Lille, CHU Lille, Lille, France
| | - Laurent Mortier
- Clinique de Dermatologie, Unit#xE9; d#x27;Onco-Dermatologie, U1189, INSERM, Univ. Lille, CHU Lille, Lille, France
| | - Pascal Odou
- ULR 7365 GRITA, Univ. Lille, CHU Lille, Lille, France
| | - Nicolas Penel
- Department of Medical Oncology, Centre Oscar Lambret and Univ. Lille, Lille, France
| | | |
Collapse
|
147
|
Mielgo-Rubio X, Calvo V, Luna J, Remon J, Martín M, Berraondo P, Jarabo JR, Higuera O, Conde E, De Castro J, Provencio M, Hernando Trancho F, López-Ríos F, Couñago F. Immunotherapy Moves to the Early-Stage Setting in Non-Small Cell Lung Cancer: Emerging Evidence and the Role of Biomarkers. Cancers (Basel) 2020; 12:E3459. [PMID: 33233705 PMCID: PMC7699975 DOI: 10.3390/cancers12113459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Despite numerous advances in targeted therapy and immunotherapy in the last decade, lung cancer continues to present the highest mortality rate of all cancers. Targeted therapy based on specific genomic alterations, together with PD-1 and CTLA-4 axis blocking-based immunotherapy, have significantly improved survival in advanced non-small cell lung cancer (NSCLC) and both therapies are now well-established in this clinical setting. However, it is time for immunotherapy to be applied in patients with early-stage disease, which would be an important qualitative leap in the treatment of lung cancer patients with curative intent. Preliminary data from a multitude of studies are highly promising, but therapeutic decision-making should be guided by an understanding of the molecular features of the tumour and host. In the present review, we discuss the most recently published studies and ongoing clinical trials, controversies, future challenges and the role of biomarkers in the selection of best therapeutic options.
Collapse
Affiliation(s)
- Xabier Mielgo-Rubio
- Department of Medical Oncology, Hospital Universitario Fundación Alcorcón, Budapest 1 Alcorcón, 28922 Madrid, Spain
| | - Virginia Calvo
- Department of Medical Oncology, Puerta de Hierro Hospital, Joaquín Rodrigo 1, Majadahonda, 28222 Madrid, Spain; (V.C.); (M.P.)
| | - Javier Luna
- Department of Radiation Oncology, Fundacion Jimenez Diaz, Oncohealth Institute, Avda. Reyes Católicos 2, 28040 Madrid, Spain;
| | - Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal (HM-CIOCC), Hospital HM Delfos, HM Hospitales, 08023 Barcelona, Spain;
| | - Margarita Martín
- Department of Radiation Oncology, Ramón y Cajal University Hospital, M-607, 100, 28034 Madrid, Spain;
| | - Pedro Berraondo
- Division of Immunology and Immunotherapy, Cima Universidad de Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain;
| | - José Ramón Jarabo
- Department of Thoracic Surgery, Hospital Clínico San Carlos, Calle del Prof Martín Lagos, s/n, 28040 Madrid, Spain; (J.R.J.); (F.H.T.)
| | - Oliver Higuera
- Department of Medical Oncology, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (O.H.); (J.D.C.)
| | - Esther Conde
- Pathology-Targeted Therapies Laboratory, HM Hospitales, 28015 Madrid, Spain; (E.C.); (F.L.-R.)
| | - Javier De Castro
- Department of Medical Oncology, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (O.H.); (J.D.C.)
| | - Mariano Provencio
- Department of Medical Oncology, Puerta de Hierro Hospital, Joaquín Rodrigo 1, Majadahonda, 28222 Madrid, Spain; (V.C.); (M.P.)
| | - Florentino Hernando Trancho
- Department of Thoracic Surgery, Hospital Clínico San Carlos, Calle del Prof Martín Lagos, s/n, 28040 Madrid, Spain; (J.R.J.); (F.H.T.)
| | - Fernando López-Ríos
- Pathology-Targeted Therapies Laboratory, HM Hospitales, 28015 Madrid, Spain; (E.C.); (F.L.-R.)
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Department of Radiation Oncology, Hospital La Luz, 28003 Madrid, Spain
- Department of Radiation Oncology, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| |
Collapse
|
148
|
Unterrainer M, Ruzicka M, Fabritius MP, Mittlmeier LM, Winkelmann M, Rübenthaler J, Brendel M, Subklewe M, von Bergwelt-Baildon M, Ricke J, Kunz WG, Cyran CC. PET/CT imaging for tumour response assessment to immunotherapy: current status and future directions. Eur Radiol Exp 2020; 4:63. [PMID: 33200246 PMCID: PMC7669926 DOI: 10.1186/s41747-020-00190-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Recent immunotherapeutic approaches have evolved as powerful treatment options with high anti-tumour responses involving the patient's own immune system. Passive immunotherapy applies agents that enhance existing anti-tumour responses, such as antibodies against immune checkpoints. Active immunotherapy uses agents that direct the immune system to attack tumour cells by targeting tumour antigens. Active cellular-based therapies are on the rise, most notably chimeric antigen receptor T cell therapy, which redirects patient-derived T cells against tumour antigens. Approved treatments are available for a variety of solid malignancies including melanoma, lung cancer and haematologic diseases. These novel immune-related therapeutic approaches can be accompanied by new patterns of response and progression and immune-related side-effects that challenge established imaging-based response assessment criteria, such as Response Evaluation Criteria in Solid tumours (RECIST) 1.1. Hence, new criteria have been developed. Beyond morphological information of computed tomography (CT) and magnetic resonance imaging, positron emission tomography (PET) emerges as a comprehensive imaging modality by assessing (patho-)physiological processes such as glucose metabolism, which enables more comprehensive response assessment in oncological patients. We review the current concepts of response assessment to immunotherapy with particular emphasis on hybrid imaging with 18F-FDG-PET/CT and aims at describing future trends of immunotherapy and additional aspects of molecular imaging within the field of immunotherapy.
Collapse
Affiliation(s)
- Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Michael Ruzicka
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Matthias P Fabritius
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lena M Mittlmeier
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Johannes Rübenthaler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | | | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- DIE RADIOLOGIE, Munich, Germany
| |
Collapse
|
149
|
Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Cruz MT, Falcão A, Neves BM. Pharmacological combination of nivolumab with dendritic cell vaccines in cancer immunotherapy: An overview. Pharmacol Res 2020; 164:105309. [PMID: 33212291 DOI: 10.1016/j.phrs.2020.105309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
In the last decade, immunotherapy led to a paradigm shift in the treatment of numerous malignancies. Alongside with monoclonal antibodies blocking programmed cell death receptor-1 (PD-1)/PD-L1 and cytotoxic T- lymphocyte antigen 4 (CTLA-4) immune checkpoints, cell-based approaches such as CAR-T cells and dendritic cell (DC) vaccines have strongly contributed to pushing forward this thrilling field. While initial strategies were mainly focused on monotherapeutic regimens, it is now consensual that the combination of immunotherapies tackling multiple cancer hallmarks can result in superior clinical outcomes. Here, we review in depth the pharmacological combination of DC-based vaccines that boost tumour elimination by eliciting and expanding effector immune cells, with the PD-1 inhibitor Nivolumab that allows blocking key tumour immune escape mechanisms. This combination represents an important step in cancer therapy, with a significant enhancement in patient survival in several types of tumours, paving an important way in establishing combinatorial immunotherapeutic strategies as first-line treatments.
Collapse
Affiliation(s)
- João Calmeiro
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Mylène A Carrascal
- Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504, Coimbra, Portugal; Tecnimede Group, 2710-089, Sintra, Portugal
| | - Adriana Ramos Tavares
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Daniel Alexandre Ferreira
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, 300-504, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
150
|
Rao AA, Madejska AA, Pfeil J, Paten B, Salama SR, Haussler D. ProTECT-Prediction of T-Cell Epitopes for Cancer Therapy. Front Immunol 2020; 11:483296. [PMID: 33244314 PMCID: PMC7683782 DOI: 10.3389/fimmu.2020.483296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Somatic mutations in cancers affecting protein coding genes can give rise to potentially therapeutic neoepitopes. These neoepitopes can guide Adoptive Cell Therapies and Peptide- and RNA-based Neoepitope Vaccines to selectively target tumor cells using autologous patient cytotoxic T-cells. Currently, researchers have to independently align their data, call somatic mutations and haplotype the patient’s HLA to use existing neoepitope prediction tools. We present ProTECT, a fully automated, reproducible, scalable, and efficient end-to-end analysis pipeline to identify and rank therapeutically relevant tumor neoepitopes in terms of potential immunogenicity starting directly from raw patient sequencing data, or from pre-processed data. The ProTECT pipeline encompasses alignment, HLA haplotyping, mutation calling (single nucleotide variants, short insertions and deletions, and gene fusions), peptide:MHC binding prediction, and ranking of final candidates. We demonstrate the scalability, efficiency, and utility of ProTECT on 326 samples from the TCGA Prostate Adenocarcinoma cohort, identifying recurrent potential neoepitopes from TMPRSS2-ERG fusions, and from SNVs in SPOP. We also compare ProTECT with results from published tools. ProTECT can be run on a standalone computer, a local cluster, or on a compute cloud using a Mesos backend. ProTECT is highly scalable and can process TCGA data in under 30 min per sample (on average) when run in large batches. ProTECT is freely available at https://www.github.com/BD2KGenomics/protect.
Collapse
Affiliation(s)
- Arjun A Rao
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.,Computational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United States.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Ada A Madejska
- Computational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United States.,Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, Santa Cruz, CA, United States
| | - Jacob Pfeil
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.,Computational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United States.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.,Computational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United States.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David Haussler
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.,Computational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United States.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|