101
|
Elleuche S, Pöggeler S. Inteins, valuable genetic elements in molecular biology and biotechnology. Appl Microbiol Biotechnol 2010; 87:479-89. [PMID: 20449740 PMCID: PMC2874743 DOI: 10.1007/s00253-010-2628-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 12/13/2022]
Abstract
Inteins are internal protein elements that self-excise from their host protein and catalyze ligation of the flanking sequences (exteins) with a peptide bond. They are found in organisms in all three domains of life, and in viral proteins. Intein excision is a posttranslational process that does not require auxiliary enzymes or cofactors. This self-excision process is called protein splicing, by analogy to the splicing of RNA introns from pre-mRNA. Protein splicing involves only four intramolecular reactions, and a small number of key catalytic residues in the intein and exteins. Protein-splicing can also occur in trans. In this case, the intein is separated into N- and C-terminal domains, which are synthesized as separate components, each joined to an extein. The intein domains reassemble and link the joined exteins into a single functional protein. Understanding the cis- and trans-protein splicing mechanisms led to the development of intein-mediated protein-engineering applications, such as protein purification, ligation, cyclization, and selenoprotein production. This review summarizes the catalytic activities and structures of inteins, and focuses on the advantages of some recent intein applications in molecular biology and biotechnology.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstr. 12, 21073 Hamburg, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department Genetics of Eukaryotic Microorganisms, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| |
Collapse
|
102
|
Zhang L, Xiao N, Pan Y, Zheng Y, Pan Z, Luo Z, Xu X, Liu Y. Binding and Inhibition of Copper Ions to RecA Inteins fromMycobacterium tuberculosis. Chemistry 2010; 16:4297-306. [DOI: 10.1002/chem.200903584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
103
|
Fong BA, Wu WY, Wood DW. The potential role of self-cleaving purification tags in commercial-scale processes. Trends Biotechnol 2010; 28:272-9. [PMID: 20359761 DOI: 10.1016/j.tibtech.2010.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/13/2010] [Accepted: 02/22/2010] [Indexed: 02/06/2023]
Abstract
Purification tags are robust tools that can be used to purify a wide selection of target proteins, which makes them attractive candidates for implementation into platform processes. However, tag removal remains an expensive and significant issue that must be resolved before these tags can become widely used. One alternative is self-cleaving purification tags, which can provide the purity and versatility of conventional tags but eliminate the need for proteolytic tag removal. Many of these self-cleaving tags are based on inteins, but other emerging technologies, such as the FrpC and SrtAc proteins, have also been reported. In this review, we cover affinity and non-chromatographic self-cleaving purification tags and their potential industrial applications.
Collapse
Affiliation(s)
- Baley A Fong
- Department of Chemical Engineering, Princeton University, A217 E-Quad, Olden St., Princeton, NJ 08544, USA
| | | | | |
Collapse
|
104
|
Affiliation(s)
- P. L. Starokadomskyy
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
105
|
Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germane KL, Edgar RH, Hoyte NN, Bowman CA, Tantoco AT, Paladin EC, Myers MS, Smith AL, Grace MS, Pham TT, O'Brien MB, Vogelsberger AM, Hryckowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peebles CL, Cresawn SG, Hendrix RW. Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 2010; 397:119-43. [PMID: 20064525 DOI: 10.1016/j.jmb.2010.01.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/08/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of 60-all infecting a common bacterial host-provides further insight into their diversity and evolution. Of the 60 phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, 5 of which can be further divided into subclusters; 5 genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the 6 genomes in Cluster D share more than 97.5% average nucleotide similarity with one another. In contrast, similarity between the 2 genomes in Cluster I is barely detectable by diagonal plot analysis. In total, 6858 predicted open-reading frames have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries, and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit a smaller average size than genes of their host (205 residues compared with 315), phage genes in higher flux average only 100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements. BMC Evol Biol 2009; 9:303. [PMID: 20043855 PMCID: PMC2814812 DOI: 10.1186/1471-2148-9-303] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/31/2009] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Inteins and introns are genetic elements that are removed from proteins and RNA after translation or transcription, respectively. Previous studies have suggested that these genetic elements are found in conserved parts of the host protein. To our knowledge this type of analysis has not been done for group II introns residing within a gene. Here we provide quantitative statistical support from an analyses of proteins that host inteins, group I introns, group II introns and spliceosomal introns across all three domains of life. RESULTS To determine whether or not inteins, group I, group II, and spliceosomal introns are found preferentially in conserved regions of their respective host protein, conservation profiles were generated and intein and intron positions were mapped to the profiles. Fisher's combined probability test was used to determine the significance of the distribution of insertion sites across the conservation profile for each protein. For a subset of studied proteins, the conservation profile and insertion positions were mapped to protein structures to determine if the insertion sites correlate to regions of functional activity. All inteins and most group I introns were found to be preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group II and spliceosomal introns did not show a preference for conserved sites. CONCLUSIONS These findings demonstrate that inteins and group I introns are found preferentially in conserved regions of their respective host proteins. Homing endonucleases are often located within inteins and group I introns and these may facilitate mobility to conserved regions. Insertion at these conserved positions decreases the chance of elimination, and slows deletion of the elements, since removal of the elements has to be precise as not to disrupt the function of the protein. Furthermore, functional constrains on the targeted site make it more difficult for hosts to evolve immunity to the homing endonuclease. Therefore, these elements will better survive and propagate as molecular parasites in conserved sites. In contrast, spliceosomal introns and group II introns do not show significant preference for conserved sites and appear to have adopted a different strategy to evade loss.
Collapse
|
107
|
Petrov VM, Ratnayaka S, Karam JD. Genetic insertions and diversification of the PolB-type DNA polymerase (gp43) of T4-related phages. J Mol Biol 2009; 395:457-74. [PMID: 19896487 DOI: 10.1016/j.jmb.2009.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/21/2009] [Accepted: 10/27/2009] [Indexed: 11/24/2022]
Abstract
In Escherichia coli phage T4 and many of its phylogenetic relatives, gene 43 consists of a single cistron that encodes a PolB family (PolB-type) DNA polymerase. We describe the divergence of this phage gene and its protein product (gp43) (gene product 43) among 26 phylogenetic relatives of T4 and discuss our observations in the context of diversity among the widely distributed PolB enzymes in nature. In two T4 relatives that grow in Aeromonas salmonicida phages 44RR and 25, gene 43 is fragmented by different combinations of three distinct types of DNA insertion elements: (a) a short intercistronic untranslated sequence (IC-UTS) that splits the polymerase gene into two cistrons, 43A and 43B, corresponding to N-terminal (gp43A) and C-terminal (gp43B) protein products; (b) a freestanding homing endonuclease gene (HEG) inserted between the IC-UTS and the 43B cistron; and (c) a group I intron in the 43B cistron. Phage 25 has all three elements, whereas phage 44RR has only the IC-UTS. We present evidence that (a) the split gene of phage 44RR encodes a split DNA polymerase consisting of a complex between gp43A and gp43B subunits; (b) the putative HEG encodes a double-stranded DNA endonuclease that specifically cleaves intron-free homologues of the intron-bearing 43B site; and (c) the group I intron is a self-splicing RNA. Our results suggest that some freestanding HEGs can mediate the homing of introns that do not encode their own homing enzymes. The results also suggest that different insertion elements can converge on a polB gene and evolve into a single integrated system for lateral transfer of polB genetic material. We discuss the possible pathways for the importation of such insertion elements into the genomes of T4-related phages.
Collapse
Affiliation(s)
- Vasiliy M Petrov
- Department of Biochemistry SL43, School of Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
108
|
Theodoro RC, Bagagli E. Inteins in pathogenic fungi: a phylogenetic tool and perspectives for therapeutic applications. Mem Inst Oswaldo Cruz 2009; 104:497-504. [PMID: 19547879 DOI: 10.1590/s0074-02762009000300017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 03/13/2009] [Indexed: 01/18/2023] Open
Abstract
Inteins or 'internal proteins' are coding sequences that are transcribed and translated with flanking sequences (exteins). After translation, the inteins are excised by an autocatalytic process and the host protein assumes its normal conformation and develops its expected function. These parasitic genetic elements have been found in important, conserved proteins in all three domains of life. Most of the eukaryotic inteins are present in the fungi kingdom and the PRP8 intein is one of the most widespread inteins, occurring in important pathogens such as Cryptococcus neoformans (varieties grubii and neoformans), Cryptococcus gattii, Histoplasma capsulatum and Paracoccidioides brasiliensis. The knowledge of conserved and non-conserved domains in inteins have opened up new opportunities for the study of population variability in pathogenic fungi, including their phylogenetic relationships and recognition or diagnoses of species. Furthermore, inteins in pathogenic fungi should also be considered a promising therapeutic drug target, since once the autocatalytic splicing is inhibited, the host protein, which is typically vital, will not be able to perform its normal function and the fungal cell will not survive or reproduce.
Collapse
Affiliation(s)
- Raquel Cordeiro Theodoro
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, UNESP, Botucatu, São Paulo, Brasil
| | | |
Collapse
|
109
|
Group I introns and inteins: disparate origins but convergent parasitic strategies. J Bacteriol 2009; 191:6193-202. [PMID: 19666710 DOI: 10.1128/jb.00675-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
110
|
Buchholz F. Engineering DNA processing enzymes for the postgenomic era. Curr Opin Biotechnol 2009; 20:383-9. [DOI: 10.1016/j.copbio.2009.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/07/2009] [Accepted: 07/25/2009] [Indexed: 12/15/2022]
|
111
|
Mujika JI, Lopez X, Mulholland AJ. Modeling protein splicing: reaction pathway for C-terminal splice and intein scission. J Phys Chem B 2009; 113:5607-16. [PMID: 19326906 DOI: 10.1021/jp808911p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein splicing is a post-translational process where a biologically inactive protein is activated after the release of a so-called intein domain. In spite of the importance of this type of process, the specific molecular mechanism for the catalysis is still uncertain. In this work, we present a computational study of one of the key steps in protein splicing: the release of the intein due to the cyclization of an asparagine, the last amino acid of the intein. Density functional theory (DFT) calculations using the B3LYP functional in conjunction with the polarizable continuum model (PCM) were used to study the main stationary points along various possible reaction pathways. The results are compared with other DFT functionals and the MP2 ab initio method. In the first part of this work, the Asn-Thr dipeptide is analyzed with the aim of determining the specific requirements for the activation of the intrinsically slow Asn cyclization. The results show that the nucleophilic activation of the Asn side chain by removing one of its proton decreases the free energy barrier by approximately 20 kcal/mol. A full pathway of the reaction was also characterized in a larger model, including two imidazole molecules and two water molecules. The proposed reaction mechanism consists of two main steps: Asn side chain activation by a proton transfer to one of the imidazole groups, and cleavage of the peptide bond upon protonation of its nitrogen atom by the other imidazole. The overall free energy barrier in solution was determined to be 29.3 kcal/mol, in reasonable agreement with the apparent experimental barrier in the enzyme. The proposed mechanism suggests that the penultimate histidine stabilizes the tetrahedral intermediate and protonates the nitrogen of the scissile peptide bond, while a second histidine (located 10 amino acids upstream) activates the Asn side chain by deprotonating it.
Collapse
Affiliation(s)
- Jon I Mujika
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | | |
Collapse
|
112
|
Zhang L, Zheng Y, Xi Z, Luo Z, Xu X, Wang C, Liu Y. Metal ions binding to recA inteins from Mycobacterium tuberculosis. MOLECULAR BIOSYSTEMS 2009; 5:644-50. [PMID: 19462022 PMCID: PMC2790073 DOI: 10.1039/b903144h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc has been found in the crystal structures of inteins and the zinc ion can inhibit intein splicing both in vitro and in vivo. The interactions between metal ions and three minimized recA inteins have been studied in this work. Isothermal titration calorimetry (ITC) results show that the zinc binding affinity to three inteins is in the order of DeltaI-SM > DeltaDeltaI(hh)-SM approximately DeltaDeltaI(hh)-CM, but is much weaker than to EDTA. These data explain the reversible inhibition and the presence of zinc only in the crystal structure of DeltaI-SM of recA intein. A positive correlation between binding constants and inhibition efficiency was observed upon the titration of different metal ions. Single-site binding modes were detected in all interactions, except DeltaDeltaI(hh)-CM which has two Zn sites. Zinc binding sites on DeltaDeltaI(hh)-CM were analyzed by NMR spectroscopy and ITC titration on inteins with chemical modifications. Results indicate that the Cys1 and His73 are the second zinc binding sites in DeltaDeltaI(hh)-CM. CD studies show the metal coordinations have negligible influence on protein structure. This work suggests that the mobility restriction of key residues from metal coordination is likely the key cause of metal inhibition of intein splicing.
Collapse
Affiliation(s)
- Liyun Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China. Fax: +86-551-3600874; Tel: +86-551-3600904; E-mail:
| | - Yuchuan Zheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China. Fax: +86-551-3600874; Tel: +86-551-3600904; E-mail:
| | - Zhaoyong Xi
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China. Fax: +86-551-3600874; Tel: +86-551-3600904; E-mail:
| | - Zhaofeng Luo
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolong Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China. Fax: +86-551-3600874; Tel: +86-551-3600904; E-mail:
| | - Chunyu Wang
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Yangzhong Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China. Fax: +86-551-3600874; Tel: +86-551-3600904; E-mail:
| |
Collapse
|
113
|
Bonocora RP, Shub DA. A likely pathway for formation of mobile group I introns. Curr Biol 2009; 19:223-8. [PMID: 19200727 DOI: 10.1016/j.cub.2009.01.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 01/11/2009] [Accepted: 01/12/2009] [Indexed: 11/20/2022]
Abstract
Mobile group I introns are RNA splicing elements that have been invaded by endonuclease genes. These endonucleases facilitate intron mobility by a unidirectional, duplicative gene-conversion process known as homing [1]. Survival of the invading endonuclease depends upon its ability to promote intron mobility. Therefore, the endonuclease must either quickly change its cleavage specificity to match the site of intron insertion, or it must already be preadapted to cleave this sequence. Here we show that the group I intron in the DNA polymerase gene of T7-like bacteriophage PhiI is mobile, dependent upon its intronic HNH homing endonuclease gene, I-TslI. We also show that gene 5.3 of phage T3, located adjacent to its intronless DNA polymerase gene, is a homologous homing endonuclease gene whose protein product initiates efficient spread of gene 5.3 into empty sites in related phages. Both of these endonucleases cleave intronless DNA polymerase genes at identical positions. This shared feature between an intronic and free-standing endonuclease is unprecedented. Based on this evidence, we propose that introns and their homing endonucleases evolve separately to target the same highly conserved sequences, uniting afterwards to create a composite mobile element.
Collapse
Affiliation(s)
- Richard P Bonocora
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | | |
Collapse
|
114
|
Elleuche S, Pelikan C, Nolting N, Pöggeler S. Inteins and introns within the prp8 -gene of four Eupenicillium species. J Basic Microbiol 2009; 49:52-7. [PMID: 19253333 DOI: 10.1002/jobm.200800168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inteins are protein-intervening sequences that are translated with the host protein and can self-excise themselves post-translationally in an autocatalytic process. The flanking regions--called exteins--are then re-ligated with a new peptide bond, resulting in a mature host protein. Previously, we have identified inteins in the highly conserved 3.2 region of the PRP8 protein from species of the genus Penicillium. These inteins are integrated at the same position as that which has recently been described in PRP8 proteins from different strains of Cryptococcus neoformans and several ascomycetes. In this study, we investigated the presence of PRP8 inteins in four members of the genus Eupenicillium. Two species of this genus, Eupenicillium crustaceum and Eupenicillium baarnense, contain an intein at the same insertion site. Both inteins are mini-inteins and undergo self-splicing when heterologously expressed with a model host protein in Escherichia coli. Interestingly, we identified introns in the prp8-sequence encoding the 3.2 regions of the PRP8 protein in Eupenicillium meridianum and Eupenicillium terrenum. The introns are located 13 bps and 15 bps downstream of the putative intein insertion site. Here, we consider that the lack of inteins in these two species might be due to the prevention of endonuclease-mediated intein propagation in the intron-containing prp8-sequences.
Collapse
Affiliation(s)
- Skander Elleuche
- Georg-August Universität Göttingen, Institut für Mikrobiologie und Genetik, Abteilung für Genetik eukaryotischer Mikroorganismen, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
115
|
An RNA hairpin sequesters the ribosome binding site of the homing endonuclease mobE gene. J Bacteriol 2009; 191:2409-13. [PMID: 19181807 DOI: 10.1128/jb.01751-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous transcript mapping of the bacteriophage Aeh1 nrd operon revealed a predicted RNA hairpin upstream of the homing endonuclease mobE gene. We enzymatically mapped the hairpin, showing that the mobE ribosome binding site is sequestered. Cloning of the hairpin upstream of lacZ resulted in reduced beta-galactosidase activity, consistent with translational regulation.
Collapse
|
116
|
Liebeskind L, Yang H, Li H. A Copper‐Catalyzed, pH‐Neutral Construction of High‐Enantiopurity Peptidyl Ketones from PeptidicS‐Acylthiosalicylamides in Air at Room Temperature. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lanny S. Liebeskind
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 (USA), Fax: (+1) 404‐727‐6604
| | - Hao Yang
- Abbott Laboratories, GPRD, Process R&D, R450‐NCR13‐323A, 1401 Sheridan Road, North Chicago, IL 60064 (USA)
| | - Hao Li
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 (USA), Fax: (+1) 404‐727‐6604
| |
Collapse
|
117
|
Abstract
A universal Tree of Life has been a longstanding goal of the biosciences. The most common Tree of Life, based on the small subunit rRNA gene, may or may not represent the phylogenetic history of microorganisms. The horizontal transfer of genes from one taxon to another provides a means by which each gene may tell of an independent history. When complete genomes became available, the extent to which horizontal gene transfer (HGT) has occurred became more evident. When using genomic data to study the Tree of Life, one can use any of the four broad approaches: (i) build lots of individual gene trees ("phylogenomics"), (ii) concatenate genes together for an analysis yielding one "supergene" tree, (iii) form a single tree based on the "gene content" within genomes using either orthologs or homologs, or (iv) investigate the order of genes within genomes to discern some aspects of microbial evolution. The application of whole genome tree building has suggested that there is a core tree, that such a core tree can be investigated using these varied methods, and that the results are largely similar to those of the rRNA universal Tree of Life. Some of the most interesting features of the rRNA tree, such as early diverging hyperthermophilic lineages are still uncertain, but remain a possibility. Genomic trees and geologic evidence together suggest that the vertical descent of genes and the horizontal transfer of genes between genetically similar lineages ultimately results in a core Tree of Life with at least some lineages that have phenotypic characteristics recognizable for billions of years.
Collapse
Affiliation(s)
- Christopher H House
- Department of Geosciences and Pennsylvania State Astrobiology Research Center, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
118
|
Liebeskind LS, Yang H, Li H. A copper-catalyzed, pH-neutral construction of high-enantiopurity peptidyl ketones from peptidic s-acylthiosalicylamides in air at room temperature. Angew Chem Int Ed Engl 2009; 48:1417-21. [PMID: 19145620 PMCID: PMC2790066 DOI: 10.1002/anie.200804524] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A copper-catalyzed transformation of peptidic thiol esters and boronic acids gives peptidyl ketones and takes place in DMF or DMF/H(2)O at room temperature in air (see scheme). This aerobic reaction only occurs at a thiol ester group capable of coordinating to Cu through its appendage on the sulfur center and is not hampered by racemization of the reactants or products.
Collapse
Affiliation(s)
- Lanny S Liebeskind
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
119
|
Detection of inteins among diverse DNA polymerase genes of uncultivated members of the Phycodnaviridae. ISME JOURNAL 2008; 3:409-18. [PMID: 19079065 DOI: 10.1038/ismej.2008.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
120
|
Toxic introns and parasitic intein in Coxiella burnetii: legacies of a promiscuous past. J Bacteriol 2008; 190:5934-43. [PMID: 18606739 DOI: 10.1128/jb.00602-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The genome of the obligate intracellular pathogen Coxiella burnetii contains a large number of selfish genetic elements, including two group I introns (Cbu.L1917 and Cbu.L1951) and an intervening sequence that interrupts the 23S rRNA gene, an intein (Cbu.DnaB) within dnaB and 29 insertion sequences. Here, we describe the ability of the intron-encoded RNAs (ribozymes) to retard bacterial growth rate (toxicity) and examine the functionality and phylogenetic history of Cbu.DnaB. When expressed in Escherichia coli, both introns repressed growth, with Cbu.L1917 being more inhibitory. Both ribozymes were found to associate with ribosomes of Coxiella and E. coli. In addition, ribozymes significantly reduced in vitro luciferase translation, again with Cbu.L1917 being more inhibitory. We analyzed the relative quantities of ribozymes and genomes throughout a 14-day growth cycle of C. burnetii and found that they were inversely correlated, suggesting that the ribozymes have a negative effect on Coxiella's growth. We determined possible sites for ribozyme associations with 23S rRNA that could explain the observed toxicities. Further research is needed to determine whether the introns are being positively selected because they promote bacterial persistence or whether they were fixed in the population due to genetic drift. The intein, Cbu.DnaB, is able to self-splice, leaving the host protein intact and presumably functional. Similar inteins have been found in two extremophilic bacteria (Alkalilimnicola ehrlichei and Halorhodospira halophila) that are distantly related to Coxiella, making it difficult to determine whether the intein was acquired by horizontal gene transfer or was vertically inherited from a common ancestor.
Collapse
|
121
|
Chen CL, Pan TY, Kan SC, Kuan YC, Hong LY, Chiu KR, Sheu CS, Yang JS, Hsu WH, Hu HY. Genome sequence of the lytic bacteriophage P1201 from Corynebacterium glutamicum NCHU 87078: evolutionary relationships to phages from Corynebacterineae. Virology 2008; 378:226-32. [PMID: 18599103 DOI: 10.1016/j.virol.2008.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 04/09/2008] [Accepted: 05/21/2008] [Indexed: 11/29/2022]
Abstract
P1201 is a lytic corynephage of Corynebacterium glutamicum NCHU 87078. Its genome consists of a linear double-stranded DNA molecule of 70,579 base pairs, with 3'-protruding cohesive ends of ten nucleotides. We have identified 69 putative open reading frames, including three apparent genes (thymidylate synthase, terminase, and RNR alpha subunit genes) that are interrupted by an intein. Protein-splicing activities of these inteins were demonstrated in Escherichia coli. Three structural proteins including major capsid and major tail proteins were separated by SDS-PAGE and identified by both LC-MS-MS and N-terminal sequence analyses. Bioinformatics analysis indicated that only about 8.7% of its putative gene products shared substantial protein sequence similarity with the lytic corynephage BFK20 from Brevibacterium flavum, the only corynephage whose genome had been sequenced to date, revealing that the P1201 genome is distinct from BFK20. The mosaic-like genome of P1201 indicates extensive horizontal gene transfer among P1201, Gordonia terrae phage GTE5, mycobacteriophages, and several regions of Corynebacterium spp. genomes.
Collapse
Affiliation(s)
- Chang-Lin Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J Chromatogr A 2008; 1194:150-4. [DOI: 10.1016/j.chroma.2008.04.048] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/13/2008] [Accepted: 04/17/2008] [Indexed: 11/23/2022]
|
123
|
Pearl EJ, Bokor AAM, Butler MI, Poulter RTM, Wilbanks SM. Preceding hydrophobic and beta-branched amino acids attenuate splicing by the CnePRP8 intein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:995-1001. [PMID: 17604706 DOI: 10.1016/j.bbapap.2007.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/23/2007] [Accepted: 05/29/2007] [Indexed: 11/18/2022]
Abstract
As the Cne PRP8 intein is active and exists in an essential gene of an important fungal pathogen, inhibitors of splicing and assays for intein activity are of interest. The self-splicing activity of Cne PRP8, the intein from the Prp8 gene of Cryptococcus neoformans, was assessed in different heterologous fusion proteins expressed in Escherichia coli. Placement of a putatively inactive variant of the intein adjacent to the alpha-complementation peptide abolished the peptide's ability to restore beta-galactosidase activity, while an active variant allowed complementation. This alpha-complementation peptide therefore provides a facile assay of splicing which can be used to test potential inhibitors. When placed between two heterologous protein domains, splicing was impaired by a beta-branched amino acid immediately preceding the intein, while splicing occurred only with a hydroxyl or thiol immediately following the intein. Both these assays sensitively report impairment of splicing and provide information on how context constrains the splicing ability of Cne PRP8.
Collapse
Affiliation(s)
- Esther J Pearl
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
124
|
Gibb EA, Edgell DR. Multiple controls regulate the expression of mobE, an HNH homing endonuclease gene embedded within a ribonucleotide reductase gene of phage Aeh1. J Bacteriol 2007; 189:4648-61. [PMID: 17449612 PMCID: PMC1913452 DOI: 10.1128/jb.00321-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobile genetic elements have the potential to influence the expression of genes surrounding their insertion site upon invasion of a genome. Here, we examine the transcriptional organization of a ribonucleotide reductase operon (nrd) that has been invaded by an HNH family homing endonuclease, mobE. In Aeromonas hydrophila phage Aeh1, mobE has inserted into the large-subunit gene (nrdA) of aerobic ribonucleotide reductase (RNR), splitting it into two smaller genes, nrdA-a and nrdA-b. This gene organization differs from that in phages T4, T6, RB2, RB3, RB15, and LZ7, where mobE is inserted in the nrdA-nrdB intergenic region. We present evidence that the expression of Aeh1 mobE is regulated by transcriptional, posttranscriptional, and translational controls. An Aeh1-specific late promoter drives expression of mobE, but strikingly the mobE transcript is processed internally at an RNase E-like site. We also identified a putative stem-loop structure upstream of mobE that sequesters the mobE ribosome binding site, presumably acting to down regulate MobE translation. Moreover, our transcriptional analyses indicate that the surrounding nrd genes of phage Aeh1 are expressed by a different strategy than are the corresponding phage T4 genes and that transcriptional readthrough is the only mechanism by which the promoterless Aeh1 nrdB gene is expressed. We suggest that the occurrence of multiple layers of control to limit the expression of mobE to late in the Aeh1 infection cycle is an adaptation of Aeh1 to reduce any effects on expression of the surrounding nrd genes early in phage infection when RNR function is critical.
Collapse
Affiliation(s)
- Ewan A Gibb
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
125
|
|
126
|
Friedrich NC, Torrents E, Gibb EA, Sahlin M, Sjöberg BM, Edgell DR. Insertion of a homing endonuclease creates a genes-in-pieces ribonucleotide reductase that retains function. Proc Natl Acad Sci U S A 2007; 104:6176-81. [PMID: 17395719 PMCID: PMC1851037 DOI: 10.1073/pnas.0609915104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In bacterial and phage genomes, coding regions are sometimes interrupted by self-splicing introns or inteins, which can encode mobility-promoting homing endonucleases. Homing endonuclease genes are also found free-standing (not intron- or intein-encoded) in phage genomes where they are inserted in intergenic regions. One example is the HNH family endonuclease, mobE, inserted between the large (nrdA) and small (nrdB) subunit genes of aerobic ribonucleotide reductase (RNR) of T-even phages T4, RB2, RB3, RB15, and LZ7. Here, we describe an insertion of mobE into the nrdA gene of Aeromonas hydrophila phage Aeh1. The insertion creates a unique genes-in-pieces arrangement, where nrdA is split into two independent genes, nrdA-a and nrdA-b, each encoding cysteine residues that correspond to the active-site residues of uninterrupted NrdA proteins. Remarkably, the mobE insertion does not inactivate NrdA function, although the insertion is not a self-splicing intron or intein. We copurified the NrdA-a, NrdA-b, and NrdB proteins as complex from Aeh1-infected cells and also showed that a reconstituted complex has RNR activity. Class I RNR activity in phage Aeh1 is thus assembled from separate proteins that interact to form a composite active site, demonstrating that the mobE insertion is phenotypically neutral in that its presence as an intervening sequence does not disrupt the function of the surrounding gene.
Collapse
Affiliation(s)
- Nancy C. Friedrich
- *Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 1C7; and
| | - Eduard Torrents
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Ewan A. Gibb
- *Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 1C7; and
| | - Margareta Sahlin
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Britt-Marie Sjöberg
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | - David R. Edgell
- *Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 1C7; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
127
|
Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 2007; 6:1917-32. [PMID: 17391016 PMCID: PMC2588348 DOI: 10.1021/pr060394e] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, the understanding of the relationships between function, amino acid sequence, and protein structure continues to represent one of the major challenges of the modern protein science. As many as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bionformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200 000 proteins from the Swiss-Prot database, each annotated with at least one of the 875 functional keywords, was described in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V.N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Using this tool, we have found that out of the 710 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (see above). The second paper of the series was devoted to the presentation of 87 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions (Vucetic, S.; Xie, H.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J. Proteome Res. 2007, 5, 1899-1916). Protein structure and functionality can be modulated by various post-translational modifications or/and as a result of binding of specific ligands. Numerous human diseases are associated with protein misfolding/misassembly/misfunctioning. This work concludes the series of papers dedicated to the functional anthology of intrinsic disorder and describes approximately 80 Swiss-Prot functional keywords that are related to ligands, post-translational modifications, and diseases possessing strong positive or negative correlation with the predicted long disordered regions in proteins.
Collapse
Affiliation(s)
- Hongbo Xie
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Slobodan Vucetic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Lilia M. Iakoucheva
- Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10021
| | - Christopher J. Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Correspondence should be addressed to: Vladimir N. Uversky, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS#4021, Indianapolis, IN 46202, USA; Phone: 317-278-9194; Fax: 317-274-4686; E-mail:
| |
Collapse
|
128
|
Senejani AG, Gogarten JP. Structural stability and endonuclease activity of a PI-SceI GFP-fusion protein. Int J Biol Sci 2007; 3:205-11. [PMID: 17389927 PMCID: PMC1802021 DOI: 10.7150/ijbs.3.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/15/2007] [Indexed: 11/23/2022] Open
Abstract
Homing endonucleases are site-specific and rare cutting endonucleases often encoded by intron or intein containing genes. They lead to the rapid spread of the genetic element that hosts them by a process termed 'homing'; and ultimately the allele containing the element will be fixed in the population. PI-SceI, an endonuclease encoded as a protein insert or intein within the yeast V-ATPase catalytic subunit encoding gene (vma1), is among the best characterized homing endonucleases. The structures of the Sce VMA1 intein and of the intein bound to its target site are known. Extensive biochemical studies performed on the PI-SceI enzyme provide information useful to recognize critical amino acids involved in self-splicing and endonuclease functions of the protein. Here we describe an insertion of the Green Fluorescence Protein (GFP) into a loop which is located between the endonuclease and splicing domains of the Sce VMA1 intein. The GFP is functional and the additional GFP domain does not prevent intein excision and endonuclease activity. However, the endonuclease activity of the newly engineered protein was different from the wild-type protein in that it required the presence of Mn2+ and not Mg2+ metal cations for activity.
Collapse
Affiliation(s)
- Alireza G Senejani
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
129
|
Elleuche S, Pöggeler S. Trans-splicing of an artificially split fungal mini-intein. Biochem Biophys Res Commun 2007; 355:830-4. [PMID: 17316565 DOI: 10.1016/j.bbrc.2007.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Inteins are internal protein domains found inside the coding region of different proteins. They can autocatalytically self-excise from their host protein and ligate the protein flanks, called exteins, with a peptide bond via a post-translational process called protein cis-splicing. In contrast, protein trans-splicing involves inteins split into an N- and a C-terminal domain. Both domains are synthesized as two separate components and each joined to an extein; the intein domains can reassemble and link the joined exteins into one functional protein. In this study, we introduced three split sites into the PRP8 mini-intein of Penicillium chrysogenum and demonstrated for the first time trans-splicing of a fungal PRP8 intein. Two of the sites introduced allowed splicing to occur in trans while the third was not functional.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University of Göttingen, Germany
| | | |
Collapse
|
130
|
Gogarten JP, Hilario E. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol Biol 2006; 6:94. [PMID: 17101053 PMCID: PMC1654191 DOI: 10.1186/1471-2148-6-94] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 11/13/2006] [Indexed: 12/02/2022] Open
Abstract
Self splicing introns and inteins that rely on a homing endonuclease for propagation are parasitic genetic elements. Their life-cycle and evolutionary fate has been described through the homing cycle. According to this model the homing endonuclease is selected for function only during the spreading phase of the parasite. This phase ends when the parasitic element is fixed in the population. Upon fixation the homing endonuclease is no longer under selection, and its activity is lost through random processes. Recent analyses of these parasitic elements with functional homing endonucleases suggest that this model in its most simple form is not always applicable. Apparently, functioning homing endonuclease can persist over long evolutionary times in populations and species that are thought to be asexual or nearly asexual. Here we review these recent findings and discuss their implications. Reasons for the long-term persistence of a functional homing endonuclease include: More recombination (sexual and as a result of gene transfer) than previously assumed for these organisms; complex population structures that prevent the element from being fixed; a balance between active spreading of the homing endonuclease and a decrease in fitness caused by the parasite in the host organism; or a function of the homing endonuclease that increases the fitness of the host organism and results in purifying selection for the homing endonuclease activity, even after fixation in a local population. In the future, more detailed studies of the population dynamics of the activity and regulation of homing endonucleases are needed to decide between these possibilities, and to determine their relative contributions to the long term survival of parasitic genes within a population. Two outstanding publications on the amoeba Naegleria group I intron (Wikmark et al. BMC Evol Biol 2006, 6:39) and the PRP8 inteins in ascomycetes (Butler et al.BMC Evol Biol 2006, 6:42) provide important stepping stones towards integrated studies on how these parasitic elements evolve through time together with, or despite, their hosts.
Collapse
Affiliation(s)
- J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-31258, USA
| | - Elena Hilario
- HortResearch, 120 Mt. Albert Road, Private Bag 92 169, Mt. Albert, Auckland, New Zealand
| |
Collapse
|
131
|
Goodwin TJD, Butler MI, Poulter RTM. Multiple, non-allelic, intein-coding sequences in eukaryotic RNA polymerase genes. BMC Biol 2006; 4:38. [PMID: 17069655 PMCID: PMC1635734 DOI: 10.1186/1741-7007-4-38] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 10/27/2006] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Inteins are self-splicing protein elements. They are translated as inserts within host proteins that excise themselves and ligate the flanking portions of the host protein (exteins) with a peptide bond. They are encoded as in-frame insertions within the genes for the host proteins. Inteins are found in all three domains of life and in viruses, but have a very sporadic distribution. Only a small number of intein coding sequences have been identified in eukaryotic nuclear genes, and all of these are from ascomycete or basidiomycete fungi. RESULTS We identified seven intein coding sequences within nuclear genes coding for the second largest subunits of RNA polymerase. These sequences were found in diverse eukaryotes: one is in the second largest subunit of RNA polymerase I (RPA2) from the ascomycete fungus Phaeosphaeria nodorum, one is in the RNA polymerase III (RPC2) of the slime mould Dictyostelium discoideum and four intein coding sequences are in RNA polymerase II genes (RPB2), one each from the green alga Chlamydomonas reinhardtii, the zygomycete fungus Spiromyces aspiralis and the chytrid fungi Batrachochytrium dendrobatidis and Coelomomyces stegomyiae. The remaining intein coding sequence is in a viral relic embedded within the genome of the oomycete Phytophthora ramorum. The Chlamydomonas and Dictyostelium inteins are the first nuclear-encoded inteins found outside of the fungi. These new inteins represent a unique dataset: they are found in homologous proteins that form a paralogous group. Although these paralogues diverged early in eukaryotic evolution, their sequences can be aligned over most of their length. The inteins are inserted at multiple distinct sites, each of which corresponds to a highly conserved region of RNA polymerase. This dataset supports earlier work suggesting that inteins preferentially occur in highly conserved regions of their host proteins. CONCLUSION The identification of these new inteins increases the known host range of intein sequences in eukaryotes, and provides fresh insights into their origins and evolution. We conclude that inteins are ancient eukaryote elements once found widely among microbial eukaryotes. They persist as rarities in the genomes of a sporadic array of microorganisms, occupying highly conserved sites in diverse proteins.
Collapse
Affiliation(s)
- Timothy JD Goodwin
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Margaret I Butler
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Russell TM Poulter
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
132
|
Affiliation(s)
- Nilabh Shastri
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
133
|
Erauso G, Stedman KM, van de Werken HJG, Zillig W, van der Oost J. Two novel conjugative plasmids from a single strain of Sulfolobus. MICROBIOLOGY-SGM 2006; 152:1951-1968. [PMID: 16804171 DOI: 10.1099/mic.0.28861-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two conjugative plasmids (CPs) were isolated and characterized from the same 'Sulfolobus islandicus' strain, SOG2/4. The plasmids were separated from each other and transferred into Sulfolobus solfataricus. One has a high copy number and is not stable (pSOG1) whereas the other has a low copy number and is stably maintained (pSOG2). Plasmid pSOG2 is the first Sulfolobus CP found to have these characteristics. The genomes of both pSOG plasmids have been sequenced and were compared to each other and the available Sulfolobus CPs. Interestingly, apart from a very well-conserved core, 70 % of the pSOG1 and pSOG2 genomes is largely different and composed of a mixture of genes that often resemble counterparts in previously described Sulfolobus CPs. However, about 20 % of the predicted genes do not have known homologues, not even in other CPs. Unlike pSOG1, pSOG2 does not contain a gene for the highly conserved PlrA protein nor for obvious homologues of partitioning proteins. Unlike pNOB8 and pKEF9, both pSOG plasmids lack the so-called clustered regularly interspaced short palindrome repeats (CRISPRs). The sites of recombination between the two genomes can be explained by the presence of recombination motifs previously identified in other Sulfolobus CPs. Like other Sulfolobus CPs, the pSOG plasmids possess a gene encoding an integrase of the tyrosine recombinase family. This integrase probably mediates plasmid site-specific integration into the host chromosome at the highly conserved tRNA(Glu) loci.
Collapse
Affiliation(s)
- Gaël Erauso
- UMR CNRS 6539, IUEM, Université de Bretagne Occidentale, Technopôle Brest-Iroise, Place Copernic, 29280 Plouzané, France
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Kenneth M Stedman
- Biology Department, Portland State University, Portland, OR 97207, USA
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
134
|
Butler MI, Gray J, Goodwin TJD, Poulter RTM. The distribution and evolutionary history of the PRP8 intein. BMC Evol Biol 2006; 6:42. [PMID: 16737526 PMCID: PMC1508164 DOI: 10.1186/1471-2148-6-42] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 05/31/2006] [Indexed: 12/31/2022] Open
Abstract
Background We recently described a mini-intein in the PRP8 gene of a strain of the basidiomycete Cryptococcus neoformans, an important fungal pathogen of humans. This was the second described intein in the nuclear genome of any eukaryote; the first nuclear encoded intein was found in the VMA gene of several saccharomycete yeasts. The evolution of eukaryote inteins is not well understood. In this report we describe additional PRP8 inteins (bringing the total of these to over 20). We compare and contrast the phylogenetic distribution and evolutionary history of the PRP8 intein and the saccharomycete VMA intein, in order to derive a broader understanding of eukaryote intein evolution. It has been suggested that eukaryote inteins undergo horizontal transfer and the present analysis explores this proposal. Results In total, 22 PRP8 inteins have been detected in species from three different orders of euascomycetes, including Aspergillus nidulans and Aspergillus fumigatus (Eurotiales), Paracoccidiodes brasiliensis, Uncinocarpus reesii and Histoplasma capsulatum (Onygales) and Botrytis cinerea (Helotiales). These inteins are all at the same site in the PRP8 sequence as the original Cryptococcus neoformans intein. Some of the PRP8 inteins contain apparently intact homing endonuclease domains and are thus potentially mobile, while some lack the region corresponding to the homing endonuclease and are thus mini-inteins. In contrast, no mini-inteins have been reported in the VMA gene of yeast. There are several examples of pairs of closely related species where one species carries the PRP8 intein while the intein is absent from the other species. Bio-informatic and phylogenetic analyses suggest that many of the ascomycete PRP8 homing endonucleases are active. This contrasts with the VMA homing endonucleases, most of which are inactive. Conclusion PRP8 inteins are widespread in the euascomycetes (Pezizomycota) and apparently their homing endonucleases are active. There is no evidence for horizontal transfer within the euascomycetes. This suggests that the intein is of ancient origin and has been vertically transmitted amongst the euascomycetes. It is possible that horizontal transfer has occurred between the euascomycetes and members of the basidiomycete genus Cryptococcus.
Collapse
Affiliation(s)
- Margaret I Butler
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Jeremy Gray
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Timothy JD Goodwin
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Russell TM Poulter
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
135
|
Elleuche S, Nolting N, Pöggeler S. Protein splicing of PRP8 mini-inteins from species of the genus Penicillium. Appl Microbiol Biotechnol 2006; 72:959-67. [PMID: 16544141 DOI: 10.1007/s00253-006-0350-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 01/20/2006] [Accepted: 01/23/2006] [Indexed: 11/26/2022]
Abstract
Inteins are protein-intervening sequences found inside the coding region of different host proteins and are translated in-frame with them. They can self-excise through protein splicing, which ligates the host protein flanks with a peptide bond. In this study, four different species of the genus Penicillium were investigated for the presence of inteins inside the conserved splicing-factor protein PRP8. We identified 157 to 162 amino acid in-frame insertions in the PRP8 protein of Penicillium chrysogenum, Penicillium expansum, and Penicillium vulpinum (formerly Penicillium claviforme). The Penicillium PRP8 inteins are mini-inteins without a conserved endonuclease domain. We demonstrated that the PRP8 mini-inteins of P. chrysogenum, P. expansum, and P. vulpinum undergo autocatalytic protein splicing when heterologously expressed in E. coli, in a model host protein, and in a divided GFP model system. They are, thus, among the smallest known nuclear-encoded, active splicing protein elements. The GFP assay should be valuable as a screening system for protein splicing inhibitors as potential antimycotic agents and as tools for studying the mechanism of protein splicing of fungal mini-inteins.
Collapse
Affiliation(s)
- Skander Elleuche
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | | | | |
Collapse
|
136
|
Sun P, Ye S, Ferrandon S, Evans TC, Xu MQ, Rao Z. Crystal Structures of an Intein from the Split dnaE Gene of Synechocystis sp. PCC6803 Reveal the Catalytic Model Without the Penultimate Histidine and the Mechanism of Zinc Ion Inhibition of Protein Splicing. J Mol Biol 2005; 353:1093-105. [PMID: 16219320 DOI: 10.1016/j.jmb.2005.09.039] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Revised: 08/21/2005] [Accepted: 09/13/2005] [Indexed: 11/22/2022]
Abstract
The first naturally occurring split intein was found in the dnaE gene of Synechocystis sp. PCC6803 and belongs to a subclass of inteins without a penultimate histidine residue. We describe two high-resolution crystal structures, one derived from an excised Ssp DnaE intein and the second from a splicing-deficient precursor protein. The X-ray structures indicate that His147 in the conserved block F activates the side-chain N(delta) atom of the intein C-terminal Asn159, leading to a nucleophilic attack on the peptide bond carbonyl carbon atom at the C-terminal splice site. In this process, Arg73 appears to stabilize the transition state by interacting with the carbonyl oxygen atom of the scissile bond. Arg73 also seems to substitute for the conserved penultimate histidine residue in the formation of an oxyanion hole, as previously identified in other inteins. The finding that the precursor structure contains a zinc ion chelating the highly conserved Cys160 and Asp140 reveals the structural basis of Zn2+-mediated inhibition of protein splicing. Furthermore, it is of interest to observe that the carbonyl carbon atom of Asn159 and N(eta) of Arg73 are 2.6 angstroms apart in the free intein structure and 10.6 angstroms apart in the precursor structure. The orientation change of the aromatic ring of Tyr-1 following the initial acyl shift may be a key switching event contributing to the alignment of Arg73 and the C-terminal scissile bond, and may explain the sequential reaction property of the Ssp DnaE intein.
Collapse
Affiliation(s)
- Ping Sun
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | |
Collapse
|
137
|
Haridas V, Kim SO, Nishimura G, Hausladen A, Stamler JS, Gutterman JU. Avicinylation (thioesterification): a protein modification that can regulate the response to oxidative and nitrosative stress. Proc Natl Acad Sci U S A 2005; 102:10088-93. [PMID: 16030151 PMCID: PMC1177405 DOI: 10.1073/pnas.0504430102] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Avicins are a recently discovered family of plant-derived terpenoid molecules that possess proapoptotic, antiinflammatory, and cytoprotective properties in mammalian cells. Previous work demonstrating that avicins can exert their effects by suppressing or activating the redox-sensitive transcription factors NF-kappaB and nuclear factor-erythroid 2 p45-related factor (Nrf2), respectively, has raised the idea that they may react with critical cysteine residues. To understand the molecular mechanism through which avicins regulate protein function, we examined their effects on the paradigmatic redox-responsive transcriptional activator, OxyR of Escherichia coli, which protects bacterial cells against oxidative and nitrosative stresses. In vitro transcription assays demonstrated that avicins activate OxyR and its target genes katG and oxyS in a DTT-reversible manner. In addition, katG-dependent hydroperoxidase I activity was enhanced in avicin-treated bacteria. Mass spectrometric analysis of activated OxyR revealed thioesterification of the critical regulatory cysteine, Cys-199, to an avicin fragment comprising the outer monoterpene side chain. Our results indicate that avicinylation can induce adaptive responses that protect cells against oxidative or nitrosative stress. More generally, transesterification may represent a previously undescribed thiol-directed posttranslational modification, which extends the code for redox regulation of protein function.
Collapse
Affiliation(s)
- Valsala Haridas
- Department of Molecular Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
138
|
Abstract
To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene transfer was assumed to provide a selective advantage to either the host or the gene itself, but could horizontally transferred genes be neutral or nearly neutral? We suggest that for many prokaryotes, the boundaries between species are fuzzy, and therefore the principles of population genetics must be broadened so that they can be applied to higher taxonomic categories.
Collapse
Affiliation(s)
- J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA.
| | | |
Collapse
|
139
|
Wei XY, Sakr S, Li JH, Wang L, Chen WL, Zhang CC. Expression of split dnaE genes and trans-splicing of DnaE intein in the developmental cyanobacterium Anabaena sp. PCC 7120. Res Microbiol 2005; 157:227-34. [PMID: 16256311 DOI: 10.1016/j.resmic.2005.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 07/26/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Protein intein is widespread in a variety of organisms. Several intein elements are also present in cyanobacteria, and some of them have been studied biochemically in vitro. However, no evidence is available for intein removal in vivo in cyanobacteria. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, the DNA replication factor DnaE is encoded by two split open reading frames (ORFs) far apart from each other on the chromosome, and each of them could contain a split intein element. This organism can undergo a developmental process leading to the formation of nitrogen-fixing cells, or heterocysts. Heterocysts are terminally differentiated cells with arrest of cell cycle. Since DnaE is an important cell cycle element involved in DNA replication, we would like to provide in vivo evidence for DnaE intein removal in cyanobacteria and determine whether mature DnaE protein is still present in heterocysts. In this study, we showed that the products of these two ORFs were joined together to form a complete DnaE protein through the process of protein trans-splicing. More interestingly, protein trans-splicing could be detected in vivo for the first time in cyanobacteria, which allowed us to compare the formation of mature DnaE protein in heterocysts and vegetative cells, and show that mature DnaE protein could be formed in both cell types. Transcriptional fusion between the promoter regions of the two split ORFs and gfp reporter also demonstrate that both ORFs are transcribed in vegetative cells and heterocysts, without strong variation during the process of heterocyst differentiation. Although heterocysts are terminally differentiated and may not replicate its chromosome, the expression and maturation of DnaE in these cells may underlie the need for DNA replication machinery in processes such as DNA recombination and repair.
Collapse
Affiliation(s)
- Xin-Yuan Wei
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
140
|
Abstract
One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| | | |
Collapse
|
141
|
Khan MS, Khalid AM, Malik KA. Intein-mediated protein trans-splicing and transgene containment in plastids. Trends Biotechnol 2005; 23:217-20. [PMID: 15865996 DOI: 10.1016/j.tibtech.2005.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Transgenes in plastids are contained by stringent maternal inheritance in most cultivated plant species and their expression yields high levels of protein with bona fide structure. Nevertheless, transfer of plastid genes to the nucleus has been reported, with implications for transgene containment. The significance of these transfers will depend on the likelihood that they will become functional nuclear genes. Recently a novel approach, intein-mediated protein trans-splicing, has been demonstrated promising to yield transgenic plants with greatly reduced risk of genetic outcrossing.
Collapse
Affiliation(s)
- Muhammad Sarwar Khan
- National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad 38000, Pakistan.
| | | | | |
Collapse
|
142
|
Moroder L. Isosteric replacement of sulfur with other chalcogens in peptides and proteins. J Pept Sci 2005; 11:187-214. [PMID: 15782428 DOI: 10.1002/psc.654] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The review addresses the functional and structural properties of the two series of chalcogen analogues of amino acids in peptides and proteins, the methionine and the serine/cysteine series, and discusses the synthesis of the related selenium/tellurium analogues as well as their use in peptide synthesis and protein expression. Advances in synthetic methodologies and recombinant technologies and their combined applications in native and expressed protein ligation allows the isomorphous character of selenium- and tellurium-containing amino acids to be exploited for production of heavy metal mutants of proteins and thus to facilitate the phasing problem in x-ray crystallography. In addition, selenocysteine has been recognized as an ideal tool for the production of selenoenzymes with new catalytic activities. Moreover, the fully isomorphous character of disulfide replacement with diselenide is well suited to increase the robustness of cystine frameworks in cystine-rich peptides and proteins and for the de novo design of even non-native cystine frameworks by exploiting the highly negative redox potential of selenols.
Collapse
Affiliation(s)
- Luis Moroder
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany.
| |
Collapse
|
143
|
Nagasaki K, Shirai Y, Tomaru Y, Nishida K, Pietrokovski S. Algal viruses with distinct intraspecies host specificities include identical intein elements. Appl Environ Microbiol 2005; 71:3599-607. [PMID: 16000767 PMCID: PMC1169056 DOI: 10.1128/aem.71.7.3599-3607.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/20/2005] [Indexed: 11/20/2022] Open
Abstract
Heterosigma akashiwo virus (HaV) is a large double-stranded DNA virus infecting the single-cell bloom-forming raphidophyte (golden brown alga) H. akashiwo. A molecular phylogenetic sequence analysis of HaV DNA polymerase showed that it forms a sister group with Phycodnaviridae algal viruses. All 10 examined HaV strains, which had distinct intraspecies host specificities, included an intein (protein intron) in their DNA polymerase genes. The 232-amino-acid inteins differed from each other by no more than a single nucleotide change. All inteins were present at the same conserved position, coding for an active-site motif, which also includes inteins in mimivirus (a very large double-stranded DNA virus of amoebae) and in several archaeal DNA polymerase genes. The HaV intein is closely related to the mimivirus intein, and both are apparently monophyletic to the archaeal inteins. These observations suggest the occurrence of horizontal transfers of inteins between viruses of different families and between archaea and viruses and reveal that viruses might be reservoirs and intermediates in horizontal transmissions of inteins. The homing endonuclease domain of the HaV intein alleles is mostly deleted. The mechanism keeping their sequences basically identical in HaV strains specific for different hosts is yet unknown. One possibility is that rapid and local changes in the HaV genome change its host specificity. This is the first report of inteins found in viruses infecting eukaryotic algae.
Collapse
Affiliation(s)
- Keizo Nagasaki
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
144
|
Abstract
Until recently the only intein known to be encoded by the nuclear genome of a eukaryote was the VMA intein in the vacuolar ATPase precursor of several species of saccharomycete yeast. This intein has been intensively studied and much information has been gained about its structure, mode of action and evolutionary history. We recently reported a second nuclear intein, Cne PRP8, encoded within the PRP8 gene of the basidiomycete Cryptococcus neoformans. Subsequent studies have found allelic PRP8 inteins in several species of yeast and filamentous ascomycetes. Here we report two further, non-allelic, inteins from ascomycete species. The yeast Debaryomyces hansenii (which also has a VMA intein) has an intein encoded within the sequence of the glutamate synthase gene (GLT1). There are also inteins encoded in the homologous GLT1 genes of the yeast Candida (Pichia) guilliermondii and the filamentous fungus Podospora anserina. These allelic GLT1 inteins occupy exactly the same site in the glutamate synthase and all contain domains that indicate the presence of a homing endonuclease (HEG). Podospora anserina, in addition, contains a second, non-allelic, intein encoded in the chitin synthase gene (CHS2); this intein also contains a HEG domain. We describe the phylogenetic relationships among the four eukaryote nuclear encoded inteins (VMA, PRP8, GLT1 and CHS2). We also consider this phylogeny in the broader context of eubacterial, archaeal and eukaryote viral and organelle inteins.
Collapse
Affiliation(s)
- Margaret I Butler
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
145
|
Abstract
A great amount of virus particles exist in natural waters. Each virion is considered to have its own ecological role, affecting the maintenance and fluctuation of aquatic ecosystems. We have been studying viruses infectious to micro-plankton, especially those infecting phytoplankton. Red tides are caused by drastic increase in abundance of plankton. We succeeded in elucidating that viral infection is one of the most important factors determining the dynamics and termination of algal blooms by means of field survey and molecular experiments. In addition, we demonstrated that the interrelationship between viruses and their hosts are highly complicated, and might be determined by the molecular-structural difference of viral capsids among distinct virus ecotypes. Furthermore, in the process of our investigation on various aquatic algal viruses, their importance as genetic sources has also been suggested. In order to deeply understand the mechanism of aquatic ecosystem, more intensive studies as for aquatic viruses are urgently required.
Collapse
Affiliation(s)
- Keizo Nagasaki
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Hirohima, Japan.
| | | | | | | | | |
Collapse
|
146
|
Koufopanou V, Burt A. Degeneration and domestication of a selfish gene in yeast: molecular evolution versus site-directed mutagenesis. Mol Biol Evol 2005; 22:1535-8. [PMID: 15843599 DOI: 10.1093/molbev/msi149] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
VDE is a homing endonuclease gene in yeasts with an unusual evolutionary history including horizontal transmission, degeneration, and domestication into the mating-type switching locus HO. We investigate here the effects of these features on its molecular evolution. In addition, we correlate rates of evolution with results from site-directed mutagenesis studies. Functional elements have lower rates of evolution than degenerate ones and higher conservation at functionally important sites. However, functionally important and unimportant sites are equally likely to have been involved in the evolution of new function during the domestication of VDE into HO. The domestication event also indicates that VDE has been lost in some species and that VDE has been present in yeasts for more than 50 Myr.
Collapse
|
147
|
|
148
|
Burt A, Koufopanou V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr Opin Genet Dev 2004; 14:609-15. [PMID: 15531154 DOI: 10.1016/j.gde.2004.09.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Homing endonuclease genes (HEGs) are selfish genetic elements that spread by first cleaving chromosomes that do not contain them and then getting copied across to the broken chromosome as a byproduct of the repair process. The success of this strategy will depend on the opportunities for homing--in other words, the frequency with which HEG(+) and HEG(-) chromosomes come into contact--which varies widely among host taxa. HEGs are also unusual in that the selection pressure for endonuclease function disappears if they become fixed in a population, which makes them susceptible to degeneration and imposes a need for regular horizontal transmission between species. HEGs will be selected to reduce the harm done to the host organism, and this is expected to influence the evolution of their sequence specificity and maturase functions. HEGs may also be domesticated by their hosts, and are currently being put to human uses.
Collapse
Affiliation(s)
- Austin Burt
- Department of Biological Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK.
| | | |
Collapse
|
149
|
Abstract
Secreted signaling proteins function in a diverse array of essential patterning events during metazoan development, ranging from embryonic segmentation in insects to neural tube differentiation in vertebrates. These proteins generally are expressed in a localized manner, and they may elicit distinct concentration-dependent responses in the cells of surrounding tissues and structures, thus functioning as morphogens that specify the pattern of cellular responses by their tissue distribution. Given the importance of signal distribution, it is notable that the Hedgehog (Hh) and Wnt proteins, two of the most important families of such signals, are known to be covalently modified by lipid moieties, the membrane-anchoring properties of which are not consistent with passive models of protein mobilization within tissues. This review focuses on the mechanisms underlying biogenesis of the mature Hh proteins, which are dually modified by cholesteryl and palmitoyl adducts, as well as on the relationship between Hh proteins and the self-splicing proteins (i.e., proteins containing inteins) and the Hh-like proteins of nematodes. We further discuss the cellular mechanisms that have evolved to handle lipidated Hh proteins in the spatial deployment of the signal in developing tissues and the more recent findings that implicate palmitate modification as an important feature of Wnt signaling proteins.
Collapse
Affiliation(s)
- Randall K Mann
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
150
|
Liu XQ, Yang J. Prp8 intein in fungal pathogens: target for potential antifungal drugs. FEBS Lett 2004; 572:46-50. [PMID: 15304322 DOI: 10.1016/j.febslet.2004.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 07/06/2004] [Accepted: 07/09/2004] [Indexed: 11/27/2022]
Abstract
Inteins are self-splicing intervening sequences in proteins, and inteins of pathogenic organisms can be attractive drug targets. Here, we report an intein in important fungal pathogens including Aspergillus fumigatus, Aspergillus nidulans, Histoplasma capsulatum, and different serotypes of Cryptococcus neoformans. This intein is inside the extremely conserved and functionally essential Prp8 protein, and it varies in size from 170 aa in C. neoformans to 819 aa in A. fumigatus, which is caused by the presence or absence of an endonuclease domain and a putative tongs subdomain in the intein. Prp8 inteins of these organisms were demonstrated to do protein splicing in a recombinant protein in Escherichia coli. These findings revealed Prp8 inteins as attractive targets for potential antifungal drugs to be identified using existing selection and screening methods.
Collapse
Affiliation(s)
- Xiang-Qin Liu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 4H7.
| | | |
Collapse
|