101
|
|
102
|
Kim DW, Zavala E, Kim JK. Wearable technology and systems modeling for personalized chronotherapy. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coisb.2020.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
103
|
Roosendaal J, Jacobs BAW, Pluim D, Rosing H, de Vries N, van Werkhoven E, Nuijen B, Beijnen JH, Huitema ADR, Schellens JHM, Marchetti S. Phase I pharmacological study of continuous chronomodulated capecitabine treatment. Pharm Res 2020; 37:89. [PMID: 32382808 PMCID: PMC7205843 DOI: 10.1007/s11095-020-02828-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022]
Abstract
Purpose Capecitabine is an oral pre-pro-drug of the anti-cancer drug 5-fluorouracil (5-FU). The biological activity of the 5-FU degrading enzyme, dihydropyrimidine dehydrogenase (DPD), and the target enzyme thymidylate synthase (TS), are subject to circadian rhythmicity in healthy volunteers. The aim of this study was to determine the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), safety, pharmacokinetics (PK) and pharmacodynamics (PD) of capecitabine therapy adapted to this circadian rhythm (chronomodulated therapy). Methods Patients aged ≥18 years with advanced solid tumours potentially benefitting from capecitabine therapy were enrolled. A classical dose escalation 3 + 3 design was applied. Capecitabine was administered daily without interruptions. The daily dose was divided in morning and evening doses that were administered at 9:00 h and 24:00 h, respectively. The ratio of the morning to the evening dose was 3:5 (morning: evening). PK and PD were examined on treatment days 7 and 8. Results A total of 25 patients were enrolled. The MTD of continuous chronomodulated capecitabine therapy was established at 750/1250 mg/m2/day, and was generally well tolerated. Circadian rhythmicity in the plasma PK of capecitabine, dFCR, dFUR and 5-FU was not demonstrated. TS activity was induced and DPD activity demonstrated circadian rhythmicity during capecitabine treatment. Conclusion The MTD of continuous chronomodulated capecitabine treatment allows for a 20% higher dose intensity compared to the approved regimen (1250 mg/m2 bi-daily on day 1–14 of every 21-day cycle). Chronomodulated treatment with capecitabine is promising and could lead to improved tolerability and efficacy of capecitabine. Electronic supplementary material The online version of this article (10.1007/s11095-020-02828-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeroen Roosendaal
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Louwesweg 6, 1066, EC, Amsterdam, The Netherlands.
| | - Bart A W Jacobs
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Louwesweg 6, 1066, EC, Amsterdam, The Netherlands.,Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Dick Pluim
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Louwesweg 6, 1066, EC, Amsterdam, The Netherlands
| | - Niels de Vries
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Louwesweg 6, 1066, EC, Amsterdam, The Netherlands
| | - Erik van Werkhoven
- Department of Biometrics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Louwesweg 6, 1066, EC, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Louwesweg 6, 1066, EC, Amsterdam, The Netherlands.,Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508, TB, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Louwesweg 6, 1066, EC, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - Jan H M Schellens
- Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508, TB, Utrecht, The Netherlands
| | - Serena Marchetti
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| |
Collapse
|
104
|
Innominato PF, Ballesta A, Huang Q, Focan C, Chollet P, Karaboué A, Giacchetti S, Bouchahda M, Adam R, Garufi C, Lévi FA. Sex-dependent least toxic timing of irinotecan combined with chronomodulated chemotherapy for metastatic colorectal cancer: Randomized multicenter EORTC 05011 trial. Cancer Med 2020; 9:4148-4159. [PMID: 32319740 PMCID: PMC7300418 DOI: 10.1002/cam4.3056] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
The least toxic time (LTT) of irinotecan varied by up to 8 hours according to sex and genetic background in mice. The translational relevance was investigated within a randomized trial dataset, where no LTT stood out significantly in the whole population. 130 male and 63 female eligible patients with metastatic colorectal cancer were randomized to receive chronomodulated Irinotecan with peak delivery rate at 1 of 6 clock hours staggered by 4 hours on day 1, then fixed-time chronomodulated Fluorouracil-Leucovorin-Oxaliplatin for 4 days, q3 weeks. The sex-specific circadian characteristics of grade (G) 3-4 toxicities were mapped with cosinor and time*sex interactions confirmed with Fisher's exact test. Baseline characteristics of male or female patients were similar in the six treatment groups. Main grade 3-4 toxicities over six courses were diarrhea (males vs females, 39.2%; vs 46.0%), neutropenia (15.6% vs 15.0%), fatigue (11.5% vs 15.9%), and anorexia (10.0% vs 7.8%). They were reduced following irinotecan peak delivery in the morning for males, but in the afternoon for females, with statistically significant rhythms (P < .05 from cosinor) and sex*timing interactions (Fisher's exact test, diarrhea, P = .023; neutropenia, P = .015; fatigue, P = .062; anorexia, P = .032). Irinotecan timing was most critical for females, with grades 3-4 ranging from 55.2% of the patients (morning) to 29.4% (afternoon) for diarrhea, and from 25.9% (morning) to 0% (afternoon) for neutropenia. The study results support irinotecan administration in the morning for males and in the afternoon for females, in order to minimize adverse events without impairing efficacy.
Collapse
Affiliation(s)
- Pasquale F Innominato
- North Wales Cancer Centre, Betsi Cadwaladr University Health Board, Bangor, United Kingdom.,Division of Biomedical Sciences, Cancer Chronotherapy Team, Cancer Research Centre, Warwick Medical School, Coventry, United Kingdom.,UMRS 935, "Cancer Chronotherapy and Postoperative Liver Functions", French National Institute for Health and Medical Research (INSERM) and Paris-Sud University, Villejuif, France
| | - Annabelle Ballesta
- Division of Biomedical Sciences, Cancer Chronotherapy Team, Cancer Research Centre, Warwick Medical School, Coventry, United Kingdom.,UMRS 935, "Cancer Chronotherapy and Postoperative Liver Functions", French National Institute for Health and Medical Research (INSERM) and Paris-Sud University, Villejuif, France
| | - Qi Huang
- Division of Biomedical Sciences, Cancer Chronotherapy Team, Cancer Research Centre, Warwick Medical School, Coventry, United Kingdom.,Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Christian Focan
- Department of Oncology, Clinique Saint-Joseph, CHC-Liège Hospital Group, Liège, Belgium
| | - Philippe Chollet
- Clinical and Translational Research Division, Jean Perrin Comprehensive Cancer Centre, Clermont-Ferrand, France
| | | | - Sylvie Giacchetti
- UMRS 935, "Cancer Chronotherapy and Postoperative Liver Functions", French National Institute for Health and Medical Research (INSERM) and Paris-Sud University, Villejuif, France.,Department of Oncology, Saint Louis Hospital, Public Hospitals of Paris (AP-HP), Paris, France
| | - Mohamed Bouchahda
- UMRS 935, "Cancer Chronotherapy and Postoperative Liver Functions", French National Institute for Health and Medical Research (INSERM) and Paris-Sud University, Villejuif, France.,Mousseau Clinics, Evry, France.,Chronotherapy Unit, Department of Medical Oncology, Paul Brousse Hospital, Public Hospitals of Paris (AP-HP), Villejuif, France
| | - René Adam
- UMRS 935, "Cancer Chronotherapy and Postoperative Liver Functions", French National Institute for Health and Medical Research (INSERM) and Paris-Sud University, Villejuif, France.,Hepatobiliary Centre, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Carlo Garufi
- Division of Medical Oncology, San Camillo Forlanini Hospital, Roma, Italy
| | - Francis A Lévi
- Division of Biomedical Sciences, Cancer Chronotherapy Team, Cancer Research Centre, Warwick Medical School, Coventry, United Kingdom.,UMRS 935, "Cancer Chronotherapy and Postoperative Liver Functions", French National Institute for Health and Medical Research (INSERM) and Paris-Sud University, Villejuif, France.,Chronotherapy Unit, Department of Medical Oncology, Paul Brousse Hospital, Public Hospitals of Paris (AP-HP), Villejuif, France
| |
Collapse
|
105
|
Circadian rhythm impacts preclinical FDG-PET quantification in the brain, but not in xenograft tumors. Sci Rep 2020; 10:5587. [PMID: 32221347 PMCID: PMC7101310 DOI: 10.1038/s41598-020-62532-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
The inner clock of biological organisms plays a pivotal role and has strong effects on metabolic processes such as glucose consumption. Since the commonly used positron emission tomography (PET) tracer 18F-flourodeoxygucose (FDG) is a glucose analogue, it is not surprising that the FDG distribution in mice and humans has been shown to succumb to daily rhythms. In preclinical studies, the circadian rhythm of animals is often not considered, and studies are performed at different times of day. Only a few studies have analyzed the effect of the circadian rhythm on FDG uptake in mice, and none of these studies included human tumor xenografts. Therefore, it is not known how strongly a preclinical tumor study is influenced by the time of day. In this work, the effect of the circadian rhythm on FDG uptake in human tumor xenografts and other organs was analyzed. CD1 nu/nu mice were kept for three weeks under a 12 h light/12 h dark rhythm and then injected s.c. with PC3 or A431 tumor cells. When the tumors had reached an appropriate volume, FDG-PET scans were performed on different animal groups (n = 4–5) every 4 h over a time period from 8 A.M. to 8 P.M. Tracer uptake in the tumors and in other organs was determined based on the PET scans and biodistribution studies. The standardized uptake value and %injected dose/cc of the tumors remained constant over the whole observed time period, and no statistically significant differences were determined according to the PET analysis. In the brain, we found a small but statistically significant increase from noon to 4 P.M., which led to a decrease in the tumor-to-brain ratio. No evidence for an effect of the circadian rhythm on FDG uptake could be found in subcutaneous tumors, however, in brain studies the circadian rhythm needs to be considered.
Collapse
|
106
|
Nicolaides NC, Chrousos GP. Sex differences in circadian endocrine rhythms: Clinical implications. Eur J Neurosci 2020; 52:2575-2585. [PMID: 32012359 DOI: 10.1111/ejn.14692] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022]
Abstract
Organisms have developed a highly conserved and tightly regulated circadian system, to adjust their daily activities to day/night cycles. This system consists of a central clock, which is located in the hypothalamic suprachiasmatic nucleus, and the peripheral clocks that are ubiquitously expressed in all tissues. Both the central and peripheral clocks communicate with each other and achieve circadian oscillations of gene expression through transcriptional/translational loops mediated by clock transcription factors. It is worth mentioning that circadian non-transcriptional/non-translational rhythms also occur in non-nucleated cells. Interestingly, sex has been identified as an important factor influencing the activity of the circadian system. Indeed, several sex differences have been documented in the anatomy, physiology and pathophysiology that pertain to circadian rhythms. In this review, we present the historical milestones of understanding circadian rhythms, describe the central and peripheral components of the circadian clock system, discuss representative examples of sexual dimorphism of circadian rhythms, and present the most relevant clinical implications.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,UNESCO Chair on Adolescent Health Care, and University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,UNESCO Chair on Adolescent Health Care, and University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
107
|
Gu F, Farrugia MK, Duncan WD, Feng Y, Hutson AD, Schlecht NF, Repasky EA, Antoch MP, Miller A, Platek A, Platek ME, Iovoli AJ, Singh AK. Daily Time of Radiation Treatment Is Associated with Subsequent Oral Mucositis Severity during Radiotherapy in Head and Neck Cancer Patients. Cancer Epidemiol Biomarkers Prev 2020; 29:949-955. [PMID: 32098893 DOI: 10.1158/1055-9965.epi-19-0961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Limited treatment options are available for oral mucositis, a common, debilitating complication of cancer therapy. We examined the association between daily delivery time of radiotherapy and the severity of oral mucositis in patients with head and neck cancer. METHODS We used electronic medical records of 190 patients with head and neck squamous cell carcinoma who completed radiotherapy, with or without concurrent chemotherapy, at Roswell Park Comprehensive Cancer Center (Buffalo, NY) between 2015 and 2017. Throughout a 7-week treatment course, patient mouth and throat soreness (MTS) was self-reported weekly using a validated oral mucositis questionnaire, with responses 0 (no) to 4 (extreme). Average treatment times from day 1 until the day before each mucositis survey were categorized into seven groups. Multivariable-adjusted marginal average scores (LSmeans) were estimated for the repeated- and maximum-MTS, using a linear-mixed model and generalized-linear model, respectively. RESULTS Radiation treatment time was significantly associated with oral mucositis severity using both repeated-MTS (n = 1,156; P = 0.02) and maximum-MTS (n = 190; P = 0.04), with consistent patterns. The severity was lowest for patients treated during 8:30 to <9:30 am (LSmeans for maximum-MTS = 2.24; SE = 0.15), increased at later treatment times and peaked at early afternoon (11:30 am to <3:00 pm, LSmeans = 2.66-2.71; SEs = 0.16/0.17), and then decreased substantially after 3 pm. CONCLUSIONS We report a significant association between radiation treatment time and oral mucositis severity in patients with head and neck cancer. IMPACT Although additional studies are needed, these data suggest a potential simple treatment time solution to limit severity of oral mucositis during radiotherapy without increasing cost.
Collapse
Affiliation(s)
- Fangyi Gu
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| | - Mark K Farrugia
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - William D Duncan
- University at Buffalo, The State University of New York, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Yingdong Feng
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Alan D Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Nicolas F Schlecht
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Marina P Antoch
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Austin Miller
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Alexis Platek
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- University at Buffalo, The State University of New York, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Mary E Platek
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- D'Youville College, Buffalo, New York
| | - Austin J Iovoli
- University at Buffalo, The State University of New York, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
108
|
Costantini C, Renga G, Sellitto F, Borghi M, Stincardini C, Pariano M, Zelante T, Chiarotti F, Bartoli A, Mosci P, Romani L, Brancorsini S, Bellet MM. Microbes in the Era of Circadian Medicine. Front Cell Infect Microbiol 2020; 10:30. [PMID: 32117804 PMCID: PMC7013081 DOI: 10.3389/fcimb.2020.00030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
The organisms of most domains of life have adapted to circadian changes of the environment and regulate their behavior and physiology accordingly. A particular case of such paradigm is represented by some types of host-pathogen interaction during infection. Indeed, not only some hosts and pathogens are each endowed with their own circadian clock, but they are also influenced by the circadian changes of the other with profound consequences on the outcome of the infection. It comes that daily fluctuations in the availability of resources and the nature of the immune response, coupled with circadian changes of the pathogen, may influence microbial virulence, level of colonization and damage to the host, and alter the equilibrium between commensal and invading microorganisms. In the present review, we discuss the potential relevance of circadian rhythms in human bacterial and fungal pathogens, and the consequences of circadian changes of the host immune system and microbiome on the onset and development of infection. By looking from the perspective of the interplay between host and microbes circadian rhythms, these concepts are expected to change the way we approach human infections, not only by predicting the outcome of the host-pathogen interaction, but also by indicating the best time for intervention to potentiate the anti-microbial activities of the immune system and to weaken the pathogen when its susceptibility is higher.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Federica Sellitto
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Flavia Chiarotti
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Mosci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
109
|
De los Santos H, Collins EJ, Mann C, Sagan AW, Jankowski MS, Bennett KP, Hurley JM. ECHO: an application for detection and analysis of oscillators identifies metabolic regulation on genome-wide circadian output. Bioinformatics 2020; 36:773-781. [PMID: 31384918 PMCID: PMC7523678 DOI: 10.1093/bioinformatics/btz617] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 01/07/2023] Open
Abstract
MOTIVATION Time courses utilizing genome scale data are a common approach to identifying the biological pathways that are controlled by the circadian clock, an important regulator of organismal fitness. However, the methods used to detect circadian oscillations in these datasets are not able to accommodate changes in the amplitude of the oscillations over time, leading to an underestimation of the impact of the clock on biological systems. RESULTS We have created a program to efficaciously identify oscillations in large-scale datasets, called the Extended Circadian Harmonic Oscillator application, or ECHO. ECHO utilizes an extended solution of the fixed amplitude oscillator that incorporates the amplitude change coefficient. Employing synthetic datasets, we determined that ECHO outperforms existing methods in detecting rhythms with decreasing oscillation amplitudes and in recovering phase shift. Rhythms with changing amplitudes identified from published biological datasets revealed distinct functions from those oscillations that were harmonic, suggesting purposeful biologic regulation to create this subtype of circadian rhythms. AVAILABILITY AND IMPLEMENTATION ECHO's full interface is available at https://github.com/delosh653/ECHO. An R package for this functionality, echo.find, can be downloaded at https://CRAN.R-project.org/package=echo.find. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hannah De los Santos
- Department of Computer Science, Troy, NY 12180, USA,Institute for Data Exploration and Applications, Troy, NY 12180, USA
| | | | | | - April W Sagan
- Department of Mathematical Sciences, Troy, NY 12180, USA
| | | | - Kristin P Bennett
- Department of Computer Science, Troy, NY 12180, USA,Institute for Data Exploration and Applications, Troy, NY 12180, USA,Department of Mathematical Sciences, Troy, NY 12180, USA
| | - Jennifer M Hurley
- Department of Biological Sciences, Troy, NY 12180, USA,Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA,To whom correspondence should be addressed.
| |
Collapse
|
110
|
Hill RJW, Innominato PF, Lévi F, Ballesta A. Optimizing circadian drug infusion schedules towards personalized cancer chronotherapy. PLoS Comput Biol 2020; 16:e1007218. [PMID: 31986133 PMCID: PMC7004559 DOI: 10.1371/journal.pcbi.1007218] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/06/2020] [Accepted: 11/21/2019] [Indexed: 11/18/2022] Open
Abstract
Precision medicine requires accurate technologies for drug administration and proper systems pharmacology approaches for patient data analysis. Here, plasma pharmacokinetics (PK) data of the OPTILIV trial in which cancer patients received oxaliplatin, 5-fluorouracil and irinotecan via chronomodulated schedules delivered by an infusion pump into the hepatic artery were mathematically investigated. A pump-to-patient model was designed in order to accurately represent the drug solution dynamics from the pump to the patient blood. It was connected to semi-mechanistic PK models to analyse inter-patient variability in PK parameters. Large time delays of up to 1h41 between the actual pump start and the time of drug detection in patient blood was predicted by the model and confirmed by PK data. Sudden delivery spike in the patient artery due to glucose rinse after drug administration accounted for up to 10.7% of the total drug dose. New model-guided delivery profiles were designed to precisely lead to the drug exposure intended by clinicians. Next, the complete mathematical framework achieved a very good fit to individual time-concentration PK profiles and concluded that inter-subject differences in PK parameters was the lowest for irinotecan, intermediate for oxaliplatin and the largest for 5-fluorouracil. Clustering patients according to their PK parameter values revealed patient subgroups for each drug in which inter-patient variability was largely decreased compared to that in the total population. This study provides a complete mathematical framework to optimize drug infusion pumps and inform on inter-patient PK variability, a step towards precise and personalized cancer chronotherapy. Accuracy and safety of infusion pumps remain a critical issue in the clinics and the development of accurate mathematical models to optimize drug administration though such devices has a key part to play in the advancement of precision medicine. Here, PK data from cancer patient receiving irinotecan, oxaliplatin and 5-fluorouracil into the hepatic artery via an infusion pump was mathematically investigated. A pump-to-patient model was designed and revealed significant inconsistencies between intended drug profiles and actual plasma concentrations. This mathematical model was then used to suggest improved profiles in order to minimise error and optimise delivery. Physiologically-based PK models of the three drugs were then linked to the pump-to-patient model. The whole framework achieved a very good fit to data and allowed quantifying inter-patient variability in PK parameters and linking them to potential clinical biomarkers via patient clustering. The developed methodology improves our understanding of patient-specific drug pharmacokinetics towards personalized drug administration.
Collapse
Affiliation(s)
- Roger J W Hill
- EPSRC & MRC Centre for Doctoral Training in Mathematics for Real-World Systems, University of Warwick, Coventry, UK
| | - Pasquale F Innominato
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, UK.,Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Francis Lévi
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,INSERM and Paris Sud university, UMRS 935, Team "Cancer Chronotherapy and Postoperative Liver Functions", Campus CNRS, Villejuif, F-94807, France. & Honorary position, University of Warwick, UK
| | - Annabelle Ballesta
- INSERM and Paris Sud university, UMRS 935, Team "Cancer Chronotherapy and Postoperative Liver Functions", Campus CNRS, Villejuif, F-94807, France. & Honorary position, University of Warwick, UK
| |
Collapse
|
111
|
Re GL, Santeufemia DA, Re FL, Bortolus R, Doretto P, Marus W, Buttazzi L, Lenardon O, Falda A, Piazza R, Sulfaro S. Interleukin-2 chronotherapy for metastatic renal cell carcinoma: Results of a phase I-II study. Cytokine 2020; 128:154984. [PMID: 31972343 DOI: 10.1016/j.cyto.2019.154984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/20/2019] [Accepted: 12/31/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Interleukin-2 (IL-2) was the cornerstone treatment for metastatic renal cell carcinoma (RCC) until the advent of tyrosine kinase inhibitors, but it still has therapeutic value. As a single bolus of IL-2 causes toxicity, there is interest in administration regimens with better tolerability and efficacy. Chronotherapy is the administration of therapy according to the circadian rhythm's influence on the immune and hormonal systems. This phase I-II trial evaluated the safety of IL-2 chronotherapy in metastatic RCC patients and determined the maximum tolerated dose. The secondary objective was to identify prognostic factors for survival. METHODS Three chronomodulation schedules (5:00-13:00, 13:00-21:00, and 21:00-5:00) were tested. Each schedule was an 8-h IL-2 infusion, with a Gaussian distribution of drug concentration peaking at 4 h. To identify the maximum tolerated dose, the dose for different patients was escalated from 2 MIU/m2 (level I) to 18.6 MIU/m2 (level VI). RESULTS Thirty patients were enrolled and completed treatment. Two patients were treated at 5:00-13:00, 15 at 13:00-21:00, and 13 at 21:00-5:00. Nine cases of grade 3 toxicity occurred in 7 patients at the highest dose (18.6 MIU/m2); no grade 4 toxicity occurred. The maximum tolerated dose was 14.0 MUI/m2. Patients were followed for a median of 16 months (range, 2-107). One patient was lost to follow-up, 3 patients were alive at last contact, and 26 patients died. Six patients achieved long-term survival (≥48 months). There was one complete response, four partial responses, 11 cases of stable disease and 14 of progressive disease. The response rate was 16% (5/30) and disease-control rate was 53% (16/30). Median progression-free survival was 4.5 months, and median overall survival was 14.5 months. Kaplan-Meier analyses revealed significant associations between overall survival and ECOG performance score (0 vs. 1-2), MSKCC score (0-2 vs. ≥ 3), IMDC risk score (0-2 vs. ≥ 3), IL-2 dose level (IV-VI vs. I-III), and prolactin (increase vs. no increase), and but not for chronotherapy schedule. CONCLUSION IL-2 chronotherapy appears to be safe, moderately toxic and active in metastatic RCC. It may represent a new modality of IL-2 administration for these patients.
Collapse
Affiliation(s)
- Giovanni Lo Re
- Medical Oncology and Immune-Related Tumors, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Gallini 2, 33081 Aviano, PN, Italy.
| | - Davide A Santeufemia
- Oncology Unit, Alghero Hospital, ASSL Sassari, Via Don Minzoni 137, I-07041 Alghero, SS, Italy.
| | - Francesco Lo Re
- Pharmacology and Clinical Toxicology, University of Milan, Via Vanvitelli 32, I-20129 Milan, MI, Italy.
| | - Roberto Bortolus
- Radiotherapy Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Gallini 2, I-33081 Aviano, PN, Italy.
| | - Paolo Doretto
- Clinical Pathology, AAS5 Pordenonese, Via Montereale 24, I-33170 Pordenone, Italy.
| | - Wally Marus
- Pathology, AAS5 Pordenonese, Via Montereale 24, I-33170 Pordenone, Italy.
| | - Lorenzo Buttazzi
- Urology Unit, AAS5 Pordenonese, Via Montereale 24, I-33170 Pordenone, Italy.
| | - Oliviero Lenardon
- Urology Unit, AAS5 Pordenonese, Via Montereale 24, I-33170 Pordenone, Italy.
| | - Alessandra Falda
- Clinical Pathology, AAS5 Pordenonese, Via Montereale 24, I-33170 Pordenone, Italy.
| | - Rita Piazza
- Cardiology Unit, AAS5 Pordenonese, Via Montereale 24, I-33170 Pordenone, Italy.
| | - Sandro Sulfaro
- Pathology, AAS5 Pordenonese, Via Montereale 24, I-33170 Pordenone, Italy.
| |
Collapse
|
112
|
Ndikung J, Storm D, Violet N, Kramer A, Schönfelder G, Ertych N, Oelgeschläger M. Restoring circadian synchrony in vitro facilitates physiological responses to environmental chemicals. ENVIRONMENT INTERNATIONAL 2020; 134:105265. [PMID: 31734582 DOI: 10.1016/j.envint.2019.105265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The growing requirement of hazard and risk assessment of environmental chemicals and the efforts to minimize animal testing, increases the demand for innovative and predictive in vitro test systems in toxicology, reflecting the physiological conditions of human nature. Here, an elemental factor regulating a variety of physiological processes is the day-night rhythm. This circadian rhythm, describing a biological oscillation with a 24-h period is hardly acknowledged in toxicology and test method development. Whilst, in animals or humans the entire organism exhibits a rigorous cellular circadian synchrony, in conventional in vitro systems each cell follows its own rhythm, due to the absence of appropriate synchronizing signals. OBJECTIVE Here we investigated whether circadian synchronization of human cells in an in vitro system improves the cellular response and, thus, increases the sensitivity of the test system. Since the circadian regulation of metabolism is particularly well understood, and dioxin and dioxin-like compounds are of major concern for environmental health we focused on the ubiquitous drug metabolizing detoxification system mediated by the aryl hydrocarbon receptor (AHR). METHODS To this end, we applied various prototypical AHR activators onto different human cell lines under non-synchronized or circadian synchronized conditions and determined the dose response on representative endogenous target genes. RESULTS Remarkably, the cellular response dynamic upon chemical treatment was substantially enhanced in circadian synchronized cells and followed a rhythmic expression pattern. This broader dynamic range was associated with a strikingly higher induction of AHR target genes and the corresponding enzymatic activity, thereby rather mimicking the in vivo situation. CONCLUSION Our findings indicate that a synchronized circadian rhythm in a cell culture based test system can improve the physiological relevance of an appropriate in vitro method by reflecting the biological in vivo situation more closely. Accordingly, it is a promising tool to facilitate the wide acceptance of in vitro methods in the field of regulatory toxicology and to further optimize the toxicological assessment of environmental chemicals.
Collapse
Affiliation(s)
- Johanna Ndikung
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Dorothe Storm
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Norman Violet
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité - Universitätsmedizin Berlin, Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany; Department of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Germany
| | - Norman Ertych
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany.
| | - Michael Oelgeschläger
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| |
Collapse
|
113
|
Dibner C. The importance of being rhythmic: Living in harmony with your body clocks. Acta Physiol (Oxf) 2020; 228:e13281. [PMID: 30980501 DOI: 10.1111/apha.13281] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
Circadian rhythms have developed in all light-sensitive organisms, including humans, as a fundamental anticipatory mechanism that enables proactive adaptation to environmental changes. The circadian system is organized in a highly hierarchical manner, with clocks operative in most cells of the body ensuring the temporal coordination of physiological processes. Circadian misalignment, stemming from modern life style, draws increasing attention due to its tight association with the development of metabolic, cardiovascular, inflammatory and mental diseases as well as cancer. This review highlights recent findings emphasizing the role of the circadian system in the temporal orchestration of physiology, with a particular focus on implications of circadian misalignment in human pathologies.
Collapse
Affiliation(s)
- Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Medicine University Hospital of Geneva Geneva Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine University of Geneva Geneva Switzerland
- Diabetes Center, Faculty of Medicine University of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3) Geneva Switzerland
| |
Collapse
|
114
|
Xu W, Xu M, Wang L, Zhou W, Xiang R, Shi Y, Zhang Y, Piao Y. Integrative analysis of DNA methylation and gene expression identified cervical cancer-specific diagnostic biomarkers. Signal Transduct Target Ther 2019; 4:55. [PMID: 31871774 PMCID: PMC6908647 DOI: 10.1038/s41392-019-0081-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the leading cause of death among women with cancer worldwide. Here, we performed an integrative analysis of Illumina HumanMethylation450K and RNA-seq data from TCGA to identify cervical cancer-specific DNA methylation markers. We first identified differentially methylated and expressed genes and examined the correlation between DNA methylation and gene expression. The DNA methylation profiles of 12 types of cancers, including cervical cancer, were used to generate a candidate set, and machine-learning techniques were adopted to define the final cervical cancer-specific markers in the candidate set. Then, we assessed the protein levels of marker genes by immunohistochemistry by using tissue arrays containing 93 human cervical squamous cell carcinoma samples and cancer-adjacent normal tissues. Promoter methylation was negatively correlated with the local regulation of gene expression. In the distant regulation of gene expression, the methylation of hypermethylated genes was more likely to be negatively correlated with gene expression, while the methylation of hypomethylated genes was more likely to be positively correlated with gene expression. Moreover, we identified four cervical cancer-specific methylation markers, cg07211381 (RAB3C), cg12205729 (GABRA2), cg20708961 (ZNF257), and cg26490054 (SLC5A8), with 96.2% sensitivity and 95.2% specificity by using the tenfold cross-validation of TCGA data. The four markers could distinguish tumors from normal tissues with a 94.2, 100, 100, and 100% AUC in four independent validation sets from the GEO database. Overall, our study demonstrates the potential use of methylation markers in cervical cancer diagnosis and may boost the development of new epigenetic therapies.
Collapse
Affiliation(s)
- Wanxue Xu
- School of Medicine, Nankai University, Tianjin, China
| | - Mengyao Xu
- School of Medicine, Nankai University, Tianjin, China
| | - Longlong Wang
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Wei Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Yi Shi
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yunshan Zhang
- Reproductive Medical Center, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yongjun Piao
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
115
|
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet 2019. [PMID: 29520731 PMCID: PMC6132501 DOI: 10.1007/s40262-018-0644-7] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its clinical introduction in 1998, the topoisomerase I inhibitor irinotecan has been widely used in the treatment of solid tumors, including colorectal, pancreatic, and lung cancer. Irinotecan therapy is characterized by several dose-limiting toxicities and large interindividual pharmacokinetic variability. Irinotecan has a highly complex metabolism, including hydrolyzation by carboxylesterases to its active metabolite SN-38, which is 100- to 1000-fold more active compared with irinotecan itself. Several phase I and II enzymes, including cytochrome P450 (CYP) 3A4 and uridine diphosphate glucuronosyltransferase (UGT) 1A, are involved in the formation of inactive metabolites, making its metabolism prone to environmental and genetic influences. Genetic variants in the DNA of these enzymes and transporters could predict a part of the drug-related toxicity and efficacy of treatment, which has been shown in retrospective and prospective trials and meta-analyses. Patient characteristics, lifestyle and comedication also influence irinotecan pharmacokinetics. Other factors, including dietary restriction, are currently being studied. Meanwhile, a more tailored approach to prevent excessive toxicity and optimize efficacy is warranted. This review provides an updated overview on today’s literature on irinotecan pharmacokinetics, pharmacodynamics, and pharmacogenetics.
Collapse
Affiliation(s)
- Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Andrew K L Goey
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands.
| |
Collapse
|
116
|
Tang Q, Xie M, Yu S, Zhou X, Xie Y, Chen G, Guo F, Chen L. Periodic Oxaliplatin Administration in Synergy with PER2-Mediated PCNA Transcription Repression Promotes Chronochemotherapeutic Efficacy of OSCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900667. [PMID: 31728273 PMCID: PMC6839751 DOI: 10.1002/advs.201900667] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/08/2019] [Indexed: 05/21/2023]
Abstract
Developing chemotherapeutic resistance affects clinical outcomes of oxaliplatin treatment on various types of cancer. Thus, it is imperative to explore alternative therapeutic strategies to improve the efficacy of oxaliplatin. Here, it is shown that circadian regulator period 2 (PER2) can potentiate the cytotoxicity of oxaliplatin and boost cell apoptosis by inhibiting DNA adducts repair in human oral squamous cell carcinoma (OSCC) cells. The circadian timing system is closely involved in controling the activity of DNA adducts repair and gives it a 24 h rhythm. The mechanistic dissection clarifies that PER2 can periodically suppress proliferating cell nuclear antigen (PCNA) transcription by pulling down circadian locomotor output cycles kaput-brain and muscle arnt-like 1 heterodimer from PCNA promoter in a CRY1/2-dependent manner, which subsequently impedes oxaliplatin-induced DNA adducts repair. Similarly, PER2 is capable of improving the efficacy of classical DNA-damaging chemotherapeutic agents. The tumor-bearing mouse model displays PER2 can be deployed as an oxaliplatin administration timing biomarker. In summary, it is believed that the chronochemotherapeutic strategy matching PER2 expression rhythm can efficiently improve the oxaliplatin efficacy of OSCC.
Collapse
Affiliation(s)
- Qingming Tang
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Mengru Xie
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shaoling Yu
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xin Zhou
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yanling Xie
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Guangjin Chen
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Fengyuan Guo
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lili Chen
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
117
|
Disruption of the Molecular Circadian Clock and Cancer: An Epigenetic Link. Biochem Genet 2019; 58:189-209. [DOI: 10.1007/s10528-019-09938-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
|
118
|
Komarzynski S, Bolborea M, Huang Q, Finkenstädt B, Lévi F. Predictability of individual circadian phase during daily routine for medical applications of circadian clocks. JCI Insight 2019; 4:130423. [PMID: 31430260 PMCID: PMC6795290 DOI: 10.1172/jci.insight.130423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDCircadian timing of treatments can largely improve tolerability and efficacy in patients. Thus, drug metabolism and cell cycle are controlled by molecular clocks in each cell and coordinated by the core body temperature 24-hour rhythm, which is generated by the hypothalamic pacemaker. Individual circadian phase is currently estimated with questionnaire-based chronotype, center-of-rest time, dim light melatonin onset (DLMO), or timing of core body temperature (CBT) maximum (acrophase) or minimum (bathyphase).METHODSWe aimed at circadian phase determination and readout during daily routines in volunteers stratified by sex and age. We measured (a) chronotype, (b) every minute (q1min) CBT using 2 electronic pills swallowed 24 hours apart, (c) DLMO through hourly salivary samples from 1800 hours to bedtime, and (d) q1min accelerations and surface temperature at anterior chest level for 7 days, using a teletransmitting sensor. Circadian phases were computed using cosinor and hidden Markov modeling. Multivariate regression identified the combination of biomarkers that best predicted core temperature circadian bathyphase.RESULTSAmong the 33 participants, individual circadian phases were spread over 5 hours, 10 minutes (DLMO); 7 hours (CBT bathyphase); and 9 hours, 10 minutes (surface temperature acrophase). CBT bathyphase was accurately predicted, i.e., with an error less than 1 hour for 78.8% of the subjects, using a new digital health algorithm (INTime), combining time-invariant sex and chronotype score with computed center-of-rest time and surface temperature bathyphase (adjusted R2 = 0.637).CONCLUSIONINTime provided a continuous and reliable circadian phase estimate in real time. This model helps integrate circadian clocks into precision medicine and will enable treatment timing personalization following further validation.FUNDINGMedical Research Council, United Kingdom; AP-HP Foundation; and INSERM.
Collapse
Affiliation(s)
- Sandra Komarzynski
- Medical School, Warwick University, Coventry, United Kingdom
- INSERM-Warwick European Associated Laboratory, INSERM U935, Villejuif, France
| | - Matei Bolborea
- Medical School, Warwick University, Coventry, United Kingdom
- School of Life Sciences and
| | - Qi Huang
- Medical School, Warwick University, Coventry, United Kingdom
- Department of Statistics, Warwick University, Coventry, United Kingdom
| | - Bärbel Finkenstädt
- INSERM-Warwick European Associated Laboratory, INSERM U935, Villejuif, France
- Department of Statistics, Warwick University, Coventry, United Kingdom
| | - Francis Lévi
- Medical School, Warwick University, Coventry, United Kingdom
- INSERM-Warwick European Associated Laboratory, INSERM U935, Villejuif, France
| |
Collapse
|
119
|
Chen M, Guan B, Xu H, Yu F, Zhang T, Wu B. The Molecular Mechanism Regulating Diurnal Rhythm of Flavin-Containing Monooxygenase 5 in Mouse Liver. Drug Metab Dispos 2019; 47:1333-1342. [PMID: 31515204 DOI: 10.1124/dmd.119.088450] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/28/2019] [Indexed: 01/06/2023] Open
Abstract
Flavin-containing monooxygenase 5 (FMO5) is a phase I enzyme that plays an important role in xenobiotic metabolism. Here, we aimed to characterize diurnal rhythms of Fmo5 expression and activity in mouse liver and to investigate the potential roles of clock genes (Bmal1, Rev-erbα, and E4bp4) in the generation of diurnal rhythms. Fmo5 mRNA and protein showed robust diurnal rhythms, with peak values at zeitgeber time (ZT) 10/14 and trough values at ZT2/22 in mouse liver. Consistently, a diurnal rhythm was observed for in vitro microsomal Baeyer-Villiger oxidation of pentoxifylline (PTX), a specific reaction catalyzed by Fmo5. Pharmacokinetic studies revealed a more extensive Baeyer-Villiger oxidation of PTX at dosing time of ZT14 than at ZT2, consistent with the diurnal pattern of Fmo5 protein. Fmo5 expression was downregulated and its rhythm was blunted in Bmal1 -/- and Rev-erbα -/- mice. Positive regulation of Fmo5 by Bmal1 and Rev-erbα was confirmed in primary mouse hepatocytes and/or Hepa1-6 cells. Furthermore, Fmo5 expression was upregulated and its rhythm was attenuated in E4bp4 -/- mice. Negative regulation of Fmo5 by E4bp4 was validated using primary mouse hepatocytes. Combined luciferase reporter and chromatin immunoprecipitation assays demonstrated that Bmal1 (a known Rev-erbα activator) activated Fmo5 transcription via direct binding to an E-box (-1822/-1816 bp) in the promoter, whereas E4bp4 (a known Rev-erbα target gene) inhibited Fmo5 transcription by binding to two D-boxes (-1726/-1718 and -804/-796 bp). In conclusion, circadian clock genes control diurnal expression of Fmo5 through transcriptional actions on E-box and D-box cis-elements. SIGNIFICANCE STATEMENT: Hepatic Fmo5 displayed diurnal rhythmicities in expression and activity in mice. We uncovered the molecular mechanism by which the rhythmic Fmo5 expression was generated. Fmo5 promoter presents E-box and D-box binding elements for transcriptional actions from circadian clock proteins such as Bmal1, E4bp4, and Dbp. These findings have implications for understanding clock-controlled drug metabolism and for facilitating the practice of chronotherapeutics.
Collapse
Affiliation(s)
- Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics (M.C., H.X., FY., T.Z., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) (M.C., B.W.), College of Pharmacy, Jinan University, Guangzhou, China; and Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China (B.G.)
| | - Baozhang Guan
- Research Center for Biopharmaceutics and Pharmacokinetics (M.C., H.X., FY., T.Z., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) (M.C., B.W.), College of Pharmacy, Jinan University, Guangzhou, China; and Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China (B.G.)
| | - Haiman Xu
- Research Center for Biopharmaceutics and Pharmacokinetics (M.C., H.X., FY., T.Z., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) (M.C., B.W.), College of Pharmacy, Jinan University, Guangzhou, China; and Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China (B.G.)
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics (M.C., H.X., FY., T.Z., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) (M.C., B.W.), College of Pharmacy, Jinan University, Guangzhou, China; and Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China (B.G.)
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics (M.C., H.X., FY., T.Z., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) (M.C., B.W.), College of Pharmacy, Jinan University, Guangzhou, China; and Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China (B.G.)
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics (M.C., H.X., FY., T.Z., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) (M.C., B.W.), College of Pharmacy, Jinan University, Guangzhou, China; and Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China (B.G.)
| |
Collapse
|
120
|
Sullivan KA, Bever SR, McKim DB, Godbout JP, Sheridan JF, Obrietan K, Pyter LM. Mammary tumors compromise time-of-day differences in hypothalamic gene expression and circadian behavior and physiology in mice. Brain Behav Immun 2019; 80:805-817. [PMID: 31108169 PMCID: PMC6664435 DOI: 10.1016/j.bbi.2019.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 01/11/2023] Open
Abstract
Circadian rhythms influence various aspects of biology, including hormonal, immunological, and behavioral processes. These 24-hour oscillations are necessary to optimize cellular functions and to synchronize these processes with the environment. Breast cancer patients and survivors frequently report disruptions in circadian oscillations that adversely affect quality-of-life, including fragmented sleep-wake cycles and flattened cortisol rhythms, which are associated with negative behavioral comorbidities (e.g., fatigue). However, the potential causal role of tumor biology in circadian dysregulation has not been investigated. Here, we examined the extent to which sham surgery, non-metastatic mammary tumors, or mammary tumor removal in mice disrupts circadian rhythms in brain clock gene expression, locomotor behavior (free-running and entrained), and physiological rhythms that have been associated with cancer behavioral comorbidities. Tumors and tumor resection altered time-of-day differences in hypothalamic expression of eight circadian-regulated genes. The onset of activity in entrained running behavior was advanced in tumor-bearing mice, and the amplitude of free-running rhythms was increased in tumor-resected mice. Tumors flattened rhythms in circulating corticosterone and Ly6cHi monocytes which were largely restored by surgical tumor resection. This work implies that tumors alone may directly impact central and/or peripheral circadian rhythmicity in breast cancer patients, and that these effects may persist in cancer survivors, potentially contributing to behavioral comorbidities.
Collapse
Affiliation(s)
- Kyle A Sullivan
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Savannah R Bever
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel B McKim
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Department of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Leah M Pyter
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Departments of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center and Solove Research Institute, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
121
|
Sex-, feeding-, and circadian time-dependency of P-glycoprotein expression and activity - implications for mechanistic pharmacokinetics modeling. Sci Rep 2019; 9:10505. [PMID: 31324853 PMCID: PMC6642159 DOI: 10.1038/s41598-019-46977-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
P-glycoprotein (P-gp) largely influences the pharmacokinetics (PK) and toxicities of xenobiotics in a patient-specific manner so that personalized drug scheduling may lead to significant patient's benefit. This systems pharmacology study investigated P-gp activity in mice according to organ, sex, feeding status, and circadian time. Sex-specific circadian changes were found in P-gp ileum mRNA and protein levels, circadian amplitudes being larger in females as compared to males. Plasma, ileum and liver concentrations of talinolol, a pure P-gp substrate, significantly differed according to sex, feeding and circadian timing. A physiologically-based PK model was designed to recapitulate these datasets. Estimated mesors (rhythm-adjusted mean) of ileum and hepatic P-gp activity were higher in males as compared to females. Circadian amplitudes were consistently higher in females and circadian maxima varied by up to 10 h with respect to sex. Fasting increased P-gp activity mesor and dampened its rhythm. Ex-vivo bioluminescence recordings of ileum mucosae from transgenic mice revealed endogenous circadian rhythms of P-gp protein expression with a shorter period, larger amplitude, and phase delay in females as compared to males. Importantly, this study provided model structure and parameter estimates to refine PK models of any P-gp substrate to account for sex, feeding and circadian rhythms.
Collapse
|
122
|
Kim DW, Chang C, Chen X, Doran AC, Gaudreault F, Wager T, DeMarco GJ, Kim JK. Systems approach reveals photosensitivity and PER2 level as determinants of clock-modulator efficacy. Mol Syst Biol 2019; 15:e8838. [PMID: 31353796 PMCID: PMC6613017 DOI: 10.15252/msb.20198838] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/30/2022] Open
Abstract
In mammals, the master circadian clock synchronizes daily rhythms of physiology and behavior with the day-night cycle. Failure of synchrony, which increases the risk for numerous chronic diseases, can be treated by phase adjustment of the circadian clock pharmacologically, for example, with melatonin, or a CK1δ/ε inhibitor. Here, using in silico experiments with a systems pharmacology model describing molecular interactions, and pharmacokinetic and behavioral experiments in cynomolgus monkeys, we find that the circadian phase delay caused by CK1δ/ε inhibition is more strongly attenuated by light in diurnal monkeys and humans than in nocturnal mice, which are common preclinical models. Furthermore, the effect of CK1δ/ε inhibition strongly depends on endogenous PER2 protein levels, which differs depending on both the molecular cause of the circadian disruption and the patient's lighting environment. To circumvent such large interindividual variations, we developed an adaptive chronotherapeutics to identify precise dosing regimens that could restore normal circadian phase under different conditions. Our results reveal the importance of photosensitivity in the clinical efficacy of clock-modulating drugs, and enable precision medicine for circadian disruption.
Collapse
Affiliation(s)
- Dae Wook Kim
- Department of Mathematical SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Cheng Chang
- Clinical PharmacologyPfizer Global Product DevelopmentPfizer Inc.GrotonCTUSA
| | - Xian Chen
- Comparative Medicine, Worldwide Research & DevelopmentPfizer Inc.CambridgeMAUSA
| | - Angela C Doran
- Enzymology and Transporter Group, Pharmacokinetics, Dynamics and Metabolism, Worldwide Research & DevelopmentPfizer Inc.GrotonCTUSA
| | - Francois Gaudreault
- Clinical Pharmacology and Pharmacometrics, Research & DevelopmentBiogen Inc.CambridgeMAUSA
| | - Travis Wager
- Neuroscience Research UnitWorldwide Research & DevelopmentPfizer Inc.BostonMAUSA
| | - George J DeMarco
- Department of Animal MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Jae Kyoung Kim
- Department of Mathematical SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
| |
Collapse
|
123
|
Huang Q, Cohen D, Komarzynski S, Li XM, Innominato P, Lévi F, Finkenstädt B. Hidden Markov models for monitoring circadian rhythmicity in telemetric activity data. J R Soc Interface 2019; 15:rsif.2017.0885. [PMID: 29436510 PMCID: PMC5832732 DOI: 10.1098/rsif.2017.0885] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/11/2018] [Indexed: 12/22/2022] Open
Abstract
Wearable computing devices allow collection of densely sampled real-time information on movement enabling researchers and medical experts to obtain objective and non-obtrusive records of actual activity of a subject in the real world over many days. Our interest here is motivated by the use of activity data for evaluating and monitoring the circadian rhythmicity of subjects for research in chronobiology and chronotherapeutic healthcare. In order to translate the information from such high-volume data arising we propose the use of a Markov modelling approach which (i) naturally captures the notable square wave form observed in activity data along with heterogeneous ultradian variances over the circadian cycle of human activity, (ii) thresholds activity into different states in a probabilistic way while respecting time dependence and (iii) gives rise to circadian rhythm parameter estimates, based on probabilities of transitions between rest and activity, that are interpretable and of interest to circadian research.
Collapse
Affiliation(s)
- Qi Huang
- Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
| | - Dwayne Cohen
- Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Xiao-Mei Li
- INSERM U935, Hospital Paul Brousse and University Paris-Saclay, Villejuif, 94800, France
| | - Pasquale Innominato
- Medical School, University of Warwick, Coventry, CV4 7AL, UK.,Department of Oncology, North Wales Cancer Treatment Centre, Bodelwyddan, LL18 5UJ, UK
| | - Francis Lévi
- Medical School, University of Warwick, Coventry, CV4 7AL, UK.,INSERM U935, Hospital Paul Brousse and University Paris-Saclay, Villejuif, 94800, France
| | | |
Collapse
|
124
|
Paatela E, Munson D, Kikyo N. Circadian Regulation in Tissue Regeneration. Int J Mol Sci 2019; 20:ijms20092263. [PMID: 31071906 PMCID: PMC6539890 DOI: 10.3390/ijms20092263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms regulate over 40% of protein-coding genes in at least one organ in the body through mechanisms tied to the central circadian clock and to cell-intrinsic auto-regulatory feedback loops. Distinct diurnal differences in regulation of regeneration have been found in several organs, including skin, intestinal, and hematopoietic systems. Each regenerating system contains a complex network of cell types with different circadian mechanisms contributing to regeneration. In this review, we elucidate circadian regeneration mechanisms in the three representative systems. We also suggest circadian regulation of global translational activity as an understudied global regulator of regenerative capacity. A more detailed understanding of the molecular mechanisms underlying circadian regulation of tissue regeneration would accelerate the development of new regenerative therapies.
Collapse
Affiliation(s)
- Ellen Paatela
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Dane Munson
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
125
|
Gil-Martín E, Egea J, Reiter RJ, Romero A. The emergence of melatonin in oncology: Focus on colorectal cancer. Med Res Rev 2019; 39:2239-2285. [PMID: 30950095 DOI: 10.1002/med.21582] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Within the last few decades, melatonin has increasingly emerged in clinical oncology as a naturally occurring bioactive molecule with substantial anticancer properties and a pharmacological profile optimal for joining the currently available pharmacopeia. In addition, extensive experimental data shows that this chronobiotic agent exerts oncostatic effects throughout all stages of tumor growth, from initial cell transformation to mitigation of malignant progression and metastasis; additionally, melatonin alleviates the side effects and improves the welfare of radio/chemotherapy-treated patients. Thus, the support of clinicians and oncologists for the use of melatonin in both the treatment and proactive prevention of cancer is gaining strength. Because of its epidemiological importance and symptomatic debut in advanced stages of difficult clinical management, colorectal cancer (CRC) is a preferential target for testing new therapies. In this regard, the development of effective forms of clinical intervention for the improvement of CRC outcome, specifically metastatic CRC, is urgent. At the same time, the need to reduce the costs of conventional anti-CRC therapy results is also imperative. In light of this status quo, the therapeutic potential of melatonin, and the direct and indirect critical processes of CRC malignancy it modulates, have aroused much interest. To illuminate the imminent future on CRC research, we focused our attention on the molecular mechanisms underlying the multiple oncostatic actions displayed by melatonin in the onset and evolution of CRC and summarized epidemiological evidence, as well as in vitro, in vivo and clinical findings that support the broadly protective potential demonstrated by melatonin.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, Vigo, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Laboratory, Research Unit, Hospital Universitario Santa Cristina, Madrid, Spain.,Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
126
|
Wang R, Jiang X, Bao P, Qin M, Xu J. Circadian control of stress granules by oscillating EIF2α. Cell Death Dis 2019; 10:215. [PMID: 30833545 PMCID: PMC6399301 DOI: 10.1038/s41419-019-1471-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022]
Abstract
Stress granule formation is important for stress response in normal cells and could lead to chemotherapy resistance in cancer cells. Aberrant stress granule dynamics are also known to disrupt proteostasis, affect RNA metabolism, and contribute to neuronal cell death. Meanwhile, circadian abnormality is an aging-related risk factor for cancer and neurodegeneration. Whether stress granule dynamics are circadian regulated is entirely unknown. Here we show that the formation of stress granules varied by zeitgeber time in mouse liver. Moreover, altering circadian regulation by silencing the core circadian gene Bmal1 in a cell line expressing an endogenous GFP-tagged G3BP1 significantly increased stress granule dynamics, while the overexpression of Bmal1 decreased them. Surprisingly, increased stress granule dynamics and formation by transient decrease of BMAL1 coincided with increased resistance to stress-induced cell death. The circadian regulation of stress granules was mediated by oscillating eIF2α expression. At zeitgeber time when BMAL1 and eIF2α were at nadir, reduction of unphosphorylated eIF2α could significantly alter the ratio of phosphorylated/total eIF2α and quickly lead to increased formation of stress granules. Therefore, diurnal oscillating eIF2α connects the circadian cue to a cellular stress response mechanism that is vital for both neurodegeneration and cancer.
Collapse
Affiliation(s)
- Ruiqi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Xin Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Puhua Bao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Meiling Qin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
127
|
Asgari-Targhi A, Klerman EB. Mathematical modeling of circadian rhythms. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1439. [PMID: 30328684 PMCID: PMC6375788 DOI: 10.1002/wsbm.1439] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
Circadian rhythms are endogenous ~24-hr oscillations usually entrained to daily environmental cycles of light/dark. Many biological processes and physiological functions including mammalian body temperature, the cell cycle, sleep/wake cycles, neurobehavioral performance, and a wide range of diseases including metabolic, cardiovascular, and psychiatric disorders are impacted by these rhythms. Circadian clocks are present within individual cells and at tissue and organismal levels as emergent properties from the interaction of cellular oscillators. Mathematical models of circadian rhythms have been proposed to provide a better understanding of and to predict aspects of this complex physiological system. These models can be used to: (a) manipulate the system in silico with specificity that cannot be easily achieved using in vivo and in vitro experimental methods and at lower cost, (b) resolve apparently contradictory empirical results, (c) generate hypotheses, (d) design new experiments, and (e) to design interventions for altering circadian rhythms. Mathematical models differ in structure, the underlying assumptions, the number of parameters and variables, and constraints on variables. Models representing circadian rhythms at different physiologic scales and in different species are reviewed to promote understanding of these models and facilitate their use. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
|
128
|
Johnson K, Chang-Claude J, Critchley AM, Kyriacou C, Lavers S, Rattay T, Seibold P, Webb A, West C, Symonds RP, Talbot CJ. Genetic Variants Predict Optimal Timing of Radiotherapy to Reduce Side-effects in Breast Cancer Patients. Clin Oncol (R Coll Radiol) 2019; 31:9-16. [PMID: 30389261 DOI: 10.1016/j.clon.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
AIMS Radiotherapy is an important treatment for many types of cancer, but a minority of patients suffer long-term side-effects of treatment. Multiple lines of evidence suggest a role for circadian rhythm in the development of radiotherapy late side-effects. MATERIALS AND METHODS We carried out a study to examine the effect of radiotherapy timing in two breast cancer patient cohorts. The retrospective LeND cohort comprised 535 patients scored for late effects using the Late Effects of Normal Tissue-Subjective Objective Management Analytical (LENT-SOMA) scale. Acute effects were assessed prospectively in 343 patients from the REQUITE study using the CTCAE v4 scales. Genotyping was carried out for candidate circadian rhythm variants. RESULTS In the LeND cohort, patients who had radiotherapy in the morning had a significantly increased incidence of late toxicity in univariate (P = 0.03) and multivariate analysis (P = 0.01). Acute effects in the REQUITE group were also significantly increased in univariate analysis after morning treatment (P = 0.03) but not on multivariate analysis. Increased late effects in the LeND group receiving morning radiotherapy were associated with carriage of the PER3 variable number tandem repeat 4/4 genotype (P = 6 × 10-3) and the NOCT rs131116075 AA genotype (P = 5 × 10-3). CONCLUSION Our results suggest that it may be possible to reduce toxicity associated with breast cancer radiotherapy by identifying gene variants that affect circadian rhythm and scheduling for appropriate morning or afternoon radiotherapy.
Collapse
Affiliation(s)
- K Johnson
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - J Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A-M Critchley
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - C Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - S Lavers
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - T Rattay
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - P Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Webb
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - C West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - R P Symonds
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - C J Talbot
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
129
|
Bielefeld EC, Markle A, DeBacker JR, Harrison RT. Chronotolerance for cisplatin ototoxicity in the rat. Hear Res 2018; 370:16-21. [DOI: 10.1016/j.heares.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 01/17/2023]
|
130
|
Kervezee L, Shechter A, Boivin DB. Impact of Shift Work on the Circadian Timing System and Health in Women. Sleep Med Clin 2018; 13:295-306. [PMID: 30098749 DOI: 10.1016/j.jsmc.2018.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Women who do shift work are a sizable part of the workforce. Shift workers experience circadian misalignment due to shifted sleep periods, with potentially far-reaching health consequences, including elevated risk of sleep disturbances, metabolic disorders, and cancer. This review provides an overview of the circadian timing system and presents the sex differences that can be observed in the functioning of this system, which may account for the lower tolerance to shift work for women compared with men. Recent epidemiologic findings on female-specific health consequences of shift work are discussed.
Collapse
Affiliation(s)
- Laura Kervezee
- Department of Psychiatry, Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montreal, Quebec H4H 1R3, Canada
| | - Ari Shechter
- Department of Medicine, Center for Behavioral Cardiovascular Health, Columbia University, 622 West 168th Street, Room 9-300B, New York, NY 10032, USA
| | - Diane B Boivin
- Department of Psychiatry, Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montreal, Quebec H4H 1R3, Canada.
| |
Collapse
|
131
|
Abstract
Time of day is a critical factor for most biological functions, but concepts from the field of chronobiology have yet to be fully translated to clinical practice. Circadian rhythms, generated internally and synchronised to the external environment, promote function and support survival in almost every living species. Fetal circadian rhythms can be observed in utero from 30weeks gestation, coupled to the maternal rhythm, but synchronise to the external environment only after birth. Important cues for synchronisation include the light/dark cycle, the timing of feeding, and exposure to melatonin in breast milk. Disruption to these cues may occur during admission to the neonatal intensive care unit. This can impair the development of circadian rhythms, and influence survival and function in the neonatal period, with a potential to impact health and well-being throughout adult life. Here we outline the rationale and evidence to support a chronobiological approach to neonatal care.
Collapse
Affiliation(s)
- Helen McKenna
- Critical Care Unit, Royal Free Hospital, Pond Street, London NW3 2QG, UK; Division of Surgery and Interventional Science, University College London, UK.
| | - Irwin Karl Marcel Reiss
- Division of Neonatology, Department of Paediatrics, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
132
|
Abstract
The interplay between the circadian system and metabolism may give animals an evolutionary advantage by allowing them to anticipate food availability at specific times of the day. Physiological adaptation to feeding time allows investigation of animal parameters and comparison of food anticipation between groups of animals with genetic alterations and/or post pharmacological intervention. Such an approach is vital for understanding gene function and mechanisms underlying the temporal patterns of both food anticipation and feeding. Exploring these mechanisms will allow better understanding of metabolic disorders and might reveal potential new targets for pharmacological intervention. Changes that can be easily monitored and that represent food anticipation on the level of the whole organism are a temporarily restricted increase of activity and internal body temperature.
Collapse
|
133
|
Sankaran S, Adaikkalam A, Rajan SS, Devi R, Subramanian P. Influence of circadian rhythms in tumorigenesis – Role of vanillic acid on liver cancer. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1528682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Srivani Sankaran
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| | - Ajitha Adaikkalam
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| | - Sheeja S Rajan
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| | - Ritismita Devi
- Department of Biochemistry, Assam downtown University, Guwahati, India
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| |
Collapse
|
134
|
Association of Time-Varying Rest-Activity Rhythm With Survival in Older Adults With Lung Cancer. Cancer Nurs 2018; 43:45-51. [PMID: 30299421 DOI: 10.1097/ncc.0000000000000647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND To the best of our knowledge, this is the first study to examine the relationship of rest-activity rhythm with survival in older adults with lung cancer and to consider variations in rest-activity rhythm over time. OBJECTIVE The aim of this study was to explore the relationship between rest-activity rhythm variations and survival in 33 older adults with lung cancer by considering rest-activity rhythm as a time-dependent covariate over time. METHODS In this prospective study with 5 repeated measurements, patients' rest-activity rhythm over 3 days was measured using actigraphy. The rest-activity rhythm was represented using the dichotomy index I (in-bed activity) < O (out-of-bed activity). The median I < O was used as the cutoff point, with an I < O of greater than or equal to 85.59% and less than 85.59% indicating robust and disrupted rest-activity rhythms, respectively. Data were analyzed using the Cox regression model with time-dependent repeated measurements of a covariate. RESULTS In the time-dependent multivariate Cox model, a disrupted rest-activity rhythm was independently associated with a higher risk of death than was a robust rest-activity rhythm (hazard ratio, 16.05; P = .009). CONCLUSION A time-varying rest-activity rhythm is incrementally associated with mortality in older adults with lung cancer and represents a rigorous and independent prognostic factor for their survival. IMPLICATIONS FOR PRACTICE Clinicians may need to pay more attention to the rest-activity rhythms of older adults with lung cancer during disease progression. Future studies should account for the variation in rest-activity rhythm over time.
Collapse
|
135
|
von Allmen DC, Francey LJ, Rogers GM, Ruben MD, Cohen AP, Wu G, Schmidt RE, Ishman SL, Amin RS, Hogenesch JB, Smith DF. Circadian Dysregulation: The Next Frontier in Obstructive Sleep Apnea Research. Otolaryngol Head Neck Surg 2018; 159:948-955. [PMID: 30200807 DOI: 10.1177/0194599818797311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To review the effects of the circadian clock on homeostasis, the functional interaction between the circadian clock and hypoxia-inducible factors, and the role of circadian dysregulation in the progression of cardiopulmonary disease in obstructive sleep apnea (OSA). DATA SOURCES The MEDLINE database was accessed through PubMed. REVIEW METHODS A general review is presented on molecular pathways disrupted in OSA, circadian rhythms and the role of the circadian clock, hypoxia signaling, crosstalk between the circadian and hypoxia systems, the role of the circadian clock in cardiovascular disease, and implications for practice. Studies included in this State of the Art Review demonstrate the potential contribution of the circadian clock and hypoxia in animal models or human disease. CONCLUSIONS Molecular crosstalk between the circadian clock and hypoxia-inducible factors has not been evaluated in disease models of OSA. IMPLICATIONS FOR PRACTICE Pediatric OSA is highly prevalent and, if left untreated, may lead to cardiopulmonary sequelae. Changes in inflammatory markers that normally demonstrate circadian rhythmicity are also seen among patients with OSA. Hypoxia-inducible transcription factors interact with core circadian clock transcription factors; however, the interplay between these pathways has not been elucidated in the cardiopulmonary system. This gap in knowledge hinders our ability to identify potential biomarkers of OSA and develop alternative therapeutic strategies. A deeper understanding of the mechanisms by which OSA impinges on clock function and the impact of clock dysregulation on the cardiopulmonary system may lead to future advancements for the care of patients with OSA. The aim of this review is to shed light on this important clinical topic.
Collapse
Affiliation(s)
- Douglas C von Allmen
- 1 Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lauren J Francey
- 2 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Garrett M Rogers
- 3 College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Marc D Ruben
- 2 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aliza P Cohen
- 4 Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gang Wu
- 2 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Robert E Schmidt
- 2 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stacey L Ishman
- 1 Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- 4 Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- 5 Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Raouf S Amin
- 5 Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- 6 Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - John B Hogenesch
- 2 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- 6 Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - David F Smith
- 1 Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- 4 Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- 5 Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
136
|
Harrison RT, Bielefeld EC. Little evidence for a chronotolerance effect for impulse noise exposure in the C57BL/6J mouse. Neurosci Lett 2018; 684:127-131. [DOI: 10.1016/j.neulet.2018.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/27/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
|
137
|
Deng J, Guo L, Wu B. Circadian Regulation of Hepatic Cytochrome P450 2a5 by Peroxisome Proliferator-Activated Receptor γ. Drug Metab Dispos 2018; 46:1538-1545. [PMID: 30154104 DOI: 10.1124/dmd.118.083071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/17/2018] [Indexed: 11/22/2022] Open
Abstract
Human CYP2A6 (Cyp2a5 in mice) plays an important role in metabolism and detoxification of various drugs and chemicals. Here, we investigated a potential role of peroxisome proliferator-activated receptor γ (Ppar-γ) in circadian regulation of the Cyp2a5 enzyme. We first showed that Cyp2a5 mRNA and protein in mouse liver displayed robust circadian oscillations. Consistent with a circadian protein pattern, Cyp2a5-mediated 7-hydroxylation of coumarin was circadian time-dependent. Formation of 7-hydroxycoumarin was more extensive at a dosing time of Zeitgeber time 2 (ZT2) than that at ZT14. Interestingly, the nuclear receptor Ppar-γ was also a circadian gene. Circadian Ppar-γ protein level was strongly correlated with the Cyp2a5 mRNA level (r = 0.989). Furthermore, Ppar-γ activation (by a selective agonist, rosiglitazone) upregulated Cyp2a5 expression in Hepa-1c1c7 cells, whereas Ppar-γ knockdown downregulated Cyp2a5 expression. Also, Ppar-γ knockdown blunted the rhythmicity of Cyp2a5 mRNA in serum-shocked Hepa-1c1c7 cells. In addition, a combination of promoter truncation analysis, mobility shift, and chromatin immunoprecipitation assays revealed that Ppar-γ directly bound to a PPAR response element (i.e., the -1418- to -1396-bp region) within Cyp2a5 promoter and activated the gene transcription. Taken together, Ppar-γ was a transcriptional activator of Cyp2a5, and its rhythmic expression contributed to circadian expression of Cyp2a5.
Collapse
Affiliation(s)
- Jiangming Deng
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (J.D., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (J.D., B.W.), Jinan University, Guangzhou, China
| | - Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (J.D., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (J.D., B.W.), Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (J.D., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (J.D., B.W.), Jinan University, Guangzhou, China
| |
Collapse
|
138
|
Cascallares G, Riva S, Franco DL, Risau-Gusman S, Gleiser PM. Role of the circadian clock in the statistics of locomotor activity in Drosophila. PLoS One 2018; 13:e0202505. [PMID: 30138403 PMCID: PMC6107170 DOI: 10.1371/journal.pone.0202505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/03/2018] [Indexed: 11/19/2022] Open
Abstract
In many animals the circadian rhythm of locomotor activity is controlled by an endogenous circadian clock. Using custom made housing and video tracking software in order to obtain high spatial and temporal resolution, we studied the statistical properties of the locomotor activity of wild type and two clock mutants of Drosophila melanogaster. We show here that the distributions of activity and quiescence bouts for the clock mutants in light-dark conditions (LD) are very different from the distributions obtained when there are no external cues from the environment (DD). In the wild type these distributions are very similar, showing that the clock controls this aspect of behavior in both regimes (LD and DD). Furthermore, the distributions are very similar to those reported for Wistar rats. For the timing of events we also observe important differences, quantified by how the event rate distributions scale for increasing time windows. We find that for the wild type these distributions can be rescaled by the same function in DD as in LD. Interestingly, the same function has been shown to rescale the rate distributions in Wistar rats. On the other hand, for the clock mutants it is not possible to rescale the rate distributions, which might indicate that the extent of circadian control depends on the statistical properties of activity and quiescence.
Collapse
Affiliation(s)
- Guadalupe Cascallares
- Statistical and Interdisciplinary Physics Group, Centro Atómico Bariloche, Bariloche, Río Negro, Argentina
| | - Sabrina Riva
- Medical Physics Department, CONICET and Centro Atómico Bariloche, Av. E. Bustillo 9500, (8400) San Carlos de Bariloche, Río Negro, Argentina
| | - D. Lorena Franco
- Medical Physics Department, CONICET and Centro Atómico Bariloche, Av. E. Bustillo 9500, (8400) San Carlos de Bariloche, Río Negro, Argentina
| | - Sebastian Risau-Gusman
- Statistical and Interdisciplinary Physics Group, Centro Atómico Bariloche, Bariloche, Río Negro, Argentina
- Medical Physics Department, CONICET and Centro Atómico Bariloche, Av. E. Bustillo 9500, (8400) San Carlos de Bariloche, Río Negro, Argentina
| | - Pablo M. Gleiser
- Statistical and Interdisciplinary Physics Group, Centro Atómico Bariloche, Bariloche, Río Negro, Argentina
- Medical Physics Department, CONICET and Centro Atómico Bariloche, Av. E. Bustillo 9500, (8400) San Carlos de Bariloche, Río Negro, Argentina
- * E-mail:
| |
Collapse
|
139
|
Grant AD, Wilsterman K, Smarr BL, Kriegsfeld LJ. Evidence for a Coupled Oscillator Model of Endocrine Ultradian Rhythms. J Biol Rhythms 2018; 33:475-496. [PMID: 30132387 DOI: 10.1177/0748730418791423] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Whereas long-period temporal structures in endocrine dynamics have been well studied, endocrine rhythms on the scale of hours are relatively unexplored. The study of these ultradian rhythms (URs) has remained nascent, in part, because a theoretical framework unifying ultradian patterns across systems has not been established. The present overview proposes a conceptual coupled oscillator network model of URs in which oscillating hormonal outputs, or nodes, are connected by edges representing the strength of node-node coupling. We propose that variable-strength coupling exists both within and across classic hormonal axes. Because coupled oscillators synchronize, such a model implies that changes across hormonal systems could be inferred by surveying accessible nodes in the network. This implication would at once simplify the study of URs and open new avenues of exploration into conditions affecting coupling. In support of this proposed framework, we review mammalian evidence for (1) URs of the gut-brain axis and the hypothalamo-pituitary-thyroid, -adrenal, and -gonadal axes, (2) UR coupling within and across these axes; and (3) the relation of these URs to body temperature. URs across these systems exhibit behavior broadly consistent with a coupled oscillator network, maintaining both consistent URs and coupling within and across axes. This model may aid the exploration of mammalian physiology at high temporal resolution and improve the understanding of endocrine system dynamics within individuals.
Collapse
Affiliation(s)
- Azure D Grant
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Kathryn Wilsterman
- Department of Integrative Biology, University of California, Berkeley, California
| | - Benjamin L Smarr
- Department of Psychology, University of California, Berkeley, California
| | - Lance J Kriegsfeld
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California.,Department of Psychology, University of California, Berkeley, California
| |
Collapse
|
140
|
El-Athman R, Fuhr L, Relógio A. A Systems-Level Analysis Reveals Circadian Regulation of Splicing in Colorectal Cancer. EBioMedicine 2018; 33:68-81. [PMID: 29936137 PMCID: PMC6085510 DOI: 10.1016/j.ebiom.2018.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence points to a significant role of the circadian clock in the regulation of splicing in various organisms, including mammals. Both dysregulated circadian rhythms and aberrant pre-mRNA splicing are frequently implicated in human disease, in particular in cancer. To investigate the role of the circadian clock in the regulation of splicing in a cancer progression context at the systems-level, we conducted a genome-wide analysis and compared the rhythmic transcriptional profiles of colon carcinoma cell lines SW480 and SW620, derived from primary and metastatic sites of the same patient, respectively. We identified spliceosome components and splicing factors with cell-specific circadian expression patterns including SRSF1, HNRNPLL, ESRP1, and RBM 8A, as well as altered alternative splicing events and circadian alternative splicing patterns of output genes (e.g., VEGFA, NCAM1, FGFR2, CD44) in our cellular model. Our data reveals a remarkable interplay between the circadian clock and pre-mRNA splicing with putative consequences in tumor progression and metastasis.
Collapse
Affiliation(s)
- Rukeia El-Athman
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - Luise Fuhr
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany.
| |
Collapse
|
141
|
Komarzynski S, Huang Q, Innominato PF, Maurice M, Arbaud A, Beau J, Bouchahda M, Ulusakarya A, Beaumatin N, Breda G, Finkenstädt B, Lévi F. Relevance of a Mobile Internet Platform for Capturing Inter- and Intrasubject Variabilities in Circadian Coordination During Daily Routine: Pilot Study. J Med Internet Res 2018; 20:e204. [PMID: 29704408 PMCID: PMC6018238 DOI: 10.2196/jmir.9779] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/14/2022] Open
Abstract
Background Experimental and epidemiologic studies have shown that circadian clocks’ disruption can play an important role in the development of cancer and metabolic diseases. The cellular clocks outside the brain are effectively coordinated by the body temperature rhythm. We hypothesized that concurrent measurements of body temperature and rest-activity rhythms would assess circadian clocks coordination in individual patients, thus enabling the integration of biological rhythms into precision medicine. Objective The objective was to evaluate the circadian clocks’ coordination in healthy subjects and patients through simultaneous measurements of rest-activity and body temperature rhythms. Methods Noninvasive real-time measurements of rest-activity and chest temperature rhythms were recorded during the subject’s daily life, using a dedicated new mobile electronic health platform (PiCADo). It involved a chest sensor that jointly measured accelerations, 3D orientation, and skin surface temperature every 1-5 min and relayed them out to a mobile gateway via Bluetooth Low Energy. The gateway tele-transmitted all stored data to a server via General Packet Radio Service every 24 hours. The technical capabilities of PiCADo were validated in 55 healthy subjects and 12 cancer patients, whose rhythms were e-monitored during their daily routine for 3-30 days. Spectral analyses enabled to compute rhythm parameters values, with their 90% confidence limits, and their dynamics in each subject. Results All the individuals displayed a dominant circadian rhythm in activity with maxima occurring from 12:09 to 20:25. This was not the case for the dominant temperature period, which clustered around 24 hours for 51 out of 67 subjects (76%), and around 12 hours for 13 others (19%). Statistically significant sex- and age-related differences in circadian coordination were identified in the noncancerous subjects, based upon the range of variations in temperature rhythm amplitudes, maxima (acrophases), and phase relations with rest-activity. The circadian acrophase of chest temperature was located at night for the majority of people, but it occurred at daytime for 26% (14/55) of the noncancerous people and 33% (4/12) of the cancer patients, thus supporting important intersubject differences in circadian coordination. Sex, age, and cancer significantly impacted the circadian coordination of both rhythms, based on their phase relationships. Conclusions Complementing rest-activity with chest temperature circadian e-monitoring revealed striking intersubject differences regarding human circadian clocks’ coordination and timing during daily routine. To further delineate the clinical importance of such finding, the PiCADo platform is currently applied for both the assessment of health effects resulting from atypical work schedules and the identification of the key determinants of circadian disruption in cancer patients.
Collapse
Affiliation(s)
- Sandra Komarzynski
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, United Kingdom.,European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | - Qi Huang
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, United Kingdom.,Cancer Chronotherapy Team, Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Pasquale F Innominato
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, United Kingdom.,European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France.,Department of Oncology, North Wales Cancer Treatment Centre, Bodelwyddan, United Kingdom
| | - Monique Maurice
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, United Kingdom.,European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | - Alexandre Arbaud
- European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | - Jacques Beau
- European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | - Mohamed Bouchahda
- European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France.,Department of Oncology, Paul Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
| | - Ayhan Ulusakarya
- European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France.,Department of Oncology, Paul Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
| | | | | | - Bärbel Finkenstädt
- European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France.,Cancer Chronotherapy Team, Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Francis Lévi
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, United Kingdom.,European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France.,Department of Oncology, Paul Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
| |
Collapse
|
142
|
Yang Y, Adebali O, Wu G, Selby CP, Chiou YY, Rashid N, Hu J, Hogenesch JB, Sancar A. Cisplatin-DNA adduct repair of transcribed genes is controlled by two circadian programs in mouse tissues. Proc Natl Acad Sci U S A 2018; 115:E4777-E4785. [PMID: 29735688 PMCID: PMC6003508 DOI: 10.1073/pnas.1804493115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is a major cancer chemotherapeutic drug. It kills cancer cells by damaging their DNA, mainly in the form of Pt-d(GpG) diadducts. However, it also has serious side effects, including nephrotoxicity and hepatotoxicity that limit its usefulness. Chronotherapy is taking circadian time into account during therapy to improve the therapeutic index, by improving efficacy and/or limiting toxicity. To this end, we tested the impact of clock time on excision repair of cisplatin-induced DNA damage at single-nucleotide resolution across the genome in mouse kidney and liver. We found that genome repair is controlled by two circadian programs. Repair of the transcribed strand (TS) of active, circadian-controlled genes is dictated by each gene's phase of transcription, which falls across the circadian cycle with prominent peaks at dawn and dusk. In contrast, repair of the nontranscribed strand (NTS) of all genes, repair of intergenic DNA, and global repair overall peaks at Zeitgeber time ZT08, as basal repair capacity, which is controlled by the circadian clock, peaks at this circadian time. Consequently, the TS and NTS of many genes are repaired out of phase. As most cancers are thought to have defective circadian rhythms, these results suggest that future research on timed dosage of cisplatin could potentially reduce damage to healthy tissue and improve its therapeutic index.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ogun Adebali
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gang Wu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yi-Ying Chiou
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Naim Rashid
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jinchuan Hu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- The Fifth People's Hospital of Shanghai and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - John B Hogenesch
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
143
|
Epigenetics of Circadian Rhythms in Imprinted Neurodevelopmental Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:67-92. [PMID: 29933957 DOI: 10.1016/bs.pmbts.2017.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA sequence information alone cannot account for the immense variability between chromosomal alleles within diverse cell types in the brain, whether these differences are observed across time, cell type, or parental origin. The complex control and maintenance of gene expression and modulation are regulated by a multitude of molecular and cellular mechanisms that layer on top of the genetic code. The integration of genetic and environmental signals required for regulating brain development and function is achieved in part by a dynamic epigenetic landscape that includes DNA methylation, histone modifications, and noncoding RNAs. These epigenetic mechanisms establish and maintain core biological processes, including genomic imprinting and entrainment of circadian rhythms. This chapter will focus on how the epigenetic layers of DNA methylation and long, noncoding RNAs interact with circadian rhythms at specific imprinted chromosomal loci associated with the human neurodevelopmental disorders Prader-Willi, Angelman, Kagami-Ogata, and Temple syndromes.
Collapse
|
144
|
The Genomic Landscape and Pharmacogenomic Interactions of Clock Genes in Cancer Chronotherapy. Cell Syst 2018; 6:314-328.e2. [PMID: 29525205 PMCID: PMC6056007 DOI: 10.1016/j.cels.2018.01.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/16/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Abstract
Cancer chronotherapy, treatment at specific times during circadian rhythms, endeavors to optimize anti-tumor effects and to lower toxicity. However, comprehensive characterization of clock genes and their clinical relevance in cancer is lacking. We systematically characterized the alterations of clock genes across 32 cancer types by analyzing data from The Cancer Genome Atlas, Cancer Therapeutics Response Portal, and The Genomics of Drug Sensitivity in Cancer databases. Expression alterations of clock genes are associated with key oncogenic pathways, patient survival, tumor stage, and subtype in multiple cancer types. Correlations between expression of clock genes and of other genes in the genome were altered in cancerous versus normal tissues. We identified interactions between clock genes and clinically actionable genes by analyzing co-expression, protein-protein interaction, and chromatin immunoprecipitation sequencing data and also found that clock gene expression is correlated to anti-cancer drug sensitivity in cancer cell lines. Our study provides a comprehensive analysis of the circadian clock across different cancer types and highlights potential clinical utility of cancer chronotherapy.
Collapse
|
145
|
Mteyrek A, Filipski E, Guettier C, Okyar A, Lévi F. Clock gene Per2 as a controller of liver carcinogenesis. Oncotarget 2018; 7:85832-85847. [PMID: 27494874 PMCID: PMC5349878 DOI: 10.18632/oncotarget.11037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/13/2016] [Indexed: 01/01/2023] Open
Abstract
Environmental disruption of molecular clocks promoted liver carcinogenesis and accelerated cancer progression in rodents. We investigated the specific role of clock gene Period 2 (Per2) for liver carcinogenesis and clock-controlled cellular proliferation, genomic instability and inflammation. We assessed liver histopathology, and determined molecular and physiology circadian patterns in mice on chronic diethylnitrosamine (DEN) exposure according to constitutive Per2 mutation. First, we found that Per2m/m liver displayed profound alterations in proliferation gene expression, including c-Myc derepression, phase-advanced Wee1, and arrhythmic Ccnb1 and K-ras mRNA expressions, as well as deregulated inflammation, through arrhythmic liver IL-6 protein concentration, in the absence of any DEN exposure. These changes could then make Per2m/m mice more prone to subsequently develop liver cancers on DEN. Indeed, primary liver cancers were nearly fourfold as frequent in Per2m/m mice as compared to wild-type (WT), 4 months after DEN exposure. The liver molecular clock was severely disrupted throughout the whole carcinogenesis process, including the initiation stage, i.e. within the initial 17 days on DEN. Per2m/m further exhibited increased c-Myc and Ccnb1 mean 24h expressions, lack of P53 response, and arrhythmic ATM, Wee1 and Ccnb1 expressions. DEN-induced tumor related inflammation was further promoted through increased protein concentrations of liver IL-6 and TNF-α as compared to WT during carcinogenesis initiation. Per2 mutation severely deregulated liver gene or protein expressions related to three cancer hallmarks, including uncontrolled proliferation, genomic instability, and tumor promoting inflammation, and accelerated liver carcinogenesis several-fold. Clock gene Per2 acted here as a liver tumor suppressor from initiation to progression.
Collapse
Affiliation(s)
- Ali Mteyrek
- INSERM and Paris Sud University, UMRS 995, Team « Cancer Chronotherapy and Postoperative Liver », Campus CNRS, Villejuif F-94807, France
| | - Elisabeth Filipski
- INSERM and Paris Sud University, UMRS 995, Team « Cancer Chronotherapy and Postoperative Liver », Campus CNRS, Villejuif F-94807, France
| | - Catherine Guettier
- Assistance Publique-Hopitaux de Paris, Department of Medical Oncology and Laboratory of Anatomy and Pathologic Cytology, Hôpital Paul Brousse, Villejuif F-94800, France
| | - Alper Okyar
- Istanbul University Faculty of Pharmacy, Department of Pharmacology, Beyazit TR-34116, Istanbul, Turkey
| | - Francis Lévi
- INSERM and Paris Sud University, UMRS 995, Team « Cancer Chronotherapy and Postoperative Liver », Campus CNRS, Villejuif F-94807, France.,Assistance Publique-Hopitaux de Paris, Department of Medical Oncology and Laboratory of Anatomy and Pathologic Cytology, Hôpital Paul Brousse, Villejuif F-94800, France.,Warwick Medical School, Cancer Chronotherapy Unit, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
146
|
Dakup PP, Porter KI, Little AA, Gajula RP, Zhang H, Skornyakov E, Kemp MG, Van Dongen HPA, Gaddameedhi S. The circadian clock regulates cisplatin-induced toxicity and tumor regression in melanoma mouse and human models. Oncotarget 2018; 9:14524-14538. [PMID: 29581861 PMCID: PMC5865687 DOI: 10.18632/oncotarget.24539] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/10/2018] [Indexed: 12/19/2022] Open
Abstract
Cisplatin is one of the most commonly used chemotherapeutic drugs; however, toxicity and tumor resistance limit its use. Studies using murine models and human subjects have shown that the time of day of cisplatin treatment influences renal and blood toxicities. We hypothesized that the mechanisms responsible for these outcomes are driven by the circadian clock. We conducted experiments using wild-type and circadian disrupted Per1/2-/- mice treated with cisplatin at selected morning (AM) and evening (PM) times. Wild-type mice treated in the evening showed an enhanced rate of removal of cisplatin-DNA adducts and less toxicity than the morning-treated mice. This temporal variation in toxicity was lost in the Per1/2-/- clock-disrupted mice, suggesting that the time-of-day effect is linked to the circadian clock. Observations in blood cells from humans subjected to simulated day and night shift schedules corroborated this view. Per1/2-/- mice also exhibited a more robust immune response and slower tumor growth rate, indicating that the circadian clock also influences the immune response to melanoma tumors. Our findings indicate that cisplatin chronopharmacology involves the circadian clock control of DNA repair as well as immune responses, and thus affects both cisplatin toxicity and tumor growth. This has important implications for chronochemotherapy in cancer patients, and also suggests that influencing the circadian clock (e.g., through bright light treatment) may be explored as a tool to improve patient outcomes.
Collapse
Affiliation(s)
- Panshak P Dakup
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Kenneth I Porter
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Alexander A Little
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Rajendra P Gajula
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Elena Skornyakov
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA.,Department of Physical Therapy, Eastern Washington University, Spokane, WA, USA
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Hans P A Van Dongen
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Shobhan Gaddameedhi
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA.,Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| |
Collapse
|
147
|
Choi JY, Joh HM, Park JM, Kim MJ, Chung TH, Kang TH. Non-thermal plasma-induced apoptosis is modulated by ATR- and PARP1-mediated DNA damage responses and circadian clock. Oncotarget 2018; 7:32980-9. [PMID: 27145275 PMCID: PMC5078068 DOI: 10.18632/oncotarget.9087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022] Open
Abstract
Non-thermal plasma (NTP) has been emerging as a potential cancer therapeutic. However, the practical use of NTP as a cancer therapy requires a better understanding of the precise mechanisms underlying NTP-induced DNA damage responses in order to achieve optimal efficacy. It has been shown that the addition of oxygen gas flow during NTP treatment (NTPO), when compared to NTP exposure alone, can induce a 2–3 fold greater generation of intracellular reactive oxygen species (ROS) in A549 cells. Here, we examined NTPO-induced DNA damage responses and found that NTPO generated a substantial number of genomic DNA lesions and breaks that activated ATR-mediated cell-cycle checkpoints. In addition, we discovered that NTPO-induced DNA lesions were primarily removed by base excision repair (BER) rather than by nucleotide excision repair (NER). Therefore, the inhibition of the BER pathway using a PARP1 inhibitor drastically induced the phosphorylation of γH2AX, and was followed by the programmed cell death of cancer cells. However, the knock-down of XPA, which inhibited the NER pathway, had no effect on NTPO-induced phosphorylation of γH2AX. Finally, in agreement with a recent report, we found a circadian rhythm of PARP1 activity in normal mouse embryonic fibroblasts that needed for cell viability upon NTPO treatment. Taken together, our findings provided an advanced NTP regimen for cancer treatment by combining NTPO treatment with chemical adjuvants for the inhibition of ATR- and PARP1-activated DNA damage responses, and circadian timing of treatment.
Collapse
Affiliation(s)
- Ji Ye Choi
- Department of Biological Science, Dong-A University, Busan 604714, Republic of Korea
| | - Hea Min Joh
- Department of Physics, Dong-A University, Busan 604714, Republic of Korea
| | - Jeong-Min Park
- Department of Biological Science, Dong-A University, Busan 604714, Republic of Korea
| | - Min Ji Kim
- Department of Biological Science, Dong-A University, Busan 604714, Republic of Korea
| | - Tae Hun Chung
- Department of Physics, Dong-A University, Busan 604714, Republic of Korea
| | - Tae-Hong Kang
- Department of Biological Science, Dong-A University, Busan 604714, Republic of Korea
| |
Collapse
|
148
|
Ozturk N, Ozturk D, Pala-Kara Z, Kaptan E, Sancar-Bas S, Ozsoy N, Cinar S, Deniz G, Li XM, Giacchetti S, Lévi F, Okyar A. The immune system as a chronotoxicity target of the anticancer mTOR inhibitor everolimus. Chronobiol Int 2018; 35:705-718. [PMID: 29400578 DOI: 10.1080/07420528.2018.1432632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The circadian timing system controls many biological functions in mammals including xenobiotic metabolism, detoxification, cell proliferation, apoptosis and immune functions. Everolimus is a mammalian target of rapamycin inhibitor, whose immunosuppressant properties are both desired in transplant patients and unwanted in cancer patients, where it is indicated for its antiproliferative efficacy. Here we sought whether everolimus circadian timing would predictably modify its immunosuppressive effects so as to optimize this drug through timing. C57BL/6J mice were synchronized with light-dark 12h:12h, with L onset at Zeitgeber Time (ZT) 0. Everolimus was administered orally to male (5 mg/kg/day) and female mice (15 mg/kg/day) at ZT1, during early rest span or at ZT13, during early activity span for 4 weeks. Body weight loss, as well as hematological, immunological and biochemical toxicities, were determined. Spleen and thymus were examined histologically. Everolimus toxicity was less severe following dosing at ZT13, as compared to ZT1, as shown with least body weight inhibition in both genders; least reductions in thymus weight both in males (p < 0.01) and females (p < 0.001), least reduction in female spleen weight (p < 0.05), and less severe thymic medullar atrophy both in males (p < 0.001) and females (p < 0.001). The mean circulating counts in total leukocytes, total lymphocytes, T-helper and B lymphocytes displayed minor and non-significant changes following dosing at ZT13, while they were decreased by 56.9% (p < 0.01), 45.5% (p < 0.01), 43.1% (p < 0.05) and 48.7% (p < 0.01) after everolimus at ZT1, respectively, in only male mice. Chronotherapy of everolimus is an effective way to increase the general tolerability and decrease toxicity on the immune system.
Collapse
Affiliation(s)
- Narin Ozturk
- a Department of Pharmacology, Faculty of Pharmacy , Istanbul University , Beyazit-Istanbul , Turkey
| | - Dilek Ozturk
- b Department of Pharmacology, Faculty of Pharmacy , Bezmialem Vakif University , Fatih-İstanbul , Turkey
| | - Zeliha Pala-Kara
- a Department of Pharmacology, Faculty of Pharmacy , Istanbul University , Beyazit-Istanbul , Turkey
| | - Engin Kaptan
- c Department of Biology, Faculty of Science , Istanbul University , Vezneciler-Istanbul , Turkey
| | - Serap Sancar-Bas
- c Department of Biology, Faculty of Science , Istanbul University , Vezneciler-Istanbul , Turkey
| | - Nurten Ozsoy
- d Department of Biochemistry, Faculty of Pharmacy , Istanbul University , Beyazit-Istanbul , Turkey
| | - Suzan Cinar
- e Department of Immunology, Aziz Sancar Institute of Experimental Medicine , Istanbul University , Sehremini- Istanbul , Turkey
| | - Gunnur Deniz
- e Department of Immunology, Aziz Sancar Institute of Experimental Medicine , Istanbul University , Sehremini- Istanbul , Turkey
| | - Xiao-Mei Li
- f INSERM UMRS 935 "Modèles de cellules souches malignes et thérapeutiques" , Campus CNRS , Villejuif-Cedex , France
| | - Sylvie Giacchetti
- g AP-HP, Hôpital Saint-Louis, Breast Disease Unit , University Paris Diderot , Paris , France
| | - Francis Lévi
- f INSERM UMRS 935 "Modèles de cellules souches malignes et thérapeutiques" , Campus CNRS , Villejuif-Cedex , France.,h Warwick Systems Biology Centre, Warwick Medical School , Cancer Chronotherapy Unit , Coventry , UK
| | - Alper Okyar
- a Department of Pharmacology, Faculty of Pharmacy , Istanbul University , Beyazit-Istanbul , Turkey
| |
Collapse
|
149
|
Makhlouf AM, Chitikova Z, Pusztaszeri M, Berczy M, Delucinge-Vivier C, Triponez F, Meyer P, Philippe J, Dibner C. Identification of CHEK1, SLC26A4, c-KIT, TPO and TG as new biomarkers for human follicular thyroid carcinoma. Oncotarget 2018; 7:45776-45788. [PMID: 27329729 PMCID: PMC5216760 DOI: 10.18632/oncotarget.10166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/03/2016] [Indexed: 12/18/2022] Open
Abstract
The search for preoperative biomarkers for thyroid malignancies, in particular for follicular thyroid carcinoma (FTC) diagnostics, is of utmost clinical importance. We thus aimed at screening for potential biomarker candidates for FTC. To evaluate dynamic alterations in molecular patterns as a function of thyroid malignancy progression, a comparative analysis was conducted in clinically distinct subgroups of FTC and poorly differentiated thyroid carcinoma (PDTC) nodules. NanoString analysis of FFPE samples was performed in 22 follicular adenomas, 56 FTC and 25 PDTC nodules, including oncocytic and non-oncocytic subgroups. The expression levels of CHEK1, c-KIT, SLC26A4, TG and TPO were significantly altered in all types of thyroid carcinomas. Based on collective changes of these biomarkers which correlating among each other, a predictive score has been established, allowing for discrimination between benign and FTC samples with high sensitivity and specificity. Additional transcripts related to thyroid function, cell cycle, circadian clock, and apoptosis regulation were altered in the more aggressive oncocytic subgroups only, with expression levels correlating with disease progression. Distinct molecular patterns were observed for oncocytic and non-oncocytic FTCs and PDTCs. A predictive score correlation coefficient based on collective alterations of identified here biomarkers might help to improve the preoperative diagnosis of FTC nodules.
Collapse
Affiliation(s)
- Anne-Marie Makhlouf
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Zhanna Chitikova
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Pusztaszeri
- Division of Clinical Pathology, University Hospital of Geneva, Geneva, Switzerland
| | - Margaret Berczy
- Division of Clinical Pathology, University Hospital of Geneva, Geneva, Switzerland
| | | | - Frederic Triponez
- Department of Thoracic and Endocrine Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Patrick Meyer
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| | - Jacques Philippe
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
150
|
Zhang Y, Giacchetti S, Parouchev A, Hadadi E, Li X, Dallmann R, Xandri-Monje H, Portier L, Adam R, Lévi F, Dulong S, Chang Y. Dosing time dependent in vitro pharmacodynamics of Everolimus despite a defective circadian clock. Cell Cycle 2018; 17:33-42. [PMID: 29099263 PMCID: PMC5815427 DOI: 10.1080/15384101.2017.1387695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022] Open
Abstract
Everolimus (EV), a rapamycin analogue mTOR inhibitor, is used in the clinic to treat Estrogen positive (ER+) breast cancer in order to avoid the resistance to hormonotherapy. Here, we investigated whether EV efficacy varied according to administration timing by using the ER+ breast cancer cell line MCF-7 as model system. Our results showed that instead of apoptosis, EV induced a G0/G1 phase blockage of MCF-7 cells. Following serum shock, MCF-7 cells displayed a statistically significant 24h rhythm of mammalian target of Rapamycin (mTOR) activity, but perturbed circadian clock genes oscillations. Interestingly, the different delivery schedule of EV presented different efficacy in G0/G1 phase blockage in serum shocked MCF-7 cells. Moreover, serum shock induced also a circadian-like oscillation in expression or activity of several important G1 phase progression proteins, such as Cyclin D1 and phosphorylated Retinoblastoma protein (RB). Inhibition mTOR activity by EV reduced Cyclin D1 and Cyclin D3 protein level as well as RB phosphorylation level. Taken together, the results indicated that serum shock synchronization induced a circadian oscillation in mTOR activity in MCF-7 cells, which rhythmically regulated the synthesis or phosphorylation of key G1 progression proteins, such as Cyclin D1 and phosphorylated RB, ultimately resulting in different G0/G1 blockage efficiency according to different EV administration timing.
Collapse
Affiliation(s)
- Yuan Zhang
- INSERM, UMR935 Modèles de cellules souches malignes et thérapeutiques, Villejuif, Val-de-Marne, France
- Université Paris-Sud, Orsay, Essonne, France
| | - Sylvie Giacchetti
- INSERM, UMR935 Modèles de cellules souches malignes et thérapeutiques, Villejuif, Val-de-Marne, France
- Centre des Maladies du Sein, Hôpital Saint-Louis AP-HP, Paris, France
| | | | - Eva Hadadi
- INSERM, UMR935 Modèles de cellules souches malignes et thérapeutiques, Villejuif, Val-de-Marne, France
- Université Paris-Sud, Orsay, Essonne, France
| | - Xiaomei Li
- INSERM, UMR935 Modèles de cellules souches malignes et thérapeutiques, Villejuif, Val-de-Marne, France
- Université Paris-Sud, Orsay, Essonne, France
| | - Robert Dallmann
- Division of Biomedical Sciences and Zeeman Institute: SBIDER, Warwick Medical School, University of Warwick, CV4 7AL Coventry, UK
| | - Helena Xandri-Monje
- Division of Biomedical Sciences and Zeeman Institute: SBIDER, Warwick Medical School, University of Warwick, CV4 7AL Coventry, UK
| | - Lucie Portier
- INSERM, UMR935 Modèles de cellules souches malignes et thérapeutiques, Villejuif, Val-de-Marne, France
- Université Paris-Sud, Orsay, Essonne, France
| | - René Adam
- INSERM, UMR935 Modèles de cellules souches malignes et thérapeutiques, Villejuif, Val-de-Marne, France
- Université Paris-Sud, Orsay, Essonne, France
- Hôpital Paul Brousse AP-HP, Villejuif, Val-de-Marne, France
| | - Françis Lévi
- INSERM, UMR935 Modèles de cellules souches malignes et thérapeutiques, Villejuif, Val-de-Marne, France
- Université Paris-Sud, Orsay, Essonne, France
- Hôpital Paul Brousse AP-HP, Villejuif, Val-de-Marne, France
- Division of Biomedical Sciences and Zeeman Institute: SBIDER, Warwick Medical School, University of Warwick, CV4 7AL Coventry, UK
| | - Sandrine Dulong
- INSERM, UMR935 Modèles de cellules souches malignes et thérapeutiques, Villejuif, Val-de-Marne, France
- Université Paris-Sud, Orsay, Essonne, France
| | - Yunhua Chang
- INSERM, UMR935 Modèles de cellules souches malignes et thérapeutiques, Villejuif, Val-de-Marne, France
- Université Paris-Sud, Orsay, Essonne, France
| |
Collapse
|