101
|
Prediction of hepatotoxicity for drugs using human pluripotent stem cell-derived hepatocytes. Cell Biol Toxicol 2017; 34:51-64. [PMID: 28382404 DOI: 10.1007/s10565-017-9392-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/01/2017] [Indexed: 12/16/2022]
Abstract
Drug-induced liver toxicity is a main reason for withdrawals of new drugs in late clinical phases and post-launch of the drugs. Thus, hepatotoxicity screening of drug candidates in pre-clinical stage is important for reducing drug attrition rates during the clinical development process. Here, we show commercially available hepatocytes that could be used for early toxicity evaluation of drug candidates. From our hepatic differentiation technology, we obtained highly pure (≥98%) hepatocytes from human embryonic stem cells (hESCs) having mature phenotypes and similar gene expression profiles with those of primary human tissues. Furthermore, we optimized 96-well culture condition of hESC-derived hepatocytes suitable for toxicity tests in vitro. To this end, we demonstrated the efficacy of our optimized hepatocyte model for predicting hepatotoxicity against the Chinese herbal medicines and showed that toxicity patterns from our hepatocyte model was similar to those of human primary cultured hepatocytes. We conclude that toxicity test using our hepatocyte model could be a good alternative cell source for pre-clinical study to predict potential hepatotoxicity in drug discovery industries.
Collapse
|
102
|
Yao H, Xu Y, Yin L, Tao X, Xu L, Qi Y, Han X, Sun P, Liu K, Peng J. Dioscin Protects ANIT-Induced Intrahepatic Cholestasis Through Regulating Transporters, Apoptosis and Oxidative Stress. Front Pharmacol 2017; 8:116. [PMID: 28337145 PMCID: PMC5340742 DOI: 10.3389/fphar.2017.00116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
Abstract
Intrahepatic cholestasis, a clinical syndrome, is caused by excessive accumulation of bile acids in body and liver. Proper regulation of bile acids in liver cells is critical for liver injury. We previously reported the effects of dioscin against α-naphthylisothio- cyanate (ANIT)-induced cholestasis in rats. However, the pharmacological and mechanism data are limited. In our work, the animals of rats and mice, and Sandwich-cultured hepatocytes (SCHs) were caused by ANIT, and dioscin was used for the treatment. The results showed that dioscin markedly altered relative liver weights, restored ALT, AST, ALP, TBIL, GSH, GSH-Px, MDA, SOD levels, and rehabilitated ROS level and cell apoptosis. In mechanism study, dioscin not only significantly regulated the protein levels of Ntcp, OAT1, OCT1, Bsep and Mrp2 to accelerate bile acids excretion, but also regulated the expression levels of Bak, Bcl-xl, Bcl-2, Bax, Caspase 3 and Caspase 9 in vivo and in vitro to improve apoptosis. In addition, dioscin markedly inhibited PI3K/Akt pathway and up-regulated the levels of Nrf2, GCLc, GCLm, NQO1 and HO-1 against oxidative stress (OS) caused by bile acids. These results were further validated by inhibition of PI3K and Akt using the inhibitors of wortmannin and perifosine in SCHs. Our data showed that dioscin had good action against ANIT-caused intrahepatic cholestasis through regulating transporters, apoptosis and OS. This natural product can be considered as one active compound to treat intrahepatic cholestasis in the future.
Collapse
Affiliation(s)
- Hong Yao
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Pengyuan Sun
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University Dalian, China
| |
Collapse
|
103
|
Abstract
Bile acids are potent signaling molecules that regulate glucose, lipid and energy homeostasis predominantly via the bile acid receptors farnesoid X receptor (FXR) and transmembrane G protein-coupled receptor 5 (TGR5). The sodium taurocholate cotransporting polypeptide (NTCP) and the apical sodium dependent bile acid transporter (ASBT) ensure an effective circulation of (conjugated) bile acids. The modulation of these transport proteins affects bile acid localization, dynamics and signaling. The NTCP-specific pharmacological inhibitor myrcludex B inhibits hepatic uptake of conjugated bile acids. Multiple ASBT-inhibitors are already in clinical trials to inhibit intestinal bile acid uptake. Here, we discuss current insights into the consequences of targeting bile acid uptake transporters on systemic and intestinal bile acid dynamics and discuss the possible therapeutic applications that evolve as a result.
Collapse
Affiliation(s)
- Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands,*Stan F.J. van de Graaf, Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, NL-1105 BK Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
104
|
eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells. Sci Rep 2017; 7:41619. [PMID: 28176814 PMCID: PMC5296874 DOI: 10.1038/srep41619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/22/2016] [Indexed: 01/18/2023] Open
Abstract
The absorption, distribution, metabolism and excretion (ADME) of metabolites and toxic organic solutes are orchestrated by the ATP-binding cassette (ABC) transporters and the organic solute carrier family (SLC) proteins. A large number of ABC and SLC transpoters exist; however, only a small number have been well characterized. To facilitate the analysis of these transporters, which is important for drug safety and physiological studies, we developed a sensitive genetically encoded bilirubin (BR)-inducible fluorescence sensor (eUnaG) to detect transporter-coupled influx/efflux of organic compounds. This sensor can be used in live cells to measure transporter activity, as excretion of BR depends on ABC and SLC transporters. Applying eUnaG in functional RNAi screens, we characterize l(2)03659 as a Drosophila multidrug resistant-associated ABC transporter.
Collapse
|
105
|
Cheng Y, Freeden C, Zhang Y, Abraham P, Shen H, Wescott D, Humphreys WG, Gan J, Lai Y. Biliary excretion of pravastatin and taurocholate in rats with bile salt export pump (Bsep) impairment. Biopharm Drug Dispos 2017; 37:276-86. [PMID: 27059119 DOI: 10.1002/bdd.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/15/2016] [Accepted: 03/28/2016] [Indexed: 01/07/2023]
Abstract
The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Chris Freeden
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Pamela Abraham
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Hong Shen
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Debra Wescott
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - W Griffith Humphreys
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Jinping Gan
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| |
Collapse
|
106
|
Valanejad L, Nadolny C, Shiffka S, Chen Y, You S, Deng R. Differential Feedback Regulation of Δ4-3-Oxosteroid 5β-Reductase Expression by Bile Acids. PLoS One 2017; 12:e0170960. [PMID: 28125709 PMCID: PMC5268776 DOI: 10.1371/journal.pone.0170960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/14/2017] [Indexed: 02/08/2023] Open
Abstract
Δ4-3-oxosteroid 5β-reductase is member D1 of the aldo-keto reductase family 1 (AKR1D1), which catalyzes 5β-reduction of molecules with a 3-oxo-4-ene structure. Bile acid intermediates and most of the steroid hormones carry the 3-oxo-4-ene structure. Therefore, AKR1D1 plays critical roles in both bile acid synthesis and steroid hormone metabolism. Currently our understanding on transcriptional regulation of AKR1D1 under physiological and pathological conditions is very limited. In this study, we investigated the regulatory effects of primary bile acids, chenodeoxycholic acid (CDCA) and cholic acid (CA), on AKR1D1 expression. The expression levels of AKR1D1 mRNA and protein in vitro and in vivo following bile acid treatments were determined by real-time PCR and Western blotting. We found that CDCA markedly repressed AKR1D1 expression in vitro in human hepatoma HepG2 cells and in vivo in mice. On the contrary, CA significantly upregulated AKR1D1 expression in HepG2 cells and in mice. Further mechanistic investigations revealed that the farnesoid x receptor (FXR) signaling pathway was not involved in regulating AKR1D1 by bile acids. Instead, CDCA and CA regulated AKR1D1 through the mitogen-activated protein kinases/c-Jun N-terminal kinases (MAPK/JNK) signaling pathway. Inhibition of the MAPK/JNK pathway effectively abolished CDCA and CA-mediated regulation of AKR1D1. It was thus determined that AKR1D1 expression was regulated by CDCA and CA through modulating the MAPK/JNK signaling pathway. In conclusion, AKR1D1 expression was differentially regulated by primary bile acids through negative and positive feedback mechanisms. The findings indicated that both bile acid concentrations and compositions play important roles in regulating AKR1D1 expression, and consequently bile acid synthesis and steroid hormone metabolism.
Collapse
Affiliation(s)
- Leila Valanejad
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Christina Nadolny
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Stephanie Shiffka
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Yuan Chen
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Sangmin You
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| |
Collapse
|
107
|
Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. PLoS One 2017; 12:e0169719. [PMID: 28060902 PMCID: PMC5218478 DOI: 10.1371/journal.pone.0169719] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74-14.7 μM for OATP1B1 and 0.47-15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3.
Collapse
|
108
|
Shao D, Yao L, Riaz MS, Zhu J, Shi J, Jin M, Huang Q, Yang H. Simulated microgravity affects some biological characteristics of Lactobacillus acidophilus. Appl Microbiol Biotechnol 2016; 101:3439-3449. [PMID: 28013406 DOI: 10.1007/s00253-016-8059-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/20/2023]
Abstract
The effects of weightlessness on enteric microorganisms have been extensively studied, but have mainly been focused on pathogens. As a major component of the microbiome of the human intestinal tract, probiotics are important to keep the host healthy. Accordingly, understanding their changes under weightlessness conditions has substantial value. This study was carried out to investigate the characteristics of Lactobacillus acidophilus, a typical probiotic for humans, under simulated microgravity (SMG) conditions. The results revealed that SMG had no significant impact on the morphology of L. acidophilus, but markedly shortened its lag phase, enhanced its growth rate, acid tolerance ability up to pH < 2.5, and the bile resistance at the bile concentration of <0.05%. SMG also decreased the sensitivity of L. acidophilus to cefalexin, sulfur gentamicin, and sodium penicillin. No obvious effect of SMG was observed on the adhesion ability of L. acidophilus to Caco-2 cells. Moreover, after SMG treatment, both the culture of L. acidophilus and its liquid phase exhibited higher antibacterial activity against S. typhimurium and S. aureus in a time-dependent manner. The SMG treatment also increased the in vitro cholesterol-lowering ability of L. acidophilus by regulating the expression of the key cholesterol metabolism genes CYP7A1, ABCB11, LDLR, and HMGCR in the HepG2 cell line. Thus, the SMG treatment did have considerable influence on some biological activities and characteristics of L. acidophilus related to human health. These findings provided valuable information for understanding the influence of probiotics on human health under simulated microgravity conditions, at least.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| | - Linbo Yao
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A & F University, 28 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Muhammad Shahid Riaz
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| | - Jing Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China.
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
109
|
Functional human induced hepatocytes (hiHeps) with bile acid synthesis and transport capacities: A novel in vitro cholestatic model. Sci Rep 2016; 6:38694. [PMID: 27934920 PMCID: PMC5146671 DOI: 10.1038/srep38694] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/11/2016] [Indexed: 12/25/2022] Open
Abstract
Drug-induced cholestasis is a leading cause of drug withdrawal. However, the use of primary human hepatocytes (PHHs), the gold standard for predicting cholestasis in vitro, is limited by their high cost and batch-to-batch variability. Mature hepatocyte characteristics have been observed in human induced hepatocytes (hiHeps) derived from human fibroblast transdifferentiation. Here, we evaluated whether hiHeps could biosynthesize and excrete bile acids (BAs) and their potential as PHH alternatives for cholestasis investigations. Quantitative real-time PCR (qRT-PCR) and western blotting indicated that hiHeps highly expressed BA synthases and functional transporters. Liquid chromatography tandem mass spectrometry (LC-MS/MS) showed that hiHeps produced normal intercellular unconjugated BAs but fewer conjugated BAs than human hepatocytes. When incubated with representative cholestatic agents, hiHeps exhibited sensitive drug-induced bile salt export pump (BSEP) dysfunction, and their response to cholestatic agent-mediated cytotoxicity correlated well with that of PHHs (r2 = 0.8032). Deoxycholic acid (DCA)-induced hepatotoxicity in hiHeps was verified by elevated aspartate aminotransferase (AST) and γ-glutamyl-transferase (γ-GT) levels. Mitochondrial damage and cell death suggested DCA-induced toxicity in hiHeps, which were attenuated by hepatoprotective drugs, as in PHHs. For the first time, hiHeps were reported to biosynthesize and excrete BAs, which could facilitate predicting cholestatic hepatotoxicity and screening potential therapeutic drugs against cholestasis.
Collapse
|
110
|
Abstract
Using a comparative approach, recent studies have identified and functionally characterized a new type of organic solute and steroid transporter (OST) from skate, mouse, rat, and human genomes. In contrast to all other organic anion transporters identified to date, transport activity requires the coexpression of two distinct gene products, a predicted 340–amino acid, seven-transmembrane (TM) domain protein (OSTΑ) and a putative 128–amino acid, single-TM domain ancillary polypeptide (OSTβ). When OSTΑ and OSTβ are coexpressed in Xenopus oocytes, they are able to mediate transport of estrone 3-sulfate, dehydroepiandrosterone 3-sulfate, taurocholate, digoxin, and prostaglandin E2, indicating a role in the disposition of key cellular metabolites or signaling molecules. OSTΑ and OSTβ are expressed at relatively high levels in intestine, kidney, and liver, but they are also expressed at lower levels in many human tissues. Indirect immunofluorescence microscopy revealed that intestinal OSTΑ and OSTβ proteins are localized to the baso-lateral membrane of mouse enterocytes. In MDCK cells, mouse OstΑ–Ostβ mediated the vectorial movement of taurocholate from the apical to the basolateral membrane, but not in the opposite direction, indicating basolateral efflux of bile acids. Overall, these findings indicate that OSTΑ-OSTβ is a heteromeric transporter that is localized to the basolateral membrane of specific epithelial tissues and serves to regulate the export and disposition of bile acids and structurally related compounds from the cell. If confirmed, this model would have important implications for the body's handling of various steroid-derived molecules and may provide a new pharmacologic target for altering sterol homeostasis.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, Box EHSC, University of Rochester School of Medicine, 575 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
111
|
Ali AH, Lindor KD. Novel treatments in primary sclerosing cholangitis. Clin Liver Dis (Hoboken) 2016; 8:132-135. [PMID: 31041081 PMCID: PMC6490214 DOI: 10.1002/cld.588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/23/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Ahmad H. Ali
- Division of Gastroenterology and HepatologyMayo ClinicPhoenixAZ
| | - Keith D. Lindor
- Division of Gastroenterology and HepatologyMayo ClinicPhoenixAZ
- College of Health SolutionsArizona State UniversityPhoenixAZ
| |
Collapse
|
112
|
Shao D, Wang Y, Huang Q, Shi J, Yang H, Pan Z, Jin M, Zhao H, Xu X. Cholesterol-Lowering Effects and Mechanisms in View of Bile Acid Pathway of Resveratrol and Resveratrol Glucuronides. J Food Sci 2016; 81:H2841-H2848. [PMID: 27735997 DOI: 10.1111/1750-3841.13528] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/05/2016] [Accepted: 09/10/2016] [Indexed: 12/15/2022]
Abstract
Resveratrol (Res) was previously reported to be capable of lowering plasma TC and LDL-C. The mechanism behind Res is not clearly understood, although it is presumed to have an effect on bile acid metabolism in the liver: a significant way in eliminating cholesterol from the body. As one of the major metabolites of Res in the liver, resveratrol glucuronides (Gres) is suspected to also contribute to the overall cholestrol-lowering activity of Res, which needs to be studied. In this research, when HepG2 steatosis hepatic cells were treated with Res and Gres at different concentration levels, Res and Gres showed similar activity in lowering cellular TC content. The presence of Res and Gres caused a significant increase in hepatic CYP7A1 and BSEP, indicating the increase in the synthesis and efflux of bile acids, respectively. The reduction of HMG-CoAR tied to a decrease in de novo synthesis of cholesterol and the increase of ABCG5 suggested the increase of direct efflux of cholesterol. All above variations reduced the hepatic cholesterol level, which triggered the significant enhancement of LDLR, illustrating the improvement of clearance of LDL-C from the plasma and prevention of atherosclerosis. Overall, this study demonstrated both Res and Gres might have capabilities in lowering hepatic cholesterol through increasing in the synthesis and efflux of bile acids, and decreasing in synthesis and increasing in the efflux of cholesterol. Gres would have preferred potential than Res because of its lower cytotoxicity, which indicated that the action of the metabolites should also be considered in the future studies.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical Univ, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Yilin Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical Univ, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical Univ, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical Univ, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical Univ, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Zhongli Pan
- Dept. of Biological and Agricultural Engineering, Univ. of California, Davis, Davis, CA, 95616, USA.,Healthy Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, USDA, Albany, CA, 94710, USA
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical Univ, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Haobin Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical Univ, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical Univ, Xi'an, Shaanxi, 710072, People's Republic of China
| |
Collapse
|
113
|
Bile acids in drug induced liver injury: Key players and surrogate markers. Clin Res Hepatol Gastroenterol 2016; 40:257-266. [PMID: 26874804 DOI: 10.1016/j.clinre.2015.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/21/2015] [Accepted: 12/27/2015] [Indexed: 02/04/2023]
Abstract
Bile acid research has gained great momentum since the role of bile acids as key signaling molecules in the enterohepatic circulation was discovered. Their physiological function in regulating their own homeostasis, as well as energy and lipid metabolism make them interesting targets for the pharmaceutical industry in the context of diseases such as bile acid induced diarrhea, bile acid induced cholestasis or nonalcoholic steatohepatitis. Changes in bile acid homeostasis are also linked to various types of drug-induced liver injury (DILI). However, the key question whether bile acids are surrogate markers for monitoring DILI or key pathogenic players in the onset and progression of DILI is under intense investigation. The purpose of this review is to summarize the different facets of bile acids in the context of normal physiology, hereditary defects of bile acid transport and DILI.
Collapse
|
114
|
Establishment of a Drug-Induced, Bile Acid–Dependent Hepatotoxicity Model Using HepaRG Cells. J Pharm Sci 2016; 105:1550-60. [DOI: 10.1016/j.xphs.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 01/29/2023]
|
115
|
Malik MY, Jaiswal S, Sharma A, Shukla M, Lal J. Role of enterohepatic recirculation in drug disposition: cooperation and complications. Drug Metab Rev 2016; 48:281-327. [PMID: 26987379 DOI: 10.3109/03602532.2016.1157600] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enterohepatic recirculation (EHC) concerns many physiological processes and notably affects pharmacokinetic parameters such as plasma half-life and AUC as well as estimates of bioavailability of drugs. Also, EHC plays a detrimental role as the compounds/drugs are allowed to recycle. An in-depth comprehension of this phenomenon and its consequences on the pharmacological effects of affected drugs is important and decisive in the design and development of new candidate drugs. EHC of a compound/drug occurs by biliary excretion and intestinal reabsorption, sometimes with hepatic conjugation and intestinal deconjugation. EHC leads to prolonged elimination half-life of the drugs, altered pharmacokinetics and pharmacodynamics. Study of the EHC of any drug is complicated due to unavailability of the apposite model, sophisticated procedures and ethical concerns. Different in vitro and in vivo methods for studies in experimental animals and humans have been devised, each having its own merits and demerits. Involvement of the different transporters in biliary excretion, intra- and inter-species, pathological and biochemical variabilities obscure the study of the phenomenon. Modeling of drugs undergoing EHC has always been intricate and exigent models have been exploited to interpret the pharmacokinetic profiles of drugs witnessing multiple peaks due to EHC. Here, we critically appraise the mechanisms of bile formation, factors affecting biliary drug elimination, methods to estimate biliary excretion of drugs, EHC, multiple peak phenomenon and its modeling.
Collapse
Affiliation(s)
- Mohd Yaseen Malik
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Raebareli , India ;,b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Swati Jaiswal
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| | - Abhisheak Sharma
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India ;,d Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , USA
| | - Mahendra Shukla
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| | - Jawahar Lal
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| |
Collapse
|
116
|
Cherkas Y, McMillian MK, Amaratunga D, Raghavan N, Sasaki JC. ABC gene-ranking for prediction of drug-induced cholestasis in rats. Toxicol Rep 2016; 3:252-261. [PMID: 28959545 PMCID: PMC5615833 DOI: 10.1016/j.toxrep.2016.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/02/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022] Open
Abstract
As legacy toxicogenomics databases have become available, improved data mining approaches are now key to extracting and visualizing subtle relationships between toxicants and gene expression. In the present study, a novel “aggregating bundles of clusters” (ABC) procedure was applied to separate cholestatic from non-cholestatic drugs and model toxicants in the Johnson & Johnson (Janssen) rat liver toxicogenomics database [3]. Drug-induced cholestasis is an important issue, particularly when a new compound enters the market with this liability, with standard preclinical models often mispredicting this toxicity. Three well-characterized cholestasis-responsive genes (Cyp7a1, Mrp3 and Bsep) were chosen from a previous in-house Janssen gene expression signature; these three genes show differing, non-redundant responses across the 90+ paradigm compounds in our database. Using the ABC procedure, extraneous contributions were minimized in comparisons of compound gene responses. All genes were assigned weights proportional to their correlations with Cyp7a1, Mrp3 and Bsep, and a resampling technique was used to derive a stable measure of compound similarity. The compounds that were known to be associated with rat cholestasis generally had small values of this measure relative to each other but also had large values of this measure relative to non-cholestatic compounds. Visualization of the data with the ABC-derived signature showed a very tight, essentially identically behaving cluster of robust human cholestatic drugs and experimental cholestatic toxicants (ethinyl estradiol, LPS, ANIT and methylene dianiline, disulfiram, naltrexone, methapyrilene, phenacetin, alpha-methyl dopa, flutamide, the NSAIDs–—indomethacin, flurbiprofen, diclofenac, flufenamic acid, sulindac, and nimesulide, butylated hydroxytoluene, piperonyl butoxide, and bromobenzene), some slightly less active compounds (3′-acetamidofluorene, amsacrine, hydralazine, tannic acid), some drugs that behaved very differently, and were distinct from both non-cholestatic and cholestatic drugs (ketoconazole, dipyridamole, cyproheptadine and aniline), and many postulated human cholestatic drugs that in rat showed no evidence of cholestasis (chlorpromazine, erythromycin, niacin, captopril, dapsone, rifampicin, glibenclamide, simvastatin, furosemide, tamoxifen, and sulfamethoxazole). Most of these latter drugs were noted previously by other groups as showing cholestasis only in humans. The results of this work suggest that the ABC procedure and similar statistical approaches can be instrumental in combining data to compare toxicants across toxicogenomics databases, extract similarities among responses and reduce unexplained data varation.
Collapse
Affiliation(s)
| | | | | | - Nandini Raghavan
- Janssen Research and Development, LLC, Titusville, NJ 08540, USA
| | | |
Collapse
|
117
|
Wang X, Wang P, Wang W, Murray JW, Wolkoff AW. The Na(+)-Taurocholate Cotransporting Polypeptide Traffics with the Epidermal Growth Factor Receptor. Traffic 2016; 17:230-44. [PMID: 26650232 DOI: 10.1111/tra.12354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Na(+)-taurocholate cotransporting polypeptide (ntcp) mediates bile acid transport, also serving as the hepatitis B virus receptor. It traffics in vesicles along microtubules, requiring activity of protein kinase C (PKC)ζ for motility. We have now found that the epidermal growth factor receptor (EGFR) is the target of PKCζ activity and that EGFR and ntcp colocalize in vesicles. ntcp-containing vesicles that are not associated with EGFR have reduced microtubule-based motility, consistent with intracellular accumulation and reduced surface expression of ntcp in cells following EGFR knockdown.
Collapse
Affiliation(s)
- Xintao Wang
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Pijun Wang
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Wenjun Wang
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA.,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - John W Murray
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA.,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Allan W Wolkoff
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA.,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
118
|
Van de Wiel S, Merkx M, Van de Graaf S. Real Time Monitoring of Intracellular Bile Acid Dynamics Using a Genetically Encoded FRET-based Bile Acid Sensor. J Vis Exp 2016. [PMID: 26780506 DOI: 10.3791/53659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Förster Resonance Energy Transfer (FRET) has become a powerful tool for monitoring protein folding, interaction and localization in single cells. Biosensors relying on the principle of FRET have enabled real-time visualization of subcellular signaling events in live cells with high temporal and spatial resolution. Here, we describe the application of a genetically encoded Bile Acid Sensor (BAS) that consists of two fluorophores fused to the farnesoid X receptor ligand binding domain (FXR-LBD), thereby forming a bile acid sensor that can be activated by a large number of bile acids species and other (synthetic) FXR ligands. This sensor can be targeted to different cellular compartments including the nucleus (NucleoBAS) and cytosol (CytoBAS) to measure bile acid concentrations locally. It allows rapid and simple quantitation of cellular bile acid influx, efflux and subcellular distribution of endogenous bile acids without the need for labeling with fluorescent tags or radionuclei. Furthermore, the BAS FRET sensors can be useful for monitoring FXR ligand binding. Finally, we show that this FRET biosensor can be combined with imaging of other spectrally distinct fluorophores. This allows for combined analysis of intracellular bile acid dynamics and i) localization and/or abundance of proteins of interest, or ii) intracellular signaling in a single cell.
Collapse
Affiliation(s)
- Sandra Van de Wiel
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center
| | - Maarten Merkx
- Laboratory of Chemical Biology, Institute of Complex Molecular Systems (ICMS); Department of Biomedical Engineering, Eindhoven University of Technology
| | - Stan Van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center;
| |
Collapse
|
119
|
Cheng Y, Woolf TF, Gan J, He K. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review. Chem Biol Interact 2015; 255:23-30. [PMID: 26683212 DOI: 10.1016/j.cbi.2015.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023]
Abstract
The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross-species comparisons.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA
| | | | - Jinping Gan
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA
| | - Kan He
- Biotranex LLC, Monmouth Junction, NJ 08852, USA.
| |
Collapse
|
120
|
Slizgi JR, Lu Y, Brouwer KR, St Claire RL, Freeman KM, Pan M, Brock WJ, Brouwer KLR. Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury? Toxicol Sci 2015; 149:237-50. [PMID: 26507107 DOI: 10.1093/toxsci/kfv231] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tolvaptan is a vasopressin V(2)-receptor antagonist that has shown promise in treating Autosomal Dominant Polycystic Kidney Disease (ADPKD). Tolvaptan was, however, associated with liver injury in some ADPKD patients. Inhibition of bile acid transporters may be contributing factors to drug-induced liver injury. In this study, the ability of tolvaptan and two metabolites, DM-4103 and DM-4107, to inhibit human hepatic transporters (NTCP, BSEP, MRP2, MRP3, and MRP4) and bile acid transport in sandwich-cultured human hepatocytes (SCHH) was explored. IC(50) values were determined for tolvaptan, DM-4103 and DM-4107 inhibition of NTCP (∼41.5, 16.3, and 95.6 μM, respectively), BSEP (31.6, 4.15, and 119 μM, respectively), MRP2 (>50, ∼51.0, and >200 μM, respectively), MRP3 (>50, ∼44.6, and 61.2 μM, respectively), and MRP4 (>50, 4.26, and 37.9 μM, respectively). At the therapeutic dose of tolvaptan (90 mg), DM-4103 exhibited a C(max)/IC(50) value >0.1 for NTCP, BSEP, MRP2, MRP3, and MRP4. Tolvaptan accumulation in SCHH was extensive and not sodium-dependent; intracellular concentrations were ∼500 μM after a 10-min incubation duration with tolvaptan (15 μM). The biliary clearance of taurocholic acid (TCA) decreased by 43% when SCHH were co-incubated with tolvaptan (15 μM) and TCA (2.5 μM). When tolvaptan (15 μM) was co-incubated with 2.5 μM of chenodeoxycholic acid, taurochenodeoxycholic acid, or glycochenodeoxycholic acid in separate studies, the cellular accumulation of these bile acids increased by 1.30-, 1.68-, and 2.16-fold, respectively. Based on these data, inhibition of hepatic bile acid transport may be one of the biological mechanisms underlying tolvaptan-associated liver injury in patients with ADPKD.
Collapse
Affiliation(s)
- Jason R Slizgi
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| | - Yang Lu
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | | | | | - Maxwell Pan
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - William J Brock
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - Kim L R Brouwer
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| |
Collapse
|
121
|
Abstract
Hepatitis B virus (HBV) infection affects 240 million people worldwide. A liver-specific bile acid transporter named the sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV and its satellite, the hepatitis D virus (HDV). NTCP likely acts as a major determinant for the liver tropism and species specificity of HBV and HDV at the entry level. NTCP-mediated HBV entry interferes with bile acid transport in cell cultures and has been linked with alterations in bile acid and cholesterol metabolism in vivo. The human liver carcinoma cell line HepG2, complemented with NTCP, now provides a valuable platform for studying the basic biology of the viruses and developing treatments for HBV infection. This review summarizes critical findings regarding NTCP's role as a viral receptor for HBV and HDV and discusses important questions that remain unanswered.
Collapse
Affiliation(s)
- Wenhui Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China;
| |
Collapse
|
122
|
Basal efflux of bile acids contributes to drug-induced bile acid-dependent hepatocyte toxicity in rat sandwich-cultured hepatocytes. Toxicol In Vitro 2015; 29:1454-63. [DOI: 10.1016/j.tiv.2015.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/22/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
|
123
|
Matsuzaka Y, Hayashi H, Kusuhara H. Impaired Hepatic Uptake by Organic Anion-Transporting Polypeptides Is Associated with Hyperbilirubinemia and Hypercholanemia in Atp11c Mutant Mice. Mol Pharmacol 2015; 88:1085-92. [PMID: 26399598 DOI: 10.1124/mol.115.100578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/22/2015] [Indexed: 12/28/2022] Open
Abstract
Biliary excretion of organic anions, such as bile acids (BAs), is the main osmotic driving force for bile formation, and its impairment induces intrahepatic cholestasis. We investigated the involvement of Atp11c in the hepatic transport of organic anions using Atp11c mutant mice, which exhibit hypercholanemia and hyperbilirubinemia. Pharmacokinetic analysis following a constant intravenous infusion in Atp11c mutant mice showed decreased hepatic sinusoidal uptake and intact biliary secretion of [(3)H]17β estradiol 17β-d-glucuronide. Consistent with this result, compared with cells and membranes from control mice, isolated hepatocytes, and liver plasma membranes from Atp11c mutant mice had a much lower uptake of [(3)H]17β estradiol 17β-d-glucuronide and expression of organic anion-transporting polypeptides, which are transporters responsible for hepatic uptake of unconjugated BAs and organic anions, including bilirubin glucuronides. Uptake of [(3)H]TC into hepatocytes and expression of Na(+)-taurocholate cotransporting polypeptide in liver plasma membranes, which mediates hepatic uptake of conjugated BAs, was also lower in the Atp11c mutant mice. Bile flow rate, biliary BA concentration, and expression of hepatobiliary transporters did not differ between Atp11c mutant mice and control mice. These results suggest that Atp11c mediates the transport of BAs and organic anions across the sinusoidal membrane, but not the canalicular membrane, by regulating the abundance of transporters. Atp11c is a candidate gene for genetically undiagnosed cases of hypercholanemia and hyperbilirubinemia, but not of intrahepatic cholestasis. This gene may influence the pharmacological and adverse effect of drugs because organic anion-transporting polypeptides regulate their systemic exposure.
Collapse
Affiliation(s)
- Yusuke Matsuzaka
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
124
|
Susukida T, Sekine S, Nozaki M, Tokizono M, Ito K. Prediction of the Clinical Risk of Drug-Induced Cholestatic Liver Injury Using an In Vitro Sandwich Cultured Hepatocyte Assay. Drug Metab Dispos 2015; 43:1760-8. [PMID: 26329788 DOI: 10.1124/dmd.115.065425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is of concern to the pharmaceutical industry, and reliable preclinical screens are required. Previously, we established an in vitro bile acid-dependent hepatotoxicity assay that mimics cholestatic DILI in vivo. Here, we confirmed that this assay can predict cholestatic DILI in clinical situations by comparing in vitro cytotoxicity data with in vivo risk. For 38 drugs, the frequencies of abnormal increases in serum alkaline phosphatase (ALP), transaminases, gamma glutamyltranspeptidase (γGT), and bilirubin were collected from interview forms. Drugs with frequencies of serum marker increases higher than 1% were classified as high DILI risk compounds. In vitro cytotoxicity was assessed by monitoring lactate dehydrogenase release from rat and human sandwich-cultured hepatocytes (SCRHs and SCHHs) incubated with the test drugs (50 μM) for 24 hours in the absence or presence of a bile acids mixture. Receiver operating characteristic analyses gave optimal cutoff toxicity values of 19.5% and 9.2% for ALP and transaminases in SCRHs, respectively. Using this cutoff, high- and low-risk drugs were separated with 65.4-78.6% sensitivity and 66.7-79.2% specificity. Good separation was also achieved using SCHHs. In conclusion, cholestatic DILI risk can be successfully predicted using a sandwich-cultured hepatocyte-based assay.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Shuichi Sekine
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Mayuka Nozaki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Mayuko Tokizono
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
125
|
Abstract
Many of the compounds taken up by the liver are organic anions that circulate tightly bound to protein carriers such as albumin. The fenestrated sinusoidal endothelium of the liver permits these compounds to have access to hepatocytes. Studies to characterize hepatic uptake of organic anions through kinetic analyses, suggested that it was carrier-mediated. Attempts to identify specific transporters by biochemical approaches were largely unsuccessful and were replaced by studies that utilized expression cloning. These studies led to identification of the organic anion transport proteins (oatps), a family of 12 transmembrane domain glycoproteins that have broad and often overlapping substrate specificities. The oatps mediate Na(+)-independent organic anion uptake. Other studies identified a seven transmembrane domain glycoprotein, Na(+)/taurocholate transporting protein (ntcp) as mediating Na(+)-dependent uptake of bile acids as well as other organic anions. Although mutations or deficiencies of specific members of the oatp family have been associated with transport abnormalities, there have been no such reports for ntcp, and its physiologic role remains to be determined, although expression of ntcp in vitro recapitulates the characteristics of Na(+)-dependent bile acid transport that is seen in vivo. Both ntcp and oatps traffic between the cell surface and intracellular vesicular pools. These vesicles move through the cell on microtubules, using the microtubule based motors dynein and kinesins. Factors that regulate this motility are under study and may provide a unique mechanism that can alter the plasma membrane content of these transporters and consequently their accessibility to circulating ligands.
Collapse
Affiliation(s)
- Allan W Wolkoff
- The Herman Lopata Chair in Liver Disease Research, Professor of Medicine and Anatomy and Structural Biology, Associate Chair of Medicine for Research, Chief, Division of Gastroenterology and Liver Diseases, Director, Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| |
Collapse
|
126
|
Slijepcevic D, Kaufman C, Wichers CGK, Gilglioni EH, Lempp FA, Duijst S, de Waart DR, Oude Elferink RPJ, Mier W, Stieger B, Beuers U, Urban S, van de Graaf SFJ. Impaired uptake of conjugated bile acids and hepatitis b virus pres1-binding in na(+) -taurocholate cotransporting polypeptide knockout mice. Hepatology 2015; 62:207-19. [PMID: 25641256 PMCID: PMC4657468 DOI: 10.1002/hep.27694] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/07/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED The Na(+) -taurocholate cotransporting polypeptide (NTCP) mediates uptake of conjugated bile acids (BAs) and is localized at the basolateral membrane of hepatocytes. It has recently been recognized as the receptor mediating hepatocyte-specific entry of hepatitis B virus and hepatitis delta virus. Myrcludex B, a peptide inhibitor of hepatitis B virus entry, is assumed to specifically target NTCP. Here, we investigated BA transport and Myrcludex B binding in the first Slc10a1-knockout mouse model (Slc10a1 encodes NTCP). Primary Slc10a1(-/-) hepatocytes showed absence of sodium-dependent taurocholic acid uptake, whereas sodium-independent taurocholic acid uptake was unchanged. In vivo, this was manifested as a decreased serum BA clearance in all knockout mice. In a subset of mice, NTCP deficiency resulted in markedly elevated total serum BA concentrations, mainly composed of conjugated BAs. The hypercholanemic phenotype was rapidly triggered by a diet supplemented with ursodeoxycholic acid. Biliary BA output remained intact, while fecal BA excretion was reduced in hypercholanemic Slc10a1(-/-) mice, explained by increased Asbt and Ostα/β expression. These mice further showed reduced Asbt expression in the kidney and increased renal BA excretion. Hepatic uptake of conjugated BAs was potentially affected by down-regulation of OATP1A1 and up-regulation of OATP1A4. Furthermore, sodium-dependent taurocholic acid uptake was inhibited by Myrcludex B in wild-type hepatocytes, while Slc10a1(-/-) hepatocytes were insensitive to Myrcludex B. Finally, positron emission tomography showed a complete abrogation of hepatic binding of labeled Myrcludex B in Slc10a1(-/-) mice. CONCLUSION The Slc10a1-knockout mouse model supports the central role of NTCP in hepatic uptake of conjugated BAs and hepatitis B virus preS1/Myrcludex B binding in vivo; the NTCP-independent hepatic BA uptake machinery maintains a (slower) enterohepatic circulation of BAs, although it is occasionally insufficient to clear BAs from the circulation.
Collapse
Affiliation(s)
- Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Christina Kaufman
- Department of Infectious Diseases and of Molecular Virology, University Hospital HeidelbergHeidelberg, Germany,Department of Nuclear Medicine, University Hospital HeidelbergHeidelberg, Germany
| | - Catharina GK Wichers
- Department of Molecular Cancer Research, Section of Metabolic Diseases, University Medical Center UtrechtUtrecht, The Netherlands
| | - Eduardo H Gilglioni
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Florian A Lempp
- Department of Infectious Diseases and of Molecular Virology, University Hospital HeidelbergHeidelberg, Germany
| | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Ronald PJ Oude Elferink
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital HeidelbergHeidelberg, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital ZurichZurich, Switzerland
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Stephan Urban
- Department of Infectious Diseases and of Molecular Virology, University Hospital HeidelbergHeidelberg, Germany,German Center for Infection Research, Heidelberg UniversityHeidelberg, Germany
| | - Stan FJ van de Graaf
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| |
Collapse
|
127
|
Li T, Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:263-302. [PMID: 26233910 DOI: 10.1016/bs.apha.2015.04.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid-soluble vitamins. Bile acid synthesis, transport, and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis, and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug, and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport, and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration, and carcinogenesis.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
128
|
Zhao W, Zitzow JD, Ehresman DJ, Chang SC, Butenhoff JL, Forster J, Hagenbuch B. Na+/Taurocholate Cotransporting Polypeptide and Apical Sodium-Dependent Bile Acid Transporter Are Involved in the Disposition of Perfluoroalkyl Sulfonates in Humans and Rats. Toxicol Sci 2015; 146:363-73. [PMID: 26001962 DOI: 10.1093/toxsci/kfv102] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Among the perfluoroalkyl sulfonates (PFASs), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) have half-lives of several years in humans, mainly due to slow renal clearance and potential hepatic accumulation. Both compounds undergo enterohepatic circulation. To determine whether transporters involved in the enterohepatic circulation of bile acids are also involved in the disposition of PFASs, uptake of perfluorobutane sulfonate (PFBS), PFHxS, and PFOS was measured using freshly isolated human and rat hepatocytes in the absence or presence of sodium. The results demonstrated sodium-dependent uptake for all 3 PFASs. Given that the Na(+)/taurocholate cotransporting polypeptide (NTCP) and the apical sodium-dependent bile salt transporter (ASBT) are essential for the enterohepatic circulation of bile acids, transport of PFASs was investigated in stable CHO Flp-In cells for human NTCP or HEK293 cells transiently expressing rat NTCP, human ASBT, and rat ASBT. The results demonstrated that both human and rat NTCP can transport PFBS, PFHxS, and PFOS. Kinetics with human NTCP revealed Km values of 39.6, 112, and 130 µM for PFBS, PFHxS, and PFOS, respectively. For rat NTCP Km values were 76.2 and 294 µM for PFBS and PFHxS, respectively. Only PFOS was transported by human ASBT whereas rat ASBT did not transport any of the tested PFASs. Human OSTα/β was also able to transport all 3 PFASs. In conclusion, these results suggest that the long half-live and the hepatic accumulation of PFOS in humans are at least, in part, due to transport by NTCP and ASBT.
Collapse
Affiliation(s)
- Wen Zhao
- *Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | | | - Shu-Ching Chang
- Medical Department, 3M Company, St. Paul, Minnesota 55144; and
| | | | - Jameson Forster
- Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Bruno Hagenbuch
- *Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
129
|
Mazuy C, Helleboid A, Staels B, Lefebvre P. Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol Life Sci 2015; 72:1631-50. [PMID: 25511198 PMCID: PMC11113650 DOI: 10.1007/s00018-014-1805-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 12/16/2022]
Abstract
Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways.
Collapse
Affiliation(s)
- Claire Mazuy
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Audrey Helleboid
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| |
Collapse
|
130
|
Watanabe M, Watanabe T, Yabuki M, Tamai I. Dehydroepiandrosterone sulfate, a useful endogenous probe for evaluation of drug–drug interaction on hepatic organic anion transporting polypeptide (OATP) in cynomolgus monkeys. Drug Metab Pharmacokinet 2015; 30:198-204. [DOI: 10.1016/j.dmpk.2014.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/11/2014] [Accepted: 12/28/2014] [Indexed: 11/25/2022]
|
131
|
Peng L, Zhao Q, Li Q, Li M, Li C, Xu T, Jing X, Zhu X, Wang Y, Li F, Liu R, Zhong C, Pan Q, Zeng B, Liao Q, Hu B, Hu ZX, Huang YS, Sham P, Liu J, Xu S, Wang J, Gao ZL, Wang Y. The p.Ser267Phe variant in SLC10A1 is associated with resistance to chronic hepatitis B. Hepatology 2015; 61:1251-60. [PMID: 25418280 DOI: 10.1002/hep.27608] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/05/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED In the past 50 years there have been considerable efforts to identify the cellular receptor of hepatitis B virus (HBV). Recently, in vitro evidence from several groups has shown that the sodium-taurocholate cotransporting polypeptide (NTCP, which is encoded by SLC10A1 and transports bile acids into hepatic cells in enterohepatic recirculation) is a strong candidate. In particular, in vitro the p.Ser267Phe variation of SLC10A1 results in loss of HBV receptor function. We tested the role of NTCP as a receptor for HBV in chronic hepatitis B patients using a genetic association study. We selected SLC10A1 variants from 189 exomes. We used Sanger sequencing to follow up the association of the various SLC10A1 variants in a Han Chinese cohort of 1899 chronic hepatitis B patients and 1828 healthy controls. We further investigated the potential impact of the p.Ser267Phe variant on NTCP function using structural analysis. The p.Ser267Phe variant was associated with healthy status (P = 5.7 × 10(-23) , odds ratio = 0.36) irrespective of hepatitis B virus surface antibody status (P = 6.2 × 10(-21) and 1.5 × 10(-10) , respectively, when the cases were compared with hepatitis B virus surface antibody-positive and -negative controls). The variation was also associated with a lower incidence of acute-on-chronic liver failure (P = 0.007). The estimated heritability explained by this single variation was ∼3.2%. The population prevented fraction was around 13.0% among the southern Chinese. Our structural modeling showed that the p.Ser267Phe variant might interfere with ligand binding, thereby preventing HBV from cellular entry. CONCLUSION The p.Ser267Phe NTCP variant is significantly associated with resistance to chronic hepatitis B and a lower incidence of acute-on-chronic liver failure. Our results support that NTCP is a cellular receptor for HBV in human infection.
Collapse
Affiliation(s)
- Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
133
|
Zhang G, Zhou Y, Rao Z, Qin H, Wei Y, Ren J, Zhou L, Wu X. Effect of Yin-Zhi-Huang on up-regulation of Oatp2, Ntcp, and Mrp2 proteins in estrogen-induced rat cholestasis. PHARMACEUTICAL BIOLOGY 2015; 53:319-325. [PMID: 25420584 DOI: 10.3109/13880209.2014.918156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Yin-Zhi-Huang (YZH), a prescription of traditional Chinese medicine, is widely used to treat neonatal jaundice or cholestasis. OBJECTIVE This study investigates the regulatory effect of YZH on the localization and expression of organic anion transporting polypeptides 2 (Oatp2), Na(+)-taurocholate co-transporting polypeptide (Ntcp), multidrug-resistance-associated protein 2 (Mrp2), and bile salt export pump (Bsep) in estrogen-induced cholestasis rats. MATERIAL AND METHODS Cholestasis model rats were induced via subcutaneous injection of estradiol benzoate (EB, 5 mg/kg/d) for 5 d. Other EB-induced rats were treated with saline (2 ml) or YZH (1.5 g/kg, two times a day) for 7, 14, and 21 d. The biochemical and pathologic examinations were performed. Moreover, the localization and expression of Oatp2, Ntcp, Mrp2, and Bsep were determined by immunohistochemisty and Western blotting, respectively. RESULTS YZH treatment could significantly decrease the serum total bile acids (TBA) (4.9 ± 0.6-2.8 ± 0.8) and direct bilirubin (DBIL) (2.6 ± 0.7-1.0 ± 0.1) levels, improve the histological disorganization, and, respectively, increase the expression of Oatp2 and Ntcp by 46% and 28% compared with saline-treated (p < 0.05) rats at 14 d. The expression of Mrp2 increased by 45% was observed in YZH treated compared with saline-treated (p < 0.05) rats at 7 d. However, there was a little change in the expression of Bsep (p > 0.05) after YZH treatment for 7, 14, and 21 d. DISCUSSION AND CONCLUSION In conclusion, the therapeutic effect of YZH to cholestasis could be attributed to the regulation of Oatp2, Ntcp, Mrp2, and Bsep.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University , Lanzhou , China and
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Bachour-El Azzi P, Sharanek A, Burban A, Li R, Guével RL, Abdel-Razzak Z, Stieger B, Guguen-Guillouzo C, Guillouzo A. Comparative Localization and Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary Human Hepatocytes. Toxicol Sci 2015; 145:157-68. [PMID: 25690737 DOI: 10.1093/toxsci/kfv041] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na(+)-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis.
Collapse
Affiliation(s)
- Pamela Bachour-El Azzi
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Ahmad Sharanek
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Audrey Burban
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Ruoya Li
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Rémy Le Guével
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Ziad Abdel-Razzak
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Bruno Stieger
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Christiane Guguen-Guillouzo
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - André Guillouzo
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| |
Collapse
|
135
|
Chen Y, Vasilenko A, Song X, Valanejad L, Verma R, You S, Yan B, Shiffka S, Hargreaves L, Nadolny C, Deng R. Estrogen and Estrogen Receptor-α-Mediated Transrepression of Bile Salt Export Pump. Mol Endocrinol 2015; 29:613-26. [PMID: 25675114 DOI: 10.1210/me.2015-1014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among diseases unique to pregnancy, intrahepatic cholestasis of pregnancy is the most prevalent disorder with elevated serum bile acid levels. We have previously shown that estrogen 17β-estradiol (E2) transrepresses bile salt export pump (BSEP) through an interaction between estrogen receptor (ER)-α and farnesoid X receptor (FXR) and transrepression of BSEP by E2/ERα is an etiological contributing factor to intrahepatic cholestasis of pregnancy. Currently the mechanistic insights into such transrepression are not fully understood. In this study, the dynamics of coregulator recruitment to BSEP promoter after FXR activation and E2 treatment were established with quantitative chromatin immunoprecipitation assays. Coactivator peroxisome proliferator-activated receptor-γ coactivator-1 was predominantly recruited to the BSEP promoter upon FXR activation, and its recruitment was decreased by E2 treatment. Meanwhile, recruitment of nuclear receptor corepressor was markedly increased upon E2 treatment. Functional evaluation of ERα and ERβ chimeras revealed that domains AC of ERα are the determinants for ERα-specific transrepression on BSEP. Further studies with various truncated ERα proteins identified the domains in ERα responsible for ligand-dependent and ligand-independent transrepression. Truncated ERα-AD exhibited potent ligand-independent transrepressive activity, whereas ERα-CF was fully capable of transrepressing BSEP ligand dependently in vitro in Huh 7 cells and in vivo in mice. Both ERα-AD and ERα-CF proteins were associated with FXR in the coimmunoprecipitation assays. In conclusion, E2 repressed BSEP expression through diminishing peroxisome proliferator-activated receptor-γ coactivator-1 recruitment with a concurrent increase in nuclear receptor corepressor recruitment to the BSEP promoter. Domains AD and CF in ERα mediated ligand-independent and ligand-dependent transrepression on BSEP, respectively, through interacting with FXR.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Ali AH, Carey EJ, Lindor KD. Current research on the treatment of primary sclerosing cholangitis. Intractable Rare Dis Res 2015; 4:1-6. [PMID: 25674381 PMCID: PMC4322589 DOI: 10.5582/irdr.2014.01018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/13/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a progressive disease of the liver characterized by inflammation and destruction of the intra- and/or extra-hepatic bile ducts, leading to fibrosis and ultimately liver failure, cirrhosis and an increased risk of malignancy. The etiology of PSC is unclear. It is often associated with the inflammatory bowel diseases (IBD), particularly Ulcerative Colitis (UC); up to 75% of PSC patients have UC. PSC is more prevalent in men than in women. Ursodeoxycholic acid (UDCA) has been extensively studied in PSC in randomized clinical trials but failed to show a positive impact on the natural course of the disease. Currently, there is no effective medical therapy for PSC, and the majority of patients will eventually require liver transplantation. PSC is one of the leading indications for liver transplantation. In this paper, we review the current research on the potential therapeutic agents for the treatment of PSC.
Collapse
Affiliation(s)
- Ahmad H Ali
- Division of Gastroenterology and Hepatology, Mayo Clinic, Arizona, USA
- Address correspondence to: Dr. Ahmad H Ali, Division of Gastroenterology and Hepatology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, Arizona 85259, USA. E-mail: ;
| | - Elizabeth J Carey
- Division of Gastroenterology and Hepatology, Mayo Clinic, Arizona, USA
| | - Keith D Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Arizona, USA
- Arizona State University, College of Health Solutions, Phoenix, Arizona, USA
| |
Collapse
|
137
|
Song X, Vasilenko A, Chen Y, Valanejad L, Verma R, Yan B, Deng R. Transcriptional dynamics of bile salt export pump during pregnancy: mechanisms and implications in intrahepatic cholestasis of pregnancy. Hepatology 2014; 60:1993-2007. [PMID: 24729004 PMCID: PMC4194188 DOI: 10.1002/hep.27171] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Bile salt export pump (BSEP) is responsible for biliary secretion of bile acids, a rate-limiting step in the enterohepatic circulation of bile acids and transactivated by nuclear receptor farnesoid X receptor (FXR). Intrahepatic cholestasis of pregnancy (ICP) is the most prevalent disorder among diseases unique to pregnancy and primarily occurs in the third trimester of pregnancy, with a hallmark of elevated serum bile acids. Currently, the transcriptional regulation of BSEP during pregnancy and its underlying mechanisms and involvement in ICP are not fully understood. In this study the dynamics of BSEP transcription in vivo in the same group of pregnant mice before, during, and after gestation were established with an in vivo imaging system (IVIS). BSEP transcription was markedly repressed in the later stages of pregnancy and immediately recovered after parturition, resembling the clinical course of ICP in human. The transcriptional dynamics of BSEP was inversely correlated with serum 17β-estradiol (E2) levels before, during, and after gestation. Further studies showed that E2 repressed BSEP expression in human primary hepatocytes, Huh 7 cells, and in vivo in mice. Such transrepression of BSEP by E2 in vitro and in vivo required estrogen receptor α (ERα). Mechanistic studies with chromatin immunoprecipitation (ChIP), protein coimmunoprecipitation (Co-IP), and bimolecular fluorescence complementation (BiFC) assays demonstrated that ERα directly interacted with FXR in living cells and in vivo in mice. CONCLUSION BSEP expression was repressed by E2 in the late stages of pregnancy through a nonclassical E2/ERα transrepressive pathway, directly interacting with FXR. E2-mediated repression of BSEP expression represents an etiological contributing factor to ICP and therapies targeting the ERα/FXR interaction may be developed for prevention and treatment of ICP.
Collapse
Affiliation(s)
| | | | - Yuan Chen
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Leila Valanejad
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Ruchi Verma
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| |
Collapse
|
138
|
van der Schoor LWE, Verkade HJ, Kuipers F, Jonker JW. New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition. Expert Opin Drug Metab Toxicol 2014; 11:273-93. [PMID: 25380746 DOI: 10.1517/17425255.2015.981152] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION For the elimination of environmental chemicals and metabolic waste products, the body is equipped with a range of broad specificity transporters that are present in excretory organs as well as in several epithelial blood-tissue barriers. AREAS COVERED ABCC2 and ABCC3 (also known as MRP2 and MRP3) mediate the transport of various conjugated organic anions, including many drugs, toxicants and endogenous compounds. This review focuses on the physiology of these transporters, their roles in drug disposition and how they affect drug sensitivity and toxicity. It also examines how ABCC2 and ABCC3 are coordinately regulated at the transcriptional level by members of the nuclear receptor (NR) family of ligand-modulated transcription factors and how this can be therapeutically exploited. EXPERT OPINION Mutations in both ABCC2 and ABCC3 have been associated with changes in drug disposition, sensitivity and toxicity. A defect in ABCC2 is associated with Dubin-Johnson syndrome, a recessively inherited disorder characterized by conjugated hyperbilirubinemia. Pharmacological manipulation of the activity of these transporters can potentially improve the pharmacokinetics and thus therapeutic activity of substrate drugs but also affect the physiological function of these transporters and consequently ameliorate associated disease states.
Collapse
Affiliation(s)
- Lori W E van der Schoor
- University of Groningen, University Medical Center Groningen, Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics , Hanzeplein 1, 9713 GZ Groningen , The Netherlands
| | | | | | | |
Collapse
|
139
|
Ruiz ML, Mottino AD, Catania VA, Vore M. Hormonal regulation of hepatic drug biotransformation and transport systems. Compr Physiol 2014; 3:1721-40. [PMID: 24265243 DOI: 10.1002/cphy.c130018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human body is constantly exposed to many xenobiotics including environmental pollutants, food additives, therapeutic drugs, etc. The liver is considered the primary site for drug metabolism and elimination pathways, consisting in uptake, phase I and II reactions, and efflux processes, usually acting in this same order. Modulation of biotransformation and disposition of drugs of clinical application has important therapeutic and toxicological implications. We here provide a compilation and analysis of relevant, more recent literature reporting hormonal regulation of hepatic drug biotransformation and transport systems. We provide additional information on the effect of hormones that tentatively explain differences between sexes. A brief discussion on discrepancies between experimental models and species, as well as a link between gender-related differences and the hormonal mechanism explaining such differences, is also presented. Finally, we include a comment on the pathophysiological, toxicological, and pharmacological relevance of these regulations.
Collapse
Affiliation(s)
- María L Ruiz
- Institute of Experimental Physiology, National University of Rosario, Rosario, Argentina
| | | | | | | |
Collapse
|
140
|
Masuda M, Ichikawa Y, Shimono K, Shimizu M, Tanaka Y, Nara T, Miyauchi S. Electrophysiological characterization of human Na+/taurocholate cotransporting polypeptide (hNTCP) heterologously expressed in Xenopus laevis oocytes. Arch Biochem Biophys 2014; 562:115-21. [DOI: 10.1016/j.abb.2014.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/27/2022]
|
141
|
Grosser G, Döring B, Ugele B, Geyer J, Kulling SE, Soukup ST. Transport of the soy isoflavone daidzein and its conjugative metabolites by the carriers SOAT, NTCP, OAT4, and OATP2B1. Arch Toxicol 2014; 89:2253-63. [DOI: 10.1007/s00204-014-1379-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022]
|
142
|
Gioiello A, Cerra B, Zhang W, Vallerini GP, Costantino G, De Franco F, Passeri D, Pellicciari R, Setchell KDR. Synthesis of atypical bile acids for use as investigative tools for the genetic defect of 3β-hydroxy-Δ(5)-C27-steroid oxidoreductase deficiency. J Steroid Biochem Mol Biol 2014; 144 Pt B:348-60. [PMID: 24954360 DOI: 10.1016/j.jsbmb.2014.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/28/2014] [Accepted: 06/17/2014] [Indexed: 12/31/2022]
Abstract
Deficiency of 3β-hydroxy-Δ(5)-C27-steroid oxidoreductase (HSD3B7), an enzyme catalyzing the second step in the pathway for bile acid synthesis, leads to a complete lack of the primary bile acids, cholic and chenodeoxycholic acids, and the accumulation of 3β,7α-dihydroxy- and 3β,7α,12α-trihydroxy-Δ(5)-cholenoic acids. Patients affected by this autosomal recessive genetic defect develop cholestatic liver disease that is clinically responsive to primary bile acid therapy. Reference standards of these compounds are needed to facilitate diagnosis and to accurately quantify biochemical responses to therapy. Described are a novel synthesis of atypical bile acids that characterize the HSD3B7 deficiency and their effect on bile acid-activated nuclear receptors, target genes and cytochromes involved in bile acid homeostasis and detoxification. The failure of 3β-hydroxy-Δ(5)-cholenoic acids to function as FXR, PXR and CAR agonists and to exert hepatoprotective actions explains the mechanism for progressive cholestatic liver disease in patients with HSD3B7 deficiency.
Collapse
Affiliation(s)
- Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122 Perugia, Italy.
| | - Bruno Cerra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122 Perugia, Italy
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center and Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gian Paolo Vallerini
- Department of Farmacy, University of Parma, Viale delle Scienze 27/A, Parma I-43124, Italy
| | - Gabriele Costantino
- Department of Farmacy, University of Parma, Viale delle Scienze 27/A, Parma I-43124, Italy
| | | | - Daniela Passeri
- TES Pharma, Via P. Togliatti, 20, Loc Taverne, I-06073 Corciano, Italy
| | - Roberto Pellicciari
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122 Perugia, Italy; TES Pharma, Via P. Togliatti, 20, Loc Taverne, I-06073 Corciano, Italy
| | - Kenneth D R Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center and Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
143
|
Dietrich CG, Geier A. Effect of drug transporter pharmacogenetics on cholestasis. Expert Opin Drug Metab Toxicol 2014; 10:1533-51. [PMID: 25260651 DOI: 10.1517/17425255.2014.963553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The liver is the central place for the metabolism of drugs and other xenobiotics. In the liver cell, oxidation and conjugation of compounds take place, and at the same time, bile formation helps in extrusion of these compounds via the biliary route. A large number of transporters are responsible for drug uptake into the liver cell and excretion into bile or efflux to the sinusoidal blood. AREAS COVERED Genetic variants of these transporters and their transactivators contribute to changes in drug handling and are also responsible for cholestatic syndromes of different severity. This review summarizes the current knowledge regarding the influence of these genetic changes. The review covers progressive hereditary cholestatic syndromes as well as recurrent or transient cholestatic syndromes such as drug-induced liver injury, intrahepatic cholestasis of pregnancy, and benign recurrent intrahepatic cholestasis. EXPERT OPINION Polymorphisms in transporter genes are frequent. For clinically relevant cholestatic syndromes, it often requires a combination of genetic variants or acquired triggers such as pregnancy or drug treatment. In combination with other pathogenetic aspects, genetic variants in drug transporters may contribute to our understanding of not only cholestatic diseases such as primary sclerosing cholangitis or primary biliary cirrhosis, but also the natural course of chronic liver disease in general.
Collapse
|
144
|
Stieger B, Unadkat JD, Prasad B, Langer O, Gali H. Role of (drug) transporters in imaging in health and disease. Drug Metab Dispos 2014; 42:2007-15. [PMID: 25249691 DOI: 10.1124/dmd.114.059873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This report is the summary of presentations at the symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics, April 26-30, at Experimental Biology 2014 in San Diego, CA. The presentations focused on the role of transporters in imaging in health and disease and on assessing transporter function in vivo. Imaging is an important diagnostic tool in clinics and is a novel tool for in vivo visualization of transporter function. Many imaging substrates and endogenous markers for organ function are organic anions. In this symposium, the bile salt transporter sodium taurocholate cotransporting polypeptide and the liver organic anion transporting polypeptides (OATPs) as well as the renal organic anion transporters (OATs) were addressed in detail; e.g., OATPs mediate transport of contrast agents used for magnetic resonance imaging of the liver or transport agents used for hepatobiliary scintigraphy, and OATs transport substances used in renography. In addition, the symposium also focused on the multidrug-resistance transporter 1 (MDR1 or P-gp), which is the most important gatekeeper in epithelial or endothelial barriers for preventing entry of potentially harmful substances into organs. Novel substrates suitable for positron emission tomography (PET) allow the study of such transporters at the blood-brain barrier or while they are mediating uptake of drugs into hepatocytes, and, importantly, PET tracers also now allow renography. Finally, quantitative data on transporter expression in human organs allow the development of improved physiologically based pharmacokinetic (PBPK) models for drug disposition. Hence, the combined efforts using novel substrates for in vivo visualization of transporters and quantification of transporters will lead to a deeper understanding of transporter function in disease and allow development of novel PBPK models for disease states.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Jashvant D Unadkat
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Bhagwat Prasad
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Oliver Langer
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Hariprasad Gali
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| |
Collapse
|
145
|
Wu ZT, Qi XM, Sheng JJ, Ma LL, Ni X, Ren J, Huang CG, Pan GY. Timosaponin A3 induces hepatotoxicity in rats through inducing oxidative stress and down-regulating bile acid transporters. Acta Pharmacol Sin 2014; 35:1188-98. [PMID: 25087997 PMCID: PMC4155534 DOI: 10.1038/aps.2014.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/20/2014] [Indexed: 12/16/2022] Open
Abstract
Aim: To investigate the mechanisms underlying the hepatotoxicity of timosaponin A3 (TA3), a steroidal saponin from Anemarrhena asphodeloides, in rats. Methods: Male SD rats were administered TA3 (100 mg·kg−1·d−1, po) for 14 d, and the blood and bile samples were collected after the final administration. The viability of a sandwich configuration of cultured rat hepatocytes (SCRHs) was assessed using WST-1. Accumulation and biliary excretion index (BEI) of d8-TCA in SCRHs were determined with LC-MS/MS. RT-PCR and Western blot were used to analyze the expression of relevant genes and proteins. ROS and ATP levels, and mitochondrial membrane potential (MMP) were measured. F-actin cytoskeletal integrity was assessed under confocal microscopy. Results: TA3 administration in rats significantly elevated the total bile acid in serum, and decreased bile acid (BA) component concentrations in bile. TA3 inhibited the viability of the SCRHs with an IC50 value of 15.21±1.73 μmol/L. Treatment of the SCRHs with TA3 (1–10 μmol/L) for 2 and 24 h dose-dependently decreased the accumulation and BEI of d8-TCA. The TA3 treatment dose-dependently decreased the expression of BA transporters Ntcp, Bsep and Mrp2, and BA biosynthesis related Cyp7a1 in hepatocytes. Furthermore, the TA3 treatment dose-dependently increased ROS generation and HO-1 expression, decreased the ATP level and MMP, and disrupted F-actin in the SCRHs. NAC (5 mmol/L) significantly ameliorated TA3-induced effects in the SCRHs, whereas mangiferin (10–200 μg/mL) almost blocked TA3-induced ROS generation. Conclusion: TA3 triggers liver injury through inducing ROS generation and suppressing the expression of BA transporters. Mangiferin, an active component in Anemarrhena, may protect hepatocytes from TA3-induced hepatotoxicity.
Collapse
|
146
|
Yang F, He Y, Liu HX, Tsuei J, Jiang X, Yang L, Wang ZT, Wan YJY. All-trans retinoic acid regulates hepatic bile acid homeostasis. Biochem Pharmacol 2014; 91:483-9. [PMID: 25175738 DOI: 10.1016/j.bcp.2014.08.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 12/11/2022]
Abstract
Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China; Department of Pathology and Laboratory Medicine, the University of California at Davis Medical Center, 4645, 2nd Avenue, Sacramento, CA 95817, USA.
| | - Yuqi He
- Department of Pathology and Laboratory Medicine, the University of California at Davis Medical Center, 4645, 2nd Avenue, Sacramento, CA 95817, USA.
| | - Hui-Xin Liu
- Department of Pathology and Laboratory Medicine, the University of California at Davis Medical Center, 4645, 2nd Avenue, Sacramento, CA 95817, USA.
| | - Jessica Tsuei
- Department of Pathology and Laboratory Medicine, the University of California at Davis Medical Center, 4645, 2nd Avenue, Sacramento, CA 95817, USA.
| | - Xiaoyue Jiang
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA 95134, USA.
| | - Li Yang
- Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China.
| | - Zheng-Tao Wang
- Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China.
| | - Yu-Jui Yvonne Wan
- Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China; Department of Pathology and Laboratory Medicine, the University of California at Davis Medical Center, 4645, 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|
147
|
Abstract
Over the past decade, it has become apparent that bile acids are involved in a host of activities beyond their classic functions in bile formation and fat absorption. The identification of the farnesoid X receptor (FXR) as a nuclear receptor directly activated by bile acids and the discovery that bile acids are also ligands for the membrane-bound, G-protein coupled bile acid receptor 1 (also known as TGR5) have opened new avenues of research. Both FXR and TGR5 regulate various elements of glucose, lipid and energy metabolism. Consequently, a picture has emerged of bile acids acting as modulators of (postprandial) metabolism. Therefore, strategies that interfere with either bile acid metabolism or signalling cascades mediated by bile acids may represent novel therapeutic approaches for metabolic diseases. Synthetic modulators of FXR have been designed and tested, primarily in animal models. Furthermore, the use of bile acid sequestrants to reduce plasma cholesterol levels has unexpected benefits. For example, treatment of patients with type 2 diabetes mellitus (T2DM) with sequestrants causes substantial reductions in plasma levels of glucose and HbA1c. This Review aims to provide an overview of the molecular mechanisms by which bile acids modulate glucose and energy metabolism, particularly focusing on the glucose-lowering actions of bile acid sequestrants in insulin resistant states and T2DM.
Collapse
Affiliation(s)
- Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700RB Groningen, Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700RB Groningen, Netherlands
| | - Albert K Groen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700RB Groningen, Netherlands
| |
Collapse
|
148
|
|
149
|
Li X, Yu M, Fan W, Gan Y, Hovgaard L, Yang M. Orally active-targeted drug delivery systems for proteins and peptides. Expert Opin Drug Deliv 2014; 11:1435-47. [DOI: 10.1517/17425247.2014.924500] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
150
|
Baghdasaryan A, Chiba P, Trauner M. Clinical application of transcriptional activators of bile salt transporters. Mol Aspects Med 2014; 37:57-76. [PMID: 24333169 PMCID: PMC4045202 DOI: 10.1016/j.mam.2013.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/21/2013] [Accepted: 12/01/2013] [Indexed: 02/07/2023]
Abstract
Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular BS efflux through bile salt export pump (BSEP), basolateral elimination through organic solute transporters alpha and beta (OSTα/OSTβ) as well as inhibition of hepatocellular BS uptake through basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP) represent critical steps in protection from hepatocellular BS overload and can be targeted therapeutically. In this article, we review the potential clinical implications of the major BS transporters BSEP, OSTα/OSTβ and NTCP in the pathogenesis of hereditary and acquired cholestatic syndromes, provide an overview on transcriptional control of these transporters by the key regulatory nuclear receptors and discuss the potential therapeutic role of novel transcriptional activators of BS transporters in cholestasis.
Collapse
Affiliation(s)
- Anna Baghdasaryan
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria; Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria.
| |
Collapse
|