101
|
Bahsoun MA, Khan MU, Mitha S, Ghazvanchahi A, Khosravani H, Jabehdar Maralani P, Tardif JC, Moody AR, Tyrrell PN, Khademi A. FLAIR MRI biomarkers of the normal appearing brain matter are related to cognition. Neuroimage Clin 2022; 34:102955. [PMID: 35180579 PMCID: PMC8857609 DOI: 10.1016/j.nicl.2022.102955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/04/2023]
Abstract
Normal appearing brain matter (NABM) biomarkers in FLAIR MRI are related to cognition. NABM texture in FLAIR MRI is correlated to mean diffusivity (MD) in dMRI. Analysis conducted on large multicentre FLAIR MRI dataset: 1400 subjects, 87 centers. NABM biomarkers vary differently across age and MoCA categories. Biomarkers showed differences in patients with AD dementia and vascular disease.
A novel biomarker panel was proposed to quantify macro and microstructural biomarkers from the normal-appearing brain matter (NABM) in multicentre fluid-attenuation inversion recovery (FLAIR) MRI. The NABM is composed of the white and gray matter regions of the brain, with the lesions and cerebrospinal fluid removed. The primary hypothesis was that NABM biomarkers from FLAIR MRI are related to cognitive outcome as determined by MoCA score. There were three groups of features designed for this task based on 1) texture: microstructural integrity (MII), macrostructural damage (MAD), microstructural damage (MID), 2) intensity: median, skewness, kurtosis and 3) volume: NABM to ICV volume ratio. Biomarkers were extracted from over 1400 imaging volumes from more than 87 centres and unadjusted ANOVA analysis revealed significant differences in means of the MII, MAD, and NABM volume biomarkers across all cognitive groups. In an adjusted ANCOVA model, a significant relationship between MoCA categories was found that was dependent on subject age for MII, MAD, intensity, kurtosis and NABM volume biomarkers. These results demonstrate that structural brain changes in the NABM are related to cognitive outcome (with different relationships depending on the age of the subjects). Therefore these biomarkers have high potential for clinical translation. As a secondary hypothesis, we investigated whether texture features from FLAIR MRI can quantify microstructural changes related to how “structured” or “damaged” the tissue is. Based on correlation analysis with diffusion weighted MRI (dMRI), it was shown that FLAIR MRI texture biomarkers (MII and MAD) had strong correlations to mean diffusivity (MD) which is related to tissue degeneration in the GM and WM regions. As FLAIR MRI is routinely collected for clinical neurological examinations, novel biomarkers from FLAIR MRI could be used to supplement current clinical biomarkers and for monitoring disease progression. Biomarkers could also be used to stratify patients into homogeneous disease subgroups for clinical trials, or to learn more about mechanistic development of dementia disease.
Collapse
Affiliation(s)
- M-A Bahsoun
- Electrical, Computer and Biomedical Engineering Dept., Ryerson University, Toronto, ON, Canada
| | - M U Khan
- Electrical, Computer and Biomedical Engineering Dept., Ryerson University, Toronto, ON, Canada
| | - S Mitha
- Electrical, Computer and Biomedical Engineering Dept., Ryerson University, Toronto, ON, Canada
| | - A Ghazvanchahi
- Electrical, Computer and Biomedical Engineering Dept., Ryerson University, Toronto, ON, Canada
| | - H Khosravani
- Hurvitz Brain Sciences Program Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - J-C Tardif
- Montreal Heart Institute, Montreal, QU, Canada; Department of Medicine, Université de Montréal, QU, Canada
| | - A R Moody
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - P N Tyrrell
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - A Khademi
- Electrical, Computer and Biomedical Engineering Dept., Ryerson University, Toronto, ON, Canada; Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Network, Toronto, ON, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital and Ryerson University, Toronto, ON, Canada
| |
Collapse
|
102
|
Nigri A, Ferraro S, Gandini Wheeler-Kingshott CAM, Tosetti M, Redolfi A, Forloni G, D'Angelo E, Aquino D, Biagi L, Bosco P, Carne I, De Francesco S, Demichelis G, Gianeri R, Lagana MM, Micotti E, Napolitano A, Palesi F, Pirastru A, Savini G, Alberici E, Amato C, Arrigoni F, Baglio F, Bozzali M, Castellano A, Cavaliere C, Contarino VE, Ferrazzi G, Gaudino S, Marino S, Manzo V, Pavone L, Politi LS, Roccatagliata L, Rognone E, Rossi A, Tonon C, Lodi R, Tagliavini F, Bruzzone MG, The RIN–Neuroimaging. Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN-Neuroimaging Network. Front Neurol 2022; 13:855125. [PMID: 35493836 PMCID: PMC9047871 DOI: 10.3389/fneur.2022.855125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging studies often lack reproducibility, one of the cardinal features of the scientific method. Multisite collaboration initiatives increase sample size and limit methodological flexibility, therefore providing the foundation for increased statistical power and generalizable results. However, multisite collaborative initiatives are inherently limited by hardware, software, and pulse and sequence design heterogeneities of both clinical and preclinical MRI scanners and the lack of benchmark for acquisition protocols, data analysis, and data sharing. We present the overarching vision that yielded to the constitution of RIN-Neuroimaging Network, a national consortium dedicated to identifying disease and subject-specific in-vivo neuroimaging biomarkers of diverse neurological and neuropsychiatric conditions. This ambitious goal needs efforts toward increasing the diagnostic and prognostic power of advanced MRI data. To this aim, 23 Italian Scientific Institutes of Hospitalization and Care (IRCCS), with technological and clinical specialization in the neurological and neuroimaging field, have gathered together. Each IRCCS is equipped with high- or ultra-high field MRI scanners (i.e., ≥3T) for clinical or preclinical research or has established expertise in MRI data analysis and infrastructure. The actions of this Network were defined across several work packages (WP). A clinical work package (WP1) defined the guidelines for a minimum standard clinical qualitative MRI assessment for the main neurological diseases. Two neuroimaging technical work packages (WP2 and WP3, for clinical and preclinical scanners) established Standard Operative Procedures for quality controls on phantoms as well as advanced harmonized quantitative MRI protocols for studying the brain of healthy human participants and wild type mice. Under FAIR principles, a web-based e-infrastructure to store and share data across sites was also implemented (WP4). Finally, the RIN translated all these efforts into a large-scale multimodal data collection in patients and animal models with dementia (i.e., case study). The RIN-Neuroimaging Network can maximize the impact of public investments in research and clinical practice acquiring data across institutes and pathologies with high-quality and highly-consistent acquisition protocols, optimizing the analysis pipeline and data sharing procedures.
Collapse
Affiliation(s)
- Anna Nigri
- U.O. Neuroradiologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Ferraro
- U.O. Neuroradiologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Unità di Neuroradiologia, IRCCS Mondino Foundation, Pavia, Italy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Michela Tosetti
- Medical Physics and MR Lab, Fondazione IRCCS Stella Maris, Pisa, Italy
| | - Alberto Redolfi
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Gianluigi Forloni
- Medical Physics and MR Lab, Fondazione IRCCS Stella Maris, Pisa, Italy
| | - Egidio D'Angelo
- Unità di Neuroradiologia, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Domenico Aquino
- U.O. Neuroradiologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Biagi
- Medical Physics and MR Lab, Fondazione IRCCS Stella Maris, Pisa, Italy
| | - Paolo Bosco
- Medical Physics and MR Lab, Fondazione IRCCS Stella Maris, Pisa, Italy
| | - Irene Carne
- Neuroradiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Silvia De Francesco
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Greta Demichelis
- U.O. Neuroradiologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ruben Gianeri
- U.O. Neuroradiologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Edoardo Micotti
- Laboratory of Biology of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Antonio Napolitano
- Medical Physics, IRCCS Istituto Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Fulvia Palesi
- Unità di Neuroradiologia, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Giovanni Savini
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Elisa Alberici
- Neuroradiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Carmelo Amato
- Unit of Neuroradiology, Oasi Research Institute-IRCCS, Troina, Italy
| | - Filippo Arrigoni
- Neuroimaging Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | | | - Marco Bozzali
- Neuroimaging Laboratory, Santa Lucia Foundation, IRCCS, Rome, Italy
| | | | | | - Valeria Elisa Contarino
- Unità di Neuroradiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Simona Gaudino
- Istituto di Radiologia, UOC Radiologia e Neuroradiologia, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Vittorio Manzo
- Department of Radiology, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | | | - Letterio S. Politi
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Roccatagliata
- Neuroradiologia IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze della Salute Università di Genova, Genoa, Italy
| | - Elisa Rognone
- Unità di Neuroradiologia, IRCCS Mondino Foundation, Pavia, Italy
| | - Andrea Rossi
- Dipartimento di Scienze della Salute Università di Genova, Genoa, Italy
- UO Neuroradiologia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Caterina Tonon
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabrizio Tagliavini
- Scientific Direction, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- U.O. Neuroradiologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|
103
|
Avery E, Sanelli PC, Aboian M, Payabvash S. Radiomics: A Primer on Processing Workflow and Analysis. Semin Ultrasound CT MR 2022; 43:142-146. [PMID: 35339254 PMCID: PMC8961004 DOI: 10.1053/j.sult.2022.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quantitative analysis of medical images can provide objective tools for diagnosis, prognostication, and disease monitoring. Radiomics refers to automated extraction of a large number of quantitative features from medical images for characterization of underlying pathologies. In this review, we will discuss the principles of radiomics, image preprocessing, feature extraction workflow, and statistical analysis. We will also address the limitations and future directions of radiomics.
Collapse
Affiliation(s)
- Emily Avery
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Pina C Sanelli
- Northwell Health, and Feinstein Institute for Medical Research, Manhasset, NY
| | - Mariam Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
104
|
Keenan KE, Delfino JG, Jordanova KV, Poorman ME, Chirra P, Chaudhari AS, Baessler B, Winfield J, Viswanath SE, deSouza NM. Challenges in ensuring the generalizability of image quantitation methods for MRI. Med Phys 2022; 49:2820-2835. [PMID: 34455593 PMCID: PMC8882689 DOI: 10.1002/mp.15195] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/31/2023] Open
Abstract
Image quantitation methods including quantitative MRI, multiparametric MRI, and radiomics offer great promise for clinical use. However, many of these methods have limited clinical adoption, in part due to issues of generalizability, that is, the ability to translate methods and models across institutions. Researchers can assess generalizability through measurement of repeatability and reproducibility, thus quantifying different aspects of measurement variance. In this article, we review the challenges to ensuring repeatability and reproducibility of image quantitation methods as well as present strategies to minimize their variance to enable wider clinical implementation. We present possible solutions for achieving clinically acceptable performance of image quantitation methods and briefly discuss the impact of minimizing variance and achieving generalizability towards clinical implementation and adoption.
Collapse
Affiliation(s)
- Kathryn E. Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Jana G. Delfino
- Center for Devices and Radiological Health, US Food and Drug Administration, 10993 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Kalina V. Jordanova
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Megan E. Poorman
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Prathyush Chirra
- Dept of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Akshay S. Chaudhari
- Department of Radiology, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Bettina Baessler
- University Hospital of Zurich and University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Jessica Winfield
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Satish E. Viswanath
- Dept of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Nandita M. deSouza
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| |
Collapse
|
105
|
Berg RC, Leutritz T, Weiskopf N, Preibisch C. Multi-parameter quantitative mapping of R1, R2*, PD, and MTsat is reproducible when accelerated with Compressed SENSE. Neuroimage 2022; 253:119092. [PMID: 35288281 DOI: 10.1016/j.neuroimage.2022.119092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022] Open
Abstract
Multi-parameter mapping (MPM) magnetic resonance imaging (MRI) provides quantitative estimates of the longitudinal and effective transverse relaxation rates R1 and R2*, proton density (PD), and magnetization transfer saturation (MTsat). Thereby, MPM enables better comparability across sites and time than conventional weighted MRI. However, for MPM, several contrasts must be acquired, resulting in prolonged measurement durations and thus preventing MPM's application in clinical routines. State-of-the-art imaging acceleration techniques such as Compressed SENSE (CS), a combination of compressed sensing and sensitivity encoding, can be used to reduce the scan time of MPM. However, the accuracy and precision of the resulting quantitative parameter maps have not been systematically evaluated. In this study, we therefore investigated the effect of CS acceleration on the fidelity and reproducibility of MPM acquisitions. In five healthy volunteers and in a phantom, we compared MPM metrics acquired without imaging acceleration, with the standard acceleration (SENSE factor 2.5), and with Compressed SENSE with acceleration factors 4 and 6 using a 32-channel head coil. We evaluated the reproducibility and repeatability of accelerated MPM using data from three scan sessions in gray and white matter volumes-of-interest (VOIs). Accelerated MPM provided precise and accurate quantitative parameter maps. For most parameters, the results of the CS-accelerated protocols correlated more strongly with the non-accelerated protocol than the standard SENSE-accelerated protocols. Furthermore, for most VOIs and contrasts, coefficients of variation were lower when calculated from data acquired with different imaging accelerations within a single scan session than from data acquired in different scan sessions. These results suggest that MPM with Compressed SENSE acceleration factors up to at least 6 yields reproducible quantitative parameter maps that are highly comparable to those acquired without imaging acceleration. Compressed SENSE can thus be used to considerably reduce the scan duration of R1, R2*, PD, and MTsat mapping, and is highly promising for clinical applications of MPM.
Collapse
Affiliation(s)
- Ronja C Berg
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Neurology, Munich, Germany.
| | - Tobias Leutritz
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurophysics, Leipzig, Germany.
| | - Nikolaus Weiskopf
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurophysics, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany.
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Neurology, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Munich, Germany.
| |
Collapse
|
106
|
Lefebvre TL, Brown E, Hacker L, Else T, Oraiopoulou ME, Tomaszewski MR, Jena R, Bohndiek SE. The Potential of Photoacoustic Imaging in Radiation Oncology. Front Oncol 2022; 12:803777. [PMID: 35311156 PMCID: PMC8928467 DOI: 10.3389/fonc.2022.803777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is recognized globally as a mainstay of treatment in most solid tumors and is essential in both curative and palliative settings. Ionizing radiation is frequently combined with surgery, either preoperatively or postoperatively, and with systemic chemotherapy. Recent advances in imaging have enabled precise targeting of solid lesions yet substantial intratumoral heterogeneity means that treatment planning and monitoring remains a clinical challenge as therapy response can take weeks to manifest on conventional imaging and early indications of progression can be misleading. Photoacoustic imaging (PAI) is an emerging modality for molecular imaging of cancer, enabling non-invasive assessment of endogenous tissue chromophores with optical contrast at unprecedented spatio-temporal resolution. Preclinical studies in mouse models have shown that PAI could be used to assess response to radiotherapy and chemoradiotherapy based on changes in the tumor vascular architecture and blood oxygen saturation, which are closely linked to tumor hypoxia. Given the strong relationship between hypoxia and radio-resistance, PAI assessment of the tumor microenvironment has the potential to be applied longitudinally during radiotherapy to detect resistance at much earlier time-points than currently achieved by size measurements and tailor treatments based on tumor oxygen availability and vascular heterogeneity. Here, we review the current state-of-the-art in PAI in the context of radiotherapy research. Based on these studies, we identify promising applications of PAI in radiation oncology and discuss the future potential and outstanding challenges in the development of translational PAI biomarkers of early response to radiotherapy.
Collapse
Affiliation(s)
- Thierry L. Lefebvre
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Emma Brown
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Else
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mariam-Eleni Oraiopoulou
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michal R. Tomaszewski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Rajesh Jena
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
107
|
Carbonell G, Kennedy P, Bane O, Kirmani A, El Homsi M, Stocker D, Said D, Mukherjee P, Gevaert O, Lewis S, Hectors S, Taouli B. Precision of MRI radiomics features in the liver and hepatocellular carcinoma. Eur Radiol 2022; 32:2030-2040. [PMID: 34564745 DOI: 10.1007/s00330-021-08282-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To assess the precision of MRI radiomics features in hepatocellular carcinoma (HCC) tumors and liver parenchyma. METHODS The study population consisted of 55 patients, including 16 with untreated HCCs, who underwent two repeat contrast-enhanced abdominal MRI exams within 1 month to evaluate: (1) test-retest repeatability using the same MRI system (n = 28, 10 HCCs); (2) inter-platform reproducibility between different MRI systems (n = 27, 6 HCCs); (3) inter-observer reproducibility (n = 16, 16 HCCs). Shape and 1st- and 2nd-order radiomics features were quantified on pre-contrast T1-weighted imaging (WI), T1WI portal venous phase (pvp), T2WI, and ADC (apparent diffusion coefficient), on liver regions of interest (ROIs) and HCC volumes of interest (VOIs). Precision was assessed by calculating intraclass correlation coefficient (ICC), concordance correlation coefficient (CCC), and coefficient of variation (CV). RESULTS There was moderate to excellent test-retest repeatability of shape and 1st- and 2nd-order features for all sequences in HCCs (ICC: 0.53-0.99; CV: 3-29%), and moderate to good test-retest repeatability of 1st- and 2nd-order features for T1WI sequences, and 2nd-order features for T2WI in the liver (ICC: 0.53-0.73; CV: 12-19%). There was poor inter-platform reproducibility for all features and sequences, except for shape and 1st-order features on T1WI in HCCs (CCC: 0.58-0.99; CV: 3-15%). Good to excellent inter-observer reproducibility was found for all features and sequences in HCCs (CCC: 0.80-0.99; CV: 4-15%) and moderate to good for liver (CCC: 0.45-0.86; CV: 6-25%). CONCLUSIONS MRI radiomics features have acceptable repeatability in the liver and HCC when using the same MRI system and across readers but have low reproducibility across MR systems, except for shape and 1st-order features on T1WI. Data must be interpreted with caution when performing multiplatform radiomics studies. KEY POINTS • MRI radiomics features have acceptable repeatability when using the same MRI system but less reproducible when using different MRI platforms. • MRI radiomics features extracted from T1 weighted-imaging show greater stability across exams than T2 weighted-imaging and ADC. • Inter-observer reproducibility of MRI radiomics features was found to be good in HCC tumors and acceptable in liver parenchyma.
Collapse
Affiliation(s)
- Guillermo Carbonell
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, University Hospital Virgen de La Arrixaca, Murcia, Spain
| | - Paul Kennedy
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ammar Kirmani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria El Homsi
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Stocker
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Daniela Said
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Universidad de los Andes, Santiago, Chile
| | | | - Olivier Gevaert
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefanie Hectors
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
108
|
Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT. Eur Radiol 2022; 32:5480-5490. [PMID: 35192011 PMCID: PMC9279234 DOI: 10.1007/s00330-022-08628-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/08/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
Objectives To evaluate inter- and intra- scan mode and scanner repeatability and reproducibility of radiomics features within and between single-energy CT (SECT) and dual-energy CT (DECT). Methods A standardized phantom with sixteen rods of clinical-relevant densities was scanned on seven DECT-capable scanners and three SECT-only scanners. The acquisition parameters were selected to present typical abdomen-pelvic examinations with the same voxel size. Images of SECT at 120 kVp and corresponding 120 kVp-like virtual monochromatic images (VMIs) in DECT which were generated according to scanners were analyzed. Regions of interest were drawn with rigid registrations to avoid variations due to segmentation. Radiomics features were extracted via Pyradiomics platform. Test-retest repeatability was evaluated by Bland-Altman analysis for repeated scans. Intra-scanner reproducibility for different scan modes was tested by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). Inter-scanner reproducibility among different scanners for same scan mode was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). Results The test-retest analysis presented that 92.91% and 87.02% of the 94 assessed features were repeatable for SECT 120kVp and DECT 120 kVp-like VMIs, respectively. The intra-scanner analysis for SECT 120kVp vs DECT 120 kVp-like VMIs demonstrated that 10.76% and 10.28% of features were with ICC > 0.90 and CCC > 0.90, respectively. The inter-scanner analysis showed that 17.09% and 27.73% of features for SECT 120kVp were with CV < 10% and QCD < 10%, and 15.16% and 32.78% for DECT 120 kVp-like VMIs, respectively. Conclusions The majority of radiomics features were non-reproducible within and between SECT and DECT. Key Points • Although the test-retest analysis showed high repeatability for radiomics features, the overall reproducibility of radiomics features within and between SECT and DECT was low. • Only about one-tenth of radiomics features extracted from SECT images and corresponding DECT images did match each other, even their average photon energy levels were considered alike, indicating that the scan mode potentially altered the radiomics features. • Less than one-fifth of radiomics features were reproducible among multiple SECT and DECT scanners, regardless of their fixed acquisition and reconstruction parameters, suggesting the necessity of scanning protocol adjustment and post-scan harmonization process. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-022-08628-3.
Collapse
|
109
|
Amouzandeh G, Chenevert TL, Swanson SD, Ross BD, Malyarenko DI. Technical Note: Temperature and concentration dependence of water diffusion in polyvinylpyrrolidone solutions. Med Phys 2022; 49:3325-3332. [PMID: 35184316 PMCID: PMC9090959 DOI: 10.1002/mp.15556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
Objective The goal of this work is to provide temperature and concentration calibration of water diffusivity in polyvinylpyrrolidone (PVP) solutions used in phantoms to assess system bias and linearity in apparent diffusion coefficient (ADC) measurements. Method ADC measurements were performed for 40 kDa (K40) PVP of six concentrations (0%, 10%, 20%, 30%, 40%, and 50% by weight) at three temperatures (19.5°C, 22.5°C, and 26.4°C), with internal phantom temperature monitored by optical thermometer (±0.2°C). To achieve ADC measurement and fit accuracy of better than 0.5%, three orthogonal diffusion gradients were calibrated using known water diffusivity at 0°C and system gradient nonlinearity maps. Noise‐floor fit bias was also controlled by limiting the maximum b‐value used for ADC calculation of each sample. The ADC temperature dependence was modeled by Arrhenius functions of each PVP concentration. The concentration dependence was modeled by quadratic function for ADC normalized by the theoretical water diffusion values. Calibration coefficients were obtained from linear regression model fits. Results Measured phantom ADC values increased with temperature and decreasing PVP concentration, [PVP]. The derived Arrhenius model parameters for [PVP] between 0% and 50%, are reported and can be used for K40 ADC temperature calibration with absolute ADC error within ±0.016 μm2/ms. Arrhenius model fit parameters normalized to water value scaled with [PVP] between 10% and 40%, and proportional change in activation energy increased faster than collision frequency. ADC normalization by water diffusivity, DW, from the Speedy–Angell relation accounted for the bulk of temperature dependence (±0.035 μm2/ms) and yielded quadratic calibration for ADCPVP/DW = (12.5 ± 0.7) ·10−5·[PVP]2 − (23.2 ± 0.3)·10−3·[PVP]+1, nearly independent of PVP molecular weight and temperature. Conclusion The study provides ground‐truth ADC values for K40 PVP solutions commonly used in diffusion phantoms for scanning at ambient room temperature. The described procedures and the reported calibration can be used for quality control and standardization of measured ADC values of PVP at different concentrations and temperatures.
Collapse
Affiliation(s)
| | | | | | - Brian D. Ross
- Department of Radiology University of Michigan Ann Arbor MI USA
| | | |
Collapse
|
110
|
Liu Z, Li Z, Mhlanga JC, Siegel BA, Jha AK. No-gold-standard evaluation of quantitative imaging methods in the presence of correlated noise. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12035:120350M. [PMID: 36465994 PMCID: PMC9717481 DOI: 10.1117/12.2605762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Objective evaluation of quantitative imaging (QI) methods with patient data is highly desirable, but is hindered by the lack or unreliability of an available gold standard. To address this issue, techniques that can evaluate QI methods without access to a gold standard are being actively developed. These techniques assume that the true and measured values are linearly related by a slope, bias, and Gaussian-distributed noise term, where the noise between measurements made by different methods is independent of each other. However, this noise arises in the process of measuring the same quantitative value, and thus can be correlated. To address this limitation, we propose a no-gold-standard evaluation (NGSE) technique that models this correlated noise by a multi-variate Gaussian distribution parameterized by a covariance matrix. We derive a maximum-likelihood-based approach to estimate the parameters that describe the relationship between the true and measured values, without any knowledge of the true values. We then use the estimated slopes and diagonal elements of the covariance matrix to compute the noise-to-slope ratio (NSR) to rank the QI methods on the basis of precision. The proposed NGSE technique was evaluated with multiple numerical experiments. Our results showed that the technique reliably estimated the NSR values and yielded accurate rankings of the considered methods for 83% of 160 trials. In particular, the technique correctly identified the most precise method for ∼ 97% of the trials. Overall, this study demonstrates the efficacy of the NGSE technique to accurately rank different QI methods when correlated noise is present, and without access to any knowledge of the ground truth. The results motivate further validation of this technique with realistic simulation studies and patient data.
Collapse
Affiliation(s)
- Ziping Liu
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Zekun Li
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Joyce C. Mhlanga
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Barry A. Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abhinav K. Jha
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
111
|
Fournier L, de Geus-Oei LF, Regge D, Oprea-Lager DE, D’Anastasi M, Bidaut L, Bäuerle T, Lopci E, Cappello G, Lecouvet F, Mayerhoefer M, Kunz WG, Verhoeff JJC, Caruso D, Smits M, Hoffmann RT, Gourtsoyianni S, Beets-Tan R, Neri E, deSouza NM, Deroose CM, Caramella C. Twenty Years On: RECIST as a Biomarker of Response in Solid Tumours an EORTC Imaging Group - ESOI Joint Paper. Front Oncol 2022; 11:800547. [PMID: 35083155 PMCID: PMC8784734 DOI: 10.3389/fonc.2021.800547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Response evaluation criteria in solid tumours (RECIST) v1.1 are currently the reference standard for evaluating efficacy of therapies in patients with solid tumours who are included in clinical trials, and they are widely used and accepted by regulatory agencies. This expert statement discusses the principles underlying RECIST, as well as their reproducibility and limitations. While the RECIST framework may not be perfect, the scientific bases for the anticancer drugs that have been approved using a RECIST-based surrogate endpoint remain valid. Importantly, changes in measurement have to meet thresholds defined by RECIST for response classification within thus partly circumventing the problems of measurement variability. The RECIST framework also applies to clinical patients in individual settings even though the relationship between tumour size changes and outcome from cohort studies is not necessarily translatable to individual cases. As reproducibility of RECIST measurements is impacted by reader experience, choice of target lesions and detection/interpretation of new lesions, it can result in patients changing response categories when measurements are near threshold values or if new lesions are missed or incorrectly interpreted. There are several situations where RECIST will fail to evaluate treatment-induced changes correctly; knowledge and understanding of these is crucial for correct interpretation. Also, some patterns of response/progression cannot be correctly documented by RECIST, particularly in relation to organ-site (e.g. bone without associated soft-tissue lesion) and treatment type (e.g. focal therapies). These require specialist reader experience and communication with oncologists to determine the actual impact of the therapy and best evaluation strategy. In such situations, alternative imaging markers for tumour response may be used but the sources of variability of individual imaging techniques need to be known and accounted for. Communication between imaging experts and oncologists regarding the level of confidence in a biomarker is essential for the correct interpretation of a biomarker and its application to clinical decision-making. Though measurement automation is desirable and potentially reduces the variability of results, associated technical difficulties must be overcome, and human adjudications may be required.
Collapse
Affiliation(s)
- Laure Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Université de Paris, Assistance Publique–Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Department of Radiology, Paris Cardiovascular Research Center (PARCC) Unité Mixte de Recherche (UMRS) 970, Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Lioe-Fee de Geus-Oei
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Daniele Regge
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Daniela-Elena Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers [Vrije Universiteit (VU) University], Amsterdam, Netherlands
| | - Melvin D’Anastasi
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Medical Imaging Department, Mater Dei Hospital, University of Malta, Msida, Malta
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Tobias Bäuerle
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Egesta Lopci
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine Unit, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) – Humanitas Research Hospital, Milan, Italy
| | - Giovanni Cappello
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Frederic Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marius Mayerhoefer
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang G. Kunz
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Joost J. C. Verhoeff
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Damiano Caruso
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Marion Smits
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
- Brain Tumour Centre, Erasmus Medical Centre (MC) Cancer Institute, Rotterdam, Netherlands
| | - Ralf-Thorsten Hoffmann
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital, Carl-Gustav-Carus Technical University Dresden, Dresden, Germany
| | - Sofia Gourtsoyianni
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, Athens, Greece
| | - Regina Beets-Tan
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- School For Oncology and Developmental Biology (GROW) School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Emanuele Neri
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, United States
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Caroline Caramella
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Radiology Department, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph Centre International des Cancers Thoraciques, Université Paris-Saclay, Le Plessis-Robinson, France
| |
Collapse
|
112
|
Romanchikova M, Thomas SA, Dexter A, Shaw M, Partarrieau I, Smith N, Venton J, Adeogun M, Brettle D, Turpin RJ. The need for measurement science in digital pathology. J Pathol Inform 2022; 13:100157. [PMID: 36405869 PMCID: PMC9646441 DOI: 10.1016/j.jpi.2022.100157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Background Pathology services experienced a surge in demand during the COVID-19 pandemic. Digitalisation of pathology workflows can help to increase throughput, yet many existing digitalisation solutions use non-standardised workflows captured in proprietary data formats and processed by black-box software, yielding data of varying quality. This study presents the views of a UK-led expert group on the barriers to adoption and the required input of measurement science to improve current practices in digital pathology. Methods With an aim to support the UK's efforts in digitalisation of pathology services, this study comprised: (1) a review of existing evidence, (2) an online survey of domain experts, and (3) a workshop with 42 representatives from healthcare, regulatory bodies, pharmaceutical industry, academia, equipment, and software manufacturers. The discussion topics included sample processing, data interoperability, image analysis, equipment calibration, and use of novel imaging modalities. Findings The lack of data interoperability within the digital pathology workflows hinders data lookup and navigation, according to 80% of attendees. All participants stressed the importance of integrating imaging and non-imaging data for diagnosis, while 80% saw data integration as a priority challenge. 90% identified the benefits of artificial intelligence and machine learning, but identified the need for training and sound performance metrics.Methods for calibration and providing traceability were seen as essential to establish harmonised, reproducible sample processing, and image acquisition pipelines. Vendor-neutral data standards were seen as a "must-have" for providing meaningful data for downstream analysis. Users and vendors need good practice guidance on evaluation of uncertainty, fitness-for-purpose, and reproducibility of artificial intelligence/machine learning tools. All of the above needs to be accompanied by an upskilling of the pathology workforce. Conclusions Digital pathology requires interoperable data formats, reproducible and comparable laboratory workflows, and trustworthy computer analysis software. Despite high interest in the use of novel imaging techniques and artificial intelligence tools, their adoption is slowed down by the lack of guidance and evaluation tools to assess the suitability of these techniques for specific clinical question. Measurement science expertise in uncertainty estimation, standardisation, reference materials, and calibration can help establishing reproducibility and comparability between laboratory procedures, yielding high quality data and providing higher confidence in diagnosis.
Collapse
Affiliation(s)
- Marina Romanchikova
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom,Corresponding author
| | - Spencer Angus Thomas
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Alex Dexter
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Mike Shaw
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Ignacio Partarrieau
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Nadia Smith
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Jenny Venton
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Michael Adeogun
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - David Brettle
- Leeds Teaching Hospitals NHS Trust, St. James's University Hospital, Beckett Street, Leeds, West Yorkshire LS9 7TF, United Kingdom
| | - Robert James Turpin
- British Standards Institution, 389 Chiswick High Road, London W4 4AL, United Kingdom
| |
Collapse
|
113
|
Enaud R, Frison E, Missonnier S, Fischer A, de Ledinghen V, Perez P, Bui S, Fayon M, Chateil JF, Lamireau T. Cystic fibrosis and noninvasive liver fibrosis assessment methods in children. Pediatr Res 2022; 91:223-229. [PMID: 33731812 DOI: 10.1038/s41390-021-01427-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Noninvasive assessments of liver fibrosis are currently used to evaluate cystic fibrosis (CF)-related liver disease. However, there is scarce data regarding their repeatability and reproducibility, especially in children with CF. The present study aimed to evaluate the repeatability and reproducibility of transient elastography (TE) (FibroScan®) and point shear-wave elastography using virtual touch quantification (pSWE VTQ) in children with CF. METHODS TE and pSWE VTQ were performed in 56 children with CF by two different operators. Analysis of repeatability and reproducibility was available in 33 patients for TE and 46 patients for pSWE VTQ. Intra- and interobserver agreement were assessed using the intraclass correlation coefficient (ICC) and their 95% confidence interval (CI), and Bland and Altman graphs. RESULTS For TE, ICC was 0.91 (0.83-0.95) for intraobserver agreement and 0.92 (95% CI: 0.86-0.96) for interobserver agreement. For pSWE VTQ, ICC was 0.83 (0.72-0.90) for intraobserver agreement and 0.67 (0.48-0.80) for interobserver agreement. CONCLUSIONS Both technics can be proposed in the follow-up of patients, according to their availability in CF centers. IMPACT This study shows that TE and pSWE VTQ are reliable methods to evaluate liver fibrosis in children with CF. This study shows for the first time that TE and pSWE VTQ are both repeatable and reproducible in children with CF. These data indicate that both TE and pSWE VTQ can be proposed for the follow-up of patients with CF, according to their availability in each CF center.
Collapse
Affiliation(s)
- Raphael Enaud
- Pediatric Hepatology and Gastroenterology Unit, Bordeaux University Hospital, Pellegrin-Enfants Hospital, Bordeaux, France.,Bordeaux University Hospital, Pellegrin-Enfants Hospital, Pediatric Cystic Fibrosis-Center (CRCM), Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux (U1045), University of Bordeaux, Bordeaux, France
| | - Eric Frison
- Unité de soutien méthodologique à la recherche clinique et épidémiologique, Service d'information médicale, Pôle Santé Publique, Bordeaux University Hospital, Bordeaux, France.,Clinical Investigation Centre (CIC 1401), Bordeaux University Hospital, Bordeaux, France
| | - Sophie Missonnier
- Pediatric Imaging Unit, Bordeaux University Hospital, Pellegrin-Enfants Hospital, Bordeaux, France
| | - Aude Fischer
- Pediatric Hepatology and Gastroenterology Unit, Bordeaux University Hospital, Pellegrin-Enfants Hospital, Bordeaux, France
| | - Victor de Ledinghen
- Hepatology Unit, Bordeaux University Hospital, Haut-Lévêque Hospital, Pessac, France
| | - Paul Perez
- Unité de soutien méthodologique à la recherche clinique et épidémiologique, Service d'information médicale, Pôle Santé Publique, Bordeaux University Hospital, Bordeaux, France.,Clinical Investigation Centre (CIC 1401), Bordeaux University Hospital, Bordeaux, France
| | - Stéphanie Bui
- Bordeaux University Hospital, Pellegrin-Enfants Hospital, Pediatric Cystic Fibrosis-Center (CRCM), Bordeaux, France
| | - Michael Fayon
- Bordeaux University Hospital, Pellegrin-Enfants Hospital, Pediatric Cystic Fibrosis-Center (CRCM), Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux (U1045), University of Bordeaux, Bordeaux, France.,Clinical Investigation Centre (CIC 1401), Bordeaux University Hospital, Bordeaux, France
| | - Jean-François Chateil
- Pediatric Imaging Unit, Bordeaux University Hospital, Pellegrin-Enfants Hospital, Bordeaux, France.,CRMSB (UMR 5536), University of Bordeaux/CNRS, Bordeaux, France
| | - Thierry Lamireau
- Pediatric Hepatology and Gastroenterology Unit, Bordeaux University Hospital, Pellegrin-Enfants Hospital, Bordeaux, France. .,Clinical Investigation Centre (CIC 1401), Bordeaux University Hospital, Bordeaux, France.
| |
Collapse
|
114
|
Paulsen SJ, Mitcham TM, Pan CS, Long J, Grigoryan B, Sazer DW, Harlan CJ, Janson KD, Pagel MD, Miller JS, Bouchard RR. Projection-based stereolithography for direct 3D printing of heterogeneous ultrasound phantoms. PLoS One 2021; 16:e0260737. [PMID: 34882719 PMCID: PMC8659365 DOI: 10.1371/journal.pone.0260737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/16/2021] [Indexed: 01/17/2023] Open
Abstract
Modern ultrasound (US) imaging is increasing its clinical impact, particularly with the introduction of US-based quantitative imaging biomarkers. Continued development and validation of such novel imaging approaches requires imaging phantoms that recapitulate the underlying anatomy and pathology of interest. However, current US phantom designs are generally too simplistic to emulate the structure and variability of the human body. Therefore, there is a need to create a platform that is capable of generating well-characterized phantoms that can mimic the basic anatomical, functional, and mechanical properties of native tissues and pathologies. Using a 3D-printing technique based on stereolithography, we fabricated US phantoms using soft materials in a single fabrication session, without the need for material casting or back-filling. With this technique, we induced variable levels of stable US backscatter in our printed materials in anatomically relevant 3D patterns. Additionally, we controlled phantom stiffness from 7 to >120 kPa at the voxel level to generate isotropic and anisotropic phantoms for elasticity imaging. Lastly, we demonstrated the fabrication of channels with diameters as small as 60 micrometers and with complex geometry (e.g., tortuosity) capable of supporting blood-mimicking fluid flow. Collectively, these results show that projection-based stereolithography allows for customizable fabrication of complex US phantoms.
Collapse
Affiliation(s)
- Samantha J. Paulsen
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Trevor M. Mitcham
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Charlene S. Pan
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - James Long
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Bagrat Grigoryan
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Daniel W. Sazer
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Collin J. Harlan
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Kevin D. Janson
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Mark D. Pagel
- The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, United States of America
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jordan S. Miller
- Department of Bioengineering, Rice University, Houston, TX, United States of America
- * E-mail: (RRB); (JSM)
| | - Richard R. Bouchard
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, United States of America
- * E-mail: (RRB); (JSM)
| |
Collapse
|
115
|
Weingärtner S, Desmond KL, Obuchowski NA, Baessler B, Zhang Y, Biondetti E, Ma D, Golay X, Boss MA, Gunter JL, Keenan KE, Hernando D. Development, validation, qualification, and dissemination of quantitative MR methods: Overview and recommendations by the ISMRM quantitative MR study group. Magn Reson Med 2021; 87:1184-1206. [PMID: 34825741 DOI: 10.1002/mrm.29084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
On behalf of the International Society for Magnetic Resonance in Medicine (ISMRM) Quantitative MR Study Group, this article provides an overview of considerations for the development, validation, qualification, and dissemination of quantitative MR (qMR) methods. This process is framed in terms of two central technical performance properties, i.e., bias and precision. Although qMR is confounded by undesired effects, methods with low bias and high precision can be iteratively developed and validated. For illustration, two distinct qMR methods are discussed throughout the manuscript: quantification of liver proton-density fat fraction, and cardiac T1 . These examples demonstrate the expansion of qMR methods from research centers toward widespread clinical dissemination. The overall goal of this article is to provide trainees, researchers, and clinicians with essential guidelines for the development and validation of qMR methods, as well as an understanding of necessary steps and potential pitfalls for the dissemination of quantitative MR in research and in the clinic.
Collapse
Affiliation(s)
- Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Kimberly L Desmond
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nancy A Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Yuxin Zhang
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emma Biondetti
- Department of Neuroscience, Imaging and Clinical Sciences, D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xavier Golay
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.,Gold Standard Phantoms Limited, Rochester, United Kingdom
| | - Michael A Boss
- Center for Research and Innovation, American College of Radiology, Philadelphia, Pennsylvania, USA
| | | | - Kathryn E Keenan
- National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Diego Hernando
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
116
|
Giovannini S, Brau F, Forino R, Berti A, D’Ignazio F, Loreti C, Bellieni A, D’Angelo E, Di Caro F, Biscotti L, Coraci D, Fusco A, Padua L, Bernabei R. Sarcopenia: Diagnosis and Management, State of the Art and Contribution of Ultrasound. J Clin Med 2021; 10:5552. [PMID: 34884255 PMCID: PMC8658070 DOI: 10.3390/jcm10235552] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related muscle loss is a phenomenon that has been extensively studied in recent decades. Sarcopenia is a multisystem disease, which predisposes to muscle weakness and frailty. At around 50 years of age, an individual begins to lose muscle strength, although this becomes more evident after 70. Sarcopenia is a condition typically found in older adults but can also affect younger people. Sarcopenia is a preventable and treatable condition. In past years, methods and tools to recognize the condition early have been researched. For the development of therapeutic interventions, agreement on diagnosis is fundamental. In recent years, a possible role of ultrasonography in the diagnosis of sarcopenia has been evaluated, compared with the best-known techniques.
Collapse
Affiliation(s)
- Silvia Giovannini
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.F.); (A.B.); (F.D.); (E.D.); (F.D.C.); (L.P.); (R.B.)
- UOS Riabilitazione Post-Acuzie, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Fabrizio Brau
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.F.); (A.B.); (F.D.); (E.D.); (F.D.C.); (L.P.); (R.B.)
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.L.); (L.B.)
| | - Raffaele Forino
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.F.); (A.B.); (F.D.); (E.D.); (F.D.C.); (L.P.); (R.B.)
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.L.); (L.B.)
| | - Andrea Berti
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.F.); (A.B.); (F.D.); (E.D.); (F.D.C.); (L.P.); (R.B.)
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.L.); (L.B.)
| | - Federica D’Ignazio
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.F.); (A.B.); (F.D.); (E.D.); (F.D.C.); (L.P.); (R.B.)
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.L.); (L.B.)
| | - Claudia Loreti
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.L.); (L.B.)
| | - Andrea Bellieni
- UOS Riabilitazione Post-Acuzie, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.L.); (L.B.)
| | - Emanuela D’Angelo
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.F.); (A.B.); (F.D.); (E.D.); (F.D.C.); (L.P.); (R.B.)
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.L.); (L.B.)
| | - Francesca Di Caro
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.F.); (A.B.); (F.D.); (E.D.); (F.D.C.); (L.P.); (R.B.)
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.L.); (L.B.)
| | - Lorenzo Biscotti
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.L.); (L.B.)
- Presiding Officer of Geriatric Care Promotion and Development Centre (C.E.P.S.A.G.), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniele Coraci
- Department of Neuroscience, Section of Rehabilitation, University of Padova, 35122 Padua, Italy;
| | - Augusto Fusco
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Luca Padua
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.F.); (A.B.); (F.D.); (E.D.); (F.D.C.); (L.P.); (R.B.)
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Roberto Bernabei
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.F.); (A.B.); (F.D.); (E.D.); (F.D.C.); (L.P.); (R.B.)
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.L.); (L.B.)
| |
Collapse
|
117
|
Cunha GM, Fowler KJ. Automated Liver Segmentation for Quantitative MRI Analysis. Radiology 2021; 302:355-356. [PMID: 34783598 DOI: 10.1148/radiol.2021212306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guilherme Moura Cunha
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-0005 (G.M.C.); and Liver Imaging Group, Department of Radiology, University of California San Diego, La Jolla, Calif (K.J.F.)
| | - Kathryn J Fowler
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-0005 (G.M.C.); and Liver Imaging Group, Department of Radiology, University of California San Diego, La Jolla, Calif (K.J.F.)
| |
Collapse
|
118
|
Mirón Mombiela R, Vucetic J, Monllor P, Cárdenas-Herrán JS, Taltavull de La Paz P, Borrás C. Diagnostic Performance of Muscle Echo Intensity and Fractal Dimension for the Detection of Frailty Phenotype. ULTRASONIC IMAGING 2021; 43:337-352. [PMID: 34238072 DOI: 10.1177/01617346211029656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To determine the relationship between muscle echo intensity (EI) and fractal dimension (FD), and the diagnostic performance of both ultrasound parameters for the identification of frailty phenotype. A retrospective interpretation of ultrasound scans from a previous cohort (November 2014-February 2015) was performed. The sample included healthy participants <60 years old, and participants ≥60 divided into robust, pre-frail, and frail groups according to Fried frailty criteria. A region of interest of the rectus femoris from the ultrasound scan was segmented, and histogram function was applied to obtain EI. For fractal analysis, images were processed using two-dimensional box-counting techniques to calculate FD. Statistical analyses were performed with diagnostic performance tests. A total of 102 participants (mean age 63 ± 16, 57 men) were evaluated. Muscle fractal dimension correlated with EI (r = .38, p < .01) and showed different pattern in the scatter plots when participants were grouped by non-frail (control + robust) and frail (pre-frail + frail). The diagnostic accuracy for EI to categorize frailty was of 0.69 (95%CI: 0.59-0.78, p = .001), with high intra-rater (ICC: 0.98, 95%CI: 0.98-0.99); p < .001) and inter-rater (ICC: 0.89, 95%CI: 0.75-0.95; p < .001) reliability and low measurement error for both parameters (EI: -0.18, LOA95%: -10.8 to 10.5; FD: 0.00, LOA95%: -0.09 to 0.10) in arbitrary units. The ROC curve combining both parameters was not better than EI alone (p = .18). Muscle FD correlated with EI and showed different patterns according to frailty phenotype, with EI outperforming FD as a possible diagnostic tool for frailty.
Collapse
Affiliation(s)
- Rebeca Mirón Mombiela
- Consorcio Hospital General Universitario de Valencia, Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Radiologisk Afdeling, Herlev Hospital, Herlev, Denmark
| | - Jelena Vucetic
- Consorcio Hospital General Universitario de Valencia, Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Hospital ICOT Ciudad de Telde, Calle Míster Blisse, Telde, Spain
| | - Paloma Monllor
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | | | | | - Consuelo Borrás
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
- Center for Biomedical Network Research on Frailty and Healthy Aging (CIBERFES), CIBER-ISCIII, Spain
| |
Collapse
|
119
|
Magnetic Resonance Imaging-Based Radiomics Models to Predict Early Extrapancreatic Necrosis in Acute Pancreatitis. Pancreas 2021; 50:1368-1375. [PMID: 35041335 DOI: 10.1097/mpa.0000000000001935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of the study was to investigate radiomics models based on magnetic resonance imaging (MRI) for predicting early extrapancreatic necrosis (EXPN) in acute pancreatitis. METHODS Radiomics features were extracted from T2-weighted images of extrapancreatic collections and late arterial-phase images of the pancreatic parenchyma for 135 enrolled patients (94 in the primary cohort, including 47 EXPN patients and 41 in the validation cohort, including 20 EXPN patients). The optimal features after dimension reduction were used for radiomics modeling through a support vector machine. A clinical model, the MR severity index score, and extrapancreatic inflammation on MRI were evaluated. RESULTS Twelve optimal features from the extrapancreatic collection images and 10 from the pancreatic parenchyma images were selected for modeling. The pancreatic parenchyma-based and extrapancreatic collection-based radiomics models showed good predictive accuracy in both the training and validation cohorts. The areas under the curve of the extrapancreatic collection-based radiomics model (0.969 and 0.976) were consistent with those of the pancreatic parenchyma-based model (0.931 and 0.921) for both cohorts and better than those of the clinical model and imaging scores for both cohorts. CONCLUSIONS The MRI-based radiomics models of both the extrapancreatic collections and the pancreatic parenchyma had excellent predictive performance for early EXPN.
Collapse
|
120
|
Kendrick J, Francis R, Hassan GM, Rowshanfarzad P, Jeraj R, Kasisi C, Rusanov B, Ebert M. Radiomics for Identification and Prediction in Metastatic Prostate Cancer: A Review of Studies. Front Oncol 2021; 11:771787. [PMID: 34790581 PMCID: PMC8591174 DOI: 10.3389/fonc.2021.771787] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic Prostate Cancer (mPCa) is associated with a poor patient prognosis. mPCa spreads throughout the body, often to bones, with spatial and temporal variations that make the clinical management of the disease difficult. The evolution of the disease leads to spatial heterogeneity that is extremely difficult to characterise with solid biopsies. Imaging provides the opportunity to quantify disease spread. Advanced image analytics methods, including radiomics, offer the opportunity to characterise heterogeneity beyond what can be achieved with simple assessment. Radiomics analysis has the potential to yield useful quantitative imaging biomarkers that can improve the early detection of mPCa, predict disease progression, assess response, and potentially inform the choice of treatment procedures. Traditional radiomics analysis involves modelling with hand-crafted features designed using significant domain knowledge. On the other hand, artificial intelligence techniques such as deep learning can facilitate end-to-end automated feature extraction and model generation with minimal human intervention. Radiomics models have the potential to become vital pieces in the oncology workflow, however, the current limitations of the field, such as limited reproducibility, are impeding their translation into clinical practice. This review provides an overview of the radiomics methodology, detailing critical aspects affecting the reproducibility of features, and providing examples of how artificial intelligence techniques can be incorporated into the workflow. The current landscape of publications utilising radiomics methods in the assessment and treatment of mPCa are surveyed and reviewed. Associated studies have incorporated information from multiple imaging modalities, including bone scintigraphy, CT, PET with varying tracers, multiparametric MRI together with clinical covariates, spanning the prediction of progression through to overall survival in varying cohorts. The methodological quality of each study is quantified using the radiomics quality score. Multiple deficits were identified, with the lack of prospective design and external validation highlighted as major impediments to clinical translation. These results inform some recommendations for future directions of the field.
Collapse
Affiliation(s)
- Jake Kendrick
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Roslyn Francis
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Ghulam Mubashar Hassan
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Robert Jeraj
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Collin Kasisi
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Branimir Rusanov
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Martin Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- 5D Clinics, Claremont, WA, Australia
| |
Collapse
|
121
|
Crop F, Comte P, Le Tinier F, Pasquier D, Mirabel X. Evaluation of an ultrasound bladder scanner in supine and standing position. J Appl Clin Med Phys 2021; 22:194-202. [PMID: 34676959 PMCID: PMC8664133 DOI: 10.1002/acm2.13424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE This study examined the performance of a bladder volume measuring device, the BladderScan (BS) BVI9400. The use of the BS offers the possibility of assessing the bladder volume before positioning the patient and performing the daily image-guided radiotherapy procedure. Patients often cannot lie down before entering the treatment vault. Therefore, the BS was also assessed in a standing position. METHODS The repeatability precision was first evaluated, which is the variability of immediate repeated measures of the BS with same operator and subject. This was followed by the reproducibility precision of the BS in which the operator and subjects differ. Finally, the trueness was evaluated in terms of fixed and proportional bias of the results by applying weighted least-squares fitting. Note that 53 and 85 patient measurements were carried out in supine and standing position, respectively, each consisting of three repeated BS measurements. These were compared with the computed tomography (CT)-delineated bladder volume. RESULTS Repeatability was dependent on measurement value (heteroscedasticity) with σrepeatability (BS) = ±15 cm3 ± 10%. However, the total agreement between BS and CT was low with the 95% limits of agreement (LOAs) exceeding ±200 cm3 due to poor patient reproducibility and presence of fixed and proportional bias. Only in the best case of male patients in the supine position, three BS measurements, and correction for the fixed and proportional bias, 95% LOAs of [-147, +114] cm3 were obtained between CT and BS. CONCLUSION The agreement of the BVI9400 BS with CT was found to be too low for radiotherapy applications.
Collapse
Affiliation(s)
- Frederik Crop
- Department of Medical Physics, Centre Oscar Lambret, Lille, France
| | - Pauline Comte
- Department of Medical Physics, Centre Oscar Lambret, Lille, France
| | - Florence Le Tinier
- Academic Department of Radiotherapy, Centre Oscar Lambret, Lille, France
| | - David Pasquier
- Academic Department of Radiotherapy, Centre Oscar Lambret, Lille, France
| | - Xavier Mirabel
- Academic Department of Radiotherapy, Centre Oscar Lambret, Lille, France
| |
Collapse
|
122
|
Abstract
Biological allometries, such as the scaling of metabolism to mass, are hypothesized to result from natural selection to maximize how vascular networks fill space yet minimize internal transport distances and resistance to blood flow. Metabolic scaling theory argues two guiding principles—conservation of fluid flow and space-filling fractal distributions—describe a diversity of biological networks and predict how the geometry of these networks influences organismal metabolism. Yet, mostly absent from past efforts are studies that directly, and independently, measure metabolic rate from respiration and vascular architecture for the same organ, organism, or tissue. Lack of these measures may lead to inconsistent results and conclusions about metabolism, growth, and allometric scaling. We present simultaneous and consistent measurements of metabolic scaling exponents from clinical images of lung cancer, serving as a first-of-its-kind test of metabolic scaling theory, and identifying potential quantitative imaging biomarkers indicative of tumor growth. We analyze data for 535 clinical PET-CT scans of patients with non-small cell lung carcinoma to establish the presence of metabolic scaling between tumor metabolism and tumor volume. Furthermore, we use computer vision and mathematical modeling to examine predictions of metabolic scaling based on the branching geometry of the tumor-supplying blood vessel networks in a subset of 56 patients diagnosed with stage II-IV lung cancer. Examination of the scaling of maximum standard uptake value with metabolic tumor volume, and metabolic tumor volume with gross tumor volume, yield metabolic scaling exponents of 0.64 (0.20) and 0.70 (0.17), respectively. We compare these to the value of 0.85 (0.06) derived from the geometric scaling of the tumor-supplying vasculature. These results: (1) inform energetic models of growth and development for tumor forecasting; (2) identify imaging biomarkers in vascular geometry related to blood volume and flow; and (3) highlight unique opportunities to develop and test the metabolic scaling theory of ecology in tumors transitioning from avascular to vascular geometries.
Collapse
|
123
|
Xue C, Yuan J, Lo GG, Chang ATY, Poon DMC, Wong OL, Zhou Y, Chu WCW. Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review. Quant Imaging Med Surg 2021; 11:4431-4460. [PMID: 34603997 DOI: 10.21037/qims-21-86] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Radiomics research is rapidly growing in recent years, but more concerns on radiomics reliability are also raised. This review attempts to update and overview the current status of radiomics reliability research in the ever expanding medical literature from the perspective of a single reliability metric of intraclass correlation coefficient (ICC). To conduct this systematic review, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. After literature search and selection, a total of 481 radiomics studies using CT, PET, or MRI, covering a wide range of subject and disease types, were included for review. In these highly heterogeneous studies, feature reliability to image segmentation was much more investigated than reliability to other factors, such as image acquisition, reconstruction, post-processing, and feature quantification. The reported ICCs also suggested high radiomics feature reliability to image segmentation. Image acquisition was found to introduce much more feature variability than image segmentation, in particular for MRI, based on the reported ICC values. Image post-processing and feature quantification yielded different levels of radiomics reliability and might be used to mitigate image acquisition-induced variability. Some common flaws and pitfalls in ICC use were identified, and suggestions on better ICC use were given. Due to the extremely high study heterogeneities and possible risks of bias, the degree of radiomics feature reliability that has been achieved could not yet be safely synthesized or derived in this review. More future researches on radiomics reliability are warranted.
Collapse
Affiliation(s)
- Cindy Xue
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China.,Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Gladys G Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Amy T Y Chang
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Oi Lei Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Yihang Zhou
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
124
|
Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E. A deep look into radiomics. LA RADIOLOGIA MEDICA 2021; 126:1296-1311. [PMID: 34213702 PMCID: PMC8520512 DOI: 10.1007/s11547-021-01389-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Radiomics is a process that allows the extraction and analysis of quantitative data from medical images. It is an evolving field of research with many potential applications in medical imaging. The purpose of this review is to offer a deep look into radiomics, from the basis, deeply discussed from a technical point of view, through the main applications, to the challenges that have to be addressed to translate this process in clinical practice. A detailed description of the main techniques used in the various steps of radiomics workflow, which includes image acquisition, reconstruction, pre-processing, segmentation, features extraction and analysis, is here proposed, as well as an overview of the main promising results achieved in various applications, focusing on the limitations and possible solutions for clinical implementation. Only an in-depth and comprehensive description of current methods and applications can suggest the potential power of radiomics in fostering precision medicine and thus the care of patients, especially in cancer detection, diagnosis, prognosis and treatment evaluation.
Collapse
Affiliation(s)
- Camilla Scapicchio
- Academic Radiology, Department of Translational Research, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| | - Michela Gabelloni
- Academic Radiology, Department of Translational Research, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Andrea Barucci
- CNR-IFAC Institute of Applied Physics "N. Carrara", 50019, Sesto Fiorentino, Italy
| | - Dania Cioni
- Academic Radiology, Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Monserrato (Cagliari),Cagliari, Italy
| | - Emanuele Neri
- Academic Radiology, Department of Translational Research, University of Pisa, Via Roma 67, 56126, Pisa, Italy
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, Via della Signora 2, 20122, Milano, Italy
| |
Collapse
|
125
|
Hernando D, Zhang Y, Pirasteh A. Quantitative diffusion MRI of the abdomen and pelvis. Med Phys 2021; 49:2774-2793. [PMID: 34554579 DOI: 10.1002/mp.15246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Diffusion MRI has enormous potential and utility in the evaluation of various abdominal and pelvic disease processes including cancer and noncancer imaging of the liver, prostate, and other organs. Quantitative diffusion MRI is based on acquisitions with multiple diffusion encodings followed by quantitative mapping of diffusion parameters that are sensitive to tissue microstructure. Compared to qualitative diffusion-weighted MRI, quantitative diffusion MRI can improve standardization of tissue characterization as needed for disease detection, staging, and treatment monitoring. However, similar to many other quantitative MRI methods, diffusion MRI faces multiple challenges including acquisition artifacts, signal modeling limitations, and biological variability. In abdominal and pelvic diffusion MRI, technical acquisition challenges include physiologic motion (respiratory, peristaltic, and pulsatile), image distortions, and low signal-to-noise ratio. If unaddressed, these challenges lead to poor technical performance (bias and precision) and clinical outcomes of quantitative diffusion MRI. Emerging and novel technical developments seek to address these challenges and may enable reliable quantitative diffusion MRI of the abdomen and pelvis. Through systematic validation in phantoms, volunteers, and patients, including multicenter studies to assess reproducibility, these emerging techniques may finally demonstrate the potential of quantitative diffusion MRI for abdominal and pelvic imaging applications.
Collapse
Affiliation(s)
- Diego Hernando
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuxin Zhang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
126
|
Accuracy and repeatability of QRAPMASTER and MRF-vFA. Magn Reson Imaging 2021; 83:196-207. [PMID: 34506911 DOI: 10.1016/j.mri.2021.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 11/23/2022]
Abstract
Our purpose is to evaluate bias and repeatability of the quantitative MRI sequences QRAPMASTER, based on steady-state imaging, and variable Flip Angle MRF (MRF-VFA), based on the transient response. Both techniques are assessed with a standardized phantom and five volunteers on 1.5 T and 3 T clinical scanners. All scans were repeated eight times in consecutive weeks. In the phantom, the mean bias±95% confidence interval for T1 values with QRAPMASTER was 10 ± 10% on 1.5 T and 4 ± 13% on 3.0 T. The mean bias for T1 values with MRF-vFA was 21 ± 17% on 1.5 T and 9 ± 9% on 3.0 T. For T2 values the mean bias with QRAPMASTER was 12 ± 3% on 1.5 T and 23 ± 1% on 3.0 T. For T2 values the mean bias with MRF-vFA was 17 ± 1% on 1.5 T and 19 ± 2% on 3.0 T. QRAPMASTER estimated lower T1 and T2 values than MRF-vFA. Repeatability was good with low coefficients of variation (CoV). Mean CoV ± 95% confidence interval for T1 were 3.2 ± 0.4% on 1.5 T and 4.5 ± 0.8% on 3.0 T with QRAPMASTER and 2.7% ± 0.2% on 1.5 T and 2.5 ± 0.2% on 3.0 T with MRF-vFA. For T2 were 3.3 ± 1.9% on 1.5 T and 3.2 ± 0.6% on 3.0 T with QRAPMASTER and 2.0 ± 0.4% on 1.5 T and 5.7 ± 1.0% on 3.0 T with MRF-vFA. The in-vivo T1 and T2 are in the range of values previously reported by other authors. The in-vivo mean CoV ± 95% confidence interval in gray matter were for T1 1.7 ± 0.2% using QRAPMASTER and 0.7 ± 0.5% using MRF-vFA and for T2 were 0.9 ± 0.4% using QRAPMASTER and 2.4 ± 0.5% using MRF-vFA. In white matter were for T1 0.9 ± 0.3% using QRAPMASTER and 1.3 ± 1.1% using MRF-vFA and for T2 were 0.7 ± 0.4% using QRAPMASTER and 2.4 ± 0.4% using MRF-vFA. A GLM analysis showed that the variations in T1 and T2 mainly depend on the field strength and the subject, but not on the follow-up repetition in different days. This confirms the high repeatability of QRAPMASTER and MRF-vFA. In summary, QRAPMASTER and MRF-vFA on both systems were highly repeatable with moderate accuracy, providing results comparable to standard references. While repeatability was similar for both methods, QRAPMASTER was more accurate. QRAPMASTER is a tested commercial product but MRF-vFA is 4.77 times faster, which would ease the inclusion of quantitative relaxometry.
Collapse
|
127
|
Busoni S, Bock M, Chmelik M, Colgan N, De Bondt T, Hanson LG, Israel M, Kugel H, Maieron M, Mazzoni LN, Seimenis I, Vestergaard P. ADDENDUM to EFOMP Policy statement No.14 "The role of the Medical Physicist in the management of safety within the magnetic resonance imaging environment: EFOMP recommendations". Phys Med 2021; 89:303-305. [PMID: 34492497 DOI: 10.1016/j.ejmp.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- S Busoni
- Medical Physics Department, Firenze University Hospital - AOU Careggi, Firenze, Italy.
| | - M Bock
- Radiology - Medical Physics Dpt., University Medical Center Freiburg, Freiburg, Germany
| | - M Chmelik
- Department of Technical Disciplines in Health Care, Faculty of Health Care, University of Prešov, Prešov, Slovakia
| | - N Colgan
- Galway University Hospital, National University of Ireland Galway, Galway, Ireland
| | - T De Bondt
- Vinçotte - Controlatom, Vilvoorde, Belgium; De Bondt Consulting BV, Antwerp, Belgium
| | - L G Hanson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark; Section for Magnetic Resonance, DTU Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - M Israel
- Department of Hygiene, Medical Ecology and Professional Diseases, Medical University - Pleven, Bulgaria; Department of Physical Factors, National Centre of Public Health and Analyses, Sofia, Bulgaria
| | - H Kugel
- University Clinic for Radiology, University Hospital Muenster, Muenster, Germany
| | - M Maieron
- Health Physics Department, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - L N Mazzoni
- Health Physics Unit, AUSL Toscana Centro, Pistoia, Italy
| | - I Seimenis
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - P Vestergaard
- Indkøb & Medicoteknik, Region Midtjylland, Aarhus, Denmark
| |
Collapse
|
128
|
Wang C, Padgett KR, Su MY, Mellon EA, Maziero D, Chang Z. Multi-parametric MRI (mpMRI) for treatment response assessment of radiation therapy. Med Phys 2021; 49:2794-2819. [PMID: 34374098 DOI: 10.1002/mp.15130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) plays an important role in the modern radiation therapy (RT) workflow. In comparison with computed tomography (CT) imaging, which is the dominant imaging modality in RT, MRI possesses excellent soft-tissue contrast for radiographic evaluation. Based on quantitative models, MRI can be used to assess tissue functional and physiological information. With the developments of scanner design, acquisition strategy, advanced data analysis, and modeling, multiparametric MRI (mpMRI), a combination of morphologic and functional imaging modalities, has been increasingly adopted for disease detection, localization, and characterization. Integration of mpMRI techniques into RT enriches the opportunities to individualize RT. In particular, RT response assessment using mpMRI allows for accurate characterization of both tissue anatomical and biochemical changes to support decision-making in monotherapy of radiation treatment and/or systematic cancer management. In recent years, accumulating evidence have, indeed, demonstrated the potentials of mpMRI in RT response assessment regarding patient stratification, trial benchmarking, early treatment intervention, and outcome modeling. Clinical application of mpMRI for treatment response assessment in routine radiation oncology workflow, however, is more complex than implementing an additional imaging protocol; mpMRI requires additional focus on optimal study design, practice standardization, and unified statistical reporting strategy to realize its full potential in the context of RT. In this article, the mpMRI theories, including image mechanism, protocol design, and data analysis, will be reviewed with a focus on the radiation oncology field. Representative works will be discussed to demonstrate how mpMRI can be used for RT response assessment. Additionally, issues and limits of current works, as well as challenges and potential future research directions, will also be discussed.
Collapse
Affiliation(s)
- Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Kyle R Padgett
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA.,Department of Radiology, University of Miami, Miami, Florida, USA
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, California, USA.,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Danilo Maziero
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
129
|
Sitek A, Ahn S, Asma E, Chandler A, Ihsani A, Prevrhal S, Rahmim A, Saboury B, Thielemans K. Artificial Intelligence in PET: An Industry Perspective. PET Clin 2021; 16:483-492. [PMID: 34353746 DOI: 10.1016/j.cpet.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Artificial intelligence (AI) has significant potential to positively impact and advance medical imaging, including positron emission tomography (PET) imaging applications. AI has the ability to enhance and optimize all aspects of the PET imaging chain from patient scheduling, patient setup, protocoling, data acquisition, detector signal processing, reconstruction, image processing, and interpretation. AI poses industry-specific challenges which will need to be addressed and overcome to maximize the future potentials of AI in PET. This article provides an overview of these industry-specific challenges for the development, standardization, commercialization, and clinical adoption of AI and explores the potential enhancements to PET imaging brought on by AI in the near future. In particular, the combination of on-demand image reconstruction, AI, and custom-designed data-processing workflows may open new possibilities for innovation which would positively impact the industry and ultimately patients.
Collapse
Affiliation(s)
- Arkadiusz Sitek
- Sano Centre for Computational Medicine, Nawojki 11 Street, Kraków 30-072, Poland.
| | - Sangtae Ahn
- GE Research, 1 Research Circle KWC-1310C, Niskayuna, NY 12309, USA
| | - Evren Asma
- Canon Medical Research, 706 N Deerpath Drive, Vernon Hills, IL 60061, USA
| | - Adam Chandler
- Global Scientific Collaborations Group, United Imaging Healthcare, America, 9230 Kirby Drive, Houston, TX 77054, USA
| | - Alvin Ihsani
- NVIDIA, 2 Technology Park Drive, Westford, MA 01886, USA
| | - Sven Prevrhal
- Philips Research Europe, Röntgenstr. 22, Hamburg 22335, Germany
| | - Arman Rahmim
- Department of Radiology, University of British Columbia, BC Cancer, BC Cancer Research Institute, 675 West 10th Avenue, Office 6-112, Vancouver, British Columbia V5Z 1L3, Canada; Department of Physics, University of British Columbia, BC Cancer, BC Cancer Research Institute, 675 West 10th Avenue, Office 6-112, Vancouver, British Columbia V5Z 1L3, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, UCL Hospital Tower 5, 235 Euston Road, London NW1 2BU, UK; Algorithms and Software Consulting Ltd, 10 Laneway, London SW15 5HX, UK
| |
Collapse
|
130
|
Abstract
The central role of MRI in neuro-oncology is undisputed. The technique is used, both in clinical practice and in clinical trials, to diagnose and monitor disease activity, support treatment decision-making, guide the use of focused treatments and determine response to treatment. Despite recent substantial advances in imaging technology and image analysis techniques, clinical MRI is still primarily used for the qualitative subjective interpretation of macrostructural features, as opposed to quantitative analyses that take into consideration multiple pathophysiological features. However, the field of quantitative imaging and imaging biomarker development is maturing. The European Imaging Biomarkers Alliance (EIBALL) and Quantitative Imaging Biomarkers Alliance (QIBA) are setting standards for biomarker development, validation and implementation, as well as promoting the use of quantitative imaging and imaging biomarkers by demonstrating their clinical value. In parallel, advanced imaging techniques are reaching the clinical arena, providing quantitative, commonly physiological imaging parameters that are driving the discovery, validation and implementation of quantitative imaging and imaging biomarkers in the clinical routine. Additionally, computational analysis techniques are increasingly being used in the research setting to convert medical images into objective high-dimensional data and define radiomic signatures of disease states. Here, I review the definition and current state of MRI biomarkers in neuro-oncology, and discuss the clinical potential of quantitative image analysis techniques.
Collapse
|
131
|
McGee KP, Hwang K, Sullivan DC, Kurhanewicz J, Hu Y, Wang J, Li W, Debbins J, Paulson E, Olsen JR, Hua C, Warner L, Ma D, Moros E, Tyagi N, Chung C. Magnetic resonance biomarkers in radiation oncology: The report of AAPM Task Group 294. Med Phys 2021; 48:e697-e732. [PMID: 33864283 PMCID: PMC8361924 DOI: 10.1002/mp.14884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022] Open
Abstract
A magnetic resonance (MR) biologic marker (biomarker) is a measurable quantitative characteristic that is an indicator of normal biological and pathogenetic processes or a response to therapeutic intervention derived from the MR imaging process. There is significant potential for MR biomarkers to facilitate personalized approaches to cancer care through more precise disease targeting by quantifying normal versus pathologic tissue function as well as toxicity to both radiation and chemotherapy. Both of which have the potential to increase the therapeutic ratio and provide earlier, more accurate monitoring of treatment response. The ongoing integration of MR into routine clinical radiation therapy (RT) planning and the development of MR guided radiation therapy systems is providing new opportunities for MR biomarkers to personalize and improve clinical outcomes. Their appropriate use, however, must be based on knowledge of the physical origin of the biomarker signal, the relationship to the underlying biological processes, and their strengths and limitations. The purpose of this report is to provide an educational resource describing MR biomarkers, the techniques used to quantify them, their strengths and weakness within the context of their application to radiation oncology so as to ensure their appropriate use and application within this field.
Collapse
Affiliation(s)
| | - Ken‐Pin Hwang
- Department of Imaging PhysicsDivision of Diagnostic ImagingMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| | | | - John Kurhanewicz
- Department of RadiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yanle Hu
- Department of Radiation OncologyMayo ClinicScottsdaleArizonaUSA
| | - Jihong Wang
- Department of Radiation OncologyMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| | - Wen Li
- Department of Radiation OncologyUniversity of ArizonaTucsonArizonaUSA
| | - Josef Debbins
- Department of RadiologyBarrow Neurologic InstitutePhoenixArizonaUSA
| | - Eric Paulson
- Department of Radiation OncologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Jeffrey R. Olsen
- Department of Radiation OncologyUniversity of Colorado Denver ‐ Anschutz Medical CampusDenverColoradoUSA
| | - Chia‐ho Hua
- Department of Radiation OncologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | | | - Daniel Ma
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | - Eduardo Moros
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Neelam Tyagi
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Caroline Chung
- Department of Radiation OncologyMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| |
Collapse
|
132
|
Keenan KE, Gimbutas Z, Dienstfrey A, Stupic KF, Boss MA, Russek SE, Chenevert TL, Prasad PV, Guo J, Reddick WE, Cecil KM, Shukla-Dave A, Aramburu Nunez D, Shridhar Konar A, Liu MZ, Jambawalikar SR, Schwartz LH, Zheng J, Hu P, Jackson EF. Multi-site, multi-platform comparison of MRI T1 measurement using the system phantom. PLoS One 2021; 16:e0252966. [PMID: 34191819 PMCID: PMC8244851 DOI: 10.1371/journal.pone.0252966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022] Open
Abstract
Recent innovations in quantitative magnetic resonance imaging (MRI) measurement methods have led to improvements in accuracy, repeatability, and acquisition speed, and have prompted renewed interest to reevaluate the medical value of quantitative T1. The purpose of this study was to determine the bias and reproducibility of T1 measurements in a variety of MRI systems with an eye toward assessing the feasibility of applying diagnostic threshold T1 measurement across multiple clinical sites. We used the International Society of Magnetic Resonance in Medicine/National Institute of Standards and Technology (ISMRM/NIST) system phantom to assess variations of T1 measurements, using a slow, reference standard inversion recovery sequence and a rapid, commonly-available variable flip angle sequence, across MRI systems at 1.5 tesla (T) (two vendors, with number of MRI systems n = 9) and 3 T (three vendors, n = 18). We compared the T1 measurements from inversion recovery and variable flip angle scans to ISMRM/NIST phantom reference values using Analysis of Variance (ANOVA) to test for statistical differences between T1 measurements grouped according to MRI scanner manufacturers and/or static field strengths. The inversion recovery method had minor over- and under-estimations compared to the NMR-measured T1 values at both 1.5 T and 3 T. Variable flip angle measurements had substantially greater deviations from the NMR-measured T1 values than the inversion recovery measurements. At 3 T, the measured variable flip angle T1 for one vendor is significantly different than the other two vendors for most of the samples throughout the clinically relevant range of T1. There was no consistent pattern of discrepancy between vendors. We suggest establishing rigorous quality control procedures for validating quantitative MRI methods to promote confidence and stability in associated measurement techniques and to enable translation of diagnostic threshold from the research center to the entire clinical community.
Collapse
Affiliation(s)
- Kathryn E. Keenan
- National Institute of Standards and Technology, Boulder, Colorado, United State of America
- * E-mail:
| | - Zydrunas Gimbutas
- National Institute of Standards and Technology, Boulder, Colorado, United State of America
| | - Andrew Dienstfrey
- National Institute of Standards and Technology, Boulder, Colorado, United State of America
| | - Karl F. Stupic
- National Institute of Standards and Technology, Boulder, Colorado, United State of America
| | - Michael A. Boss
- American College of Radiology, Center for Research and Innovation, Philadelphia, Pennsylvania, United State of America
| | - Stephen E. Russek
- National Institute of Standards and Technology, Boulder, Colorado, United State of America
| | | | - P. V. Prasad
- NorthShore University Health System, Evanston, Illinois, United State of America
| | - Junyu Guo
- St. Jude Children’s Research Hospital, Memphis, Tennessee, United State of America
| | - Wilburn E. Reddick
- St. Jude Children’s Research Hospital, Memphis, Tennessee, United State of America
| | - Kim M. Cecil
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Ohio, United State of America
| | - Amita Shukla-Dave
- Memorial Sloan Kettering Cancer Center, New York, New York, United State of America
| | - David Aramburu Nunez
- Memorial Sloan Kettering Cancer Center, New York, New York, United State of America
| | | | - Michael Z. Liu
- Columbia University Medical Center, New York, New York, United State of America
| | | | | | - Jie Zheng
- Washington University in St. Louis, St. Louis, Missouri, United State of America
| | - Peng Hu
- University of California, Los Angeles, California, United State of America
| | - Edward F. Jackson
- University of Wisconsin, Madison, Wisconsin, United State of America
| |
Collapse
|
133
|
Chianca V, Cuocolo R, Albano D. Editorial for "Quantification of Bone Marrow Fat Fraction and Iron by MRI for Distinguishing Aplastic Anemia and Myelodysplastic Syndromes". J Magn Reson Imaging 2021; 54:1761-1762. [PMID: 34131985 DOI: 10.1002/jmri.27778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Affiliation(s)
- Vito Chianca
- Clinica di Radiologia EOC IIMSI, Lugano, Switzerland.,Dipartimento di Radiologia, Ospedale Evangelico Betania, Naples, Italy
| | - Renato Cuocolo
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy.,Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Domenico Albano
- Unità di Radiologia Diagnostica ed Interventistica, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
134
|
Pang Y, Malyarenko DI, Amouzandeh G, Barberi E, Cole M, Vom Endt A, Peeters J, Tan ET, Chenevert TL. Empirical validation of gradient field models for an accurate ADC measured on clinical 3T MR systems in body oncologic applications. Phys Med 2021; 86:113-120. [PMID: 34107440 PMCID: PMC8268998 DOI: 10.1016/j.ejmp.2021.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To empirically corroborate vendor-provided gradient nonlinearity (GNL) characteristics and demonstrate efficient GNL bias correction for human brain apparent diffusion coefficient (ADC) across 3T MR systems and spatial locations. METHODS Spatial distortion vector fields (DVF) were mapped in 3D using a surface fiducial array phantom for individual gradient channels on three 3T MR platforms from different vendors. Measured DVF were converted into empirical 3D GNL tensors and compared with their theoretical counterparts derived from vendor-provided spherical harmonic (SPH) coefficients. To illustrate spatial impact of GNL on ADC, diffusion weighted imaging using three orthogonal gradient directions was performed on a volunteer brain positioned at isocenter (as a reference) and offset superiorly by 10-17 cm (>10% predicted GNL bias). The SPH tensor-based GNL correction was applied to individual DWI gradient directions, and derived ADC was compared with low-bias reference for human brain white matter (WM) ROIs. RESULTS Empiric and predicted GNL errors were comparable for all three studied 3T MR systems, with <1.0% differences in the median and width of spatial histograms for individual GNL tensor elements. Median (±width) of ADC (10-3mm2/s) histograms measured at isocenter in WM reference ROIs from three MR systems were: 0.73 ± 0.11, 0.71 ± 0.14, 0.74 ± 0.17, and at off-isocenters (before versus after GNL correction) were respectively 0.63 ± 0.14 versus 0.72 ± 0.11, 0.53 ± 0.16 versus 0.74 ± 0.18, and 0.65 ± 0.16 versus 0.76 ± 0.18. CONCLUSION The phantom-based spatial distortion measurements validated vendor-provided gradient fields, and accurate WM ADC was recovered regardless of spatial locations and clinical MR platforms using system-specific tensor-based GNL correction for routine DWI.
Collapse
Affiliation(s)
- Yuxi Pang
- Radiology, University of Michigan, Ann Arbor, MI, United States.
| | | | | | - Enzo Barberi
- Modus Medical Devices Inc., London, ON, CA, Canada
| | - Michael Cole
- Modus Medical Devices Inc., London, ON, CA, Canada
| | | | | | - Ek T Tan
- Radiology and Imaging, Hospital for Special Surgery, New York, NY, United States
| | | |
Collapse
|
135
|
Usumura M, Kishimoto R, Ishii K, Hotta E, Kershaw J, Higashi T, Obata T, Suga M. Longitudinal stability of a multimodal visco-elastic polyacrylamide gel phantom for magnetic resonance and ultrasound shear-wave elastography. PLoS One 2021; 16:e0250667. [PMID: 34019551 PMCID: PMC8139483 DOI: 10.1371/journal.pone.0250667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
We evaluated the long-term stability of a newly developed viscoelastic phantom made of polyacrylamide (PAAm) gel for magnetic resonance elastography (MRE) and ultrasound-based shear-wave elastography (US SWE). The stiffness of the cylindrical phantom was measured at 0, 13 and 18 months. Storage and loss moduli were measured with MRE, and shear-wave speed (SWS) was measured with US SWE. Long-term stability was evaluated in accordance with the Quantitative Imaging Biomarker Alliance (QIBA) profiles for each modality. The initial storage and loss moduli of the phantom were 5.01±0.22 and 1.11±0.15 respectively, and SWS was 2.57±0.04 m/s. The weight of the phantom decreased by 0.6% over the 18 months. When measured with MRE, the stiffness of the phantom decreased and changes to the storage and loss moduli were -3.0% and -4.6% between 0 and 13 months, and -4.3% and 0.0% between 0 and 18 months. The US measurements found that SWS decreased by 2.4% over the first 13 months and 3.6% at 18 months. These changes were smaller than the tolerances specified in the QIBA profiles, so the viscoelastic PAAm gel phantom fulfilled the condition for long-term stability. This new phantom has the potential to be used as a quality assurance and quality control phantom for MRE and US SWE.
Collapse
Affiliation(s)
- Masashi Usumura
- Department of Medical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Riwa Kishimoto
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Koki Ishii
- Department of Medical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Eika Hotta
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jeff Kershaw
- Applied MRI Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takayuki Obata
- Applied MRI Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mikio Suga
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
136
|
Abstract
The 2016 World Health Organization brain tumor classification is based on genomic and molecular profile of tumor tissue. These characteristics have improved understanding of the brain tumor and played an important role in treatment planning and prognostication. There is an ongoing effort to develop noninvasive imaging techniques that provide insight into tissue characteristics at the cellular and molecular levels. This article focuses on the molecular characteristics of gliomas, transcriptomic subtypes, and radiogenomic studies using semantic and radiomic features. The limitations and future directions of radiogenomics as a standalone diagnostic tool also are discussed.
Collapse
Affiliation(s)
- Chaitra Badve
- Department of Radiology, Division of Neuroradiology, University Hospitals Cleveland Medical Center, BSH 5056, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sangam Kanekar
- Department of Radiology and Neurology, Division of Neuroradiology, Penn State College of Medicine, Penn State Milton Hershey Medical Center, Mail Code H066 500, University Drive, Hershey, PA 17033, USA
| |
Collapse
|
137
|
Wang JH, Wahid KA, van Dijk LV, Farahani K, Thompson RF, Fuller CD. Radiomic biomarkers of tumor immune biology and immunotherapy response. Clin Transl Radiat Oncol 2021; 28:97-115. [PMID: 33937530 PMCID: PMC8076712 DOI: 10.1016/j.ctro.2021.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Immunotherapies are leading to improved outcomes for many cancers, including those with devastating prognoses. As therapies like immune checkpoint inhibitors (ICI) become a mainstay in treatment regimens, many concurrent challenges have arisen - for instance, delineating clinical responders from non-responders. Predicting response has proven to be difficult given a lack of consistent and accurate biomarkers, heterogeneity of the tumor microenvironment (TME), and a poor understanding of resistance mechanisms. For the most part, imaging data have remained an untapped, yet abundant, resource to address these challenges. In recent years, quantitative image analyses have highlighted the utility of medical imaging in predicting tumor phenotypes, prognosis, and therapeutic response. These studies have been fueled by an explosion of resources in high-throughput mining of image features (i.e. radiomics) and artificial intelligence. In this review, we highlight current progress in radiomics to understand tumor immune biology and predict clinical responses to immunotherapies. We also discuss limitations in these studies and future directions for the field, particularly if high-dimensional imaging data are to play a larger role in precision medicine.
Collapse
Affiliation(s)
- Jarey H. Wang
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Kareem A. Wahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisanne V. van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keyvan Farahani
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, United States
| | - Reid F. Thompson
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Clifton David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
138
|
Hajjo R, Sabbah DA, Bardaweel SK, Tropsha A. Identification of Tumor-Specific MRI Biomarkers Using Machine Learning (ML). Diagnostics (Basel) 2021; 11:742. [PMID: 33919342 PMCID: PMC8143297 DOI: 10.3390/diagnostics11050742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
The identification of reliable and non-invasive oncology biomarkers remains a main priority in healthcare. There are only a few biomarkers that have been approved as diagnostic for cancer. The most frequently used cancer biomarkers are derived from either biological materials or imaging data. Most cancer biomarkers suffer from a lack of high specificity. However, the latest advancements in machine learning (ML) and artificial intelligence (AI) have enabled the identification of highly predictive, disease-specific biomarkers. Such biomarkers can be used to diagnose cancer patients, to predict cancer prognosis, or even to predict treatment efficacy. Herein, we provide a summary of the current status of developing and applying Magnetic resonance imaging (MRI) biomarkers in cancer care. We focus on all aspects of MRI biomarkers, starting from MRI data collection, preprocessing and machine learning methods, and ending with summarizing the types of existing biomarkers and their clinical applications in different cancer types.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan;
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA;
- National Center for Epidemics and Communicable Disease Control, Amman 11118, Jordan
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan;
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan;
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
139
|
Shridhar Konar A, Qian E, Geethanath S, Buonincontri G, Obuchowski NA, Fung M, Gomez P, Schulte R, Cencini M, Tosetti M, Schwartz LH, Shukla-Dave A. Quantitative imaging metrics derived from magnetic resonance fingerprinting using ISMRM/NIST MRI system phantom: An international multicenter repeatability and reproducibility study. Med Phys 2021; 48:2438-2447. [PMID: 33690905 DOI: 10.1002/mp.14833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To compare the bias and inherent reliability of the quantitative (T1 and T2 ) imaging metrics generated from the magnetic resonance fingerprinting (MRF) technique using the ISMRM/NIST system phantom in an international multicenter setting. METHOD ISMRM/NIST MRI system phantom provides standard reference T1 and T2 relaxation values (vendor-provided) for each of the 14 vials in T1 and T2 arrays. MRF-SSFP scans repeated over 30 days on GE 1.5 and 3.0 T scanners at three collaborative centers. MRF estimated T1, and T2 values averaged over 30 days were compared with the phantom vendor-provided and spin-echo (SE) based convention gold standard (GS) method. Repeatability and reproducibility were characterized by the within-case coefficient of variation (wCV) of the MRF data acquired over 30 days, along with the biases. RESULT For the wide ranges of MRF estimated T1 values, vials #1-8 (T1 relaxation time between 2033 and 184 ms) exhibited a wCV less than 3% and 4%, respectively, on 3.0 and 1.5 T scanners. T2 values in vials #1-8 (T2 relaxation, 1044-45 ms) have shown wCV to be <7% on both 3.0 and 1.5 T scanners. A stronger linear correlation overall for T1 (R2 = 0.9960 and 0.9963 at center-1 and center-2 on 3.0 T scanner, and R2 = 0.9951 and 0.9988 at center-1 and center-3 on 1.5 T scanner) compared to T2 (R2 = 0.9971 and 0.9972 at center-1 and center-2 on 3.0 T scanner, and R2 = 0.9815 and 0.9754 at center-1 and center-3 on 1.5 T scanner). Bland-Altman (BA) analysis showed MRF based T1 and T2 values were within the limit of agreement (LOA) except for one data point. The mean difference or bias and 95% lower bound (LB) and upper bound (UB) LOA are reported in the format; mean bias: 95% LB LOA: 95% UB LOA. The biases for T1 values were 21.34: -50.00: 92.69, 21.32: -47.29: 89.94 ms, and for T2 values were -19.88: -42.37: 2.61, -19.06: -43.58: 5.45 ms on 3.0 T scanner at center-1 and center-2, respectively. Similarly, on 1.5 T scanner biases for T1 values were 26.54: -53.41: 106.50, 9.997: -51.94: 71.94 ms, and for T2 values were -23.84: -135.40: 87.76, -37.30: 134.30: 59.73 ms at center-1 and center-3, respectively. Additionally, the correlation between the SE based GS and MRF estimated T1 and T2 values (R2 = 0.9969 and 0.9977) showed a similar trend as we observed between vendor-provided and MRF estimated T1 and T2 values (R2 = 0.9963 and 0.9972). In addition to correlation, BA analysis showed that all the vials are within the LOA between the GS and vendor-provided for the T1 values and except one vial for T2 . All the vials are within the LOA between GS and MRF except one vial in T1 and T2 array. The wCV for reproducibility was <3% for both T1 and T2 values in vials #1-8, for all the 14 vials, wCV calculated for reproducibility was <4% for T1 values and <5% for T2 . CONCLUSION This study shows that MRF is highly repeatable (wCV <4% for T1 and <7% for T2 ) and reproducible (wCV < 3% for both T1 and T2 ) in certain vials (vials #1-8).
Collapse
Affiliation(s)
- Amaresha Shridhar Konar
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Enlin Qian
- Columbia Magnetic Resonance Research Center, Columbia University in the City of New York, New York, NY, 10027, USA
| | - Sairam Geethanath
- Columbia Magnetic Resonance Research Center, Columbia University in the City of New York, New York, NY, 10027, USA
| | - Guido Buonincontri
- Imago7 Foundation and IRCCS Stella Maris Foundation, Pisa, PI, 56128, Italy
| | - Nancy A Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, 44106, USA
| | | | - Pedro Gomez
- Munich School of Bioengineering, Technical University of Munich, Munich, BY, 85748, Germany
| | | | - Matteo Cencini
- Imago7 Foundation and IRCCS Stella Maris Foundation, Pisa, PI, 56128, Italy
| | - Michela Tosetti
- Imago7 Foundation and IRCCS Stella Maris Foundation, Pisa, PI, 56128, Italy
| | - Lawrence H Schwartz
- Department of Radiology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
140
|
Xu P, Xue Y, Schoepf UJ, Varga-Szemes A, Griffith J, Yacoub B, Zhou F, Zhou C, Yang Y, Xing W, Zhang L. Radiomics: The Next Frontier of Cardiac Computed Tomography. Circ Cardiovasc Imaging 2021; 14:e011747. [PMID: 33722057 DOI: 10.1161/circimaging.120.011747] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radiomics uses advanced image analysis to extract massive amounts of quantitative information from digital images, which is not otherwise distinguishable to the human eye. The mined data can be used to explore and establish new and undiscovered correlations between these imaging features and clinical end points. Cardiac computed tomography (CT) is a first-line imaging modality for evaluating coronary artery disease and has a primary role in the assessment of cardiac structures. Conventional interpretation of cardiac CT images relies mostly on subjective and qualitative analysis, as well as basic geometric quantification. To date, some proof-of-concept studies have demonstrated the feasibility and diagnostic performance of cardiac CT radiomics analysis. This review describes the current literature on radiomics in cardiac CT and discusses its advantages, challenges, and future directions. Although much evidences are needed in this field, cardiac CT radiomics has a lot to offer to patients and physicians with potential to define cardiac disease phenotypes on imaging with higher precision.
Collapse
Affiliation(s)
- Pengpeng Xu
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China (P.X., F.Z., C.Z., L.Z.)
| | - Yi Xue
- Department of Diagnostic Radiology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China (Y.X., Y.Y., L.Z.)
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (U.J.S., A.V.-S., J.G., B.Y.)
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (U.J.S., A.V.-S., J.G., B.Y.)
| | - Joseph Griffith
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (U.J.S., A.V.-S., J.G., B.Y.)
| | - Basel Yacoub
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (U.J.S., A.V.-S., J.G., B.Y.)
| | - Fan Zhou
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China (P.X., F.Z., C.Z., L.Z.)
| | - Changsheng Zhou
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China (P.X., F.Z., C.Z., L.Z.)
| | - Yuting Yang
- Department of Diagnostic Radiology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China (Y.X., Y.Y., L.Z.)
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University and Changzhou First People's Hospital, Jiangsu, China (W.X.)
| | - Longjiang Zhang
- Department of Diagnostic Radiology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China (Y.X., Y.Y., L.Z.)
| |
Collapse
|
141
|
Booth TC, Thompson G, Bulbeck H, Boele F, Buckley C, Cardoso J, Dos Santos Canas L, Jenkinson D, Ashkan K, Kreindler J, Huskens N, Luis A, McBain C, Mills SJ, Modat M, Morley N, Murphy C, Ourselin S, Pennington M, Powell J, Summers D, Waldman AD, Watts C, Williams M, Grant R, Jenkinson MD. A Position Statement on the Utility of Interval Imaging in Standard of Care Brain Tumour Management: Defining the Evidence Gap and Opportunities for Future Research. Front Oncol 2021; 11:620070. [PMID: 33634034 PMCID: PMC7900557 DOI: 10.3389/fonc.2021.620070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIV E To summarise current evidence for the utility of interval imaging in monitoring disease in adult brain tumours, and to develop a position for future evidence gathering while incorporating the application of data science and health economics. METHODS Experts in 'interval imaging' (imaging at pre-planned time-points to assess tumour status); data science; health economics, trial management of adult brain tumours, and patient representatives convened in London, UK. The current evidence on the use of interval imaging for monitoring brain tumours was reviewed. To improve the evidence that interval imaging has a role in disease management, we discussed specific themes of data science, health economics, statistical considerations, patient and carer perspectives, and multi-centre study design. Suggestions for future studies aimed at filling knowledge gaps were discussed. RESULTS Meningioma and glioma were identified as priorities for interval imaging utility analysis. The "monitoring biomarkers" most commonly used in adult brain tumour patients were standard structural MRI features. Interval imaging was commonly scheduled to provide reported imaging prior to planned, regular clinic visits. There is limited evidence relating interval imaging in the absence of clinical deterioration to management change that alters morbidity, mortality, quality of life, or resource use. Progression-free survival is confounded as an outcome measure when using structural MRI in glioma. Uncertainty from imaging causes distress for some patients and their caregivers, while for others it provides an important indicator of disease activity. Any study design that changes imaging regimens should consider the potential for influencing current or planned therapeutic trials, ensure that opportunity costs are measured, and capture indirect benefits and added value. CONCLUSION Evidence for the value, and therefore utility, of regular interval imaging is currently lacking. Ongoing collaborative efforts will improve trial design and generate the evidence to optimise monitoring imaging biomarkers in standard of care brain tumour management.
Collapse
Affiliation(s)
- Thomas C. Booth
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Gerard Thompson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Florien Boele
- Leeds Institute of Medical Research at St James’s, St James’s University Hospital, Leeds, United Kingdom
- Faculty of Medicine and Health, Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Jorge Cardoso
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Liane Dos Santos Canas
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | | | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Nicky Huskens
- The Tessa Jowell Brain Cancer Mission, London, United Kingdom
| | - Aysha Luis
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Catherine McBain
- Department of Oncology, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Samantha J. Mills
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Nick Morley
- Department of Radiology, Wales Research and Diagnostic PET Imaging Centre, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Caroline Murphy
- King’s College Trials Unit, King’s College London, London, United Kingdom
| | - Sebastian Ourselin
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Mark Pennington
- King’s Health Economics, King’s College London, London, United Kingdom
| | - James Powell
- Department of Oncology, Velindre Cancer Centre, Cardiff, United Kingdom
| | - David Summers
- Department of Neuroradiology, Western General Hospital, Edinburgh, United Kingdom
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin Watts
- Birmingham Brain Cancer Program, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Matthew Williams
- Department of Neuro-oncology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Robin Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael D. Jenkinson
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
142
|
Lehmann N, Aye N, Kaufmann J, Heinze HJ, Düzel E, Ziegler G, Taubert M. Longitudinal Reproducibility of Neurite Orientation Dispersion and Density Imaging (NODDI) Derived Metrics in the White Matter. Neuroscience 2021; 457:165-185. [PMID: 33465411 DOI: 10.1016/j.neuroscience.2021.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A recent methodological advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a histologically validated multi-compartment model to yield microstructural features of brain tissue such as geometric complexity and neurite packing density, which are especially useful in imaging the white matter. Since NODDI is increasingly popular in clinical research and fields such as developmental neuroscience and neuroplasticity, it is of vast importance to characterize its reproducibility (or reliability). We acquired multi-shell DWI data in 29 healthy young subjects twice over a rescan interval of 4 weeks to assess the within-subject coefficient of variation (CVWS), between-subject coefficient of variation (CVBS) and the intraclass correlation coefficient (ICC), respectively. Using these metrics, we compared regional and voxel-by-voxel reproducibility of the most common image analysis approaches (tract-based spatial statistics [TBSS], voxel-based analysis with different extents of smoothing ["VBM-style"], ROI-based analysis). We observed high test-retest reproducibility for the orientation dispersion index (ODI) and slightly worse results for the neurite density index (NDI). Our findings also suggest that the choice of analysis approach might have significant consequences for the results of a study. Collectively, the voxel-based approach with Gaussian smoothing kernels of ≥4 mm FWHM and ROI-averaging yielded the highest reproducibility across NDI and ODI maps (CVWS mostly ≤3%, ICC mostly ≥0.8), respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, we demonstrate that image quality (signal-to-noise ratio [SNR]) is an important determinant of NODDI metric reproducibility. We discuss the implications of these results for longitudinal and cross-sectional research designs commonly employed in the neuroimaging field.
Collapse
Affiliation(s)
- Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany.
| | - Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Leibniz-Institute for Neurobiology (LIN), Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Emrah Düzel
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AZ, UK
| | - Gabriel Ziegler
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
143
|
Hasenstab K, Cunha GM, Ichikawa S, Dehkordy SF, Lee MH, Kim SJ, Schlein A, Covarrubias Y, Sirlin CB, Fowler KJ. CNN color-coded difference maps accurately display longitudinal changes in liver MRI-PDFF. Eur Radiol 2021; 31:5041-5049. [PMID: 33449180 DOI: 10.1007/s00330-020-07649-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To assess the feasibility of a CNN-based liver registration algorithm to generate difference maps for visual display of spatiotemporal changes in liver PDFF, without needing manual annotations. METHODS This retrospective exploratory study included 25 patients with suspected or confirmed NAFLD, who underwent PDFF-MRI at two time points at our institution. PDFF difference maps were generated by applying a CNN-based liver registration algorithm, then subtracting follow-up from baseline PDFF maps. The difference maps were post-processed by smoothing (5 cm2 round kernel) and applying a categorical color scale. Two fellowship-trained abdominal radiologists and one radiology resident independently reviewed difference maps to visually determine segmental PDFF change. Their visual assessment was compared with manual ROI-based measurements of each Couinaud segment and whole liver PDFF using intraclass correlation (ICC) and Bland-Altman analysis. Inter-reader agreement for visual assessment was calculated (ICC). RESULTS The mean patient age was 49 years (12 males). Baseline and follow-up PDFF ranged from 2.0 to 35.3% and 3.5 to 32.0%, respectively. PDFF changes ranged from - 20.4 to 14.1%. ICCs against the manual reference exceeded 0.95 for each reader, except for segment 2 (2 readers ICC = 0.86-0.91) and segment 4a (reader 3 ICC = 0.94). Bland-Altman limits of agreement were within 5% across all three readers. Inter-reader agreement for visually assessed PDFF change (whole liver and segmental) was excellent (ICCs > 0.96), except for segment 2 (ICC = 0.93). CONCLUSIONS Visual assessment of liver segmental PDFF changes using a CNN-generated difference map strongly agreed with manual estimates performed by an expert reader and yielded high inter-reader agreement. KEY POINTS • Visual assessment of longitudinal changes in quantitative liver MRI can be performed using a CNN-generated difference map and yields strong agreement with manual estimates performed by expert readers.
Collapse
Affiliation(s)
- Kyle Hasenstab
- Liver Imaging Group, Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA.
| | - Guilherme Moura Cunha
- Liver Imaging Group, Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Soudabeh Fazeli Dehkordy
- Liver Imaging Group, Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Min Hee Lee
- Soonchunhyang University Bucheon Hospital, Gyeonggi-do, South Korea
| | - Soo Jin Kim
- National Cancer Center, Republic of Korea, Gyeonggi-do, South Korea
| | - Alexandra Schlein
- Liver Imaging Group, Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Yesenia Covarrubias
- Liver Imaging Group, Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Kathryn J Fowler
- Liver Imaging Group, Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
144
|
McHugh DJ, Porta N, Little RA, Cheung S, Watson Y, Parker GJM, Jayson GC, O’Connor JPB. Image Contrast, Image Pre-Processing, and T 1 Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver Metastases. Cancers (Basel) 2021; 13:E240. [PMID: 33440685 PMCID: PMC7826650 DOI: 10.3390/cancers13020240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/25/2023] Open
Abstract
Imaging biomarkers require technical, biological, and clinical validation to be translated into robust tools in research or clinical settings. This study contributes to the technical validation of radiomic features from magnetic resonance imaging (MRI) by evaluating the repeatability of features from four MR sequences: pre-contrast T1- and T2-weighted images, pre-contrast quantitative T1 maps (qT1), and contrast-enhanced T1-weighted images. Fifty-one patients with colorectal cancer liver metastases were scanned twice, up to 7 days apart. Repeatability was quantified using the intraclass correlation coefficient (ICC) and repeatability coefficient (RC), and the impact of non-Gaussian feature distributions and image normalisation was evaluated. Most radiomic features had non-Gaussian distributions, but Box-Cox transformations enabled ICCs and RCs to be calculated appropriately for an average of 97% of features across sequences. ICCs ranged from 0.30 to 0.99, with volume and other shape features tending to be most repeatable; volume ICC > 0.98 for all sequences. 19% of features from non-normalised images exhibited significantly different ICCs in pair-wise sequence comparisons. Normalisation tended to increase ICCs for pre-contrast T1- and T2-weighted images, and decrease ICCs for qT1 maps. RCs tended to vary more between sequences than ICCs, showing that evaluations of feature performance depend on the chosen metric. This work suggests that feature-specific repeatability, from specific combinations of MR sequence and pre-processing steps, should be evaluated to select robust radiomic features as biomarkers in specific studies. In addition, as different repeatability metrics can provide different insights into a specific feature, consideration of the appropriate metric should be taken in a study-specific context.
Collapse
Affiliation(s)
- Damien J. McHugh
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Nuria Porta
- Clinical Trials and Statistics Unit, Institute of Cancer Research, London SW3 6JB, UK;
| | - Ross A. Little
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Susan Cheung
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Yvonne Watson
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK;
- Bioxydyn Ltd., Manchester M15 6SZ, UK
| | - Gordon C. Jayson
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Department of Medical Oncology, The Christie Hospital, Manchester M20 4BX, UK
| | - James P. B. O’Connor
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
- Department of Radiology, The Christie Hospital, Manchester M20 4BX, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
145
|
Lee J, Lee JY, Oh SW, Chung MS, Park JE, Moon Y, Jeon HJ, Moon WJ. Evaluation of Reproducibility of Brain Volumetry between Commercial Software, Inbrain and Established Research Purpose Method, FreeSurfer. J Clin Neurol 2021; 17:307-316. [PMID: 33835753 PMCID: PMC8053534 DOI: 10.3988/jcn.2021.17.2.307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/18/2023] Open
Abstract
Background and Purpose We aimed to determine the intermethod reproducibility between the commercial software Inbrain (MIDAS IT) and the established research-purpose method FreeSurfer, as well as the effect of MRI resolution and the pathological condition of subjects on their intermethod reproducibility. Methods This study included 45 healthy volunteers and 85 patients with mild cognitive impairment (MCI). In 43 of the 85 patients with MCI, three-dimensional, T1-weighted MRI data were obtained at an in-plane resolution of 1.2 mm. The data of the remaining 42 patients with MCI and the healthy volunteers were obtained at an in-plane resolution of 1.0 mm. The within-subject coefficient of variation (CoV), intraclass correlation coefficient (ICC), and effect size were calculated, and means were compared using paired t-tests. The parameters obtained at 1.0-mm and 1.2-mm resolutions in patients with MCI were compared to evaluate the effect of the in-plane resolution on the intermethod reproducibility. The parameters obtained at a 1.0-mm in-plane resolution in patients with MCI and healthy volunteers were used to analyze the effect of subject condition on intermethod reproducibility. Results Overall the two methods showed excellent reproducibility across all regions of the brain (CoV=0.5–3.9, ICC=0.93 to >0.99). In the subgroup of healthy volunteers, the intermethod reliability was only good in some regions (frontal, temporal, cingulate, and insular). The intermethod reproducibility was better in the 1.0-mm group than the 1.2-mm group in all regions other than the nucleus accumbens. Conclusions Inbrain and FreeSurfer showed good-to-excellent intermethod reproducibility for volumetric measurements. Nevertheless, some noticeable differences were found based on subject condition, image resolution, and brain region.
Collapse
Affiliation(s)
- Jungbin Lee
- Department of Radiology, Soonchunghyang University Bucheon Hospital, Bucheon, Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University Medical Center, Seoul, Korea
| | - Se Won Oh
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Mi Sun Chung
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology, Asan Medical Center, Seoul, Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Hong Jun Jeon
- Department of Psychiatry, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Won Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
146
|
Könik A, O'Donoghue JA, Wahl RL, Graham MM, Van den Abbeele AD. Theranostics: The Role of Quantitative Nuclear Medicine Imaging. Semin Radiat Oncol 2021; 31:28-36. [PMID: 33246633 DOI: 10.1016/j.semradonc.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Theranostics is a precision medicine discipline that integrates diagnostic nuclear medicine imaging with radionuclide therapy in a manner that provides both a tumor phenotype and personalized therapy to patients with cancer using radiopharmaceuticals aimed at the same target-specific biological pathway or receptor. The aim of quantitative nuclear medicine imaging is to plan the alpha or beta-emitting therapy based on an accurate 3-dimensional representation of the in-vivo distribution of radioactivity concentration within the tumor and normal organs/tissues in a noninvasive manner. In general, imaging may be either based on positron emission tomography (PET) or single photon emission computed tomography (SPECT) invariably in combination with X-ray CT (PET/CT; SPECT/CT) or, to a much lesser extent, MRI. PET and SPECT differ in terms of the radionuclides and physical processes that give rise to the emission of high energy photons, as well as the sets of technologies involved in their detection. Using a variety of standardized quantitative parameters, system calibration, patient preparation, imaging acquisition and reconstruction protocols, and image analysis protocols, an accurate quantification of the tracer distribution can be obtained, which helps prescribe the therapeutic dose for each patient.
Collapse
Affiliation(s)
- Arda Könik
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA.
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard L Wahl
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St. Louis, MO
| | - Michael M Graham
- Past Director of Nuclear Medicine, Roy J and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Annick D Van den Abbeele
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA; Division of Cancer Imaging, Mass General Brigham, Boston, MA; Dana-Farber Cancer Institute and Mass General Brigham, Boston, MA; Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA; Tumor Imaging Metrics Core, Dana-Farber/Harvard Cancer Center, Boston, MA
| |
Collapse
|
147
|
Therapeutic response monitoring after targeted therapy in an orthotopic rat model of hepatocellular carcinoma using contrast-enhanced ultrasound: Focusing on inter-scanner, and inter-operator reproducibility. PLoS One 2020; 15:e0244304. [PMID: 33362203 PMCID: PMC7757904 DOI: 10.1371/journal.pone.0244304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose To assess therapeutic response monitoring after targeted therapy in an orthotopic rat model of hepatocellular carcinoma (HCC) using CEUS with focusing on inter-scanner and inter-operator reproducibility. Materials and methods For reproducibility, CEUS was performed using two different US scanners by two operators in sixteen rat models of HCC. Using perfusion analysis software (VueBox ®), eleven parameters were collected, and intra-class correlation coefficient (ICC) was used to analyze reproducibility. Then seventeen rat models of HCC were divided into treatment group (n = 8, 30 mg/kg/day sorafenib for five days) and control group (n = 9). CEUS was performed at baseline and 14 days after first treatment, and changes of perfusion parameters were analyzed. Results In treatment group, CEUS perfusion parameters showed a significant change. The peak enhancement (PE, 2.50 x103±1.68 x103 vs 5.55x102±4.65x102, p = 0.010) and wash-in and wash out AUC (WiWoAUC, 1.07x105±6.48 x104 vs 2.65x104±2.25x104, p = 0.009) had significantly decreased two weeks after treatment. On the contrary, control group did not show a significant change, including PE (1.15 x103±7.53x102 vs 9.43x102± 7.81 x102, p = 0.632) and WiWoAUC (5.09 x104±3.25x104 vs 5.92 x104±3.20x104, p = 0.646). For reproducibility, the various degrees of inter-scanner reproducibility were from poor to good (ICC: <0.01–0.63). However, inter-operator reproducibility of important perfusion parameters, including WiAUC, WoAUC, and WiWoAUC, ranged from fair to excellent (ICC: 0.59–0.93) in a different scanner. Conclusion Our results suggest that CEUS is useful for assessment of the treatment response after targeted therapy and with fair to excellent inter-operator reproducibility.
Collapse
|
148
|
Bagher-Ebadian H, Chetty IJ. Technical Note: ROdiomiX: A validated software for radiomics analysis of medical images in radiation oncology. Med Phys 2020; 48:354-365. [PMID: 33169367 DOI: 10.1002/mp.14590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE This study introduces an in-house-designed software platform (ROdiomiX) for the radiomics analysis of medical images in radiation oncology. ROdiomiX is a MATLAB-based framework for the computation of radiomic features and feature aggregation techniques in compliance with the Image-Biomarker-Standardization-Initiative (IBSI) guidelines, which includes preprocessing protocols and quantitative benchmark results for analysis of computational phantom images. METHODS AND MATERIALS The ROdiomiX software system consists of a series of computation cores implemented on the basis of the guidelines proposed by the IBSI. It is capable of quantitative computation of the following 11 different feature categories: Local-Intensity, Intensity-Histogram, Intensity-Based-Statistical, Intensity-Volume-Histogram, Gray-Level-Co-occurrence, Gray-Level-Run-Length, Gray-Level-Size-Zone, Gray-Level-Distance-Zone, Neighborhood-Grey-Tone-Difference, Neighboring-Grey-Level-Dependence, and Morphological feature. ROdiomiX was validated against benchmark values for the IBSI 3D digital phantom, as well as one designed in-house (HFH). The intraclass correlation coefficient (ICC) for estimating the degree of absolute agreement between ROdiomiX computation and benchmark values for different features at the 95% confidence level (CL) was used for comparison. RESULTS Among the 11 feature categories with 149 total features including 10 different feature aggregation methods (following the IBSI guidelines), the percent difference between absolute feature values computed by the ROdiomiX software and benchmark values reported for IBSI and HFH digital phantoms were 0.14% + 0.43% and 0.11% + 0.27%, respectively. The ICC values were >0.997 for all ten feature categories for both the IBSI and HFH digital phantoms. CONCLUSION The authors successfully developed a platform for computation of quantitative radiomic features. The image preprocessing and computational software cores were designed following the procedures specified by the IBSI. Benchmarking testing was in excellent agreement against the IBSI- and HFH-designed computational phantoms.
Collapse
Affiliation(s)
- Hassan Bagher-Ebadian
- Department of Radiation Oncology, Henry Ford Health System, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| |
Collapse
|
149
|
Alis D, Yergin M, Asmakutlu O, Topel C, Karaarslan E. The influence of cardiac motion on radiomics features: radiomics features of non-enhanced CMR cine images greatly vary through the cardiac cycle. Eur Radiol 2020; 31:2706-2715. [PMID: 33051731 DOI: 10.1007/s00330-020-07370-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The cardiac cycle might impair the reproducibility of radiomics features of cardiac magnetic resonance (CMR) cine images, yet this issue has not been addressed in the previous research. We aim to evaluate whether radiomics features of CMR cine images vary during the cardiac cycle and investigate the reproducibility of radiomics features of CMR cine images. METHODS This retrospective study enrolled 59 healthy adults who underwent CMR examination. Two observers segmented the myocardium on a 4D stack of three consecutive mid-ventricular short-axis cine images covering the cardiac cycle. A total of 352 radiomics features were extracted. The coefficient of variation and intraclass correlation coefficient were used to assess the feature variability through the cycle and inter-observer reproducibility, respectively. RESULTS Approximately 55% of radiomics features showed large variability through the cardiac cycle. The original features showed more variability than the Laplacian of Gaussian-filtered features (73.8% vs. 48%). The features of 4D stack cine images had a higher proportion of reproducible features (92.0%, 87.7%, and 76.1%) compared with the end-diastolic (77.8%, 62.2%, and 41.7%) and the end-systolic images (81.5%, 74.1%, and 58.8%) for intraclass correlation cut-off values of 30.80, > 0.85, and > 0.90, respectively. CONCLUSIONS Radiomics features of CMR cine images greatly vary during the cardiac cycle. The radiomics features of 4D stack of cine images are more robust compared with end-diastolic and end-systolic cine images in terms of reproducibility. The impact of the cardiac cycle on the reproducibility of the features should be considered when employing CMR cine images radiomics. KEY POINTS • There is limited evidence on the impact of cardiac motion on radiomics features of CMR cine images and the reproducibility of the radiomics features of CMR cine images. • Radiomics features of non-enhanced CMR cine images greatly vary during the cardiac cycle, and the number of "reproducible" features shows significant variations according to the cardiac phases. • The impact of cardiac cycle on the reproducibility of the radiomics features should be considered when employing CMR cine images radiomics.
Collapse
Affiliation(s)
- Deniz Alis
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey.
| | - Mert Yergin
- Department of Software Engineering and Applied Sciences, Bahcesehir University, Istanbul, Turkey
| | - Ozan Asmakutlu
- Department of Radiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Halkali, Istanbul, Turkey
| | - Cagdas Topel
- Department of Radiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Halkali, Istanbul, Turkey
| | - Ercan Karaarslan
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| |
Collapse
|
150
|
Zopfs D, Graffe J, Reimer RP, Schäfer S, Persigehl T, Maintz D, Borggrefe J, Haneder S, Lennartz S, Große Hokamp N. Quantitative distribution of iodinated contrast media in body computed tomography: data from a large reference cohort. Eur Radiol 2020; 31:2340-2348. [PMID: 32997173 PMCID: PMC7979665 DOI: 10.1007/s00330-020-07298-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Dual-energy computed tomography allows for an accurate and reliable quantification of iodine. However, data on physiological distribution of iodine concentration (IC) is still sparse. This study aims to establish guidance for IC in abdominal organs and important anatomical landmarks using a large cohort of individuals without radiological tumor burden. METHODS Five hundred seventy-one oncologic, portal venous phase dual-layer spectral detector CT studies of the chest and abdomen without tumor burden at time point of imaging confirmed by > 3-month follow-up were included. ROI were placed in parenchymatous organs (n = 25), lymph nodes (n = 6), and vessels (n = 3) with a minimum of two measurements per landmark. ROI were placed on conventional images and pasted to iodine maps to retrieve absolute IC. Normalization to the abdominal aorta was conducted to obtain iodine perfusion ratios. Bivariate regression analysis, t tests, and ANOVA with Tukey-Kramer post hoc test were used for statistical analysis. RESULTS Absolute IC showed a broad scatter and varied with body mass index, between different age groups and between the sexes in parenchymatous organs, lymph nodes, and vessels (range 0.0 ± 0.0 mg/ml-6.6 ± 1.3 mg/ml). Unlike absolute IC, iodine perfusion ratios did not show dependency on body mass index; however, significant differences between the sexes and age groups persisted, showing a tendency towards decreased perfusion ratios in elderly patients (e.g., liver 18-44 years/≥ 64 years: 0.50 ± 0.11/0.43 ± 0.10, p ≤ 0.05). CONCLUSIONS Distribution of IC obtained from a large-scale cohort is provided. As significant differences between sexes and age groups were found, this should be taken into account when obtaining quantitative iodine concentrations and applying iodine thresholds. KEY POINTS • Absolute iodine concentration showed a broad variation and differed between body mass index, age groups, and between the sexes in parenchymatous organs, lymph nodes, and vessels. • The iodine perfusion ratios did not show dependency on body mass index while significant differences between sexes and age groups persisted. • Provided guidance values may serve as reference when aiming to differentiate healthy and abnormal tissue based on iodine perfusion ratios.
Collapse
Affiliation(s)
- David Zopfs
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Josefine Graffe
- Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Robert Peter Reimer
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | | | - Thorsten Persigehl
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - David Maintz
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Jan Borggrefe
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Stefan Haneder
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Simon Lennartz
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nils Große Hokamp
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany.
| |
Collapse
|