101
|
Stupka N, Schertzer JD, Bassel-Duby R, Olson EN, Lynch GS. Calcineurin-A alpha activation enhances the structure and function of regenerating muscles after myotoxic injury. Am J Physiol Regul Integr Comp Physiol 2007; 293:R686-94. [PMID: 17475677 DOI: 10.1152/ajpregu.00612.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcineurin signaling is essential for successful muscle regeneration. Although calcineurin inhibition compromises muscle repair, it is not known whether calcineurin activation can enhance muscle repair after injury. Tibialis anterior (TA) muscles from adult wild-type (WT) and transgenic mice overexpressing the constitutively active calcineurin-A alpha transgene under the control of the mitochondrial creatine kinase promoter (MCK-CnA alpha*) were injected with the myotoxic snake venom Notexin to destroy all muscle fibers. The TA muscle of the contralateral limb served as the uninjured control. Muscle structure was assessed at 5 and 9 days postinjury, and muscle function was tested in situ at 9 days postinjury. Calcineurin stimulation enhanced muscle regeneration and altered levels of myoregulatory factors (MRFs). Recovery of myofiber size and force-producing capacity was hastened in injured muscles of MCK-CnA alpha* mice compared with control. Myogenin levels were greater 5 days postinjury and myocyte enhancer factor 2a (MEF2a) expression was greater 9 days postinjury in muscles of MCK-CnA alpha* mice compared with WT mice. Higher MEF2a expression in regenerating muscles of MCK-CnA alpha* mice 9 days postinjury may be related to an increase of slow fiber genes. Calcineurin activation in uninjured and injured TA muscles slowed muscle contractile properties, reduced fatigability, and enhanced force recovery after 4 min of intermittent maximal stimulation. Therefore, calcineurin activation can confer structural and functional benefits to regenerating skeletal muscles, which may be mediated in part by differential expression of MRFs.
Collapse
Affiliation(s)
- Nicole Stupka
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
102
|
Struewing IT, Barnett CD, Tang T, Mao CD. Lithium increases PGC-1alpha expression and mitochondrial biogenesis in primary bovine aortic endothelial cells. FEBS J 2007; 274:2749-65. [PMID: 17451429 DOI: 10.1111/j.1742-4658.2007.05809.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lithium is a therapeutic agent commonly used to treat bipolar disorder and its beneficial effects are thought to be due to a combination of activation of the Wnt/beta-catenin pathway via inhibition of glycogen synthase kinase-3beta and depletion of the inositol pool via inhibition of the inositol monophosphatase-1. We demonstrated that lithium in primary endothelial cells induced an increase in mitochondrial mass leading to an increase in ATP production without any significant change in mitochondrial efficiency. This increase in mitochondrial mass was associated with an increase in the mRNA levels of mitochondrial biogenesis transcription factors: nuclear respiratory factor-1 and -2beta, as well as mitochondrial transcription factors A and B2, which lead to the coordinated upregulation of oxidative phosphorylation components encoded by either the nuclear or mitochondrial genome. These effects of lithium on mitochondrial biogenesis were independent of the inhibition of glycogen synthase kinase-3beta and independent of inositol depletion. Also, expression of the coactivator PGC-1alpha was increased, whereas expression of the coactivator PRC was not affected. Lithium treatment rapidly induced a decrease in activating Akt-Ser473 phosphorylation and inhibitory Forkhead box class O (FOXO1)-Thr24 phosphorylation, as well as an increase in activating c-AMP responsive element binding (CREB)-Ser133 phosphorylation, two mechanisms known to control PGC-1alpha expression. Together, our results show that lithium induces mitochondrial biogenesis via CREB/PGC-1alpha and FOXO1/PGC-1alpha cascades, which highlight the pleiotropic effects of lithium and reveal also novel beneficial effects via preservation of mitochondrial functions.
Collapse
Affiliation(s)
- Ian T Struewing
- Graduate Center for Nutritional Sciences, University of Kentucky, 900 Limestone Street, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
103
|
Nouette-Gaulain K, Quinart A, Letellier T, Sztark F. [Mitochondria in anaesthesia and intensive care]. ACTA ACUST UNITED AC 2007; 26:319-33. [PMID: 17349772 DOI: 10.1016/j.annfar.2007.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Accepted: 01/17/2007] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Mitochondria play a key role in energy metabolism within the cell through the oxidative phosphorylation. They are also involved in many cellular processes like apoptosis, calcium signaling or reactive oxygen species production. The objectives of this review are to understand the interactions between mitochondrial metabolism and anaesthetics or different stress situations observed in ICU and to know the clinical implications. DATA SOURCES References were obtained from PubMed data bank (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) using the following keywords: mitochondria, anaesthesia, anaesthetics, sepsis, preconditioning, ischaemia, hypoxia. DATA SYNTHESIS Mitochondria act as a pharmacological target for the anaesthetic agents. The effects can be toxic like in the case of the local anaesthetics-induced myotoxicity. On the other hand, beneficial effects are observed in the anaesthetic-induced myocardial preconditioning. Mitochondrial metabolism could be disturbed in many critical situations (sepsis, chronic hypoxia, ischaemia-reperfusion injury). The study of the underlying mechanisms should allow to propose in the future new specific therapeutics.
Collapse
Affiliation(s)
- K Nouette-Gaulain
- Département d'anesthésie-réanimation I, CHU Pellegrin, 33076 Bordeaux cedex, France
| | | | | | | |
Collapse
|
104
|
Zamir G, Zeira E, Gelman AE, Shaked A, Olthoff KM, Eid A, Galun E. Replication-deficient adenovirus induces host topoisomerase I activity: implications for adenovirus-mediated gene expression. Mol Ther 2007; 15:772-81. [PMID: 17299399 DOI: 10.1038/sj.mt.6300110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Replication-deficient adenoviruses are useful vectors for the transfer of therapeutic transgenes to malignant and non-malignant tissues. Yet their clinical application is limited by the potential toxicity of viral infection and the transient nature of transgene expression. Although transgene expression from adenovirus vectors is initially higher than expression of transgenes transduced by other viral or non-viral vectors, it is often insufficient to generate a significant therapeutic effect. We addressed this issue by searching for DNA-targeted viral-induced host responses potentially restricting transgene expression. Nuclear protein extracts from livers of rats systemically infected with replication-deficient adenovirus exhibited enhanced topoisomerase I activity compared with extracts from uninfected animals. Consequently, the inhibition of topoisomerase I by the anti-cancer drug topotecan greatly enhanced transgene expression in adenovirus-infected hepatic cells, colon cancer and prostate cancer cell cultures, mouse liver, human ex vivo tumor specimens, and mouse tumor in vivo. The enhancement could not be ascribed to non-specific genotoxic stress, cell death, or cell-cycle perturbation. These findings are significant for gene therapy as they reveal novel aspects of the host anti-adenovirus response and set the stage for the development of a rational molecular-pharmacological approach to increase the effectiveness, and safety, of adenovirus-mediated cancer therapeutics.
Collapse
Affiliation(s)
- Gideon Zamir
- Department of Surgery, Hadassah University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
Major modifications in energy homeostasis occur in skeletal muscle during exercise. Emerging evidence suggests that changes in energy homeostasis take part in the regulation of gene expression and contribute to muscle plasticity. A number of energy-sensing molecules have been shown to sense variations in energy homeostasis and trigger regulation of gene expression. The AMP-activated protein kinase, hypoxia-inducible factor 1, peroxisome proliferator-activated receptors, and Sirt1 proteins all contribute to altering skeletal muscle gene expression by sensing changes in the concentrations of AMP, molecular oxygen, intracellular free fatty acids, and NAD+, respectively. These molecules may therefore sense information relating to the intensity, duration, and frequency of muscle exercise. Mitochondria also contribute to the overall response, both by modulating the response of energy-sensing molecules and by generating their own signals. This review seeks to examine our current understanding of the roles that energy-sensing molecules and mitochondria can play in the regulation of gene expression in skeletal muscle.
Collapse
Affiliation(s)
- Damien Freyssenet
- Unité Physiologie et Physiopathologie de l'Exercice et Handicap, EA3062, Université Jean Monnet, Saint-Etienne Cedex 2, France.
| |
Collapse
|
106
|
Bortoloso E, Pilati N, Megighian A, Tibaldo E, Sandonà D, Volpe P. Transition of Homer isoforms during skeletal muscle regeneration. Am J Physiol Cell Physiol 2006; 290:C711-8. [PMID: 16236824 DOI: 10.1152/ajpcell.00217.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homer represents a new and diversified family of proteins that includes several isoforms, Homer 1, 2, and 3; some of these isoforms have been reported to be present in striated muscles. In this study, the presence of Homer isoforms 1a, 1b/c/d, 2b, and 3 was thoroughly investigated in rat skeletal muscles under resting conditions. Transition in Homer isoforms compositon was studied under experimental conditions of short-term and long-term adaptation, e.g., fatigue and regeneration, respectively. First, we show that Homer 1a was constitutively expressed and was transiently upregulated during regeneration. In C2C12 cell cultures, Homer 1a was also upregulated during formation of myotubes. No change of Homer 1a was observed in fatigue. Second, Homer 1b/c/d and Homer 2b were positively and linearly related to muscle mass change during regeneration, and third, Homer 3 was not detectable under resting conditions but was transiently expressed during regeneration although with a temporal pattern distinct from that of Homer 1a. Thus a switch in Homer isoforms is associated to muscle differentiation and regeneration. Homers may play a role not only in signal transduction of skeletal muscle, in particular regulation of Ca2+ release from sarcoplasmic reticulum (Ward CW, Feng W, Tu J, Pessah IN, Worley PF, and Schneider MF. Homer protein increases activation of Ca2+ sparks in permeabilized skeletal muscle. J Biol Chem 279: 5781–5787, 2004), but also in adaptation.
Collapse
Affiliation(s)
- Elena Bortoloso
- Dipartimento di Scienze Biomediche Sperimentali, Università degli Studi di Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
107
|
Szustakowski JD, Lee JH, Marrese CA, Kosinski PA, Nirmala NR, Kemp DM. Identification of novel pathway regulation during myogenic differentiation. Genomics 2006; 87:129-38. [PMID: 16300922 DOI: 10.1016/j.ygeno.2005.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 08/23/2005] [Indexed: 11/24/2022]
Abstract
Stem cell differentiation is governed by extracellular signals that activate intracellular networks (or pathways) to drive phenotypic specification. Using a novel gene clustering strategy we determined pathway relationships from a genome-wide transcriptional dataset of skeletal myoblast differentiation. Established myogenic pathways, including cell contractility and cell-cycle arrest, were predicted with extreme statistical significance (p approximately 0). In addition, gene sets associated with angiogenesis, neuronal activity, and mRNA splicing were regulated, exposing developmental and therapeutic implications. Acquisition of transcriptional data spanning the entire differentiation time course provided context for a dynamic landscape of functional pathway regulation. This novel perspective on myogenic cell differentiation revealed previously unrecognized patterns of regulation. We predict that similar analyses will facilitate ongoing efforts to define molecular mechanisms in other stem cell and developmental paradigms. Finally, by combining an iterative process of analysis with supplementation of novel pathways, this application may evolve into a powerful discovery tool.
Collapse
Affiliation(s)
- Joseph D Szustakowski
- Life Science Informatics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
108
|
Benton CR, Han XX, Febbraio M, Graham TE, Bonen A. Inverse relationship between PGC-1alpha protein expression and triacylglycerol accumulation in rodent skeletal muscle. J Appl Physiol (1985) 2005; 100:377-83. [PMID: 16223979 DOI: 10.1152/japplphysiol.00781.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PGC-1alpha is a key regulator of tissue metabolism, including skeletal muscle. Because it has been shown that PGC-1alpha alters the capacity for lipid metabolism, it is possible that PGC-1alpha expression is regulated by the intramuscular lipid milieu. Therefore, we have examined the relationship between PGC-1alpha protein expression and the intramuscular fatty acid accumulation in hindlimb muscles of animals in which the capacity for fatty acid accumulation in muscle is increased (Zucker obese rat) or reduced [FAT/CD36 null (KO) mice]. Rates of palmitate incorporation into triacylglycerols were determined in perfused red (RG) and white gastrocnemius (WG) muscles of lean and obese Zucker rats and in perfused RG and WG muscles of FAT/CD36 KO and wild-type (WT) mice. In obese Zucker rats, the rate of palmitate incorporation into triacylglycerol depots in RG and WG muscles were 28 and 24% greater than in lean rats (P < 0.05). In FAT/CD36 KO mice, the rates of palmitate incorporation into triacylglycerol depots were lower in RG (-50%) and WG muscle (-24%) compared with the respective muscles in WT mice (P < 0.05). In the obese animals, PGC-1alpha protein content was reduced in both RG (-13%) and WG muscles (-15%) (P < 0.05). In FAT/CD36 KO mice, PGC-1alpha protein content was upregulated in both RG (+32%, P < 0.05) and WG muscles (+50%, P < 0.05). In conclusion, from studies in these two animal models, it appears that PGC-1alpha protein expression is inversely related to components of intramuscular lipid metabolism, because 1) PGC-1alpha protein expression is downregulated when triacylglycerol synthesis rates, an index of intramuscular lipid metabolism, are increased, and 2) PGC-1alpha protein expression is upregulated when triacylglycerol synthesis rates are reduced. Therefore, we speculate that the intramuscular lipid sensing may be involved in regulating the protein expression of PGC-1alpha in skeletal muscle.
Collapse
Affiliation(s)
- Carley R Benton
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
109
|
Durieux AC, Bonnefoy R, Freyssenet D. Kinetic of transgene expression after electrotransfer into skeletal muscle: Importance of promoter origin/strength. Biochim Biophys Acta Gen Subj 2005; 1725:403-9. [PMID: 16054757 DOI: 10.1016/j.bbagen.2005.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/21/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
We determined over a 3-week period some of the factors that may influence the kinetic of gene expression following in vivo gene electrotransfer. Histochemical analysis of beta-galactosidase and biochemical analysis of luciferase expressions were used to determine reporter gene activity in the Tibialis anterior muscles of young Sprague-Dawley male rats. Transfection efficiency peaked 5 days after gene electrotransfer and then exponentially decreased to reach non-detectable levels at day 28. Reduction of muscle damage by decreasing the amount of DNA injected or the cumulated pulse duration did not improve the kinetic of gene expression. Electrotransfer of luciferase expression plasmids driven either by viral or mammalian promoters rather show that most of the decrease in transgene expression was related to promoter origin/strength. By regulating the amount of transgene expression, the promoter origin/strength could modulate the immune response triggered against the foreign protein and ultimately the kinetic of transgene expression.
Collapse
Affiliation(s)
- Anne-Cécile Durieux
- Laboratoire de Physiologie, Unité Physiologie et Physiopathologie de l'Exercice et Handicap, Université Jean Monnet, Faculté de Médecine, 42023 Saint-Etienne, France
| | | | | |
Collapse
|
110
|
Flück M, Schmutz S, Wittwer M, Hoppeler H, Desplanches D. Transcriptional reprogramming during reloading of atrophied rat soleus muscle. Am J Physiol Regul Integr Comp Physiol 2005; 289:R4-14. [PMID: 15956763 DOI: 10.1152/ajpregu.00833.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The hypothesis was tested that differential, coregulated transcriptional adaptations of various cellular pathways would occur early with increased mechanical loading of atrophied skeletal muscle and relate to concurrent damage of muscle fibers. Atrophy and slow-to-fast fiber transformation of rat soleus muscle was provoked by 14 days of hindlimb suspension (HS). Subsequent reloading of hindlimbs caused a fourfold increase in the percentage of muscle fibers, demonstrating endomysial tenascin-C staining. Five days after reloading, when 10% of the fibers were damaged, the normal muscle weight and slow-type fiber percentage were reestablished. Microarray analysis revealed major, biphasic patterns of gene expressional alterations with reloading that distinguish between treatments and gene ontologies. Transcript levels of factors involved in protein synthesis and certain proteasomal mRNAs were increased after 1 day of reloading and correlated to the percentage of fibers surrounded by tenascin-C. By contrast, levels of gene messages for fatty acid transporters, respiratory chain constituents, and voltage-gated cation channels were transiently reduced after 1 day of muscle loading and associated with the number of damaged fibers and the regain in muscle weight. This coregulation points toward important retooling of oxidative metabolism and the T- and SR-tubular systems with rebuilding of slow fibers. The observations demonstrate that early nuclear reprogramming with reloading of atrophic soleus muscle is coordinated and links to the processes involved in mechanical damage and regeneration of muscle fibers.
Collapse
Affiliation(s)
- Martin Flück
- Department of Anatomy, University of Bern, Baltzerstr. 2, 3000 Bern 9, Switzerland.
| | | | | | | | | |
Collapse
|
111
|
Lee HC, Wei YH. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 2005; 37:822-34. [PMID: 15694841 DOI: 10.1016/j.biocel.2004.09.010] [Citation(s) in RCA: 475] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 09/15/2004] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
Mitochondrial biogenesis and mitochondrial DNA (mtDNA) maintenance depend on coordinated expression of genes in the nucleus and mitochondria. A variety of intracellular and extracellular signals transmitted by hormones and second messengers have to be integrated to provide mammalian cells with a suitable abundance of mitochondria and mtDNA to meet their energy demand. It has been proposed that reactive oxygen species (ROS) and free radicals generated from respiratory chain are involved in the signaling from mitochondria to the nucleus. Increased oxidative stress may contribute to alterations in the abundance of mitochondria as well as the copy number and integrity of mtDNA in human cells in pathological conditions and in aging process. Within a certain level, ROS may induce stress responses by altering expression of specific nuclear genes to uphold the energy metabolism to rescue the cell. Once beyond the threshold, ROS may cause oxidative damage to mtDNA and other components of the affected cells and to elicit apoptosis by induction of mitochondrial membrane permeability transition and release of pro-apoptotic proteins such as cytochrome c. On the basis of recent findings gathered from this and other laboratories, we review the alterations in the abundance of mitochondria and mtDNA copy number of mammalian cells in response to oxidative stress and the signaling pathways that are involved.
Collapse
Affiliation(s)
- Hsin-Chen Lee
- Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | | |
Collapse
|
112
|
Washington TA, Reecy JM, Thompson RW, Lowe LL, McClung JM, Carson JA. Lactate dehydrogenase expression at the onset of altered loading in rat soleus muscle. J Appl Physiol (1985) 2005; 97:1424-30. [PMID: 15358753 DOI: 10.1152/japplphysiol.00222.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Both functional overload and hindlimb disuse induce significant energy-dependent remodeling of skeletal muscle. Lactate dehydrogenase (LDH), an important enzyme involved in anaerobic glycolysis, catalyzes the interconversion of lactate and pyruvate critical for meeting rapid high-energy demands. The purpose of this study was to determine rat soleus LDH-A and -B isoform expression, mRNA abundance, and enzymatic activity at the onset of increased or decreased loading in the rat soleus muscle. The soleus muscles from male Sprague-Dawley rats were functionally overloaded for up to 3 days by a modified synergist ablation or subjected to disuse by hindlimb suspension for 3 days. LDH mRNA concentration was determined by Northern blotting, LDH protein isoenzyme composition was determined by zymogram analysis, and LDH enzymatic activity was determined spectrophotometrically. LDH-A mRNA abundance increased by 372%, and LDH-B mRNA abundance decreased by 43 and 31% after 24 h and 3 days of functional overload, respectively, compared with that in control rats. LDH protein expression demonstrated a shift by decreasing LDH-B isoforms and increasing LDH-A isoforms. LDH-B activity decreased 80% after 3 days of functional overload. Additionally, LDH-A activity increased by 234% following 3 days of hindlimb suspension. However, neither LDH-A or LDH-B mRNA abundance was affected following 3 days of hindlimb suspension. In summary, the onset of altered loading induced a differential expression of LDH-A and -B in the rat soleus muscle, favoring rapid energy production. Long-term altered loading is associated with myofiber conversion; however, the rapid changes in LDH at the onset of altered loading may be involved in other physiological processes.
Collapse
Affiliation(s)
- Tyrone A Washington
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina 29208, USA
| | | | | | | | | | | |
Collapse
|
113
|
Abstract
The integrity of mitochondrial function is fundamental to cell life. It follows that disturbances of mitochondrial function will lead to disruption of cell function, expressed as disease or even death. In this review, I consider recent developments in our knowledge of basic aspects of mitochondrial biology as an essential step in developing our understanding of the contributions of mitochondria to disease. The identification of novel mechanisms that govern mitochondrial biogenesis and replication, and the delicately poised signalling pathways that coordinate the mitochondrial and nuclear genomes are discussed. As fluorescence imaging has made the study of mitochondrial function within cells accessible, the application of that technology to the exploration of mitochondrial bioenergetics is reviewed. Mitochondrial calcium uptake plays a major role in influencing cell signalling and in the regulation of mitochondrial function, while excessive mitochondrial calcium accumulation has been extensively implicated in disease. Mitochondria are major producers of free radical species, possibly also of nitric oxide, and are also major targets of oxidative damage. Mechanisms of mitochondrial radical generation, targets of oxidative injury and the potential role of uncoupling proteins as regulators of radical generation are discussed. The role of mitochondria in apoptotic and necrotic cell death is seminal and is briefly reviewed. This background leads to a discussion of ways in which these processes combine to cause illness in the neurodegenerative diseases and in cardiac reperfusion injury. The demands of mitochondria and their complex integration into cell biology extends far beyond the provision of ATP, prompting a radical change in our perception of mitochondria and placing these organelles centre stage in many aspects of cell biology and medicine.
Collapse
Affiliation(s)
- Michael R Duchen
- Department of Physiology and Mitochondrial Biology Group, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
114
|
|
115
|
Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci U S A 2004; 101:16507-12. [PMID: 15545607 PMCID: PMC534517 DOI: 10.1073/pnas.0405432101] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We recently found that long-term exposure to nitric oxide (NO) triggers mitochondrial biogenesis in mammalian cells and tissues by activation of guanylate cyclase and generation of cGMP. Here, we report that the NO/cGMP-dependent mitochondrial biogenesis is associated with enhanced coupled respiration and content of ATP in U937, L6, and PC12 cells. The observed increase in ATP content depended entirely on oxidative phosphorylation, because ATP formation by glycolysis was unchanged. Brain, kidney, liver, heart, and gastrocnemius muscle from endothelial NO synthase null mutant mice displayed markedly reduced mitochondrial content associated with significantly lower oxygen consumption and ATP content. In these tissues, ultrastructural analyses revealed significantly smaller mitochondria. Furthermore, a significant reduction in the number of mitochondria was observed in the subsarcolemmal region of the gastrocnemius muscle. We conclude that NO/cGMP stimulates mitochondrial biogenesis, both in vitro and in vivo, and that this stimulation is associated with increased mitochondrial function, resulting in enhanced formation of ATP.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Preclinical Sciences, Laboratorio Interdisciplinare Technologie Avanzate (LITA) Vialba, University of Milan, 20157 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Duguez S, Sabido O, Freyssenet D. Mitochondrial-dependent regulation of myoblast proliferation. Exp Cell Res 2004; 299:27-35. [PMID: 15302570 DOI: 10.1016/j.yexcr.2004.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 02/05/2004] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to determine whether mitochondrial activity could regulate myoblast proliferation. We demonstrate that an increase in mitochondrial activity of L6E9 myoblasts can be easily obtained by simply raising extracellular pyruvate concentration in the culture dish. Under this condition, L6E9 myoblasts underwent a rapid growth arrest in G1 + S phases concomitant to a marked cellular hypertrophy. No sign of myoblast fusion was evident. This was accompanied by the down-regulation of proliferating cell nuclear antigen expression and an increase in p21 expression. Mitochondrial biogenesis was also stimulated, as indicated by a twofold increase in mitochondrial content. These cells exhibited a large increase in the production of reactive oxygen species that could contribute to the observed phenotypic alterations. However, exposure of pyruvate-treated cells to antioxidants did not reverse growth arrest. Similarly, exposure of control cells to oxidants did not induce growth arrest. Our observations suggest that mitochondrial activity appears to play a central role in regulating myoblast proliferation. They also argue strongly in favor of a retrograde communication establishing a mitochondrial control of nuclear gene expression that could be modulated by mitochondrial activity.
Collapse
Affiliation(s)
- Stéphanie Duguez
- Laboratoire de Physiologie, Groupe Physiologie et Physiopathologie de l'Exercice et Handicap (EA3062), Université Jean Monnet, Saint-Etienne, France
| | | | | |
Collapse
|
117
|
Barani AE, Durieux AC, Sabido O, Freyssenet D. Age-related changes in the mitotic and metabolic characteristics of muscle-derived cells. J Appl Physiol (1985) 2004; 95:2089-98. [PMID: 14555672 DOI: 10.1152/japplphysiol.00437.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Age-related sarcopenia could partly result from cumulative repeated episodes of incomplete repair and regeneration. We hypothesized that mitotic and metabolic events associated with satellite cell activation and proliferation could be altered with aging. Muscle-derived cells (mdc) were isolated from gastrocnemius and quadriceps muscles of young (3 wk old), adult (9 mo old), and old (24 mo old) Sprague-Dawley male rats (n = 10/group). The mdc from young growing rats started to proliferate earlier compared with adult and old animals. Cell cycle duration was significantly reduced with aging from 36.5 +/- 3.2 to 28.0 +/- 2.2 h. However, the proportion of noncycling (G0 phase) and cycling (G1 + S + G2 + M phases) cultured mdc was statistically unchanged among the three age groups. Significantly lower increase in c-met and proliferating cell nuclear antigen expression were observed in cultured mdc of old rats upon serum stimulation. Major changes in the expression of citrate synthase, lactate dehydrogenase, proteasome, caspase 3, plasminogen activators (PAs), and matrix metalloproteinase 2-9 (MMP2-9) were observed upon serum stimulation, but no age-related difference was noted. However, when measured on crushed muscle extracts, PAs and MMP2-9 enzyme activities were significantly decreased with aging. Our results show that cellular and biochemical events associated with the control of mdc activation and proliferation occur with aging. These alterations may participate in the accumulation of repeated episodes of incomplete repair and regeneration throughout the life span, thus contributing to the loss of skeletal muscle mass and function with aging.
Collapse
Affiliation(s)
- Aude E Barani
- Laboratoire de Physiologie, Groupe Physiologie et Physiopathologie de l'Exercice et du Handicap-Groupement d'Intérêt Public Exercice Sport Santé, Faculté de Médecine, 42023 Saint-Etienne, France
| | | | | | | |
Collapse
|
118
|
Choi YS, Lee KU, Pak YK. Regulation of mitochondrial transcription factor A expression by high glucose. Ann N Y Acad Sci 2004; 1011:69-77. [PMID: 15126285 DOI: 10.1007/978-3-662-41088-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondrial transcription factor A (Tfam, previously mtTFA) is a key regulator of mitochondrial DNA (mtDNA) transcription and replication. We have reported that overexpression of nuclear respiratory factor-1 (NRF-1) and high concentration (50 mM) of glucose increased the promoter activity of the rat Tfam in L6 rat skeletal muscle cells. In this study, we investigated the mechanism of high glucose-induced Tfam transactivation. The addition of 50 mM glucose for 24 h increased Tfam promoter activity up to twofold. The glucose-induced Tfam expression was dose-dependent and cell-type specific. Glucose increased the Tfam promoter-driven transactivity in L6 (skeletal muscle), HIT (pancreatic beta-cell), and CHO (ovary) cells, but not in HepG2 (hepatoma), HeLa, and CV1 (kidney) cells. Among various monosaccharides, only glucose and fructose increased the Tfam promoter activity. Oxidative stress might not be involved in glucose-induced Tfam expression since treatment with antioxidants such as vitamin C, vitamin E, probucol, or alpha-lipoic acid did not suppress the induction. None of the inhibitors of protein kinase C, MAP kinase, and PI3 kinase altered the glucose-induced Tfam promoter activity, suggesting that general phosphorylation is involved in its signaling. However, a dominant negative mutant of NRF-1, in which 200 amino acids of C-terminus were truncated, completely suppressed the glucose-induced Tfam induction. It was concluded that high glucose-induced Tfam transcription in L6 cells might be mediated by NRF-1.
Collapse
Affiliation(s)
- Yon Sik Choi
- Asan Institute for Life Sciences, University of Ulsan, Seoul 138-736, Korea
| | | | | |
Collapse
|
119
|
CHOI YONSIK, LEE KIUP, PAK YOUNGMIKIM. Regulation of Mitochondrial Transcription Factor A Expression by High Glucose. Ann N Y Acad Sci 2004. [DOI: 10.1196/annals.1293.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
120
|
Abstract
Aging is associated with a progressive decline in skeletal muscle mass and function (sarocopenia). Despite several years of research, controversy exists regarding the manifestations and causes of sarcopenia. In the former respect, whereas a preferential loss of so-called "fast-twitch" muscle fibers occurs in rat models of aging, this appears unlikely in human skeletal muscle. In the latter respect, whereas a decline in physical activity with aging contributes to whole-muscle atrophy, it cannot explain the marked heterogeneity in muscle fiber size seen in aged muscles. Similarly, systemic alterations, such as reduced blood levels of anabolic hormones and nutritional deficits, although involved in modulating the degree of whole-muscle atrophy, cannot explain the observation that only some fibers atrophy and die while most appear unaffected. A further significant question remaining is that if death of some muscle fibers is normal and perhaps advantageous (that is, by removing malfunctioning cells), what is the capacity for muscle fiber regeneration in adult skeletal muscle and can this process be augmented in aging muscles?
Collapse
Affiliation(s)
- Russell T Hepple
- Faculty of Kinesiology and Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
121
|
Giordano A, Calvani M, Petillo O, Carteni' M, Melone MRAB, Peluso G. Skeletal muscle metabolism in physiology and in cancer disease. J Cell Biochem 2003; 90:170-86. [PMID: 12938166 DOI: 10.1002/jcb.10601] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Skeletal muscle is a tissue of high demand and it accounts for most of daily energy consumption. The classical concept of energy metabolism in skeletal muscle has been profoundly modified on the basis of studies showing the influence of additional factors (i.e., uncoupling proteins (UCPs) and peroxisome proliferator activated receptors (PPARs)) controlling parameters, such as substrate availability, cellular enzymes, carrier proteins, and proton leak, able to affect glycolysis, nutrient oxidation, and protein degradation. This extremely balanced system is greatly altered by cancer disease that can induce muscle cachexia with significant deleterious consequences and results in muscle wasting and weakness, delaying or preventing ambulation, and rehabilitation in catabolic patients.
Collapse
Affiliation(s)
- Anna Giordano
- Department of Experimental Medicine, II University of Naples, School of Medicine, Naples, Italy
| | | | | | | | | | | |
Collapse
|
122
|
Zeira E, Manevitch A, Khatchatouriants A, Pappo O, Hyam E, Darash-Yahana M, Tavor E, Honigman A, Lewis A, Galun E. Femtosecond infrared laser-an efficient and safe in vivo gene delivery system for prolonged expression. Mol Ther 2003; 8:342-50. [PMID: 12907157 DOI: 10.1016/s1525-0016(03)00184-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The major advantages of "naked DNA gene therapy" are its simplicity and a low or negligible immune response. Gene delivery by DNA electroporation (EP) involves injection of DNA and the application of a brief electric pulse to enhance cellular permeability. Although EP is an efficient gene transduction technique in rodents, it requires much higher voltages (>500 V) in larger animals, and hence, in practice it would be hazardous for human patients, as it would cause serious tissue damage. To overcome the obstacles associated with EP-mediated gene delivery in vivo, we developed a new method of gene transduction that uses laser energy. The femtosecond infrared titanium sapphire laser beam was developed specifically for enhancing in vivo gene delivery without risks of tissue damage. System optimization revealed that injection of 10 micro g naked DNA into the tibial muscle of mice followed by application of the laser beam for 5 s, focused to 2 mm depth upon an area of 95 x 95 micro m(2), resulted in the highest intensity and duration of gene expression with no histological or biochemical evidence of muscle damage. We assessed the potential clinical application of LBGT technology by using it to transfer the murine erythropoietin (mEpo) gene into mice. LBGT-mediated mEpo gene delivery resulted in elevated (>22%) hematocrit levels that were sustained for 8 weeks. Gene expression following LBGT was detected for >100 days. Hence, LBGT is a simple, safe, effective, and reproducible method for therapeutic gene delivery with significant clinical potential.
Collapse
Affiliation(s)
- Evelyne Zeira
- Goldyne Savad Institute of Gene Therapy, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Duguez S, Bihan MCL, Gouttefangeas D, Féasson L, Freyssenet D. Myogenic and nonmyogenic cells differentially express proteinases, Hsc/Hsp70, and BAG-1 during skeletal muscle regeneration. Am J Physiol Endocrinol Metab 2003; 285:E206-15. [PMID: 12791605 DOI: 10.1152/ajpendo.00331.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Skeletal muscle has a remarkable capacity to regenerate after injury. To determine whether changes in the expression of proteinases, 73-kDa constitutive heat shock cognate protein (Hsc70) and stress-inducible 72-kDa heat shock protein (Hsp70) (Hsc/Hsp70), and Bcl-2-associated gene product-1 (BAG-1) contribute to the remodeling response of muscle tissue, tibialis anterior muscles of male Sprague-Dawley rats were injected with 0.75% bupivacaine and removed at 3, 5, 7, 10, 14, 21, or 35 days postinjection (n = 5-7/group). The immunohistochemical analysis of desmin, alpha-actin, and developmental/neonatal myosin heavy chain expressions indicated the presence of myoblasts (days 3-7), inflammatory cells (days 3-7), degenerating myofibers (days 3-7), regenerating myofibers (days 5-10), and growing mature myofibers (days 10-21) in regenerating muscles. Our biochemical analysis documented profound adaptations in proteolytic metabolism characterized by significant increases in the enzyme activities of matrix metalloproteinases 2 and 9 and plasminogen activators (days 3-14), calpains 1 and 2 (days 3-7), cathepsins B and L(days 3-10), and proteasome (days 3-14). Proteasome activity was strongly correlated with proliferating cell nuclear antigen protein level, suggesting that proteasome played a key role in myoblast proliferation. The expression pattern of BAG-1, a regulatory cofactor of Hsc/Hsp70 at the interface between protein folding and proteasomal proteolysis, did not corroborate the changes in proteasome enzyme activity, suggesting that BAG-1 may promote other functions, such as the folding capacity of Hsc/Hsp70. Altogether, the diversity of functions attributed to proteinases in the present study was strongly supported by the relative changes in the proportion of myogenic and nonmyogenic cells over the time course of regeneration.
Collapse
Affiliation(s)
- Stéphanie Duguez
- Laboratoire de Physiologie, Groupe Physiologie et Physiopathologie de l'Exercice et Handicap, Groupement d'Intérêt Public-Exercise Sport Santé, Faculté de Médecine, Saint-Etienne, France
| | | | | | | | | |
Collapse
|
124
|
Abstract
This review addresses the mechanisms by which mitochondrial structure and function are regulated, with a focus on vertebrate muscle. We consider the adaptive remodeling that arises during physiological transitions such as differentiation, development, and contractile activity. Parallels are drawn between such phenotypic changes and the pattern of change arising over evolutionary time, as suggested by interspecies comparisons. We address the physiological and evolutionary relationships between ATP production, thermogenesis, and superoxide generation in the context of mitochondrial function. Our discussion of mitochondrial structure focuses on the regulation of membrane composition and maintenance of the three-dimensional reticulum. Current studies of mitochondrial biogenesis strive to integrate muscle functional parameters with signal transduction and molecular genetics, providing insight into the origins of variation arising between physiological states, fiber types, and species.
Collapse
Affiliation(s)
- Christopher D Moyes
- Departments of Biology and Physiology, Queen's University, Kingston, Ontario Canada, K7L 3N6.
| | | |
Collapse
|
125
|
Barani AE, Sabido O, Freyssenet D. Mitotic activity of rat muscle satellite cells in response to serum stimulation: relation with cellular metabolism. Exp Cell Res 2003; 283:196-205. [PMID: 12581739 DOI: 10.1016/s0014-4827(02)00030-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular and molecular adaptations of satellite cells isolated from rat hindlimb muscles (n = 10) were investigated in response to serum stimulation. Flow cytometry analysis of the amounts of DNA and RNA indicated that 97.7 +/- 0.7% of satellite cells were in G0 at the end of the isolation procedure, whereas 93.2 +/- 2.0% of cells were cycling after serum exposure. The length of cell division was 34.0 +/- 2.8 h. Myoblast proliferation was asynchronous, suggesting the existence of heterogeneous cell populations in skeletal muscle. Myoblast proliferation was also accompanied by a significant increase in c-met expression, and major adaptations of energetic and proteolytic metabolisms, including an increase in the relative contribution of glycolytic metabolism for energy production, an increase in proteasome and matrix metalloproteinases 2 and 9 activities, and a decrease in plasminogen activator activities. Our data suggest that, along with molecular adaptations leading to cell cycle activation itself, adaptations in energetic and proteolytic metabolisms are crucial events involved in satellite cell activation and myoblast proliferation.
Collapse
Affiliation(s)
- Aude E Barani
- Laboratoire de Physiologie, Groupe Physiologie et Physiopathologie de l'Exercice et du Handicap, Groupement d'Intérêt Public-Exercice Sport Santé, Faculté de Médecine, 15 rue Ambroise Paré, 42023 Saint-Etienne, France
| | | | | |
Collapse
|
126
|
Wredenberg A, Wibom R, Wilhelmsson H, Graff C, Wiener HH, Burden SJ, Oldfors A, Westerblad H, Larsson NG. Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci U S A 2002; 99:15066-71. [PMID: 12417746 PMCID: PMC137544 DOI: 10.1073/pnas.232591499] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Accepted: 10/01/2002] [Indexed: 11/18/2022] Open
Abstract
We have generated an animal model for mitochondrial myopathy by disrupting the gene for mitochondrial transcription factor A (Tfam) in skeletal muscle of the mouse. The knockout animals developed a myopathy with ragged-red muscle fibers, accumulation of abnormally appearing mitochondria, and progressively deteriorating respiratory chain function in skeletal muscle. Enzyme histochemistry, electron micrographs, and citrate synthase activity revealed a substantial increase in mitochondrial mass in skeletal muscle of the myopathy mice. Biochemical assays demonstrated that the increased mitochondrial mass partly compensated for the reduced function of the respiratory chain by maintaining overall ATP production in skeletal muscle. The increased mitochondrial mass thus was induced by the respiratory chain deficiency and may be beneficial by improving the energy homeostasis in the affected tissue. Surprisingly, in vitro experiments to assess muscle function demonstrated that fatigue development did not occur more rapidly in myopathy mice, suggesting that overall ATP production is sufficient. However, there were lower absolute muscle forces in the myopathy mice, especially at low stimulation frequencies. This reduction in muscle force is likely caused by deficient formation of force-generating actin-myosin cross bridges and/or disregulation of Ca(2+) homeostasis. Thus, both biochemical measurements of ATP-production rate and in vitro physiological studies suggest that reduced mitochondrial ATP production might not be as critical for the pathophysiology of mitochondrial myopathy as thought previously.
Collapse
MESH Headings
- Animals
- Crosses, Genetic
- DNA, Mitochondrial/genetics
- DNA, Ribosomal/genetics
- Disease Models, Animal
- Electric Stimulation
- Heterozygote
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mitochondria, Muscle/pathology
- Mitochondria, Muscle/physiology
- Mitochondrial Myopathies/genetics
- Muscle Contraction/physiology
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Relaxation
- Oxygen Consumption/genetics
- RNA, Ribosomal, 18S/genetics
- Reference Values
- Time Factors
Collapse
Affiliation(s)
- Anna Wredenberg
- Department of Medical Nutrition and Biosciences, Karolinska Institute, Huddinge Hospital, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Durieux AC, Bonnefoy R, Manissolle C, Freyssenet D. High-efficiency gene electrotransfer into skeletal muscle: description and physiological applicability of a new pulse generator. Biochem Biophys Res Commun 2002; 296:443-50. [PMID: 12163039 DOI: 10.1016/s0006-291x(02)00901-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Efficiency and reproducibility of gene electrotransfer depend on the electrical specifications provided by the pulse generator, such as pulse duration, pulse number, pulse frequency, pulse combination, and current intensity. Here, we describe the performances of GET42, a pulse generator specifically designed for gene electrotransfer into skeletal muscle. Expression of beta-galactosidase in the Tibialis anterior muscle of Sprague-Dawley male rats was increased 250-fold by GET42 compared to DNA injection alone. Combination of high and low current intensity pulses further increased transfection efficiency (400-fold compared to DNA injection without electrotransfer). Varying degrees of muscle necrosis were observed after gene electrotransfer. Nevertheless, muscle necrosis was dramatically reduced after optimization of cumulated pulse duration without significant reduction in transfection efficiency. Physiological applicability was illustrated by the analysis of cytochrome c promoter transactivation. In conclusion, GET42 has proven to be a reliable and efficient pulse generator for gene electrotransfer experiments, and provides a powerful mean to study in vivo the regulation of gene expression.
Collapse
Affiliation(s)
- Anne-Cécile Durieux
- Laboratoire de Physiologie, Groupe Physiologie et Physiopathologie de l'Exercice et du Handicap, Groupement d'Intérêt Public-Exercice Sport Santé, Faculté de Médecine J. Lisfranc, 15 rue Ambroise Paré, Saint-Etienne Cedex, France
| | | | | | | |
Collapse
|