101
|
Tuytten R, Syngelaki A, Thomas G, Panigassi A, Brown LW, Ortea P, Nicolaides KH. First-trimester preterm preeclampsia prediction with metabolite biomarkers: differential prediction according to maternal body mass index. Am J Obstet Gynecol 2022:S0002-9378(22)02290-6. [PMID: 36539025 DOI: 10.1016/j.ajog.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Prediction of preeclampsia risk is key to informing effective maternal care. Current screening for preeclampsia at 11 to 13 weeks of gestation using maternal demographic characteristics and medical history with measurements of mean arterial pressure, uterine artery pulsatility index, and serum placental growth factor can identify approximately 75% of women who develop preterm preeclampsia with delivery at <37 weeks of gestation. Further improvements to preeclampsia screening tests will likely require integrating additional biomarkers. Recent research suggests the existence of distinct maternal risk profiles. Therefore, biomarker evaluation should account for the possibility that a biomarker only predicts preeclampsia in a specific maternal phenotype. OBJECTIVE This study aimed to verify metabolite biomarkers as preterm preeclampsia predictors early in pregnancy in all women and across body mass index groups. STUDY DESIGN Observational case-control study drawn from a large prospective study on the early prediction of pregnancy complications in women attending their routine first hospital visit at King's College Hospital, London, United Kingdom, in 2010 to 2015. Pregnant women underwent a complete first-trimester assessment, including the collection of blood samples for biobanking. In 11- to 13-week plasma samples of 2501 singleton pregnancies, the levels of preselected metabolites implicated in the prediction of pregnancy complications were analyzed using a targeted liquid chromatography-mass spectrometry method, yielding high-quality quantification data on 50 metabolites. The ratios of amino acid levels involved in arginine biosynthesis and nitric oxide synthase pathways were added to the list of biomarkers. Placental growth factor and pregnancy-associated plasma protein A were also available for all study subjects, serving as comparator risk predictors. Data on 1635 control and 106 pregnancies complicated by preterm preeclampsia were considered for this analysis, normalized using multiples of medians. Prediction analyses were performed across the following patient strata: all subjects and the body mass index classes of <25, 25 to <30, and ≥30 kg/m2. Adjusted median levels were compared between cases and controls and between each body mass index class group. Odds ratios and 95% confidence intervals were calculated at the mean ±1 standard deviation to gauge clinical prediction merits. RESULTS The levels of 13 metabolites were associated with preterm preeclampsia in the entire study population (P<.05) with particularly significant (P<.01) associations found for 6 of them, namely, 2-hydroxy-(2/3)-methylbutyric acid, 25-hydroxyvitamin D3, 2-hydroxybutyric acid, alanine, dodecanoylcarnitine, and 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphocholine. Fold changes in 7 amino acid ratios, all involving glutamine or ornithine, were also significantly different between cases and controls (P<.01). The predictive performance of some metabolites and ratios differed according to body mass index classification; for example, ornithine (P<.001) and several ornithine-related ratios (P<.0001 to P<.01) were only strongly associated with preterm preeclampsia in the body mass index of <25 kg/m2 group, whereas dodecanoylcarnitine and 3 glutamine ratios were particularly predictive in the body mass index of ≥30 kg/m2 group (P<.01). CONCLUSION Single metabolites and ratios of amino acids related to arginine bioavailability and nitric oxide synthase pathways were associated with preterm preeclampsia risk at 11 to 13 weeks of gestation. Differential prediction was observed according to body mass index classes, supporting the existence of distinct maternal risk profiles. Future studies in preeclampsia prediction should account for the possibility of different maternal risk profiles to improve etiologic and prognostic understanding and, ultimately, clinical utility of screening tests.
Collapse
Affiliation(s)
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | | | | | | | | | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom.
| |
Collapse
|
102
|
Yoo H, Park JB, Ko Y. Evaluation of health screening data for factors associated with peri-implant bone loss. J Periodontal Implant Sci 2022; 52:509-521. [PMID: 36584329 PMCID: PMC9807850 DOI: 10.5051/jpis.2203620181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Systemic health has a profound effect on dental treatment. The aim of this study was to evaluate peri-implant bone loss and health screening data to discover factors that may influence peri-implant diseases. METHODS This study analyzed the panoramic X-rays of patients undergoing health screenings at the Health Promotion Center at Seoul St. Mary's Hospital in 2018, to investigate the relationship between laboratory test results and dental data. The patients' physical data, such as height, weight, blood pressure, hematological and urine analysis data, smoking habits, number of remaining teeth, alveolar bone level, number of implants, and degree of bone loss around the implant, were analyzed for correlations. Their associations with glycated hemoglobin, glucose, blood urea nitrogen (BUN), creatinine, and severity of periodontitis were evaluated using univariate and multivariate regression analysis. RESULTS In total, 2,264 patients opted in for dental health examinations, of whom 752 (33.2%) had undergone dental implant treatment. These 752 patients had a total of 2,658 implants, and 129 (17.1%) had 1 or more implants with peri-implant bone loss of 2 mm or more. The number of these implants was 204 (7%). Body mass index and smoking were not correlated with peri-implant bone loss. Stepwise multivariate regression analysis revealed that the severity of periodontal bone loss (moderate bone loss: odds ratio [OR], 3.154; 95% confidence interval [CI], 1.175-8.475 and severe bone loss: OR, 7.751; 95% CI, 3.003-20) and BUN (OR, 1.082; 95% CI, 1.027-1.141) showed statistically significant predictive value. The severity of periodontitis showed greater predictive value than the biochemical parameters of blood glucose, renal function, and liver function. CONCLUSIONS The results of this study showed that periodontal bone loss was a predictor of peri-implant bone loss, suggesting that periodontal disease should be controlled before dental treatment. Diligent maintenance care is recommended for patients with moderate to severe periodontal bone loss.
Collapse
Affiliation(s)
- Hyunjong Yoo
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul, Korea
| | - Jun-Beom Park
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul, Korea
- Departement of Dentistry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youngkyung Ko
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul, Korea
- Departement of Dentistry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
103
|
Zheng Z, Chang Z, Chen Y, Li J, Huang T, Huang Y, Fan Z, Gao J. Total bilirubin is associated with all-cause mortality in patients with acute respiratory distress syndrome: a retrospective study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1160. [PMID: 36467346 PMCID: PMC9708468 DOI: 10.21037/atm-22-1737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022]
Abstract
Background Acute respiratory distress syndrome (ARDS) is a life-threatening disease for which biomarkers to predict mortality are needed. Total bilirubin (TBIL), an end-product of hemoglobin catabolism in mammals reflecting liver dysfunction, has been demonstrated as an independent risk indicator for critically ill patients. This study aimed to examine whether TBIL on intensive care unit (ICU) admission is associated with ARDS mortality. Methods We analyzed the data of patients diagnosed with ARDS according to the Berlin definition from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The primary endpoint was 30-day ICU mortality after admission to the ICU, and the second endpoint was in-hospital mortality. Multivariable logistic analysis adjusted for potential confounders was used to determine the association between TBIL and short-term mortality. Results Of 1,539 ARDS patients enrolled, 261 patients died within 30 days of admission to the ICU. In the multivariable logistic analysis, each 1 g/dL increase in TBIL levels led to a 4% increase in the odds of 30-day ICU mortality [adjusted odds ratio (OR) =0.04; 95% confidence interval (CI): 0.01 to 0.08] and a 4% increase in the odds of in-hospital mortality (adjusted OR =0.04; 95% CI: 0.01 to 0.07). Furthermore, TBIL levels ≥2 mg/dL were significantly associated with 30-day ICU mortality (adjusted OR =1.51, 95% CI: 1.02 to 1.07) and in-hospital mortality (OR =1.41; 95% CI: 1.01 to 1.87). Similarly, associations between serum TBIL levels and 30-day ICU mortality were found in all subgroups stratified by comorbidities, the severity of ARDS, and other variables. Conclusions A higher serum TBIL on ICU admission was independently associated with mortality in ARDS patients. Intensive care and observation should be provided to ARDS patients with increased TBIL.
Collapse
Affiliation(s)
- Zhoude Zheng
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Zhen’ge Chang
- Department of Respiratory Medicine, Civil Aviation General Hospital, Beijing, China;,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiong Chen
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Li
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Tingting Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yilin Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Zhongjie Fan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jinming Gao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
104
|
Serum Bilirubin and Markers of Oxidative Stress and Inflammation in a Healthy Population and in Patients with Various Forms of Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11112118. [PMID: 36358491 PMCID: PMC9686784 DOI: 10.3390/antiox11112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress and inflammation contribute significantly to atherogenesis. We and others have demonstrated that mildly elevated serum bilirubin levels protect against coronary and peripheral atherosclerosis, most likely due to the antioxidant and anti-inflammatory activities of bilirubin. The aim of the present study was to assess serum bilirubin and the markers of oxidative stress and inflammation in both healthy subjects and patients with various forms of atherosclerosis. The study was performed in patients with premature myocardial infarction (n = 129), chronic ischemic heart disease (n = 43), peripheral artery disease (PAD, n = 69), and healthy subjects (n = 225). In all subjects, standard serum biochemistry, UGT1A1 genotypes, total antioxidant status (TAS), and concentrations of various pro- and anti-inflammatory chemokines were determined. Compared to controls, all atherosclerotic groups had significantly lower serum bilirubin and TAS, while having much higher serum high-sensitivity C-reactive protein (hsCRP) and most of the analyzed proinflammatory cytokines (p < 0.05 for all comparisons). Surprisingly, the highest inflammation, and the lowest antioxidant status, together with the lowest serum bilirubin, was observed in PAD patients, and not in premature atherosclerosis. In conclusion, elevated serum bilirubin is positively correlated with TAS, and negatively related to inflammatory markers. Compared to healthy subjects, patients with atherosclerosis have a much higher degree of oxidative stress and inflammation.
Collapse
|
105
|
Farid AH, Rupasinghe PP. Serum Analytes of American Mink (Neovison Vison) Challenged with Aleutian Mink Disease Virus. Animals (Basel) 2022; 12:2725. [PMID: 36290111 PMCID: PMC9597810 DOI: 10.3390/ani12202725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
Black American mink (Neovison vison), which had been selected for tolerance to Aleutian mink disease virus (AMDV) for more than 20 years (TG100) or were from herds that have been free of AMDV (TG0), along with their progeny and crosses with 50% and 75% tolerance ancestry, were inoculated with a local isolate of AMDV. Blood samples were collected from 493 mink between 120 and 1211 days post-inoculation, and concentrations of 14 serum analytes were measured. Distributions of all analytes significantly deviated from normality, and data were analyzed after Box-Cox power transformation. Significant differences were observed among tolerant groups in the concentrations of globulin (GLO), total protein (TP), alkaline phosphatase, urea nitrogen, and calcium. Concentrations of GLO and TP linearly and significantly decreased with an increasing percentage of tolerance ancestry. Eleven analytes had the smallest values in the tolerant groups (TG100 or TG75), and eight analytes had the greatest values in the non-selected groups (TG0 or TG50). Antibody titer had the greatest correlation coefficients with GLO (0.62), TP (0.53), and creatinine (0.36). It was concluded that selection for tolerance decreased the concentrations of most serum analytes, and TP and GLO were the most accurate biomarkers of tolerance to AMDV infection. Males had significantly greater values than females for phosphorus and total bilirubin concentrations, but females had significantly greater amylase, cholesterol, and BUN concentrations than males.
Collapse
Affiliation(s)
- A. Hossain Farid
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | | |
Collapse
|
106
|
Jeelan Basha N, Basavarajaiah SM, Shyamsunder K. Therapeutic potential of pyrrole and pyrrolidine analogs: an update. Mol Divers 2022; 26:2915-2937. [PMID: 35079946 PMCID: PMC8788913 DOI: 10.1007/s11030-022-10387-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
The chemistry of nitrogen-containing heterocyclic compound pyrrole and pyrrolidine has been a versatile field of study for a long time for its diverse biological and medicinal importance. Biomolecules such as chlorophyll, hemoglobin, myoglobin, and cytochrome are naturally occurring metal complexes of pyrrole. These metal complexes play a vital role in a living system like photosynthesis, oxygen carrier, as well storage, and redox cycling reactions. Apart from this, many medicinal drugs are derived from either pyrrole, pyrrolidine, or by its fused analogs. This review mainly focuses on the therapeutic potential of pyrrole, pyrrolidine, and its fused analogs, more specifically anticancer, anti-inflammatory, antiviral, and antituberculosis. Further, this review summarizes more recent reports on the pyrrole, pyrrolidine analogs, and their biological potential.
Collapse
Affiliation(s)
- N Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, 560043, India.
| | - S M Basavarajaiah
- P.G. Department of Chemistry, Vijaya College, Bengaluru, Karnataka, 560004, India
| | - K Shyamsunder
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, 560043, India
| |
Collapse
|
107
|
Yang M, Zhou X, Tan X, Huang X, Yuan L, Zhang Z, Yang Y, Xu M, Wan Y, Li Z. The Status of Oxidative Stress in Patients with Alcohol Dependence: A Meta-Analysis. Antioxidants (Basel) 2022; 11:1919. [PMID: 36290642 PMCID: PMC9598131 DOI: 10.3390/antiox11101919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol-induced oxidative stress (OS) plays a pivotal role in the pathophysiology of alcohol dependence (AD). This meta-analysis was aimed at investigating the changes in the levels of OS biomarkers in AD patients. We included relevant literature published before 1 April 2022, from the PubMed, Web of Science, and EBSCO databases following PRISMA guidelines. Finally, 15 eligible articles were enrolled in this meta-analysis, including 860 patients and 849 controls. Compared with healthy controls, AD patients had lower activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes, and lower levels of albumin, while levels of malondialdehyde (MDA), vitamin B12, homocysteine, and bilirubin were significantly increased in serum/plasma samples of AD subjects (all p < 0.05). In male patients, the activities of SOD and GPx were increased in serum/plasma but decreased in erythrocytes (all p < 0.05). The opposite trends in the level of SOD and GPx activities in serum/plasma and erythrocytes of male patients could be used as the biomarker of alcohol-induced OS injury, and the synergistic changes of MDA, vitamin B12, albumin, bilirubin, and homocysteine levels should also be considered.
Collapse
Affiliation(s)
- Mi Yang
- The Fourth People’s Hospital of Chengdu, Chengdu 610036, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaofei Zhou
- The Fourth People’s Hospital of Chengdu, Chengdu 610036, China
| | - Xi Tan
- The Fourth People’s Hospital of Chengdu, Chengdu 610036, China
| | - Xincheng Huang
- The Fourth People’s Hospital of Chengdu, Chengdu 610036, China
| | - Lu Yuan
- The Fourth People’s Hospital of Chengdu, Chengdu 610036, China
| | - Zipeng Zhang
- The Fourth People’s Hospital of Chengdu, Chengdu 610036, China
| | - Yan Yang
- The Fourth People’s Hospital of Chengdu, Chengdu 610036, China
| | - Min Xu
- The Fourth People’s Hospital of Chengdu, Chengdu 610036, China
| | - Ying Wan
- The Fourth People’s Hospital of Chengdu, Chengdu 610036, China
| | - Zezhi Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| |
Collapse
|
108
|
Shahrokhi SZ, Tehrani FSK, Salami S. Molecular mechanisms of bilirubin induced G1 cell cycle arrest and apoptosis in human breast cancer cell lines: involvement of the intrinsic pathway. Mol Biol Rep 2022; 49:10421-10429. [DOI: 10.1007/s11033-022-07757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022]
|
109
|
Yu FF, Yuan Y, Ao Y, Hua L, Wang W, Cao Y, Xi J, Luan Y, Hou S, Zhang XY. A New Product of Bilirubin Degradation by H 2O 2 and Its Formation in Activated Neutrophils and in an Inflammatory Mouse Model. Biomolecules 2022; 12:biom12091237. [PMID: 36139076 PMCID: PMC9496627 DOI: 10.3390/biom12091237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Bilirubin (BR) is a tetrapyrrolic compound stemming from heme catabolism with diverse physiological functions. It can be oxidized by H2O2 to form several degradation products, some of which have been detected in vivo and may contribute to the pathogenesis of certain diseases. However, the oxidative degradation of BR is complex and the conditions that BR degradation occurs pathophysiologically remain obscure. Neutrophils are known to generate large amounts of reactive oxygen species, including H2O2, upon activation and they are mobilized to inflammatory sites; therefore, we hypothesized that activated neutrophils could cause BR degradation, which could occur at inflammatory sites. In the present study, we investigated BR degradation by H2O2 and identified hematinic acid (BHP1) and a new product BHP2, whose structure was characterized as 2,5-diformyl-4-methyl-1H-pyrrole-3-propanoic acid. An LC-MS/MS method for the quantitation of the two compounds was then established. Using the LC-MS/MS method, we observed the concentration-dependent formation of BHP1 and BHP2 in mouse neutrophils incubated with 10 and 30 μM of BR with the yields being 16 ± 3.2 and 31 ± 5.9 pmol/106 cells for BHP1, and 25 ± 4.4 and 71 ± 26 pmol/106 cells for BHP2, respectively. After adding phorbol 12-myristate 13-acetate, a neutrophil agonist, to 30 μM of BR-treated cells, the BHP1 yield increased to 43 ± 6.6 pmol/106 cells, whereas the BHP2 one decreased to 47 ± 9.2 pmol/106 cells. The two products were also detected in hemorrhagic skins of mice with dermal inflammation and hemorrhage at levels of 4.5 ± 1.9 and 0.18 ± 0.10 nmol/g tissue, respectively, which were significantly higher than those in the non-hemorrhagic skins. BHP2 was neurotoxic starting at 0.10 μM but BHP1 was not, as assessed using Caenorhabditis elegans as the animal model. Neutrophil-mediated BR degradation may be a universally pathophysiological process in inflammation and can be particularly important under pathological conditions concerning hemorrhage.
Collapse
Affiliation(s)
- Fei-Fei Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yao Yuan
- Shanghai Jiao Tong University-Hangzhou Future Sci-Tech City Joint Research Center for Tumor Immunotherapy, Hangzhou Innovation Institute for Systems Oncology, Hangzhou 311121, China
| | - Yan Ao
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Li Hua
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wu Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Correspondence: (W.W.); (S.H.); (X.-Y.Z.)
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shangwei Hou
- Shanghai Jiao Tong University-Hangzhou Future Sci-Tech City Joint Research Center for Tumor Immunotherapy, Hangzhou Innovation Institute for Systems Oncology, Hangzhou 311121, China
- Correspondence: (W.W.); (S.H.); (X.-Y.Z.)
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (W.W.); (S.H.); (X.-Y.Z.)
| |
Collapse
|
110
|
Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond) 2022; 136:1347-1366. [PMID: 36148775 PMCID: PMC9508552 DOI: 10.1042/cs20220572] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023]
Abstract
The metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver in combination with metabolic dysfunction in the form of overweight or obesity and insulin resistance. It is also associated with an increased cardiovascular disease risk, including hypertension and atherosclerosis. Hepatic lipid metabolism is regulated by a combination of the uptake and export of fatty acids, de novo lipogenesis, and fat utilization by β-oxidation. When the balance between these pathways is altered, hepatic lipid accumulation commences, and long-term activation of inflammatory and fibrotic pathways can progress to worsen the liver disease. This review discusses the details of the molecular mechanisms regulating hepatic lipids and the emerging therapies targeting these pathways as potential future treatments for MAFLD.
Collapse
|
111
|
Retrospective assessment of the association between co-morbid disease burden and biochemical parameters in hospitalized hypertensive COVID-19 patients. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.1089604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background/Aim: Hypertension (HT) was examined as a risk factor affecting the progression of the 2019 novel coronavirus disease (COVID-19). In COVID-19 patients, it can be found in many co-morbid diseases, along with hypertension. It is not clear whether the co-morbid burden of the disease affects the prognosis in hypertensive COVID-19 patients and which biochemical parameters may be indicative of this. Therefore, this study was designed to determine the effect of co-morbid disease burden on biochemical parameters in hospitalized hypertensive COVID-19 patients.
Methods: After receiving approval from the University Ethics Committee, demographic, clinical, radiological, and laboratory data of 250 hospitalized hypertensive COVID-19 patients between May 2020 and Sept 2020 were screened. Patients with missing records and unclear history of hypertension drug use were excluded from the study. A total of 215 patients were included in the study. Patients were divided into four groups according to the co-morbidity status: (1) HT alone (Group HT0), (2) HT+ Diabetes Mellitus (DM) (Group HTDM1), (3) HT+one co-morbidity exclude DM (Group HT2), and (4) HT+at least two co-morbidities (Group HT3).
Results: We analyzed the data of 105 female and 110 male patients. Of the 215 patients whose data were evaluated in this study, 15 patients died. Two hundred people were discharged with recovery. The mortality rate was 7%. Of the hypertension patients, 34.9% had DM, 32.6% had coronary artery disease (CAD), 30.2% had chronic obstructive pulmonary disease (COPD), 16.3% had heart failure (HF), 23.3% had chronic kidney failure (CKD), and 9.3% had cerebrovascular disease (CVD). Twenty-five percent were smokers. Urea, creatinine, direct bilirubin (DBil), and Troponin-I values were significantly higher in the Group HT3 compared to the Group HT0, Group HTDM1, and Group HT2 (P < 0.001, P < 0.001, P < 0.001, P = 0.002 respectively). Glomerular filtration rate (GFR) and albümin levels were significantly lower in Group HT3 than in Group HT0, Group HTDM1, and Group HT2 (P < 0.001 and P < 0.001, respectively). The logistic regression model was statistically significant (χ2(7) = 69.088 and P < 0.001); advanced age, decrease in GFR and plateletcrit (PCT) levels, and increase in D-dimer and DBil levels were observed as predictive parameters of mortality in all hospitalized COVID-19 HT patients.
Conclusion: We determined that SARS-CoV-2 pneumonia patients with HT plus at least two co-morbidities were more serious than other patient groups in terms of organ damage and biochemical variables. In our study, we observed an increase in urea, creatinine, D-dimer, Dbil, and Troponin-I values and a decrease in GFR and albumin values as the co-morbidity burden increased in hypertensive COVID-19 patients. However, a decrease in GFR and hemogram PCT levels and an increase in D-dimer and DBil levels could be risk factors for mortality.
Collapse
|
112
|
Lad A, Hunyadi J, Connolly J, Breidenbach JD, Khalaf FK, Dube P, Zhang S, Kleinhenz AL, Baliu-Rodriguez D, Isailovic D, Hinds TD, Gatto-Weis C, Stanoszek LM, Blomquist TM, Malhotra D, Haller ST, Kennedy DJ. Antioxidant Therapy Significantly Attenuates Hepatotoxicity following Low Dose Exposure to Microcystin-LR in a Murine Model of Diet-Induced Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:1625. [PMID: 36009344 PMCID: PMC9404967 DOI: 10.3390/antiox11081625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
We have previously shown in a murine model of Non-alcoholic Fatty Liver Disease (NAFLD) that chronic, low-dose exposure to the Harmful Algal Bloom cyanotoxin microcystin-LR (MC-LR), resulted in significant hepatotoxicity including micro-vesicular lipid accumulation, impaired toxin metabolism as well as dysregulation of the key signaling pathways involved in inflammation, immune response and oxidative stress. On this background we hypothesized that augmentation of hepatic drug metabolism pathways with targeted antioxidant therapies would improve MC-LR metabolism and reduce hepatic injury in NAFLD mice exposed to MC-LR. We chose N-acetylcysteine (NAC, 40 mM), a known antioxidant that augments the glutathione detoxification pathway and a novel peptide (pNaKtide, 25 mg/kg) which is targeted to interrupting a specific Src-kinase mediated pro-oxidant amplification mechanism. Histological analysis showed significant increase in hepatic inflammation in NAFLD mice exposed to MC-LR which was attenuated on treatment with both NAC and pNaKtide (both p ≤ 0.05). Oxidative stress, as measured by 8-OHDG levels in urine and protein carbonylation in liver sections, was also significantly downregulated upon treatment with both antioxidants after MC-LR exposure. Genetic analysis of key drug transporters including Abcb1a, Phase I enzyme-Cyp3a11 and Phase II metabolic enzymes-Pkm (Pyruvate kinase, muscle), Pklr (Pyruvate kinase, liver, and red blood cell) and Gad1 (Glutamic acid decarboxylase) was significantly altered by MC-LR exposure as compared to the non-exposed control group (all p ≤ 0.05). These changes were significantly attenuated with both pNaKtide and NAC treatment. These results suggest that MC-LR metabolism and detoxification is significantly impaired in the setting of NAFLD, and that these pathways can potentially be reversed with targeted antioxidant treatment.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jonathan Hunyadi
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jacob Connolly
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | | | - Fatimah K. Khalaf
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Prabhatchandra Dube
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shungang Zhang
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Andrew L. Kleinhenz
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Cara Gatto-Weis
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Lauren M. Stanoszek
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Thomas M. Blomquist
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Deepak Malhotra
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Steven T. Haller
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David J. Kennedy
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
113
|
Jang S, Choi GH, Chang W, Jang ES, Kim JW, Jeong SH. Elevated alpha-fetoprotein in asymptomatic adults: Clinical features, outcome, and association with body composition. PLoS One 2022; 17:e0271407. [PMID: 35862314 PMCID: PMC9302731 DOI: 10.1371/journal.pone.0271407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Background and aim Apparently healthy individuals with elevated serum alpha-fetoprotein (AFP) levels (>7 ng/mL) for unknown causes visit clinics. We investigated their clinical characteristics, outcomes, and relationship with body fat deposition and muscle mass. Methods The case group included asymptomatic 137 individuals with “elevated AFP level” (R772) diagnostic code from 2009 to 2018 in a tertiary hospital. The control group enrolled 274 age- and sex-matched patients with <5 cm hepatic hemangiomas. Hepatic, visceral, and psoas muscle adiposity and psoas muscle index (PMI) were measured in the subgroups of 45 cases and 90 controls with pre-contrast computed tomography (CT) images. Results The case group (mean age 47.5 years, male 35.8%) showed higher AFP levels (10.3 vs 2.5 ng/mL, p<0.001) and total bilirubin (0.8 vs 0.7 mg/dL, p<0.001), but a lower body mass index (22.2 vs 23.3 kg/m2, p = 0.011) and alanine aminotransferase levels (17.0 vs 19.0 IU/L, p = 0.047) than the controls. During 13 months of median follow-up, there was no cancer or liver disease development. The AFP levels were stable. In the subgroups with CT images, cases showed a lower proportion of hepatic steatosis (4.4% vs 18.9%, p = 0.023), higher psoas muscle attenuation (48.2 vs 43.8 Hounsfield units, p<0.001) and higher PMI (5.7 vs 4.2 cm2/m2, p<0.001) than the controls. Conclusion Elevated AFP levels in asymptomatic individuals may play a role in expressing a protective phenotype against hepatic steatosis, myosteatosis, and sarcopenia. AFP levels in patients with elevated AFP were stable during follow-up without liver injury or cancer development. Interaction between AFP expression and steatosis warrants further study.
Collapse
Affiliation(s)
- Sangmi Jang
- Department of Internal Medicine Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Gwang Hyeon Choi
- Department of Internal Medicine Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Won Chang
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eun Sun Jang
- Department of Internal Medicine Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jin-Wook Kim
- Department of Internal Medicine Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sook-Hyang Jeong
- Department of Internal Medicine Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- * E-mail:
| |
Collapse
|
114
|
Ravula AR, Yenugu S. Effect of a mixture of pyrethroids at doses similar to human exposure through food in the Indian context. J Biochem Mol Toxicol 2022; 36:e23132. [PMID: 35678313 DOI: 10.1002/jbt.23132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 11/11/2022]
Abstract
Residual amounts of pyrethroids were detected in rice and vegetables of the Indian market. Thus, consumers are exposed to a mixture of pyrethroids on a daily basis through food. Though a large number of studies reported the toxic effects of pyrethroids, there are no reports that used doses equivalent to human consumption. In this study, male Wistar rats were exposed daily to a mixture of pyrethroids for 1-15 months which is equivalent to the amount present in rice and vegetables consumed by an average Indian each day. The oxidant-antioxidant status (lipid peroxidation, nitric oxide; activities of catalase, glutathione peroxidase, glutathione S transferase, and superoxide dismutase) and anatomical changes in the general organs (liver, lung, and kidney) and male reproductive tract tissues (caput, cauda, testis, and prostate) were evaluated. Further, liver and kidney function tests, lipid profile, and complete blood picture were analyzed. Increased oxidative stress, perturbations in the antioxidant enzyme activities, and damage to the anatomical architecture were observed. Disturbances in the liver function and lipid profile were significant. Results of our study demonstrate that exposure to a mixture of pyrethroids at a dose that is equivalent to human consumption can cause systemic and reproductive toxicity, which may ultimately result in the development of lifestyle diseases. This first line of evidence will fuel further studies to determine the impact of food-based pyrethroid exposure on the long-term health of humans and to envisage policies to reduce pesticide content in food products.
Collapse
Affiliation(s)
- Anandha R Ravula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
115
|
Oskay T, Keskin C, Özen M. Antioxidant and inflammatory biomarkers in Herpes Zoster. J Med Virol 2022; 94:3924-3929. [DOI: 10.1002/jmv.27781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tuba Oskay
- ¹Dermatology DepartmentBayındır Health GroupAnkaraTurkey
| | - Cem Keskin
- ²Internal Medicine DepartmentBayındır Health GroupAnkaraTurkey
| | - Mehmet Özen
- ³Hematology DepartmentBayındır Health GroupAnkaraTurkey
| |
Collapse
|
116
|
Jonaitis T, Lewis EA, Lourens N, Groot A, Goodman RE, Mitchell D, Karpol A, Tracy B. Subchronic feeding, allergenicity, and genotoxicity safety evaluations of single strain bacterial protein. Food Chem Toxicol 2022; 162:112878. [PMID: 35196545 DOI: 10.1016/j.fct.2022.112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022]
Abstract
Microbial proteins are potentially important alternatives to animal protein. A safety assessment was conducted on a Clostridium protein which can serve as a high-quality protein source in human food. A battery of toxicity studies was conducted comprising a 14-day dose-range finding dietary study in rats, 90-day dietary study in rats and in vitro genotoxicity studies. The allergenic potential was investigated by bioinformatics analysis. In the 90-day feeding study, rats were fed diets containing 0, 5.0, 7.5, and 10% Clostridium protein. The Clostridium protein-containing diets were well-tolerated and no adverse effects on the health or growth were observed. Significant reductions in neutrophil counts were observed in all female rats compared to controls, which were slightly outside of reference ranges. These effects were not deemed to be adverse due to the absence of comparable findings in male rats and high physiological variability of measured values within groups. A No-Observed-Adverse-Effect-Level (NOAEL) of at least 10% Clostridium protein, the highest dose tested and corresponding to 5,558 and 6,671 mg/kg body weight/day for male and female rats, respectively, was established. No evidence of genotoxicity was observed and the allergenic potential was low. These results support the use of Clostridium protein as a food ingredient.
Collapse
Affiliation(s)
- Tom Jonaitis
- NutraSteward, Ltd., 1 Cleddau Bridge Business Park, Pembroke Dock, SA72 6UP, UK
| | - Elizabeth A Lewis
- NutraSteward, Ltd., 1 Cleddau Bridge Business Park, Pembroke Dock, SA72 6UP, UK
| | - Nicky Lourens
- Charles River Laboratories 's-Hertogenbosch, the Netherlands
| | - Angelique Groot
- Charles River Laboratories 's-Hertogenbosch, the Netherlands
| | - Richard E Goodman
- RE Goodman Consulting LLC, 8110 Dougan Circle, Lincoln, NE, 68516, United States
| | - Daniel Mitchell
- Superbrewed Food, Inc., 239 Lisa Drive, New Castle, DE, 19720, United States
| | - Alon Karpol
- Superbrewed Food Israel, Prof. A.D. Bergman St. 2, Rehovot, 7670504, Israel
| | - Bryan Tracy
- Superbrewed Food, Inc., 239 Lisa Drive, New Castle, DE, 19720, United States.
| |
Collapse
|
117
|
Stec DE, Tiribelli C, Badmus OO, Hinds TD. Novel Function for Bilirubin as a Metabolic Signaling Molecule: Implications for Kidney Diseases. KIDNEY360 2022; 3:945-953. [PMID: 36128497 PMCID: PMC9438427 DOI: 10.34067/kid.0000062022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/24/2022] [Indexed: 01/30/2023]
Abstract
Bilirubin is the end product of the catabolism of heme via the heme oxygenase pathway. Heme oxygenase generates carbon monoxide (CO) and biliverdin from the breakdown of heme, and biliverdin is rapidly reduced to bilirubin by the enzyme biliverdin reductase (BVR). Bilirubin has long been thought of as a toxic product that is only relevant to health when blood levels are severely elevated, such as in clinical jaundice. The physiologic functions of bilirubin correlate with the growing body of evidence demonstrating the protective effects of serum bilirubin against cardiovascular and metabolic diseases. Although the correlative evidence suggests a protective effect of serum bilirubin against many diseases, the mechanism by which bilirubin offers protection against cardiovascular and metabolic diseases remains unanswered. We recently discovered a novel function for bilirubin as a signaling molecule capable of activating the peroxisome proliferator-activated receptor α (PPARα) transcription factor. This review summarizes the new finding of bilirubin as a signaling molecule and proposes several mechanisms by which this novel action of bilirubin may protect against cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- David E. Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Olufunto O. Badmus
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
118
|
Bianco A, Tiribelli C, Bellarosa C. Translational Approach to the Protective Effect of Bilirubin in Diabetic Kidney Disease. Biomedicines 2022; 10:696. [PMID: 35327498 PMCID: PMC8945513 DOI: 10.3390/biomedicines10030696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Bilirubin has been regarded as a powerful endogenous antioxidant and anti-inflammatory molecule, able to act on cellular pathways as a hormone. Diabetic kidney disease (DKD) is a common chronic complication of diabetes, and it is the leading cause of end-stage renal disease. Here, we will review the clinical and molecular features of mild hyperbilirubinemia in DKD. The pathogenesis of DKD involves oxidative stress, inflammation, fibrosis, and apoptosis. Serum bilirubin levels are positively correlated with the levels of the antioxidative enzymes as superoxide dismutase, catalase, and glutathione peroxidase, while it is inversely correlated with C-reactive protein, TNF-α, interleukin (IL)-2, IL-6, and IL-10 release in diabetic kidney disease. Bilirubin downregulates NADPH oxidase, reduces the induction of pro-fibrotic factor HIF-1α expression, cleaved caspase-3, and cleaved PARP induction showing lower DNA fragmentation. Recent experimental and clinical studies have demonstrated its effects in the development and progression of renal diseases, pointing out that only very mild elevations of bilirubin concentrations result in real clinical benefits. Future controlled studies are needed to explore the precise role of bilirubin in the pathogenesis of DKD and to understand if the use of serum bilirubin levels as a marker of progression or therapeutic target in DKD is feasible and realistic.
Collapse
Affiliation(s)
- Annalisa Bianco
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy
| | - Claudio Tiribelli
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
| | | |
Collapse
|
119
|
Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants (Basel) 2022; 11:antiox11030555. [PMID: 35326205 PMCID: PMC8944973 DOI: 10.3390/antiox11030555] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.
Collapse
|
120
|
Production of bilirubin by biotransformation of biliverdin using recombinant Escherichia coli cells. Bioprocess Biosyst Eng 2022; 45:563-571. [DOI: 10.1007/s00449-021-02679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 11/02/2022]
|
121
|
Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants (Basel) 2022; 11:antiox11020179. [PMID: 35204062 PMCID: PMC8868548 DOI: 10.3390/antiox11020179] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Exercise is commonly prescribed as a lifestyle treatment for chronic metabolic diseases as it functions as an insulin sensitizer, cardio-protectant, and essential lifestyle tool for effective weight maintenance. Exercise boosts the production of reactive oxygen species (ROS) and subsequent transient oxidative damage, which also upregulates counterbalancing endogenous antioxidants to protect from ROS-induced damage and inflammation. Exercise elevates heme oxygenase-1 (HO-1) and biliverdin reductase A (BVRA) expression as built-in protective mechanisms, which produce the most potent antioxidant, bilirubin. Together, these mitigate inflammation and adiposity. Moderately raising plasma bilirubin protects in two ways: (1) via its antioxidant capacity to reduce ROS and inflammation, and (2) its newly defined function as a hormone that activates the nuclear receptor transcription factor PPARα. It is now understood that increasing plasma bilirubin can also drive metabolic adaptions, which improve deleterious outcomes of weight gain and obesity, such as inflammation, type II diabetes, and cardiovascular diseases. The main objective of this review is to describe the function of bilirubin as an antioxidant and metabolic hormone and how the HO-1-BVRA-bilirubin-PPARα axis influences inflammation, metabolic function and interacts with exercise to improve outcomes of weight management.
Collapse
|
122
|
Pan X, Yue L, Ren L, Ban J, Chen S. Association of Triglyceride-Glucose Index and Liver Function Parameters Among Healthy Obese Civil Servants: A Center-Based Study. Diabetes Metab Syndr Obes 2022; 15:3519-3531. [PMID: 36407008 PMCID: PMC9673504 DOI: 10.2147/dmso.s392544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To investigate the correlation between Triglyceride-glucose (TyG) index and liver function parameters in healthy obese civil servants in Shijiazhuang, China. MATERIALS AND METHODS This was an outpatient-based cross-sectional study in which 6452 participants were recruited. A total of 784 participants were analyzed according to inclusion and exclusion criteria. A TyG index was calculated based on fasting glucose and triglycerides. All patients were divided into a high TyG index group and a low TyG index group, using the median TyG index as a cut-off. Finally, patients were further divided into two subgroups: males and females. RESULTS While AST/ALT and direct bilirubin levels were lower in the high TyG index group compared to the low TyG index group, ALT, AST, total protein, and albumin levels were greater. Particularly in male participants, TyG index was inversely connected with AST/ALT and direct bilirubin levels and favorably correlated with ALT, AST, total protein, and albumin levels. These connections persisted in the multilinear regression study even after adjusting for confounding variables. CONCLUSION This study describes the correlation between TyG index and liver function parameters in obese populations without co-morbid diseases, providing a new idea for early interventional treatment in this group.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Lin Yue
- Department of Endocrinology, the Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, People’s Republic of China
| | - Lin Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Jiangli Ban
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
- Correspondence: Shuchun Chen, Department of Internal Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People’s Republic of China, Tel +86 31185988406, Email
| |
Collapse
|
123
|
Hinds TD, Kipp ZA, Xu M, Yiannikouris FB, Morris AJ, Stec DF, Wahli W, Stec DE. Adipose-Specific PPARα Knockout Mice Have Increased Lipogenesis by PASK-SREBP1 Signaling and a Polarity Shift to Inflammatory Macrophages in White Adipose Tissue. Cells 2021; 11:4. [PMID: 35011564 PMCID: PMC8750478 DOI: 10.3390/cells11010004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The nuclear receptor PPARα is associated with reducing adiposity, especially in the liver, where it transactivates genes for β-oxidation. Contrarily, the function of PPARα in extrahepatic tissues is less known. Therefore, we established the first adipose-specific PPARα knockout (PparaFatKO) mice to determine the signaling position of PPARα in adipose tissue expansion that occurs during the development of obesity. To assess the function of PPARα in adiposity, female and male mice were placed on a high-fat diet (HFD) or normal chow for 30 weeks. Only the male PparaFatKO animals had significantly more adiposity in the inguinal white adipose tissue (iWAT) and brown adipose tissue (BAT) with HFD, compared to control littermates. No changes in adiposity were observed in female mice compared to control littermates. In the males, the loss of PPARα signaling in adipocytes caused significantly higher cholesterol esters, activation of the transcription factor sterol regulatory element-binding protein-1 (SREBP-1), and a shift in macrophage polarity from M2 to M1 macrophages. We found that the loss of adipocyte PPARα caused significantly higher expression of the Per-Arnt-Sim kinase (PASK), a kinase that activates SREBP-1. The hyperactivity of the PASK-SREBP-1 axis significantly increased the lipogenesis proteins fatty acid synthase (FAS) and stearoyl-Coenzyme A desaturase 1 (SCD1) and raised the expression of genes for cholesterol metabolism (Scarb1, Abcg1, and Abca1). The loss of adipocyte PPARα increased Nos2 in the males, an M1 macrophage marker indicating that the population of macrophages had changed to proinflammatory. Our results demonstrate the first adipose-specific actions for PPARα in protecting against lipogenesis, inflammation, and cholesterol ester accumulation that leads to adipocyte tissue expansion in obesity.
Collapse
Affiliation(s)
- Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
| | - Frederique B. Yiannikouris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40508, USA;
- Lexington Veterans Affairs Medical Center, Lexington, KY 40508, USA
| | - Donald F. Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA;
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore;
- Toxalim Research Center in Food Toxicology (UMR 1331), INRAE, ENVT, INP—PURPAN, UPS, Université de Toulouse, F-31300 Toulouse, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
124
|
Cimini FA, Barchetta I, Zuliani I, Pagnotta S, Bertoccini L, Dule S, Zampieri M, Reale A, Baroni MG, Cavallo MG, Barone E. Biliverdin reductase-A protein levels are reduced in type 2 diabetes and are associated with poor glycometabolic control. Life Sci 2021; 284:119913. [PMID: 34453944 DOI: 10.1016/j.lfs.2021.119913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
AIM Biliverdin reductase-A (BVR-A) other than its canonical role in the degradation pathway of heme as partner of heme oxygenase-1 (HO1), has recently drawn attention as a protein with pleiotropic functions involved in insulin-glucose homeostasis. However, whether BVR-A expression is altered in type 2 diabetes (T2D) has never been evaluated. MAIN METHODS BVR-A protein levels were evaluated in T2D (n = 44) and non-T2D (n = 29) subjects, who underwent complete clinical workup and routine biochemistry. In parallel, levels HO1, whose expression is regulated by BVR-A as well as levels of tumor necrosis factor α (TNFα), which is a known repressor for BVR-A with pro-inflammatory properties, were also assessed. KEY FINDINGS BVR-A levels were significantly lower in T2D subjects than in non-T2D subjects. Reduced BVR-A levels were associated with greater body mass, systolic blood pressure, fasting blood glucose (FBG), glycated hemoglobin (HbA1c), triglycerides, transaminases and TNFα, and with lower high-density lipoprotein (HDL) levels. Lower BVR-A levels are associated with reduced HO1 protein levels and the multivariate analysis showed that BVR-A represented the main determinant of HO1 levels in T2D after adjustment. In addition, reduced BVR-A levels were able to predict the presence of T2D with AUROC = 0.69. for potential confounders. SIGNIFICANCE Our results demonstrate for the first time that BVR-A protein levels are reduced in T2D individuals, and that this alteration strictly correlates with poor glycometabolic control and a pro-inflammatory state. Hence, these observations reinforce the hypothesis that reduced BVR-A protein levels may represent a key event in the dysregulation of intracellular pathways finally leading to metabolic disorders.
Collapse
Affiliation(s)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Ilaria Zuliani
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Sara Dule
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L'Aquila, Italy; Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, Pozzilli, Is, Italy
| | | | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
125
|
Adin CA. Bilirubin as a Therapeutic Molecule: Challenges and Opportunities. Antioxidants (Basel) 2021; 10:1536. [PMID: 34679671 PMCID: PMC8532879 DOI: 10.3390/antiox10101536] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
There is strong evidence that serum free bilirubin concentration has significant effects on morbidity and mortality in the most significant health conditions of our times, including cardiovascular disease, diabetes, and obesity/metabolic syndrome. Supplementation of bilirubin in animal and experimental models has reproduced these protective effects, but several factors have slowed the application bilirubin as a therapeutic agent in human patients. Bilirubin is poorly soluble in water, and is a complex molecule that is difficult to synthesize. Current sources of this molecule are animal-derived, creating concerns regarding the risk of virus or prion transmission. However, recent developments in nanoparticle drug delivery, biosynthetic strategies, and drug synthesis have opened new avenues for applying bilirubin as a pharmaceutical agent. This article reviews the chemistry and physiology of bilirubin, potential clinical applications and summarizes current strategies for safe and efficient drug delivery.
Collapse
Affiliation(s)
- Christopher A Adin
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
126
|
Stec DE, Wegiel B, Hinds TD. Editorial: Oxidative Stress, Antioxidants, Transcription Factors, and Assimilation of Signal Transduction Pathways in Obesity-Related Disorders. Front Pharmacol 2021; 12:759468. [PMID: 34557106 PMCID: PMC8452909 DOI: 10.3389/fphar.2021.759468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Oncology, Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
127
|
Wu SC, Chen TA, Cheng HT, Chang YJ, Wang YC, Tzeng CW, Hsu CH, Muo CH. Lipid-Free PN is Associated with an Increased Risk of Hyperbilirubinemia in Surgical Critically Ill Patients with Admission Hepatic Disorder: A Retrospective Observational Study. Ther Clin Risk Manag 2021; 17:1001-1010. [PMID: 34548793 PMCID: PMC8449686 DOI: 10.2147/tcrm.s322341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background To evaluate the effect of different PN types on surgical critically ill trauma/acute care surgery patients with hepatic disorders at admission. Methods This is a retrospective study. The PN types included lipid-free, soybean oil/medium-chain triglyceride, olive oil-based, and fish oil-containing PNs. Patients admitted with liver injury or liver surgery, elevated serum AST/ALT level, and elevated serum total bilirubin level were included. The exclusion criteria are as follows: 1) age <18 years, 2) severe liver disease/cirrhosis, 3) received more than one type of PN and 4) serum total bilirubin >4.9 mg/dl at admission. Demographics, severity, comorbidities, blood stream infection, hyperbilirubinemia (total bilirubin > 6.0 mg/dl), and mortality were collected for analysis. We also performed analysis stratified by separated lipid doses (g/kg/day). Results A total of 156 patients were enrolled. There were no demographic differences among groups. The lipid-free group was associated with the highest mortality rate and incidence of hyperbilirubinemia. Compared to the lipid-free group, the olive oil-based group had the lowest risk of hyperbilirubinemia. After being stratified by separated lipid doses, the incidence of hyperbilirubinemia decreased when the lipid dosage increased. Regarding different types of lipids, patients who received more than the median dosage of lipids showed a significantly lower risk of hyperbilirubinemia, except in the fish oil-containing group. Conclusion Our result suggested that lipid-free PN is associated with an increased risk of hyperbilirubinemia in surgical critically ill patients with admission hepatic disorder. Further studies are warranted.
Collapse
Affiliation(s)
- Shih-Chi Wu
- School of Medicine, China Medical University, Taichung, Taiwan.,Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan
| | - Te-An Chen
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Han-Tsung Cheng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Jun Chang
- Epidemiology and Biostatistics Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Chun Wang
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wei Tzeng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hao Hsu
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Muo
- Management Office for Health Data, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
128
|
Žiberna L, Jenko-Pražnikar Z, Petelin A. Serum Bilirubin Levels in Overweight and Obese Individuals: The Importance of Anti-Inflammatory and Antioxidant Responses. Antioxidants (Basel) 2021; 10:antiox10091352. [PMID: 34572984 PMCID: PMC8472302 DOI: 10.3390/antiox10091352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a chronic condition involving low-grade inflammation and increased oxidative stress; thus, obese and overweight people have lower values of serum bilirubin. Essentially, bilirubin is a potent endogenous antioxidant molecule with anti-inflammatory, immunomodulatory, antithrombotic, and endocrine properties. This review paper presents the interplay between obesity-related pathological processes and bilirubin, with a focus on adipose tissue and adipokines. We discuss potential strategies to mildly increase serum bilirubin levels in obese patients as an adjunctive therapeutic approach.
Collapse
Affiliation(s)
- Lovro Žiberna
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | | | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, SI-6310 Izola, Slovenia;
- Correspondence: ; Tel.: +386-5-66-2469
| |
Collapse
|
129
|
Li N, Yang C, Zhou S, Song S, Jin Y, Wang D, Liu J, Gao Y, Yang H, Mao W, Chen Z. Combination of Plasma-Based Metabolomics and Machine Learning Algorithm Provides a Novel Diagnostic Strategy for Malignant Mesothelioma. Diagnostics (Basel) 2021; 11:1281. [PMID: 34359365 PMCID: PMC8304303 DOI: 10.3390/diagnostics11071281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is an aggressive and incurable carcinoma that is primarily caused by asbestos exposure. However, the current diagnostic tool for MM is still under-developed. Therefore, the aim of this study is to explore the diagnostic significance of a strategy that combined plasma-based metabolomics with machine learning algorithms for MM. METHODS Plasma samples collected from 25 MM patients and 32 healthy controls (HCs) were randomly divided into train set and test set, after which analyzation was performed by liquid chromatography-mass spectrometry-based metabolomics. Differential metabolites were screened out from the samples of the train set. Subsequently, metabolite-based diagnostic models, including receiver operating characteristic (ROC) curves and Random Forest model (RF), were established, and their prediction accuracies were calculated for the test set samples. RESULTS Twenty differential plasma metabolites were annotated in the train set; 10 of these metabolites were validated in the test set. The seven most prevalent diagnostic metabolites were taurocholic acid), 0.7142 (uracil), 0.7142 (biliverdin), 0.8571 (histidine), 0.5000 (tauroursodeoxycholic acid), 0.8571 (pyrroline hydroxycarboxylic acid), and 0.7857 (phenylalanine). Furthermore, RF based on 20 annotated metabolites showed a prediction accuracy of 0.9286, and its optimized version achieved 1.0000 in the test set. Moreover, the comparison between the samples of peritoneal MM (n = 8) and pleural MM (n = 17) illustrated a significant increase in levels of taurocholic acid and tauroursodeoxycholic acid, as well as an evident decrease in biliverdin. CONCLUSIONS Our results revealed the potential diagnostic value of plasma-based metabolomics combined with machine learning for MM. Further research with large sample size is worthy conducting. Moreover, our data demonstrated dysregulated metabolism pathways in MM, which aids in better understanding of molecular mechanisms related to the initiation and development of MM.
Collapse
Affiliation(s)
- Na Li
- Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; (N.L.); (C.Y.); (S.Z.); (S.S.); (Y.J.); (D.W.); (J.L.); (Y.G.)
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310000, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenxi Yang
- Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; (N.L.); (C.Y.); (S.Z.); (S.S.); (Y.J.); (D.W.); (J.L.); (Y.G.)
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Sicheng Zhou
- Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; (N.L.); (C.Y.); (S.Z.); (S.S.); (Y.J.); (D.W.); (J.L.); (Y.G.)
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Siyu Song
- Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; (N.L.); (C.Y.); (S.Z.); (S.S.); (Y.J.); (D.W.); (J.L.); (Y.G.)
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yuyao Jin
- Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; (N.L.); (C.Y.); (S.Z.); (S.S.); (Y.J.); (D.W.); (J.L.); (Y.G.)
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310000, China
- Department of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310013, China
| | - Ding Wang
- Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; (N.L.); (C.Y.); (S.Z.); (S.S.); (Y.J.); (D.W.); (J.L.); (Y.G.)
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310000, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junping Liu
- Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; (N.L.); (C.Y.); (S.Z.); (S.S.); (Y.J.); (D.W.); (J.L.); (Y.G.)
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yun Gao
- Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; (N.L.); (C.Y.); (S.Z.); (S.S.); (Y.J.); (D.W.); (J.L.); (Y.G.)
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Haining Yang
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Weimin Mao
- Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; (N.L.); (C.Y.); (S.Z.); (S.S.); (Y.J.); (D.W.); (J.L.); (Y.G.)
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Zhongjian Chen
- Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China; (N.L.); (C.Y.); (S.Z.); (S.S.); (Y.J.); (D.W.); (J.L.); (Y.G.)
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
130
|
Gordon DM, Hong SH, Kipp ZA, Hinds TD. Identification of Binding Regions of Bilirubin in the Ligand-Binding Pocket of the Peroxisome Proliferator-Activated Receptor-A (PPARalpha). Molecules 2021; 26:molecules26102975. [PMID: 34067839 PMCID: PMC8157031 DOI: 10.3390/molecules26102975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Recent work has shown that bilirubin has a hormonal function by binding to the peroxisome proliferator-activated receptor-α (PPARα), a nuclear receptor that drives the transcription of genes to control adiposity. Our previous in silico work predicted three potential amino acids that bilirubin may interact with by hydrogen bonding in the PPARα ligand-binding domain (LBD), which could be responsible for the ligand-induced function. To further reveal the amino acids that bilirubin interacts with in the PPARα LBD, we harnessed bilirubin’s known fluorescent properties when bound to proteins such as albumin. Our work here revealed that bilirubin interacts with threonine 283 (T283) and alanine 333 (A333) for ligand binding. Mutational analysis of T283 and A333 showed significantly reduced bilirubin binding, reductions of 11.4% and 17.0%, respectively. Fenofibrate competitive binding studies for the PPARα LBD showed that bilirubin and fenofibrate possibly interact with different amino acid residues. Furthermore, bilirubin showed no interaction with PPARγ. This is the first study to reveal the amino acids responsible for bilirubin binding in the ligand-binding pocket of PPARα. Our work offers new insight into the mechanistic actions of a well-known molecule, bilirubin, and new fronts into its mechanisms.
Collapse
Affiliation(s)
- Darren M. Gordon
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (D.M.G.); (S.H.H.)
| | - Stephen H. Hong
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (D.M.G.); (S.H.H.)
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA;
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA;
- Correspondence:
| |
Collapse
|
131
|
Bianco A, Pinci S, Tiribelli C, Bellarosa C. Life-Long Hyperbilirubinemia Exposure and Bilirubin Priming Prevent In Vitro Metabolic Damage. Front Pharmacol 2021; 12:646953. [PMID: 33776779 PMCID: PMC7994257 DOI: 10.3389/fphar.2021.646953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Unconjugated bilirubin (UCB) is more than the final product of heme catabolism. Mildly elevated systemic bilirubin concentrations, such as in Gilbert syndrome (GS), protect against various oxidative stress-mediated and metabolic diseases, including cardiovascular disease, type 2 diabetes mellitus, metabolic syndrome, cancer, and age-related disease. The Gunn rat is an animal model of hereditary hyperbilirubinemia widely used in assessing the effect of high serum bilirubin concentration in various organs. The present work aims to understand if life-long hyperbilirubinemia and bilirubin-priming might contribute to protection against atherosclerosis and diabetic nephropathy (DN) at the cellular level. Methods: Primary aortic endothelial cells and podocytes obtained from hyperbilirubinemic homozygous jj and normobilirubinemic heterozygous Nj Gunn rats were exposed to Palmitic Acid (PA) and Angiotensin II (Ang II), respectively, and the effects on cell viability and the activation of damage-related metabolic pathways evaluated. Results were validated on immortalized H5V and HK2 cells exposed to damage after UCB pretreatment. Results: In both primary cell models, cells obtained from jj Gunn rats showed as significantly higher than Nj Gunn rats at any dose of the toxic agent. Reduction in CHOP expression and IL-6 release was observed in jj primary aortic endothelial cells exposed to PA compared to Nj cells. The same occurred on H5V pretreated with Unconjugated bilirubin. Upon Ang II treatment, primary podocytes from jj Gunn rats showed lower DNA fragmentation, cleaved caspase-3, and cleaved PARP induction than primary podocytes from Nj Gunn rats. In HK2 cells, the induction by Ang II of HIF-1α and LOXl2 was significantly reduced by UCB pretreatment. Conclusion: Our data suggest that in models of atherosclerosis and DN life–long hyperbilirubinemia exposure or bilirubin-priming significantly contribute to decrease the injury by enhancing thecellular defensive response,
Collapse
Affiliation(s)
- Annalisa Bianco
- Italian Liver Foundation (FIF), Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Serena Pinci
- Italian Liver Foundation (FIF), Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | |
Collapse
|
132
|
Sheng X, Du H, Tang Y. Decreased Serum Total Bilirubin Level Predicts Early Neurological Deterioration in Patients with Acute Ischemic Stroke. Neuropsychiatr Dis Treat 2021; 17:1977-1982. [PMID: 34168455 PMCID: PMC8216736 DOI: 10.2147/ndt.s315330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/02/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the relationship between serum total bilirubin (TBil) level and early neurological deterioration (END) in patients with acute ischemic stroke of large artery atherosclerosis. PATIENTS AND METHODS In this retrospective study, a total of 291 patients with acute ischemic stroke were enrolled. The demographic and laboratory dates were collected. Stroke severity had been assessed using the National Institutes of Health Stroke Scale (NIHSS). Multivariable logistic regression was used to examine the independent association between TBil and END. RESULTS Approximately 63 (21.6%) of the patients were diagnosed with END within the first seven days. The proportion of hypertension, diabetes mellitus (DM) and previous stroke/transient ischemic attack (TIA) was significant greater in the lowest quartile (<9.8 μmol/l) of TBil. The proportion of patients with an elevated TBil levels was significantly lower in the END group than in the non-END group. After controlling for covariates, the first quartiles (<9.8 μmol/l) of TBil were still associated with END. In addition, an increased level of CRP and age were also associated with an increased risk of END. CONCLUSION The TBil levels in patients with acute cerebral infarction may be a useful biomarker for the prediction of END.
Collapse
Affiliation(s)
- Xihua Sheng
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu, 215200, People's Republic of China
| | - Huaping Du
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu, 215200, People's Republic of China
| | - Ying Tang
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu, 215200, People's Republic of China
| |
Collapse
|
133
|
Stec DE, Hinds TD. Natural Product Heme Oxygenase Inducers as Treatment for Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:E9493. [PMID: 33327438 PMCID: PMC7764878 DOI: 10.3390/ijms21249493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO) is a critical component of the defense mechanism to a wide variety of cellular stressors. HO induction affords cellular protection through the breakdown of toxic heme into metabolites, helping preserve cellular integrity. Nonalcoholic fatty liver disease (NAFLD) is a pathological condition by which the liver accumulates fat. The incidence of NAFLD has reached all-time high levels driven primarily by the obesity epidemic. NALFD can progress to nonalcoholic steatohepatitis (NASH), advancing further to liver cirrhosis or cancer. NAFLD is also a contributing factor to cardiovascular and metabolic diseases. There are currently no drugs to specifically treat NAFLD, with most treatments focused on lifestyle modifications. One emerging area for NAFLD treatment is the use of dietary supplements such as curcumin, pomegranate seed oil, milk thistle oil, cold-pressed Nigella Satvia oil, and resveratrol, among others. Recent studies have demonstrated that several of these natural dietary supplements attenuate hepatic lipid accumulation and fibrosis in NAFLD animal models. The beneficial actions of several of these compounds are associated with the induction of heme oxygenase-1 (HO-1). Thus, targeting HO-1 through dietary-supplements may be a useful therapeutic for NAFLD either alone or with lifestyle modifications.
Collapse
Affiliation(s)
- David E. Stec
- Department of Physiology & Biophysics, Center for Cardiovascular and Metabolic Diseases Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| |
Collapse
|