101
|
Brøns C, Jensen CB, Storgaard H, Alibegovic A, Jacobsen S, Nilsson E, Astrup A, Quistorff B, Vaag A. Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight. J Clin Endocrinol Metab 2008; 93:3885-92. [PMID: 18628517 DOI: 10.1210/jc.2008-0630] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Low birth weight (LBW) is an independent risk factor of insulin resistance and type 2 diabetes. Recent studies suggest that mitochondrial dysfunction and impaired expression of genes involved in oxidative phosphorylation (OXPHOS) may play a key role in the pathogenesis of insulin resistance in aging and type 2 diabetes. The aim of this study was to determine whether LBW in humans is associated with mitochondrial dysfunction in skeletal muscle. METHODS Mitochondrial capacity for ATP synthesis was assessed by (31)phosphorus magnetic resonance spectroscopy in forearm and leg muscles in 20 young, lean men with LBW and 26 matched controls. On a separate day, a hyperinsulinemic euglycemic clamp with excision of muscle biopsies and dual-energy x-ray absorptiometry scanning was performed. Muscle gene expression of selected OXPHOS genes was determined by quantitative real-time PCR. RESULTS The LBW subjects displayed a variety of metabolic and prediabetic abnormalities, including elevated fasting blood glucose and plasma insulin levels, reduced insulin-stimulated glycolytic flux, and hepatic insulin resistance. Nevertheless, in vivo mitochondrial function was normal in LBW subjects, as was the expression of OXPHOS genes. CONCLUSIONS These data support and expand previous findings of abnormal glucose metabolism in young men with LBW. In addition, we found that the young, healthy men with LBW exhibited hepatic insulin resistance. However, the study does not support the hypothesis that muscle mitochondrial dysfunction per se is the underlying key metabolic defect that explains or precedes whole body insulin resistance in LBW subjects at risk for developing type 2 diabetes.
Collapse
Affiliation(s)
- Charlotte Brøns
- Steno Diabetes Center, Niels Steensens Vej 1, 2820 Gentofte, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
Obesity is a growing threat worldwide, and the prevalence has risen dramatically over the last decade. A number of epidemiological studies have shown that there is a direct relationship between birth weight and BMI in childhood and in adult life. A number of factors influence the development of childhood and adult obesity and birth weight as a proxy for the intrauterine environment may be one of the many. For example, a number of investigators have reported a significant increase in the rates of obesity in children, adolescents, and adults whose mothers had diabetes during pregnancy. A large number of studies have also linked low birth weight to the later development of central adiposity. Thus, both excess and reduced nutrient availability during fetal development can lead to the later development of obesity. This review summarizes both human and animal studies relating fetal exposures to later obesity.
Collapse
Affiliation(s)
- Rebecca Simmons
- Department of Pediatrics, Children's Hospital Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
103
|
Reusens B, Sparre T, Kalbe L, Bouckenooghe T, Theys N, Kruhøffer M, Orntoft TF, Nerup J, Remacle C. The intrauterine metabolic environment modulates the gene expression pattern in fetal rat islets: prevention by maternal taurine supplementation. Diabetologia 2008; 51:836-45. [PMID: 18311556 DOI: 10.1007/s00125-008-0956-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 01/11/2008] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Events during fetal life may in critical time windows programme tissue development leading to organ dysfunction with potentially harmful consequences in adulthood such as diabetes. In rats, the beta cell mass of progeny from dams fed with a low-protein (LP) diet during gestation is decreased at birth and metabolic perturbation lasts through adulthood even though a normal diet is given after birth or after weaning. Maternal and fetal plasma taurine levels are suboptimal. Maternal taurine supplementation prevents these induced abnormalities. In this study, we aimed to reveal changes in gene expression in fetal islets affected by the LP diet and how taurine may prevent these changes. METHODS Pregnant Wistar rats were fed an LP diet (8% [wt/wt] protein) supplemented or not with taurine in the drinking water or a control diet (20% [wt/wt] protein). At 21.5 days of gestation, fetal pancreases were removed, digested and cultured for 7 days. Neoformed islets were collected and transcriptome analysis was performed. RESULTS Maternal LP diet significantly changed the expression of more than 10% of the genes. Tricarboxylic acid cycle and ATP production were highly targeted, but so too were cell proliferation and defence. Maternal taurine supplementation normalised the expression of all altered genes. CONCLUSIONS/INTERPRETATION Development of the beta cells and particularly their respiration is modulated by the intrauterine environment, which may epigenetically modify expression of the genome and programme the beta cell towards a pre-diabetic phenotype. This mis-programming by maternal LP diet was prevented by early taurine intervention.
Collapse
Affiliation(s)
- B Reusens
- Laboratoire de Biologie Cellulaire, Université catholique de Louvain, 5, Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Rozance PJ, Limesand SW, Barry JS, Brown LD, Thorn SR, LoTurco D, Regnault TRH, Friedman JE, Hay WW. Chronic late-gestation hypoglycemia upregulates hepatic PEPCK associated with increased PGC1alpha mRNA and phosphorylated CREB in fetal sheep. Am J Physiol Endocrinol Metab 2008; 294:E365-70. [PMID: 18056789 PMCID: PMC3857025 DOI: 10.1152/ajpendo.00639.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic glucose production is normally activated at birth but has been observed in response to experimental hypoglycemia in fetal sheep. The cellular basis for this process remains unknown. We determined the impact of 2 wk of fetal hypoglycemia during late gestation on enzymes responsible for hepatic gluconeogenesis, focusing on the insulin-signaling pathway, transcription factors, and coactivators that regulate gluconeogenesis. Hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNA increased 12-fold and 7-fold, respectively, following chronic hypoglycemia with no change in hepatic glycogen. Chronic hypoglycemia decreased fetal plasma insulin with no change in glucagon but increased plasma cortisol 3.5-fold. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha mRNA and phosphorylation of cAMP response element binding protein at Ser(133) were both increased, with no change in Akt, forkhead transcription factor FoxO1, hepatocyte nuclear factor-4alpha, or CCAAT enhancer binding protein-beta. These results demonstrate that chronic fetal hypoglycemia triggers signals that can activate gluconeogenesis in the fetal liver.
Collapse
Affiliation(s)
- Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Neitzke U, Harder T, Schellong K, Melchior K, Ziska T, Rodekamp E, Dudenhausen JW, Plagemann A. Intrauterine growth restriction in a rodent model and developmental programming of the metabolic syndrome: a critical appraisal of the experimental evidence. Placenta 2008; 29:246-54. [PMID: 18207235 DOI: 10.1016/j.placenta.2007.11.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 11/15/2007] [Accepted: 11/23/2007] [Indexed: 11/13/2022]
Abstract
Research on intrauterine growth restriction (IUGR) and subsequent development of obesity, type 2 diabetes and the metabolic syndrome is rapidly expanding, and potential implications for primary prevention are considerable. We have critically appraised one of the experimental animal models frequently used as mimic of human fetal growth restriction, which involves bilateral ligation of the uterine artery in rats (Lig). Our experimental study showed that Lig performed on day 17 of pregnancy neither leads to IUGR nor to neonatal catch-up growth, an important pathogenetic co-factor in humans. Meta-analysis of the literature revealed domination by studies in which Lig pups with IUGR were actively selected. Accordingly, publication bias is evident (p=0.007). Altered placental perfusion--the main cause of IUGR in humans in Western countries--neither led to IUGR nor to neonatal catch-up growth in Lig offspring, i.e., to none of the etiological factors of the human 'small baby syndrome'. Appropriate and reproducible rodent models of IUGR through decreased placental flow remain to be established to uncover the pathophysiological basis of the 'small baby syndrome'. This may lead to new strategies of primary prevention of diabetes, obesity, and the metabolic syndrome.
Collapse
Affiliation(s)
- U Neitzke
- Clinic of Obstetrics, Research Group Experimental Obstetrics, Charité-University Medicine Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Wang J, Chen L, Li D, Yin Y, Wang X, Li P, Dangott LJ, Hu W, Wu G. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J Nutr 2008; 138:60-6. [PMID: 18156405 DOI: 10.1093/jn/138.1.60] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Efficiency of nutrient utilization is high in neonates with normal birth weights but is reduced in those with intrauterine growth restriction (IUGR). However, the underlying mechanisms are largely unknown. This study was conducted with the piglet model and proteomics technology to test the hypothesis that IUGR affects expression of key proteins that regulate growth and development of the small intestine, liver, and muscle, the major organs involved in the digestion, absorption, and metabolism of dietary nutrients. Jejunum, liver, and gastrocnemius muscle were obtained from IUGR and normal birth-weight piglets at birth for analysis of proteomes using the 2-dimensional-PAGE MS technology. The results indicate that IUGR decreased the levels of proteins that regulate immune function (immunoglobulins and annexin A1), oxidative defense (peroxiredoxin 1, transferrin, and zeta-crystallin), intermediary metabolism (creatine kinase, alcohol dehydrogenase, L-lactate dehydrogenase, prostaglandin F synthase, apolipoprotein AI, catecho O-methyltransferase, and phosphoglycerate kinase 1), protein synthesis (eukaryotic translation initiation factor-3), and tissue growth (beta-actin, desmin, and keratin 10) in a tissue-specific manner. In addition, IUGR increased the levels of proteins that are involved in proteolysis (proteasome alpha-5 and alpha-1 subunits), response to oxidative stress (scavenger-receptor protein and alpha-1 acid glycoprotein), and ATP hydrolysis (F1-ATPase). These novel findings suggest that cellular signaling defects, redox imbalance, reduced protein synthesis, and enhanced proteolysis may be the major mechanisms responsible for abnormal absorption and metabolism of nutrients, as well as reduced growth and impaired development of the small intestine, liver, and muscle in IUGR neonates.
Collapse
Affiliation(s)
- Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100094
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Poli G, Schaur R, Siems W, Leonarduzzi G. 4-Hydroxynonenal: A membrane lipid oxidation product of medicinal interest. Med Res Rev 2008; 28:569-631. [DOI: 10.1002/med.20117] [Citation(s) in RCA: 509] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
108
|
Abstract
It is widely accepted that an association exists between the intrauterine environment in which a fetus grows and develops and the subsequent development of type 2 diabetes. Any disturbance in maternal ability to provide nutrients and oxygen to the fetus can lead to fetal intrauterine growth restriction (IUGR). Here we will review IUGR in rodent models, in which maternal metabolism has been experimentally manipulated to investigate the molecular basis of the relationship between IUGR and development of type 2 diabetes in later life, and the identification of the molecular derangements in specific metabolically - sensitive organs/tissues.
Collapse
Affiliation(s)
- M S Martin-Gronert
- Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
109
|
Alvarado-Vásquez N, Páez A, Zapata E, Alcázar-Leyva S, Zenteno E, Massó F, Montaño LF. HUVECs from newborns with a strong family history of diabetes show diminished ROS synthesis in the presence of high glucose concentrations. Diabetes Metab Res Rev 2007; 23:71-80. [PMID: 16810702 DOI: 10.1002/dmrr.665] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND A family history of type 2 diabetes mellitus (DM) increases the probability to develop DM and endothelial dysfunction. The probable mechanism involves augmented reactive oxygen species (ROS) synthesis. The aim of this study was to evaluate the synthesis of ROS in human umbilical vein endothelial cells (HUVECs) obtained from healthy newborns with (experimental) and without (control) a strong family history of type 2 DM, exposed to different glucose concentrations. METHODS HUVECs were exposed to various glucose concentrations for 24 and 48 h periods, before cell proliferation, mitochondrial activity, and mitochondrial membrane potential were determined. Intracellular ROS synthesis in the presence or absence of the mitochondrial uncoupler CCCP, cytochalasin B, or diphenyleneiodonium (DPI) was also evaluated. RESULTS As opposed to control HUVECs, we found that experimental HUVECs exposed to 30 mmol/L glucose showed a 50% decrease in cell proliferation, a 90% reduction in mitochondrial activity, and a statistically significant inhibition of ROS synthesis in the presence of CCCP or cytochalasin B; DPI had no effect. CONCLUSIONS Our results suggest that mitochondria and NAD(P)H-oxidase from HUVECs obtained from healthy newborns with a family history of DM have an innate deficient response to high glucose concentrations.
Collapse
Affiliation(s)
- Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias, México
| | | | | | | | | | | | | |
Collapse
|
110
|
Dembele K, Yao XH, Chen L, Nyomba BLG. Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring. Am J Physiol Regul Integr Comp Physiol 2006; 291:R796-802. [PMID: 16614051 DOI: 10.1152/ajpregu.00633.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prenatal ethanol (EtOH) exposure is associated with low birth weight, followed by increased appetite, catch-up growth, insulin resistance, and impaired glucose tolerance in the rat offspring. Because EtOH can induce oxidative stress, which is a putative mechanism of insulin resistance, and because of the central role of the hypothalamus in the regulation of energy homeostasis and insulin action, we investigated whether prenatal EtOH exposure causes oxidative damage to the hypothalamus, which may alter its function. Female rats were given EtOH by gavage throughout pregnancy. At birth, their offspring were smaller than those of non-EtOH rats. Markers of oxidative stress and expression of neuropeptide Y and proopiomelanocortin (POMC) were determined in hypothalami of postnatal day 7 (PD7) and 3-mo-old (adult) rat offspring. In both PD7 and adult rats, prenatal EtOH exposure was associated with decreased levels of glutathione and increased expression of MnSOD. The concentrations of lipid peroxides and protein carbonyls were normal in PD7 EtOH-exposed offspring, but were increased in adult EtOH-exposed offspring. Both PD7 and adult EtOH-exposed offspring had normal neuropeptide Y and POMC mRNA levels, but the adult offspring had reduced POMC protein concentration. Thus only adult offspring preexposed to EtOH had increased hypothalamic tissue damage and decreased levels of POMC, which could impair melanocortin signaling. We conclude that prenatal EtOH exposure causes hypothalamic oxidative stress, which persists into adult life and alters melanocortin action during adulthood. These neuroendocrine alterations may explain weight gain and insulin resistance in rats exposed to EtOH early in life.
Collapse
Affiliation(s)
- Korami Dembele
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E3P4
| | | | | | | |
Collapse
|
111
|
Abstract
A considerable body of scientific evidence now links major diseases of middle-older age, such as the metabolic syndrome, diabetes mellitus and atherosclerotic heart disease, to in utero and perinatal events. Based on replicated epidemiological observations in humans, and experimental evidence in animal models, the data suggest that a period of plasticity during development imposes permanent influences on the way that the organism adapts to the surrounding environment many years later, perhaps via epigenetic and other post-translational modifications of genetic programming, such as regulation of the cell cycle and hormonal programming of metabolic pathways. A critical period appears to be the third trimester, hitherto considered as deprivation of nutrition or other essential factors in utero. Here this review discusses the recent evidence that the critical period also involves the third trimester ex utero, as occurs in prematurity. Data are provided demonstrating insulin resistance compensated by hyperinsulinemia in children born prematurely, whether born appropriate for gestational age or small for gestational age, and comparable in degree with that seen in those born at term with intrauterine growth retardation. Potential mechanisms and implications for treatment of the metabolic consequences of prematurity are discussed within the framework of the fetal salvage hypothesis.
Collapse
Affiliation(s)
- Wayne S Cutfield
- a Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Paul L Hofman
- b Liggins Institute, University of Auckland, Auckland, New Zealand. p.hofman@ auckland.ac.nz
| | - Mark A Sperling
- c Department of Pediatric Endocrinology, Diabetes and Metabolism, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA, 15213-2583, USA.
| |
Collapse
|
112
|
Reusens B, Remacle C. Programming of the endocrine pancreas by the early nutritional environment. Int J Biochem Cell Biol 2005; 38:913-22. [PMID: 16337425 DOI: 10.1016/j.biocel.2005.10.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 10/17/2005] [Accepted: 10/18/2005] [Indexed: 11/16/2022]
Abstract
A substantial body of evidence now suggests that poor intrauterine milieu elicited by maternal nutritional disturbance or placental insufficiency may programme susceptibility in the foetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. Further data showing the developmental programming of the metabolic syndrome are now available thanks to animal studies in which the foetal environment has been manipulated. This review examines the developmental programming of glucose intolerance by disturbed intrauterine metabolic condition in rats. It focuses on the alteration of the endocrine pancreas at birth. Long-term consequences, deterioration of glucose tolerance and even transgenerational effects are reported. Maternal protein, caloric restriction and diabetes during gestation/lactation lead to altered beta-cell mass. This review also tempts to identify cellular and molecular mechanisms involved in this process.
Collapse
Affiliation(s)
- Brigitte Reusens
- Laboratoire de Biologie Cellulaire, Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
113
|
Yao XH, Chen L, Nyomba BLG. Adult rats prenatally exposed to ethanol have increased gluconeogenesis and impaired insulin response of hepatic gluconeogenic genes. J Appl Physiol (1985) 2005; 100:642-8. [PMID: 16239604 DOI: 10.1152/japplphysiol.01115.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rat offspring exposed to ethanol (EtOH rats) during pregnancy are insulin resistant, but it is unknown whether they have increased gluconeogenesis. To address this issue, we determined blood glucose and liver gluconeogenic genes, proteins, and enzyme activities before and after insulin administration in juvenile and adult EtOH rats and submitted adult EtOH rats to a pyruvate challenge. In juvenile rats, basal glucose; peroxisome proliferator-activated receptor-coactivator-1alpha protein and mRNA; and phosphoenolpyruvate carboxykinase enzyme activity, protein, and mRNA were similar between groups. After insulin injection, these parameters failed to decrease in EtOH rats, but glucose decreased by 30% and gluconeogenic enzymes, proteins, and mRNAs decreased by 50-70% in control rats. In adult offspring, basal peroxisome proliferator-activated receptor-coactivator-1alpha protein and mRNA levels were 40-80% higher in EtOH rats than in controls. Similarly, basal phosphoenolpyruvate carboxykinase activity, protein, and mRNA were approximately 1.8-fold greater in EtOH rats than in controls. These parameters decreased by approximately 50% after insulin injection in control rats, but they remained unchanged in EtOH rats. After insulin injection in the adult rats, glucose decreased by 60% in controls but did not decrease significantly in EtOH rats. A subset of adult EtOH rats had fasting hyperglycemia and an exaggerated glycemic response to pyruvate compared with controls. The data indicate that, after prenatal EtOH exposure, the expression of gluconeogenic genes is exaggerated in adult rat offspring and is insulin resistant in both juvenile and adult rats, explaining increased gluconeogenesis. These alterations persist through adulthood and may contribute to the pathogenesis of Type 2 diabetes after exposure to EtOH in utero.
Collapse
Affiliation(s)
- Xing-Hai Yao
- Diabetes Research Group, Univ. of Manitoba, 715 McDermot Ave. Rm. 834, Winnipeg, Manitoba, Canada R3E 3P4
| | | | | |
Collapse
|
114
|
Thamotharan M, Shin BC, Suddirikku DT, Thamotharan S, Garg M, Devaskar SU. GLUT4 expression and subcellular localization in the intrauterine growth-restricted adult rat female offspring. Am J Physiol Endocrinol Metab 2005; 288:E935-47. [PMID: 15625086 DOI: 10.1152/ajpendo.00342.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrauterine growth restriction (IUGR) leads to obesity, glucose intolerance, and type 2 diabetes mellitus in the adult. To determine the mechanism(s) behind this "metabolic imprinting" phenomenon, we examined the effect of total calorie restriction during mid- to late gestation modified by postnatal ad libitum access to nutrients (CM/SP) or nutrient restriction (SM/SP) vs. postnatal nutrient restriction alone (SM/CP) on skeletal muscle and white adipose tissue (WAT) insulin-responsive glucose transporter isoform (GLUT4) expression and insulin-responsive translocation. A decline in skeletal muscle GLUT4 expression and protein concentrations was noted only in the SM/SP and SM/CP groups. In contrast, WAT demonstrated no change in GLUT4 expression and protein concentrations in all experimental groups. The altered in utero hormonal/metabolic milieu was associated with a compensatory adaptation that persisted in the adult and consisted of an increase in the skeletal muscle basal plasma membrane-associated GLUT4 concentrations. This perturbation led to no further exogenous insulin-induced GLUT4 translocation, thereby disabling the insulin responsiveness of the skeletal muscle but retaining it in WAT. These changes, which present at birth, collectively maximize basal glucose transport to the compromised skeletal muscle with a relative resistance to exogenous/postprandial insulin. Preservation of insulin responsiveness in WAT may serve as a sink that absorbs postprandial nutrients that can no longer efficiently access skeletal muscle. We speculate that, in utero, GLUT4 aberrations may predict type 2 diabetes mellitus, whereas postnatal nutrient intake may predict obesity, thereby explaining the heterogeneous phenotype of the IUGR adult offspring.
Collapse
Affiliation(s)
- Manikkavasagar Thamotharan
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1752, USA
| | | | | | | | | | | |
Collapse
|
115
|
Vuguin P, Raab E, Liu B, Barzilai N, Simmons R. Hepatic insulin resistance precedes the development of diabetes in a model of intrauterine growth retardation. Diabetes 2004; 53:2617-22. [PMID: 15448092 DOI: 10.2337/diabetes.53.10.2617] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intrauterine growth retardation (IUGR) has been linked to the development of type 2 diabetes in adulthood. We developed an IUGR model in rats whereby at age 3-6 months the animals develop a diabetes that is associated with insulin resistance. Hyperinsulinemic-euglycemic clamp studies were performed at age 8 weeks, before the onset of obesity and diabetes. Basal hepatic glucose production (HGP) was significantly higher in IUGR than in control rats (14.6 +/- 0.4 vs. 12.3 +/- 0.3 mg. kg(-1). min(-1); P < 0.05). Insulin suppression of HGP was blunted in IUGR versus control rats (10.4 +/- 0.6 vs. 6.5 +/- 1.0 mg. kg(-1). min(-1); P < 0.01); however, rates of glucose uptake and glycogenolysis were similar between the two groups. Insulin-stimulated insulin receptor substrate 2 and Akt-2 phosphorylation were significantly blunted in IUGR rats. PEPCK and glucose-6-phosphatase mRNA levels were increased at least threefold in liver of IUGR compared with control rats. These studies suggest that an aberrant intrauterine milieu permanently impairs insulin signaling in the liver so that gluconeogenesis is augmented in the IUGR rat. These processes occur early in life, before the onset of hyperglycemia, and indicate that uteroplacental insufficiency causes a primary defect in gene expression and hepatic metabolism that leads to the eventual development of overt hyperglycemia.
Collapse
Affiliation(s)
- Patricia Vuguin
- Children's Hospital at Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | | | | | |
Collapse
|
116
|
|
117
|
Abstract
Both epidemiological and clinical evidence suggest relationships between the antenatal environment and the risk of developing insulin resistance and associated cardiovascular disease (part of the metabolic syndrome) in middle age. However, interpretation of these findings has been controversial. Recent experimental observations provide considerable evidence for a causal model linking adaptive responses to early environmental cues and the later risk of disease. Evolutionary and life history theory provide possible explanations of why these phenomena have persisted and how they might cause disease. In this article, we review the clinical and experimental perspectives on the "developmental origins of disease" model in the context of these new concepts.
Collapse
Affiliation(s)
- Peter D Gluckman
- Liggins Institute, University of Auckland and National Research Centre for Growth and Development, 2-6 Park Avenue, Grafton, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|