101
|
Koeners MP, Lewis KE, Ford AP, Paton JF. Hypertension: a problem of organ blood flow supply-demand mismatch. Future Cardiol 2016; 12:339-49. [PMID: 27091483 PMCID: PMC4926521 DOI: 10.2217/fca.16.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This review introduces a new hypothesis that sympathetically mediated hypertensive diseases are caused, in the most part, by the activation of visceral afferent systems that are connected to neural circuits generating sympathetic activity. We consider how organ hypoperfusion and blood flow supply–demand mismatch might lead to both sensory hyper-reflexia and aberrant afferent tonicity. We discuss how this may drive sympatho-excitatory-positive feedback and extend across multiple organs initiating, or at least amplifying, sympathetic hyperactivity. The latter, in turn, compounds the challenge to sufficient organ blood flow through heightened vasoconstriction that both maintains and exacerbates hypertension.
Collapse
Affiliation(s)
- Maarten P Koeners
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Kirsty E Lewis
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Anthony P Ford
- Afferent Pharmaceuticals, 2929 Campus Drive, San Mateo, CA, USA
| | - Julian Fr Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
102
|
Lankadeva YR, Kosaka J, Evans RG, Bailey SR, Bellomo R, May CN. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury. Kidney Int 2016; 90:100-8. [PMID: 27165831 DOI: 10.1016/j.kint.2016.02.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/26/2016] [Accepted: 02/11/2016] [Indexed: 10/21/2022]
Abstract
Norepinephrine is the principal vasopressor used to restore blood pressure in sepsis, but its effects on intrarenal oxygenation are unknown. To clarify this, we examined renal cortical, medullary, and urinary oxygenation in ovine septic acute kidney injury and the response to resuscitation with norepinephrine. A renal artery flow probe and fiberoptic probes were placed in the cortex and medulla of sheep to measure tissue perfusion and oxygenation. A probe in the bladder catheter measured urinary oxygenation. Sepsis was induced in conscious sheep by infusion of Escherichia coli for 32 hours. At 24 to 30 hours of sepsis, either norepinephrine, to restore mean arterial pressure to preseptic levels or vehicle-saline was infused (8 sheep per group). Septic acute kidney injury was characterized by a reduction in blood pressure of ∼12 mm Hg, renal hyperperfusion, and oliguria. Sepsis reduced medullary perfusion (from an average of 1289 to 628 blood perfusion units), medullary oxygenation (from 32 to 16 mm Hg), and urinary oxygenation (from 36 to 24 mm Hg). Restoring blood pressure with norepinephrine further reduced medullary perfusion to an average of 331 blood perfusion units, medullary oxygenation to 8 mm Hg and urinary oxygenation to 18 mm Hg. Cortical perfusion and oxygenation were preserved. Thus, renal medullary hypoxia caused by intrarenal blood flow redistribution may contribute to the development of septic acute kidney injury, and resuscitation of blood pressure with norepinephrine exacerbates medullary hypoxia. The parallel changes in medullary and urinary oxygenation suggest that urinary oxygenation may be a useful real-time biomarker for risk of acute kidney injury.
Collapse
Affiliation(s)
- Yugeesh R Lankadeva
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Junko Kosaka
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Bioscience Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Simon R Bailey
- Faculty of Veterinary Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care and Department of Medicine, Austin Health, Heidelberg and The Australian and New Zealand Intensive Care Research Centre, Melbourne, Victoria, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
103
|
Saad A, Herrmann SM, Textor SC. Chronic renal ischemia in humans: can cell therapy repair the kidney in occlusive renovascular disease? Physiology (Bethesda) 2016; 30:175-82. [PMID: 25933818 DOI: 10.1152/physiol.00065.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Occlusive renovascular disease caused by atherosclerotic renal artery stenosis (ARAS) elicits complex biological responses that eventually lead to loss of kidney function. Recent studies indicate a complex interplay of oxidative stress, endothelial dysfunction, and activation of fibrogenic and inflammatory cytokines as a result of atherosclerosis, hypoxia, and renal hypoperfusion in this disorder. Human studies emphasize the limits of the kidney adaptation to reduced blood flow, eventually leading to renal hypoxia with activation of inflammatory and fibrogenic pathways. Several randomized prospective clinical trials show that stent revascularization alone in patients with atherosclerotic renal artery stenosis provides little additional benefit to medical therapy once these processes have developed and solidified. Experimental data now support developing adjunctive cell-based measures to support angiogenesis and anti-inflammatory renal repair mechanisms. These data encourage the study of endothelial progenitor cells and/or mesenchymal stem/stromal cells for the repair of damaged kidney tissue.
Collapse
Affiliation(s)
- Ahmed Saad
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
104
|
Leventhal JS, Ni J, Osmond M, Lee K, Gusella GL, Salem F, Ross MJ. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression. PLoS One 2016; 11:e0150001. [PMID: 26990086 PMCID: PMC4798771 DOI: 10.1371/journal.pone.0150001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/08/2016] [Indexed: 01/20/2023] Open
Abstract
Sepsis related acute kidney injury (AKI) is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC) from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS), a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO). Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3) and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.
Collapse
Affiliation(s)
- Jeremy S. Leventhal
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Renal Division, James J Peters Bronx VA Medical Center, Bronx, New York, United States of America
- * E-mail:
| | - Jie Ni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Morgan Osmond
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - G. Luca Gusella
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Michael J. Ross
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Renal Division, James J Peters Bronx VA Medical Center, Bronx, New York, United States of America
| |
Collapse
|
105
|
Farsijani NM, Liu Q, Kobayashi H, Davidoff O, Sha F, Fandrey J, Ikizler TA, O'Connor PM, Haase VH. Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin. J Clin Invest 2016; 126:1425-37. [PMID: 26927670 DOI: 10.1172/jci74997] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
The adult kidney plays a central role in erythropoiesis and is the main source of erythropoietin (EPO), an oxygen-sensitive glycoprotein that is essential for red blood cell production. Decreases of renal pO2 promote hypoxia-inducible factor 2-mediated (HIF-2-mediated) induction of EPO in peritubular interstitial fibroblast-like cells, which serve as the cellular site of EPO synthesis in the kidney. It is not clear whether HIF signaling in other renal cell types also contributes to the regulation of EPO production. Here, we used a genetic approach in mice to investigate the role of renal epithelial HIF in erythropoiesis. Specifically, we found that HIF activation in the proximal nephron via induced inactivation of the von Hippel-Lindau tumor suppressor, which targets the HIF-α subunit for proteasomal degradation, led to rapid development of hypoproliferative anemia that was associated with a reduction in the number of EPO-producing renal interstitial cells. Moreover, suppression of renal EPO production was associated with increased glucose uptake, enhanced glycolysis, reduced mitochondrial mass, diminished O2 consumption, and elevated renal tissue pO2. Our genetic analysis suggests that tubulointerstitial cellular crosstalk modulates renal EPO production under conditions of epithelial HIF activation in the kidney.
Collapse
|
106
|
Evans RG. Oxygen regulation in biological systems. Am J Physiol Regul Integr Comp Physiol 2016; 310:R673-8. [PMID: 26911461 DOI: 10.1152/ajpregu.00004.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/17/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
107
|
The Complex Relationship of Extracorporeal Membrane Oxygenation and Acute Kidney Injury: Causation or Association? BIOMED RESEARCH INTERNATIONAL 2016; 2016:1094296. [PMID: 27006941 PMCID: PMC4783537 DOI: 10.1155/2016/1094296] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 12/23/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a modified cardiopulmonary bypass (CPB) circuit capable of providing prolonged cardiorespiratory support. Recent advancement in ECMO technology has resulted in increased utilisation and clinical application. It can be used as a bridge-to-recovery, bridge-to-bridge, bridge-to-transplant, or bridge-to-decision. ECMO can restitute physiology in critically ill patients, which may minimise the risk of progressive multiorgan dysfunction. Alternatively, iatrogenic complications of ECMO clearly contribute to worse outcomes. These factors affect the risk : benefit ratio of ECMO which ultimately influence commencement/timing of ECMO. The complex interplay of pre-ECMO, ECMO, and post-ECMO pathophysiological processes are responsible for the substantial increased incidence of ECMO-associated acute kidney injury (EAKI). The development of EAKI significantly contributes to morbidity and mortality; however, there is a lack of evidence defining a potential benefit or causative link between ECMO and AKI. This area warrants investigation as further research will delineate the mechanisms involved and subsequent strategies to minimise the risk of EAKI. This review summarizes the current literature of ECMO and AKI, considers the possible benefits and risks of ECMO on renal function, outlines the related pathophysiology, highlights relevant investigative tools, and ultimately suggests an approach for future research into this under investigated area of critical care.
Collapse
|
108
|
Koeners MP, Ow CPC, Russell DM, Evans RG, Malpas SC. Prolonged and Continuous Measurement of Kidney Oxygenation in Conscious Rats. Methods Mol Biol 2016; 1397:93-111. [PMID: 26676130 DOI: 10.1007/978-1-4939-3353-2_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A relative deficiency in kidney oxygenation, i.e., renal hypoxia, may contribute to the initiation and progression of acute and chronic kidney disease. A critical barrier to investigate this is the lack of methods allowing measurement of the partial pressure of oxygen in kidney tissue for long periods in vivo. We have developed, validated, and tested a novel telemetric method that can do this. Here we provide details on the calibration, implantation, implementation for data recording, and reuse of this telemetry-based technology for measurement of medullary tissue oxygen tension in conscious, unrestrained rats. This technique provides an important additional tool for investigating the impact of renal hypoxia in biology and pathophysiology.
Collapse
Affiliation(s)
- Maarten P Koeners
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
- Department of Physiology, Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
- Department of Nephrology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Connie P C Ow
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - David M Russell
- Department of Physiology, Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Millar Ltd, Auckland, New Zealand
| | - Roger G Evans
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Simon C Malpas
- Department of Physiology, Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Millar Ltd, Auckland, New Zealand
| |
Collapse
|
109
|
Calzavacca P, Evans RG, Bailey M, Bellomo R, May CN. Variable responses of regional renal oxygenation and perfusion to vasoactive agents in awake sheep. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1226-33. [DOI: 10.1152/ajpregu.00228.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
Vasoactive agents are used in critical care to optimize circulatory function, but their effects on renal tissue oxygenation in the absence of anesthesia remain largely unknown. Therefore, we assessed the effects of multiple vasoactive agents on regional kidney oxygenation in awake sheep. Sheep were surgically instrumented with pulmonary and renal artery flow probes, and combination fiber-optic probes, in the renal cortex and medulla, comprising a fluorescence optode to measure tissue Po2 and a laser-Doppler probe to assess tissue perfusion. Carotid arterial and renal venous cannulas enabled measurement of arterial pressure and total renal oxygen delivery and consumption. Norepinephrine (0.1 or 0.8 μg·kg−1·min−1) dose-dependently reduced cortical and medullary laser Doppler flux (LDF) and Po2 without significantly altering renal blood flow (RBF), or renal oxygen delivery or consumption. Angiotensin II (9.8 ± 2.1 μg/h) reduced RBF by 21%, renal oxygen delivery by 28%, oxygen consumption by 18%, and medullary Po2 by 38%, but did not significantly alter cortical Po2 or cortical or medullary LDF. Arginine vasopressin (3.3 ± 0.5 μg/h) caused similar decreases in RBF and renal oxygen delivery, but did not significantly alter renal oxygen consumption or cortical or medullary LDF or Po2. Captopril had no observable effects on cortical or medullary LDF or Po2, at a dose that increased renal oxygen delivery by 24%, but did not significantly alter renal oxygen consumption. We conclude that vasoactive agents have diverse effects on regional kidney oxygenation in awake sheep that are not predictable from their effects on LDF, RBF, or total renal oxygen delivery and consumption.
Collapse
Affiliation(s)
- Paolo Calzavacca
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Anaesthesia and Intensive Care, AO Melegnano, PO Uboldo, Cernusco sul Naviglio, Italy
| | - Roger G. Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Michael Bailey
- Australian and New Zealand Intensive Care Research Center, Monash University, Melbourne, Victoria, Australia; and
| | - Rinaldo Bellomo
- Department of Intensive Care and Department of Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - Clive N. May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
110
|
Kapitsinou PP, Haase VH. Molecular mechanisms of ischemic preconditioning in the kidney. Am J Physiol Renal Physiol 2015; 309:F821-34. [DOI: 10.1152/ajprenal.00224.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/26/2022] Open
Abstract
More effective therapeutic strategies for the prevention and treatment of acute kidney injury (AKI) are needed to improve the high morbidity and mortality associated with this frequently encountered clinical condition. Ischemic and/or hypoxic preconditioning attenuates susceptibility to ischemic injury, which results from both oxygen and nutrient deprivation and accounts for most cases of AKI. While multiple signaling pathways have been implicated in renoprotection, this review will focus on oxygen-regulated cellular and molecular responses that enhance the kidney's tolerance to ischemia and promote renal repair. Central mediators of cellular adaptation to hypoxia are hypoxia-inducible factors (HIFs). HIFs play a crucial role in ischemic/hypoxic preconditioning through the reprogramming of cellular energy metabolism, and by coordinating adenosine and nitric oxide signaling with antiapoptotic, oxidative stress, and immune responses. The therapeutic potential of HIF activation for the treatment and prevention of ischemic injuries will be critically examined in this review.
Collapse
Affiliation(s)
- Pinelopi P. Kapitsinou
- Departments of Medicine, Anatomy and Cell Biology, and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Volker H. Haase
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and
- Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
111
|
|
112
|
Ergin B, Zuurbier CJ, Bezemer R, Kandil A, Almac E, Demirci C, Ince C. Ascorbic acid improves renal microcirculatory oxygenation in a rat model of renal I/R injury. J Transl Int Med 2015; 3:116-125. [PMID: 27847899 PMCID: PMC4936463 DOI: 10.1515/jtim-2015-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background and objectives Acute kidney injury (AKI) is a clinical condition associated with a degree of morbidity and mortality despite supportive care, and ischemia/reperfusion injury (I/R) is one of the main causes of AKI. The pathophysiology of I/R injury is a complex cascade of events including the release of free oxygen radicals followed by damage to proteins, lipids, mitochondria, and deranged tissue oxygenation. In this study, we investigated whether the antioxidant ascorbic acid would be able to largely prevent oxidative stress and consequently, reduce I/R-related injury to the kidneys in terms of oxygenation, inflammation, and renal failure. Materials and methods Rats were divided into three groups (n = 6/group): (1) a time control group; (2) a group subjected to renal ischemia for 60 min by high aortic occlusion followed by 2 h of reperfusion (I/R); and (3) a group subjected to I/R and treated with an i.v. 100 mg/kg bolus ascorbic acid 15 min before ischemia and continuous infusion of 50 mg/kg/hour for 2 h during reperfusion (I/R + AA). We measured renal tissue oxidative stress, microvascular oxygenation, renal oxygen delivery and consumption, and renal expression of inflammatory and injury markers. Results We demonstrated that aortic clamping and release resulted in increased oxidative stress and inflammation that was associated with a significant fall in systemic and renal hemodynamics and oxygenation parameters. The treatment of ascorbic acid completely abrogated oxidative stress and inflammatory parameters. However, it only partly improved microcirculatory oxygenation and was without any effect on anuria. Conclusion The ascorbic acid treatment partly improves microcirculatory oxygenation and prevents oxidative stress without restoring urine output in a severe I/R model of AKI.
Collapse
Affiliation(s)
- Bulent Ergin
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Anesthesiology and Intensive Care, Department of Anesthesiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Rick Bezemer
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Asli Kandil
- Department of Biology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Emre Almac
- Department of Anesthesiology, St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Cihan Demirci
- Department of Biology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Can Ince
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
113
|
Louis K, Hertig A. How tubular epithelial cells dictate the rate of renal fibrogenesis? World J Nephrol 2015; 4:367-373. [PMID: 26167460 PMCID: PMC4491927 DOI: 10.5527/wjn.v4.i3.367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/21/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
The main threat to a kidney injury, whatever its cause and regardless of whether it is acute or chronic, is the initiation of a process of renal fibrogenesis, since fibrosis can auto-perpetuate and is of high prognostic significance in individual patients. In the clinic, a decrease in glomerular filtration rate correlates better with tubulointerstitial damage than with glomerular injury. Accumulation of the extracellular matrix should not be isolated from other significant cellular changes occurring in the kidney, such as infiltration by inflammatory cells, proliferation of myofibroblasts, obliteration of peritubular capillaries and atrophy of tubules. The aim of this review is to focus on tubular epithelial cells (TEC), which, necessarily involved in the repair process, eventually contribute to accelerating fibrogenesis. In the context of injury, TEC rapidly exhibit phenotypic and functional changes that recall their mesenchymal origin, and produce several growth factors known to activate myofibroblasts. Because they are high-demanding energy cells, TEC will subsequently suffer from the local hypoxia that progressively arises in a microenvironment where the matrix increases and capillaries become rarified. The combination of hypoxia and metabolic acidosis may induce a vicious cycle of sustained inflammation, at the center of which TEC dictate the rate of renal fibrogenesis.
Collapse
|
114
|
Mehta RL, Cerdá J, Burdmann EA, Tonelli M, García-García G, Jha V, Susantitaphong P, Rocco M, Vanholder R, Sever MS, Cruz D, Jaber B, Lameire NH, Lombardi R, Lewington A, Feehally J, Finkelstein F, Levin N, Pannu N, Thomas B, Aronoff-Spencer E, Remuzzi G. International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 2015; 385:2616-43. [PMID: 25777661 DOI: 10.1016/s0140-6736(15)60126-x] [Citation(s) in RCA: 703] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ravindra L Mehta
- Department of Medicine, University of California San Diego, San Diego, CA, USA.
| | - Jorge Cerdá
- Division of Nephrology, Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Emmanuel A Burdmann
- LIM 12, Division of Nephrology, University of Sao Paulo Medical School, São Paulo, Brazil
| | | | - Guillermo García-García
- Nephrology Service, Hospital Civil de Guadalajara, University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Vivekanand Jha
- The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Paweena Susantitaphong
- Division of Nephrology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Tufts University School of Medicine, Boston, MA, USA
| | - Michael Rocco
- Department of Internal Medicine, Section of Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, University Hospital, Ghent, Belgium
| | - Mehmet Sukru Sever
- Department of Nephrology, Istanbul School of Medicine, Istanbul University, Mehmet, Turkey
| | - Dinna Cruz
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Bertrand Jaber
- Tufts University School of Medicine, Boston, MA, USA; St Elizabeth's Medical Center, Boston, MA, USA
| | - Norbert H Lameire
- Nephrology Section, Department of Internal Medicine, University Hospital, Ghent, Belgium
| | - Raúl Lombardi
- Department of Critical Care Medicine, SMI, Montevideo, Uruguay
| | | | | | | | | | | | - Bernadette Thomas
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy; Department of Medicine, Unit of Nephrology, Dialysis and Transplantation, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
115
|
Abstract
Improved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes. In anaemia associated with renal disease, erythropoiesis is suppressed due to inadequate erythropoietin production in the kidney, inflammation and iron deficiency; however, pharmacologic agents that activate the HIF axis could provide a physiologic approach to the treatment of renal anaemia by mimicking hypoxia responses that coordinate erythropoiesis with iron metabolism. This Review discusses the functional inter-relationships between erythropoietin, iron and inflammatory mediators under physiologic conditions and in relation to the pathogenesis of renal anaemia, as well as recent insights into the molecular and cellular basis of erythropoietin production in the kidney. It furthermore provides a detailed overview of current clinical experience with pharmacologic activators of HIF signalling as a novel comprehensive and physiologic approach to the treatment of anaemia.
Collapse
|
116
|
Textor SC, Lerman LO. Paradigm Shifts in Atherosclerotic Renovascular Disease: Where Are We Now? J Am Soc Nephrol 2015; 26:2074-80. [PMID: 25868641 DOI: 10.1681/asn.2014121274] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Results of recent clinical trials and experimental studies indicate that whereas atherosclerotic renovascular disease can accelerate both systemic hypertension and tissue injury in the poststenotic kidney, restoring vessel patency alone is insufficient to recover kidney function for most subjects. Kidney injury in atherosclerotic renovascular disease reflects complex interactions among vascular rarefication, oxidative stress injury, and recruitment of inflammatory cellular elements that ultimately produce fibrosis. Classic paradigms for simply restoring blood flow are shifting to implementation of therapy targeting mitochondria and cell-based functions to allow regeneration of vascular, glomerular, and tubular structures sufficient to recover, or at least stabilize, renal function. These developments offer exciting possibilities of repair and regeneration of kidney tissue that may limit progressive CKD in atherosclerotic renovascular disease and may apply to other conditions in which inflammatory injury is a major common pathway.
Collapse
Affiliation(s)
- Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
117
|
Koning AM, Frenay ARS, Leuvenink HG, van Goor H. Hydrogen sulfide in renal physiology, disease and transplantation – The smell of renal protection. Nitric Oxide 2015; 46:37-49. [DOI: 10.1016/j.niox.2015.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
|
118
|
Olgac U, Kurtcuoglu V. Renal oxygenation: preglomerular vasculature is an unlikely contributor to renal oxygen shunting. Am J Physiol Renal Physiol 2015; 308:F671-88. [DOI: 10.1152/ajprenal.00551.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/04/2014] [Indexed: 11/22/2022] Open
Abstract
The primary aim of this study was to assess the plausibility of preglomerular arterial-to-venous oxygen shunting in the kidney. To this end, we have developed a segment-wise three-dimensional computational model that takes into account transport processes in arteries, veins, cortical tissue, and capillaries. Our model suggests that the amount of preglomerular oxygen shunting is negligible. Consequently, it is improbable that preglomerular shunting contributes to the hypothesized regulation of renal oxygenation. Cortical tissue oxygenation is more likely determined by the interplay between oxygen supply, either from the preglomerular vasculature or from capillaries, and oxygen consumption. We show that reported differences in permeability to oxygen between perfused and unperfused tissue may be explained by what we refer to as advection-facilitated diffusion. We further show that the preglomerular vasculature is the primary source of oxygen for the tissue when cortical consumption is high or renal arterial blood is highly oxygenated, i.e., under hyperoxemic conditions. Conversely, when oxygen demand in the tissue is decreased, or under hypoxemic conditions, oxygen is supplied predominantly by capillaries.
Collapse
Affiliation(s)
- Ufuk Olgac
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
119
|
Mohan I, Bourke V. The Management of Renal Artery Stenosis: An Alternative Interpretation of ASTRAL and CORAL. Eur J Vasc Endovasc Surg 2015; 49:465-73. [DOI: 10.1016/j.ejvs.2014.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 12/22/2014] [Indexed: 01/22/2023]
|
120
|
Detailing the relation between renal T2* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements. Invest Radiol 2015; 49:547-60. [PMID: 24651661 DOI: 10.1097/rli.0000000000000054] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study was designed to detail the relation between renal T2* and renal tissue pO2 using an integrated approach that combines parametric magnetic resonance imaging (MRI) and quantitative physiological measurements (MR-PHYSIOL). MATERIALS AND METHODS Experiments were performed in 21 male Wistar rats. In vivo modulation of renal hemodynamics and oxygenation was achieved by brief periods of aortic occlusion, hypoxia, and hyperoxia. Renal perfusion pressure (RPP), renal blood flow (RBF), local cortical and medullary tissue pO2, and blood flux were simultaneously recorded together with T2*, T2 mapping, and magnetic resonance-based kidney size measurements (MR-PHYSIOL). Magnetic resonance imaging was carried out on a 9.4-T small-animal magnetic resonance system. Relative changes in the invasive quantitative parameters were correlated with relative changes in the parameters derived from MRI using Spearman analysis and Pearson analysis. RESULTS Changes in T2* qualitatively reflected tissue pO2 changes induced by the interventions. T2* versus pO2 Spearman rank correlations were significant for all interventions, yet quantitative translation of T2*/pO2 correlations obtained for one intervention to another intervention proved not appropriate. The closest T2*/pO2 correlation was found for hypoxia and recovery. The interlayer comparison revealed closest T2*/pO2 correlations for the outer medulla and showed that extrapolation of results obtained for one renal layer to other renal layers must be made with due caution. For T2* to RBF relation, significant Spearman correlations were deduced for all renal layers and for all interventions. T2*/RBF correlations for the cortex and outer medulla were even superior to those between T2* and tissue pO2. The closest T2*/RBF correlation occurred during hypoxia and recovery. Close correlations were observed between T2* and kidney size during hypoxia and recovery and for occlusion and recovery. In both cases, kidney size correlated well with renal vascular conductance, as did renal vascular conductance with T2*. Our findings indicate that changes in T2* qualitatively mirror changes in renal tissue pO2 but are also associated with confounding factors including vascular volume fraction and tubular volume fraction. CONCLUSIONS Our results demonstrate that MR-PHYSIOL is instrumental to detail the link between renal tissue pO2 and T2* in vivo. Unravelling the link between regional renal T2* and tissue pO2, including the role of the T2* confounding parameters vascular and tubular volume fraction and oxy-hemoglobin dissociation curve, requires further research. These explorations are essential before the quantitative capabilities of parametric MRI can be translated from experimental research to improved clinical understanding of hemodynamics/oxygenation in kidney disorders.
Collapse
|
121
|
Ahn SH, Yang HY, Tran GB, Kwon J, Son KY, Kim S, Dinh QT, Jung S, Lee HM, Cho KO, Lee TH. Interaction of peroxiredoxin V with dihydrolipoamide branched chain transacylase E2 (DBT) in mouse kidney under hypoxia. Proteome Sci 2015; 13:4. [PMID: 25670924 PMCID: PMC4323032 DOI: 10.1186/s12953-014-0061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/23/2014] [Indexed: 11/28/2022] Open
Abstract
Background Peroxiredoxin V (Prdx V) plays a major role in preventing oxidative damage as an effective antioxidant protein within a variety of cells through peroxidase activity. However, the function of Prdx V is not limited to peroxidase enzymatic activity per se. It appears to have unique function in regulating cellular response to external stimuli by directing interaction with signaling protein. In this study, we identified Prdx V interacting partners in mouse kidney under hypoxic stress using immunoprecipitation and shotgun proteomic analysis (LC-MS/MS). Results Immunoprecipitation coupled with nano-UPLC-MSE shotgun proteomics was employed to identify putative interacting partners of Prdx V in mouse kidney in the setting of hypoxia. A total of 17 proteins were identified as potential interacting partners of Prdx V by a comparative interactomics analysis in kidney under normoxia versus hypoxia. Dihydrolipoamide branched chain transacylase E2 (DBT) appeared to be a prominent candidate protein displaying enhanced interaction with Prdx V under hypoxic stress. Moreover, hypoxic kidney exhibited altered DBT enzymatic activity compared to normoxia. An enhanced colocalization of these two proteins under hypoxic stress was successfully observed in vitro. Furthermore, peroxidatic cysteine residue (Cys48) of Prdx V is likely to be responsible for interacting with DBT. Conclusions We identified several proteins interacting with Prdx V under hypoxic condition known to induce renal oxidative stress. In hypoxic condition, we observed an enhanced interaction of Prdx V and DBT protein as well as increased DBT enzymatic activity. The results from this study will contribute to enhance our understanding of Prdx V’s role in hypoxic stress and may suggest new directions for future research. Electronic supplementary material The online version of this article (doi:10.1186/s12953-014-0061-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sun Hee Ahn
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 500-757 Republic of Korea
| | - Hee-Young Yang
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 500-757 Republic of Korea
| | - Gia Buu Tran
- Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Joseph Kwon
- Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Kyu-Yeol Son
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Suhee Kim
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 500-757 Republic of Korea
| | - Quoc Thuong Dinh
- Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Seunggon Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ha-Mi Lee
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 500-757 Republic of Korea.,Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
122
|
Grosenick D, Cantow K, Arakelyan K, Wabnitz H, Flemming B, Skalweit A, Ladwig M, Macdonald R, Niendorf T, Seeliger E. Detailing renal hemodynamics and oxygenation in rats by a combined near-infrared spectroscopy and invasive probe approach. BIOMEDICAL OPTICS EXPRESS 2015; 6:309-23. [PMID: 25780726 PMCID: PMC4354597 DOI: 10.1364/boe.6.000309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 05/04/2023]
Abstract
We hypothesize that combining quantitative near-infrared spectroscopy (NIRS) with established invasive techniques will enable advanced insights into renal hemodynamics and oxygenation in small animal models. We developed a NIRS technique to monitor absolute values of oxygenated and deoxygenated hemoglobin and of oxygen saturation of hemoglobin within the renal cortex of rats. This NIRS technique was combined with invasive methods to simultaneously record renal tissue oxygen tension and perfusion. The results of test procedures including occlusions of the aorta or the renal vein, hyperoxia, hypoxia, and hypercapnia demonstrated that the combined approach, by providing different but complementary information, enables a more comprehensive characterization of renal hemodynamics and oxygenation.
Collapse
Affiliation(s)
- Dirk Grosenick
- Physikalisch-Technische Bundesanstalt (PTB), Berlin,
Germany
| | - Kathleen Cantow
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
| | - Karen Arakelyan
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin,
Germany
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin,
Germany
| | - Bert Flemming
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
| | - Angela Skalweit
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
| | - Mechthild Ladwig
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin,
Germany
| | - Erdmann Seeliger
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
| |
Collapse
|
123
|
Khatir DS, Pedersen M, Jespersen B, Buus NH. Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging. Am J Kidney Dis 2015; 66:402-11. [PMID: 25618188 DOI: 10.1053/j.ajkd.2014.11.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/18/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Animal studies suggest that progression of chronic kidney disease (CKD) is related to renal hypoxia. With renal blood supply determining oxygen delivery and sodium absorption being the main contributor to oxygen consumption, we describe the relationship between renal oxygenation, renal artery blood flow, and sodium absorption in patients with CKD and healthy controls. STUDY DESIGN Cross-sectional study. SETTING & PARTICIPANTS 62 stable patients with CKD stages 3 to 4 (mean age, 61±13 [SD] years) and 24 age- and sex-matched controls. PREDICTORS CKD versus control status. OUTCOMES Renal artery blood flow, tissue oxygenation (relative changes in deoxyhemoglobin concentration of the renal medulla [MR2*] and cortex [CR2*]), and sodium absorption. MEASUREMENTS Renal artery blood flow was determined by phase-contrast magnetic resonance imaging (MRI); MR2* and CR2* were determined by blood oxygen level-dependent MRI. Ultrafiltered and reabsorbed sodium were determined from measured glomerular filtration rate (mGFR) and 24-hour urine collections. RESULTS mGFR in patients was 37% that of controls (36±15 vs 97±23 mL/min/1.73 m(2); P < 0.001), and reabsorbed sodium was 37% that of controls (6.9 vs 19.1 mol/24 h; P < 0.001). Single-kidney patient renal artery blood flow was 72% that of controls (319 vs 443 mL/min; P < 0.001). Glomerular filtration fraction was 9% in patients and 18% in controls (P < 0.001). Patients and controls had similar CR2* (13.4 vs 13.3 s(-1)) and medullary MR2* (26.4 vs 26.5 s(-1)) values. Linear regression analysis demonstrated no associations between R2* and renal artery blood flow or sodium absorption. Increasing arterial blood oxygen tension by breathing 100% oxygen had very small effects on CR2*, but reduced MR2* in both groups. LIMITATIONS Only renal artery blood flow was determined and thus regional perfusion could not be related to CR2* or MR2*. CONCLUSIONS In CKD, reductions of mGFR and reabsorbed sodium are more than double that of renal artery blood flow, whereas cortical and medullary oxygenation are within the range of healthy persons. Reduction in glomerular filtration fraction may prevent renal hypoxia in CKD.
Collapse
Affiliation(s)
- Dinah S Khatir
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels H Buus
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
124
|
Evans RG, Ow CPC, Bie P. The chronic hypoxia hypothesis: the search for the smoking gun goes on. Am J Physiol Renal Physiol 2015; 308:F101-2. [DOI: 10.1152/ajprenal.00587.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia; and
| | - Connie P. C. Ow
- Department of Physiology, Monash University, Melbourne, Australia; and
| | - Peter Bie
- Department of Physiology, Monash University, Melbourne, Australia; and
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
125
|
Niendorf T, Pohlmann A, Arakelyan K, Flemming B, Cantow K, Hentschel J, Grosenick D, Ladwig M, Reimann H, Klix S, Waiczies S, Seeliger E. How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol (Oxf) 2015; 213:19-38. [PMID: 25204811 DOI: 10.1111/apha.12393] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/04/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
Renal tissue hypoperfusion and hypoxia are key elements in the pathophysiology of acute kidney injury and its progression to chronic kidney disease. Yet, in vivo assessment of renal haemodynamics and tissue oxygenation remains a challenge. Many of the established approaches are invasive, hence not applicable in humans. Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) offers an alternative. BOLD-MRI is non-invasive and indicative of renal tissue oxygenation. Nonetheless, recent (pre-) clinical studies revived the question as to how bold renal BOLD-MRI really is. This review aimed to deliver some answers. It is designed to inspire the renal physiology, nephrology and imaging communities to foster explorations into the assessment of renal oxygenation and haemodynamics by exploiting the powers of MRI. For this purpose, the specifics of renal oxygenation and perfusion are outlined. The fundamentals of BOLD-MRI are summarized. The link between tissue oxygenation and the oxygenation-sensitive MR biomarker T2∗ is outlined. The merits and limitations of renal BOLD-MRI in animal and human studies are surveyed together with their clinical implications. Explorations into detailing the relation between renal T2∗ and renal tissue partial pressure of oxygen (pO2 ) are discussed with a focus on factors confounding the T2∗ vs. tissue pO2 relation. Multi-modality in vivo approaches suitable for detailing the role of the confounding factors that govern T2∗ are considered. A schematic approach describing the link between renal perfusion, oxygenation, tissue compartments and renal T2∗ is proposed. Future directions of MRI assessment of renal oxygenation and perfusion are explored.
Collapse
Affiliation(s)
- T. Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - A. Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - K. Arakelyan
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - B. Flemming
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - K. Cantow
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - J. Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - D. Grosenick
- Physikalisch-Technische Bundesanstalt (PTB); Berlin Germany
| | - M. Ladwig
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - H. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - E. Seeliger
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
126
|
Belaïch R, Boujraf S, Housni A, Maaroufi M, Batta F, Magoul R, Sqalli T, Errasfa M, Tizniti S. Assessment of hemodialysis impact by Polysulfone membrane on brain plasticity using BOLD-fMRI. Neuroscience 2014; 288:94-104. [PMID: 25522721 DOI: 10.1016/j.neuroscience.2014.11.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/21/2014] [Accepted: 11/23/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE Hemodialysis (HD) is considered the most common alternative for overcoming renal failure. Studies have shown the involvement of HD membrane in the genesis of oxidative stress (OS) which has a direct impact on the brain tissue and is expected to be involved in brain plasticity and also reorganization of brain function control. The goal of this paper was to demonstrate the sensitivity of the blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) to characterize the OS before and after the HD session. PATIENTS, MATERIALS AND METHODS Twelve male patient-volunteers following chronic HD for more than 6months were recruited among 86 HD-patients. All patients underwent identical assessment immediately before and after the full HD-session. This consisted of full biological assessment, including malondialdehyde (MDA) and total antioxidant activity (TAOA); and brain BOLD-fMRI using the motor paradigm in block-design. RESULTS Functional BOLD-fMRI maps of motor area M1 were obtained from the HD patient before and after the hemodialysis session, important decrease in the intensity of brain activation of the motor area after HD, and important increase of the size of the volume of brain activation were observed, these changes are reflecting brain plasticity that is well correlated to OS levels. Individual patients MDA and TAOA before and after the hemodialysis sessions demonstrated a clear and systematic increase of the OS after HD (P-value=0.03). Correlation of BOLD-fMRI maximal signal intensity and volume of activated cortical brain area behaviors to MDA and total TAOA were close to 1. CONCLUSION OS is systematically increased in HD-patients after the HD-process. Indeed, the BOLD-fMRI shows a remarkable sensitivity to brain plasticity studied cortical areas. Our results confirm the superiority of the BOLD-fMRI quantities compared to the biological method used for assessing the OS while not being specific, and reflect the increase in OS generated by the HD. BOLD-fMRI is expected to be a suitable tool for evaluating the plasticity process evolution in hemodialysis brain patients.
Collapse
Affiliation(s)
- R Belaïch
- Department of Biophysics and Clinical MRI Methods, Faculty of Medicine, Fez, Morocco; The Clinical Neuroscience Laboratory, Faculty of Medicine, Fez, Morocco
| | - S Boujraf
- Department of Biophysics and Clinical MRI Methods, Faculty of Medicine, Fez, Morocco; The Clinical Neuroscience Laboratory, Faculty of Medicine, Fez, Morocco.
| | - A Housni
- The Clinical Neuroscience Laboratory, Faculty of Medicine, Fez, Morocco; Department of Radiology and Clinical Imaging, University Hospital of Fez, Fez, Morocco
| | - M Maaroufi
- The Clinical Neuroscience Laboratory, Faculty of Medicine, Fez, Morocco; Department of Radiology and Clinical Imaging, University Hospital of Fez, Fez, Morocco
| | - F Batta
- The Clinical Neuroscience Laboratory, Faculty of Medicine, Fez, Morocco; Department of Nephrology, University Hospital of Fez, Fez, Morocco
| | - R Magoul
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences Dhar El Mahraz, University Sidi Mohammed Ben Abdellah, Fez-Atlas, BP 1796, Fez, Morocco
| | - T Sqalli
- Department of Nephrology, University Hospital of Fez, Fez, Morocco
| | - M Errasfa
- Department of Pharmacology, Faculty of Medicine, University of Fez, Fez, Morocco; The Laboratory of Molecular Basis in Human Pathology and Therapeutical Tools, Faculty of Medicine, University of Fez, Fez, Morocco
| | - S Tizniti
- The Clinical Neuroscience Laboratory, Faculty of Medicine, Fez, Morocco; Department of Radiology and Clinical Imaging, University Hospital of Fez, Fez, Morocco
| |
Collapse
|
127
|
Ngo JP, Kar S, Kett MM, Gardiner BS, Pearson JT, Smith DW, Ludbrook J, Bertram JF, Evans RG. Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney. Am J Physiol Renal Physiol 2014; 307:F1111-22. [DOI: 10.1152/ajprenal.00382.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal arterial-to-venous (AV) oxygen shunting limits oxygen delivery to renal tissue. To better understand how oxygen in arterial blood can bypass renal tissue, we quantified the radial geometry of AV pairs and how it differs according to arterial diameter and anatomic location. We then estimated diffusion of oxygen in the vicinity of arteries of typical geometry using a computational model. The kidneys of six rats were perfusion fixed, and the vasculature was filled with silicone rubber (Microfil). A single section was chosen from each kidney, and all arteries ( n = 1,628) were identified. Intrarenal arteries were largely divisible into two “types,” characterized by the presence or absence of a close physical relationship with a paired vein. Arteries with a close physical relationship with a paired vein were more likely to have a larger rather than smaller diameter, and more likely to be in the inner-cortex than the mid- or outer cortex. Computational simulations indicated that direct diffusion of oxygen from an artery to a paired vein can only occur when the two vessels have a close physical relationship. However, even in the absence of this close relationship oxygen can diffuse from an artery to periarteriolar capillaries and venules. Thus AV oxygen shunting in the proximal preglomerular circulation is dominated by direct diffusion of oxygen to a paired vein. In the distal preglomerular circulation, it may be sustained by diffusion of oxygen from arteries to capillaries and venules close to the artery wall, which is subsequently transported to renal veins by convection.
Collapse
Affiliation(s)
- Jennifer P. Ngo
- Department of Physiology, Monash University, Melbourne, Australia
| | - Saptarshi Kar
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - Michelle M. Kett
- Department of Physiology, Monash University, Melbourne, Australia
| | - Bruce S. Gardiner
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - James T. Pearson
- Department of Physiology, Monash University, Melbourne, Australia
- Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
| | - David W. Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | | | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
128
|
Lawson J, Elliott J, Wheeler-Jones C, Syme H, Jepson R. Renal fibrosis in feline chronic kidney disease: known mediators and mechanisms of injury. Vet J 2014; 203:18-26. [PMID: 25475166 DOI: 10.1016/j.tvjl.2014.10.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 01/13/2023]
Abstract
Chronic kidney disease (CKD) is a common medical condition of ageing cats. In most cases the underlying aetiology is unknown, but the most frequently reported pathological diagnosis is renal tubulointerstitial fibrosis. Renal fibrosis, characterised by extensive accumulation of extra-cellular matrix within the interstitium, is thought to be the final common pathway for all kidney diseases and is the pathological lesion best correlated with function in both humans and cats. As a convergent pathway, renal fibrosis provides an ideal target for the treatment of CKD and knowledge of the underlying fibrotic process is essential for the future development of novel therapies. There are many mediators and mechanisms of renal fibrosis reported in the literature, of which only a few have been investigated in the cat. This article reviews the process of renal fibrosis and discusses the most commonly cited mediators and mechanisms of progressive renal injury, with particular focus on the potential significance to feline CKD.
Collapse
Affiliation(s)
- Jack Lawson
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| | - Jonathan Elliott
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Caroline Wheeler-Jones
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Harriet Syme
- Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Rosanne Jepson
- Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| |
Collapse
|
129
|
Szeto HH, Liu S, Soong Y, Birk AV. Improving mitochondrial bioenergetics under ischemic conditions increases warm ischemia tolerance in the kidney. Am J Physiol Renal Physiol 2014; 308:F11-21. [PMID: 25339695 DOI: 10.1152/ajprenal.00366.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ischemia time during partial nephrectomy is strongly associated with acute and chronic renal injury. ATP depletion during warm ischemia inhibits ATP-dependent processes, resulting in cell swelling, cytoskeletal breakdown, and cell death. The duration of ischemia tolerated by the kidney depends on the amount of ATP that can be produced with residual substrates and oxygen in the tissue to sustain cell function. We previously reported that the rat can tolerate 30-min ischemia quite well but 45-min ischemia results in acute kidney injury and progressive interstitial fibrosis. Here, we report that pretreatment with SS-20 30 min before warm ischemia in the rat increased ischemia tolerance from 30 to 45 min. Histological examination of kidney tissues revealed that SS-20 reduced cytoskeletal breakdown and cell swelling after 45-min ischemia. Electron microscopy showed that SS-20 reduced mitochondrial matrix swelling and preserved cristae membranes, suggesting that SS-20 enhanced mitochondrial ATP synthesis under ischemic conditions. Studies with isolated kidney mitochondria showed dramatic reduction in state 3 respiration and respiratory control ratio after 45-min ischemia, and this was significantly improved by SS-20 treatment. These results suggest that SS-20 increases efficiency of the electron transport chain and improves coupling of oxidative phosphorylation. SS-20 treatment after ischemia also significantly reduced interstitial fibrosis. These new findings reveal that enhancing mitochondrial bioenergetics may be an important target for improving ischemia tolerance, and SS-20 may serve well for minimizing acute kidney injury and chronic kidney disease following surgical procedures such as partial nephrectomy and transplantation.
Collapse
Affiliation(s)
- Hazel H Szeto
- Research Program in Mitochondrial Therapeutics, Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York
| | - Shaoyi Liu
- Research Program in Mitochondrial Therapeutics, Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York
| | - Yi Soong
- Research Program in Mitochondrial Therapeutics, Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York
| | - Alexander V Birk
- Research Program in Mitochondrial Therapeutics, Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
130
|
Papazova DA, Friederich-Persson M, Joles JA, Verhaar MC. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension. Am J Physiol Renal Physiol 2014; 308:F22-8. [PMID: 25275014 DOI: 10.1152/ajprenal.00278.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hypoxia is an acknowledged pathway to renal injury and ischemia-reperfusion (I/R) and is known to reduce renal oxygen tension (Po2). We hypothesized that renal I/R increases oxidative damage and induces mitochondrial uncoupling, resulting in increased oxygen consumption and hence kidney hypoxia. Lewis rats underwent syngenic renal transplantation (TX) and contralateral nephrectomy. Controls were uninephrectomized (1K-CON) or left untreated (2K-CON). After 7 days, urinary excretion of protein and thiobarbituric acid-reactive substances were measured, and after 14 days glomerular filtration rate (GFR), renal blood flow, whole kidney Qo2, cortical Po2, kidney cortex mitochondrial uncoupling, renal oxidative damage, and tubulointerstitial injury were assessed. TX, compared with 1K-CON, resulted in mitochondrial uncoupling mediated via uncoupling protein-2 (16 ± 3.3 vs. 0.9 ± 0.4 pmol O2 · s(-1)· mg protein(-1), P < 0.05) and increased whole kidney Qo2 (55 ± 16 vs. 33 ± 10 μmol O2/min, P < 0.05). Corticomedullary Po2 was lower in TX compared with 1K-CON (30 ± 13 vs. 47 ± 4 μM, P < 0.05) whereas no significant difference was observed between 2K-CON and 1K-CON rats. Proteinuria, oxidative damage, and the tubulointerstitial injury score were not significantly different in 1K-CON and TX. Treatment of donors for 5 days with mito-TEMPO reduced mitochondrial uncoupling but did not affect renal hemodynamics, Qo2, Po2, or injury. Collectively, our results demonstrate increased mitochondrial uncoupling as an early event after experimental renal transplantation associated with increased oxygen consumption and kidney hypoxia in the absence of increases in markers of damage.
Collapse
Affiliation(s)
- Diana A Papazova
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; and
| | | | - Jaap A Joles
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; and
| | - Marianne C Verhaar
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; and
| |
Collapse
|
131
|
Nourbakhsh N, Singh P. Role of renal oxygenation and mitochondrial function in the pathophysiology of acute kidney injury. Nephron Clin Pract 2014; 127:149-52. [PMID: 25343840 PMCID: PMC5540439 DOI: 10.1159/000363545] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There are unique features of renal oxygenation that render the kidney susceptible to oxygen demand-supply mismatch and hypoxia. Renal oxygen consumption by oxidative metabolism is closely coupled to and driven by tubular transport, which is linked to the filtered solute load and glomerular filtration rate (GFR). In turn, filtered solute load and GFR are dependent on the renal blood flow. Hence, changes in renal blood flow increase oxygen delivery but also increase oxygen demand (consumption) simultaneously by increasing the tubular workload of solute transport. The renal blood flow to different regions of kidney is also inhomogeneous, increasing the oxygen demand-supply mismatch in particular areas such as the outer medulla which become more susceptible to injury. Thus, tubular transport and oxidative metabolism by mi ochondria are closely coupled in the kidney and are the principal determinants of intrarenal oxygenation. Here we review the published literature characterizing renal oxygenation and mitochondrial function in ischemic and sepsis-associated acute kidney injury (AKI). However, the coupling of transport and metabolism in AKI has not been examined. This is a potentially fruitful area of research that should become increasingly active given the emerging data linking renal oxygenation and hypoxia to acute and chronic dysfunction in the kidney.
Collapse
Affiliation(s)
- Noureddin Nourbakhsh
- Division of Nephrology-Hypertension, University of California San Diego School of Medicine, and VA San Diego Healthcare System, San Diego, Calif., USA
| | | |
Collapse
|
132
|
Ergin B, Kapucu A, Demirci-Tansel C, Ince C. The renal microcirculation in sepsis. Nephrol Dial Transplant 2014; 30:169-77. [PMID: 24848133 DOI: 10.1093/ndt/gfu105] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite identification of several cellular mechanisms being thought to underlie the development of septic acute kidney injury (AKI), the pathophysiology of the occurrence of AKI is still poorly understood. It is clear, however, that instead of a single mechanism being responsible for its aetiology, an orchestra of cellular mechanisms failing is associated with AKI. The integrative physiological compartment where these mechanisms come together and exert their integrative deleterious action is the renal microcirculation (MC). This is why it is opportune to review the response of the renal MC to sepsis and discuss the determinants of its (dys)function and how it contributes to the pathogenesis of renal failure. A main determinant of adequate organ function is the adequate supply and utilization of oxygen at the microcirculatory and cellular level to perform organ function. The highly complex architecture of the renal microvasculature, the need to meet a high energy demand and the fact that the kidney is borderline ischaemic makes the kidney a highly vulnerable organ to hypoxaemic injury. Under normal, steady-state conditions, oxygen (O2) supply to the renal tissues is well regulated; however, under septic conditions the delicate balance of oxygen supply versus demand is disturbed due to renal microvasculature dysfunction. This dysfunction is largely due to the interaction of renal oxygen handling, nitric oxide metabolism and radical formation. Renal tissue oxygenation is highly heterogeneous not only between the cortex and medulla but also within these renal compartments. Integrative evaluation of the different determinants of tissue oxygen in sepsis models has identified the deterioration of microcirculatory oxygenation as a key component in the development AKI. It is becoming clear that resuscitation of the failing kidney needs to integratively correct the homeostasis between oxygen, and reactive oxygen and nitrogen species. Several experimental therapeutic modalities have been found to be effective in restoring microcirculatory oxygenation in parallel to improving renal function following septic AKI. However, these have to be verified in clinical studies. The development of clinical physiological biomarkers of AKI specifically aimed at the MC should form a valuable contribution to monitoring such new therapeutic modalities.
Collapse
Affiliation(s)
- Bulent Ergin
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aysegul Kapucu
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands Department of Biology and Zoology Division, University of Istanbul, Istanbul, Turkey
| | - Cihan Demirci-Tansel
- Department of Biology and Zoology Division, University of Istanbul, Istanbul, Turkey
| | - Can Ince
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
133
|
Dvoršak B, Kanič V, Ekart R, Bevc S, Hojs R. Ascorbic Acid for the prevention of contrast-induced nephropathy after coronary angiography in patients with chronic renal impairment: a randomized controlled trial. Ther Apher Dial 2014; 17:384-90. [PMID: 23931876 DOI: 10.1111/1744-9987.12083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To determine the incidence of contrast-induced nephropathy (CIN) and to assess the effectiveness of ascorbic acid in the prevention of CIN after coronary angiography in patients with chronic renal impairment. CIN is the third most common cause of hospital-acquired renal failure. It is well documented that periprocedural hydration is effective in the prevention of CIN. Little data exist on the effectiveness of ascorbic acid, a vitamin with antioxidative action. Patients with stable serum creatinine level >107 μmol/L (n = 81) undergoing coronary angiography were randomized to receive either ascorbic acid (N = 40) or placebo (N = 41) before the procedure. All patients received intravenous volume expansion with normal saline before the procedure. CIN was defined as an increase of serum creatinine level >25% from baseline measured 3 to 4 days after the procedure. CIN occurred totally in 5/81 patients (6.2%); in two patients (3%) in the ascorbic acid group and in three patients (7.3%) in the placebo group (P = 0.512). Postprocedural worsening of renal function (postprocedural increase of serum creatinine level) was present in 10/81 patients (12.3%) in the ascorbic acid group and in 19/81 patients (23.4%) in the placebo group (P = 0.038). No patient required dialysis treatment. We found no statistically significant impact of ascorbic acid on the incidence of CIN in patients with chronic renal impairment undergoing coronary arteriography or angioplasty. Ascorbic acid may still have some protective role in CIN reflected in lower incidence of worsening of renal function in the treated group.
Collapse
Affiliation(s)
- Benjamin Dvoršak
- Clinic of Internal Medicine, Department of Nephrology, University Clinical Center Maribor, Maribor, Slovenia.
| | | | | | | | | |
Collapse
|
134
|
Textor SC, Lerman LO. Reality and renovascular disease: when does renal artery stenosis warrant revascularization? Am J Kidney Dis 2014; 63:175-7. [PMID: 24461677 DOI: 10.1053/j.ajkd.2013.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 11/11/2022]
|
135
|
Abdelkader A, Ho J, Ow CPC, Eppel GA, Rajapakse NW, Schlaich MP, Evans RG. Renal oxygenation in acute renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2014; 306:F1026-38. [PMID: 24598805 DOI: 10.1152/ajprenal.00281.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tissue hypoxia has been demonstrated, in both the renal cortex and medulla, during the acute phase of reperfusion after ischemia induced by occlusion of the aorta upstream from the kidney. However, there are also recent clinical observations indicating relatively well preserved oxygenation in the nonfunctional transplanted kidney. To test whether severe acute kidney injury can occur in the absence of widespread renal tissue hypoxia, we measured cortical and inner medullary tissue Po2 as well as total renal O2 delivery (Do2) and O2 consumption (Vo2) during the first 2 h of reperfusion after 60 min of occlusion of the renal artery in anesthetized rats. To perform this experiment, we used a new method for measuring kidney Do2 and Vo2 that relies on implantation of fluorescence optodes in the femoral artery and renal vein. We were unable to detect reductions in renal cortical or inner medullary tissue Po2 during reperfusion after ischemia localized to the kidney. This is likely explained by the observation that Vo2 (-57%) was reduced by at least as much as Do2 (-45%), due to a large reduction in glomerular filtration (-94%). However, localized tissue hypoxia, as evidence by pimonidazole adduct immunohistochemistry, was detected in kidneys subjected to ischemia and reperfusion, particularly in, but not exclusive to, the outer medulla. Thus, cellular hypoxia, particularly in the outer medulla, may still be present during reperfusion even when reductions in tissue Po2 are not detected in the cortex or inner medulla.
Collapse
Affiliation(s)
- Amany Abdelkader
- Dept. of Physiology, PO Box 13F, Monash Univ., Victoria 3800, Australia.
| | | | | | | | | | | | | |
Collapse
|
136
|
Blood oxygen level-dependent (BOLD) MRI analysis in atherosclerotic renal artery stenosis. Curr Opin Nephrol Hypertens 2014; 22:519-24. [PMID: 23917027 DOI: 10.1097/mnh.0b013e32836400b2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Blood oxygen level-dependent MRI (BOLD MRI) is a noninvasive technique for evaluating kidney tissue oxygenation that requires no contrast exposure, with the potential to allow functional assessment in patients with atherosclerotic renal artery stenosis. Normal cortical-to-medulla oxygenation gradients are preserved in many patients treated for several years with medical antihypertensive therapy without restoring renal blood flow. The current review is of particular interest as new methods have been applied to the analyses of BOLD MRI, opening the perspective of its wider utilization in clinical practice. RECENT FINDINGS Recent findings show that more severe vascular compromise ultimately overwhelms renal adaptive changes, leading to overt cortical hypoxia and expansion of medullary hypoxic zones. 'Fractional kidney hypoxia' method of analysis, developed as an alternative method of BOLD MRI analysis, avoids the assumption of discrete cortical and medullary values and decreases the bias related to operator selection of regions of interests. SUMMARY We believe that thoughtful application and analysis of BOLD MRI can provide critical insights into changes in renal function prior to the onset of irreversible renal injury and may identify patients most likely to gain from measures to reverse or repair disorders of tissue oxygenation.
Collapse
|
137
|
Hall ME, Rocco MV, Morgan TM, Hamilton CA, Edwards MS, Jordan JH, Hurie JB, Hundley WG. Chronic diuretic therapy attenuates renal BOLD magnetic resonance response to an acute furosemide stimulus. J Cardiovasc Magn Reson 2014; 16:17. [PMID: 24490671 PMCID: PMC3914363 DOI: 10.1186/1532-429x-16-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/29/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Blood Oxygen Level Dependent (BOLD) magnetic resonance (MR) is a novel imaging tool that detects changes in tissue oxygenation. Increases in renal oxygenation in response to a standard 20 mg intravenous furosemide stimulus have been evaluated to assess kidney viability in patients with renal artery stenosis (RAS). The effect of prior exposure to furosemide on the ability of BOLD MR techniques to evaluate renal function is unknown.This study tested the hypothesis that chronic loop diuretic therapy is associated with attenuated responses in renal tissue oxygenation as measured by BOLD MR with an acute 20 mg intravenous furosemide stimulus in participants undergoing evaluation for RAS. METHODS Thirty-eight participants referred for evaluation of RAS were recruited for this study. We examined renal cortical and medullary BOLD signal (T2*) intensities before and after a 20 mg intravenous furosemide stimulus. Additionally, we measured changes in renal artery blood flow using phase contrast techniques. RESULTS After controlling for covariates age, race, gender, diabetes, glomerular filtration rate, body mass index, and stenosis severity, daily oral furosemide dose was an independent, negative predictor of renal medullary T2* response (p=0.01) to a standard 20 mg intravenous furosemide stimulus. Stenosis severity and ethnicity were also significant independent predictors of changes in T2* signal intensity in response to an acute furosemide challenge. Changes in renal blood flow in response to acute furosemide administration were correlated with changes in T2* in the renal cortex (r=0.29, p=0.03) but not the medulla suggesting changes in renal medullary oxygenation were not due to reduced renal medullary blood flow. CONCLUSIONS Chronic furosemide therapy attenuates BOLD MR responses to an acute furosemide stimulus in patients with RAS being evaluated for renal artery revascularization procedures. Thus, patients who are chronically administered loop diuretics may need a different dosing strategy to accurately detect changes in renal oxygenation with BOLD MR in response to a furosemide stimulus.
Collapse
Affiliation(s)
- Michael E Hall
- Department of Medicine, Division of Cardiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael V Rocco
- Department of Medicine, Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, USA
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1045, USA
| | - Timothy M Morgan
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, USA
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1045, USA
| | - Craig A Hamilton
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, USA
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1045, USA
| | - Matthew S Edwards
- Department of Vascular Surgery, Wake Forest University School of Medicine, Winston-Salem, USA
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1045, USA
| | - Jennifer H Jordan
- Department of Medicine, Section on Cardiology, Wake Forest University School of Medicine, Winston-Salem, USA
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1045, USA
| | - Justin B Hurie
- Department of Vascular Surgery, Wake Forest University School of Medicine, Winston-Salem, USA
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1045, USA
| | - W Gregory Hundley
- Department of Medicine, Section on Cardiology, Wake Forest University School of Medicine, Winston-Salem, USA
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, USA
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1045, USA
| |
Collapse
|
138
|
Evans RG, Smith JA, Wright C, Gardiner BS, Smith DW, Cochrane AD. Urinary oxygen tension: a clinical window on the health of the renal medulla? Am J Physiol Regul Integr Comp Physiol 2014; 306:R45-50. [DOI: 10.1152/ajpregu.00437.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the determinants of urinary oxygen tension (Po2) and the potential for use of urinary Po2 as a “physiological biomarker” of the risk of acute kidney injury (AKI) in hospital settings. We also identify knowledge gaps required for clinical translation of bedside monitoring of urinary Po2. Hypoxia in the renal medulla is a hallmark of AKI of diverse etiology. Urine in the collecting ducts would be expected to equilibrate with the tissue Po2 of the inner medulla. Accordingly, the Po2 of urine in the renal pelvis changes in response to stimuli that would be expected to alter oxygenation of the renal medulla. Oxygen exchange across the walls of the ureter and bladder will confound measurement of the Po2 of bladder urine. Nevertheless, the Po2 of bladder urine also changes in response to stimuli that would be expected to alter renal medullary oxygenation. If confounding influences can be understood, urinary bladder Po2 may provide prognostically useful information, including for prediction of AKI after cardiopulmonary bypass surgery. To translate bedside monitoring of urinary Po2 into the clinical setting, we require 1) a more detailed knowledge of the relationship between renal medullary oxygenation and the Po2 of pelvic urine under physiological and pathophysiological conditions; 2) a quantitative understanding of the impact of oxygen transport across the ureteric epithelium on urinary Po2 measured from the bladder; and 3) a simple, robust medical device that can be introduced into the bladder via a standard catheter to provide reliable and continuous measurement of urinary Po2.
Collapse
Affiliation(s)
| | | | - Christopher Wright
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Bruce S. Gardiner
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
| | - David W. Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
| | | |
Collapse
|
139
|
Zapata-Morales JR, Galicia-Cruz OG, Franco M, Martinez Y Morales F. Hypoxia-inducible factor-1α (HIF-1α) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2 protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia. J Biol Chem 2013; 289:346-57. [PMID: 24196951 DOI: 10.1074/jbc.m113.526814] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we demonstrated the regulation of glucose transporters by hypoxia inducible factor-1α (HIF-1α) activation in renal epithelial cells. LLC-PK1 monolayers were incubated for 1, 3, 6, or 12 h with 0% or 5% O2 or 300 μm cobalt (CoCl2). We evaluated the effects of hypoxia on the mRNA and protein expression of HIF-1α and of the glucose transporters SGLT1, SGLT2, and GLUT1. The data showed an increase in HIF-1α mRNA and protein expression under the three evaluated conditions (p < 0.05 versus t = 0). An increase in GLUT1 mRNA (12 h) and protein expression (at 3, 6, and 12 h) was observed (p < 0.05 versus t = 0). SGLT1 and SGLT2 mRNA and protein expression decreased under the three evaluated conditions (p < 0.05 versus t = 0). In conclusion, our results suggest a clear decrease in the expression of the glucose transporters SGLT1 and SGLT2 under hypoxic conditions which implies a possible correlation with increased expression of HIF-1α.
Collapse
Affiliation(s)
- Juan R Zapata-Morales
- From the Department of Pharmacology, School of Medicine, University of San Luis Potosi, 78210 San Luis Potosi, Mexico and
| | | | | | | |
Collapse
|
140
|
Singh P, Ricksten SE, Bragadottir G, Redfors B, Nordquist L. Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. Clin Exp Pharmacol Physiol 2013; 40:138-47. [PMID: 23360244 DOI: 10.1111/1440-1681.12036] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022]
Abstract
Acute kidney injury (AKI) is a major burden on health systems and may arise from multiple initiating insults, including ischaemia-reperfusion injury, cardiovascular surgery, radiocontrast administration and sepsis. Similarly, the incidence and prevalence of chronic kidney disease (CKD) continues to increase, with significant morbidity and mortality. Moreover, an increasing number of AKI patients survive to develop CKD and end-stage renal disease. Although the mechanisms for the development of AKI and progression to CKD remain poorly understood, initial impairment of oxygen balance likely constitutes a common pathway, causing renal tissue hypoxia and ATP starvation that, in turn, induce extracellular matrix production, collagen deposition and fibrosis. Thus, possible future strategies for one or both conditions may involve dopamine, loop diuretics, atrial natriuretic peptide and inhibitors of inducible nitric oxide synthase, substances that target kidney oxygen consumption and regulators of renal oxygenation, such as nitric oxide and heme oxygenase-1.
Collapse
Affiliation(s)
- Prabhleen Singh
- Division of Nephrology-Hypertension, VA San Diego Healthcare System, University of California San Diego, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
141
|
Liss P, Cox EF, Eckerbom P, Francis ST. Imaging of intrarenal haemodynamics and oxygen metabolism. Clin Exp Pharmacol Physiol 2013; 40:158-67. [PMID: 23252679 DOI: 10.1111/1440-1681.12042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/07/2012] [Accepted: 12/12/2012] [Indexed: 01/07/2023]
Abstract
The interruption of blood flow results in impaired oxygenation and metabolism. This can lead to electrophysiological changes, functional impairment and symptoms in quick succession. Quantitative measures of organ perfusion, perfusion reserve and tissue oxygenation are crucial to assess normal tissue metabolism and function. Magnetic resonance imaging (MRI) provides a number of quantitative methods to assess physiology in the kidney. Blood oxygenation level-dependent (BOLD) MRI provides a method for the assessment of oxygenation. Blood flow to the kidney can be assessed using phase contrast MRI. Dynamic contrast-enhanced MRI and arterial spin labelling (ASL) provide methods to assess tissue perfusion, ASL using the magnetization of endogenous water protons and thus providing a non-invasive method to assess perfusion. The application of diffusion-weighted MRI allows molecular motion in the kidney to be measured. Novel techniques can also be used to assess oxygenation in the renal arteries and veins and, combined with flow measures, provide an estimation of oxygen metabolism. Magnetic resonance imaging provides a synergy of non-invasive techniques to study renal function and the demand for these techniques is likely to be driven by the incentive to avoid the use of contrast media, to avoid radiation and to avoid complications with intervention procedures.
Collapse
Affiliation(s)
- Per Liss
- Department of Radiology, Center for Medical Imaging, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
142
|
Moss R, Thomas SR. Hormonal regulation of salt and water excretion: a mathematical model of whole kidney function and pressure natriuresis. Am J Physiol Renal Physiol 2013; 306:F224-48. [PMID: 24107423 DOI: 10.1152/ajprenal.00089.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present a lumped-nephron model that explicitly represents the main features of the underlying physiology, incorporating the major hormonal regulatory effects on both tubular and vascular function, and that accurately simulates hormonal regulation of renal salt and water excretion. This is the first model to explicitly couple glomerulovascular and medullary dynamics, and it is much more detailed in structure than existing whole organ models and renal portions of multiorgan models. In contrast to previous medullary models, which have only considered the antidiuretic state, our model is able to regulate water and sodium excretion over a variety of experimental conditions in good agreement with data from experimental studies of the rat. Since the properties of the vasculature and epithelia are explicitly represented, they can be altered to simulate pathophysiological conditions and pharmacological interventions. The model serves as an appropriate starting point for simulations of physiological, pathophysiological, and pharmacological renal conditions and for exploring the relationship between the extrarenal environment and renal excretory function in physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Robert Moss
- Mathematics Dept., Duke Univ., Box 90320, Durham, NC 27708-0320.
| | | |
Collapse
|
143
|
Menzies RI, Zammit-Mangion A, Hollis LM, Lennen RJ, Jansen MA, Webb DJ, Mullins JJ, Dear JW, Sanguinetti G, Bailey MA. An anatomically unbiased approach for analysis of renal BOLD magnetic resonance images. Am J Physiol Renal Physiol 2013; 305:F845-52. [DOI: 10.1152/ajprenal.00113.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oxygenation defects may contribute to renal disease progression, but the chronology of events is difficult to define in vivo without recourse to invasive methodologies. Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI) provides an attractive alternative, but the R2* signal is physiologically complex. Postacquisition data analysis often relies on manual selection of region(s) of interest. This approach excludes from analysis significant quantities of biological information and is subject to selection bias. We present a semiautomated, anatomically unbiased approach to compartmentalize voxels into two quantitatively related clusters. In control F344 rats, low R2* clustering was located predominantly within the cortex and higher R2* clustering within the medulla (70.96 ± 1.48 vs. 79.00 ± 1.50; 3 scans per rat; n = 6; P < 0.01) consistent anatomically with a cortico-medullary oxygen gradient. An intravenous bolus of acetylcholine caused a transient reduction of the R2* signal in both clustered segments ( P < 0.01). This was nitric oxide dependent and temporally distinct from the hemodynamic effects of acetylcholine. Rats were then chronically infused with angiotensin II (60 ng/min) and rescanned 3 days later. Clustering demonstrated a disruption of the cortico-medullary gradient, producing less distinctly segmented mean R2* clusters (71.30 ± 2.00 vs. 72.48 ± 1.27; n = 6; NS). The acetylcholine-induced attenuation of the R2* signal was abolished by chronic angiotensin II infusion, consistent with reduced nitric oxide bioavailability. This global map of oxygenation, defined by clustering individual voxels on the basis of quantitative nearness, might be more robust in defining deficits in renal oxygenation than the absolute magnitude of R2* in small, manually selected regions of interest defined exclusively by anatomical nearness.
Collapse
Affiliation(s)
- Robert I. Menzies
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | | | - Lyam M. Hollis
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - Ross J. Lennen
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - Maurits A. Jansen
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - David J. Webb
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - John J. Mullins
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - James W. Dear
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - Guido Sanguinetti
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A. Bailey
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| |
Collapse
|
144
|
Fähling M, Mathia S, Paliege A, Koesters R, Mrowka R, Peters H, Persson PB, Neumayer HH, Bachmann S, Rosenberger C. Tubular von Hippel-Lindau knockout protects against rhabdomyolysis-induced AKI. J Am Soc Nephrol 2013; 24:1806-19. [PMID: 23970125 DOI: 10.1681/asn.2013030281] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Renal hypoxia occurs in AKI of various etiologies, but adaptation to hypoxia, mediated by hypoxia-inducible factor (HIF), is incomplete in these conditions. Preconditional HIF activation protects against renal ischemia-reperfusion injury, yet the mechanisms involved are largely unknown, and HIF-mediated renoprotection has not been examined in other causes of AKI. Here, we show that selective activation of HIF in renal tubules, through Pax8-rtTA-based inducible knockout of von Hippel-Lindau protein (VHL-KO), protects from rhabdomyolysis-induced AKI. In this model, HIF activation correlated inversely with tubular injury. Specifically, VHL deletion attenuated the increased levels of serum creatinine/urea, caspase-3 protein, and tubular necrosis induced by rhabdomyolysis in wild-type mice. Moreover, HIF activation in nephron segments at risk for injury occurred only in VHL-KO animals. At day 1 after rhabdomyolysis, when tubular injury may be reversible, the HIF-mediated renoprotection in VHL-KO mice was associated with activated glycolysis, cellular glucose uptake and utilization, autophagy, vasodilation, and proton removal, as demonstrated by quantitative PCR, pathway enrichment analysis, and immunohistochemistry. In conclusion, a HIF-mediated shift toward improved energy supply may protect against acute tubular injury in various forms of AKI.
Collapse
|
145
|
Hu L, Chen J, Yang X, Senpan A, Allen JS, Yanaba N, Caruthers SD, Lanza GM, Hammerman MR, Wickline SA. Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear (1) H/(19) F MRI and perfluorocarbon nanoparticles. Magn Reson Med 2013; 71:2186-96. [PMID: 23929727 DOI: 10.1002/mrm.24851] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/20/2013] [Accepted: 06/02/2013] [Indexed: 01/19/2023]
Abstract
PURPOSE We sought to develop a unique sensor-reporter approach for functional kidney imaging that employs circulating perfluorocarbon nanoparticles and multinuclear (1) H/(19) F MRI. METHODS (19) F spin density weighted and T1 weighted images were used to generate quantitative functional mappings of both healthy and ischemia-reperfusion (acute kidney injury) injured mouse kidneys. (1) H blood-oxygenation-level-dependent (BOLD) MRI was also employed as a supplementary approach to facilitate the comprehensive analysis of renal circulation and its pathological changes in acute kidney injury. RESULTS Heterogeneous blood volume distributions and intrarenal oxygenation gradients were confirmed in healthy kidneys by (19) F MRI. In a mouse model of acute kidney injury, (19) F MRI, in conjunction with blood-oxygenation-level-dependent MRI, sensitively delineated renal vascular damage and recovery. In the cortico-medullary junction region, we observed 25% lower (19) F signal (P < 0.05) and 70% longer (1) H T2* (P < 0.01) in injured kidneys compared with contralateral kidneys at 24 h after initial ischemia-reperfusion injury. We also detected 71% higher (19) F signal (P < 0.01) and 40% lower (1) H T2* (P < 0.05) in the renal medulla region of injured kidneys compared with contralateral uninjured kidneys. CONCLUSION Integrated (1) H/(19) F MRI using perfluorocarbon nanoparticles provides a multiparametric readout of regional perfusion defects in acutely injured kidneys.
Collapse
Affiliation(s)
- Lingzhi Hu
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Layton AT. Mathematical modeling of kidney transport. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:557-73. [PMID: 23852667 DOI: 10.1002/wsbm.1232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 11/08/2022]
Abstract
In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, Durham, NC, USA
| |
Collapse
|
147
|
Saad A, Crane J, Glockner JF, Herrmann SMS, Friedman H, Ebrahimi B, Lerman LO, Textor SC. Human renovascular disease: estimating fractional tissue hypoxia to analyze blood oxygen level-dependent MR. Radiology 2013; 268:770-8. [PMID: 23788716 DOI: 10.1148/radiol.13122234] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To test the hypothesis that fractional kidney hypoxia, measured by using blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging, correlates with renal blood flow (RBF), tissue perfusion, and glomerular filtration rate (GFR) in patients with atherosclerotic renal artery stenosis (RAS) better than regionally selected region of interest-based methods. MATERIALS AND METHODS The study was approved by the institutional review board according to a HIPAA-compliant protocol, with written informed consent. BOLD MR imaging was performed in 40 patients with atherosclerotic RAS (age range, 51-83 years; 22 men, 18 women) and 32 patients with essential hypertension (EH) (age range, 26-85 years; 19 men, 13 women) during sodium intake and renin-angiotensin blockade. Fractional kidney hypoxia (percentage of entire axial image section with R2* above 30 sec(-1)) and conventional regional estimates of cortical and medullary R2* levels were measured. Stenotic and nonstenotic contralateral kidneys were compared for volume, tissue perfusion, and blood flow measured with multidetector computed tomography. Statistical analysis was performed (paired and nonpaired t tests, linear regression analysis). RESULTS Stenotic RBF was reduced compared with RBF of contralateral kidneys (225.2 mL/min vs 348 mL/min, P = .0003). Medullary perfusion in atherosclerotic RAS patients was lower than in EH patients (1.07 mL/min per milliliter of tissue vs 1.3 mL/min per milliliter of tissue, P = .009). While observer-selected cortical R2* (18.9 sec(-1) [stenosis] vs 18.5 sec(-1) [EH], P = .07) did not differ, fractional kidney hypoxia was higher in stenotic kidneys compared with kidneys with EH (17.4% vs 9.6%, P < .0001) and contralateral kidneys (7.2%, P < .0001). Fractional hypoxia correlated inversely with blood flow (r = -0.34), perfusion (r = -0.3), and GFR (r = -0.32). CONCLUSION Fractional tissue hypoxia rather than cortical or medullary R2* values used to assess renal BOLD MR imaging demonstrated a direct relationship to chronically reduced blood flow and GFR.
Collapse
Affiliation(s)
- Ahmed Saad
- Division of Nephrology and Hypertension, Department of Radiology, Mayo Clinic, 200 First St, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Koeners MP, Ow CPC, Russell DM, Abdelkader A, Eppel GA, Ludbrook J, Malpas SC, Evans RG. Telemetry-based oxygen sensor for continuous monitoring of kidney oxygenation in conscious rats. Am J Physiol Renal Physiol 2013; 304:F1471-80. [DOI: 10.1152/ajprenal.00662.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The precise roles of hypoxia in the initiation and progression of kidney disease remain unresolved. A major technical limitation has been the absence of methods allowing long-term measurement of kidney tissue oxygen tension (Po2) in unrestrained animals. We developed a telemetric method for the measurement of kidney tissue Po2 in unrestrained rats, using carbon paste electrodes (CPEs). After acute implantation in anesthetized rats, tissue Po2 measured by CPE-telemetry in the inner cortex and medulla was in close agreement with that provided by the “gold standard” Clark electrode. The CPE-telemetry system could detect small changes in renal tissue Po2 evoked by mild hypoxemia. In unanesthetized rats, CPE-telemetry provided stable measurements of medullary tissue Po2 over days 5− 19 after implantation. It also provided reproducible responses to systemic hypoxia and hyperoxia over this time period. There was little evidence of fibrosis or scarring after 3 wk of electrode implantation. However, because medullary Po2 measured by CPE-telemetry was greater than that documented from previous studies in anesthetized animals, this method is presently best suited for monitoring relative changes rather than absolute values. Nevertheless, this new technology provides, for the first time, the opportunity to examine the temporal relationships between tissue hypoxia and the progression of renal disease.
Collapse
Affiliation(s)
- Maarten P. Koeners
- Department of Physiology, Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Nephrology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Connie P. C. Ow
- Department of Physiology, Monash University, Melbourne, Australia
| | - David M. Russell
- Department of Physiology, Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Millar Instruments, Auckland, New Zealand; and
| | - Amany Abdelkader
- Department of Physiology, Monash University, Melbourne, Australia
| | | | - John Ludbrook
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Simon C. Malpas
- Department of Physiology, Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Millar Instruments, Auckland, New Zealand; and
| | - Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
149
|
Arakelyan K, Cantow K, Hentschel J, Flemming B, Pohlmann A, Ladwig M, Niendorf T, Seeliger E. Early effects of an x-ray contrast medium on renal T(2) */T(2) MRI as compared to short-term hyperoxia, hypoxia and aortic occlusion in rats. Acta Physiol (Oxf) 2013; 208:202-13. [PMID: 23480578 DOI: 10.1111/apha.12094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/08/2013] [Accepted: 03/05/2013] [Indexed: 01/26/2023]
Abstract
AIM X-ray contrast media (CM) can cause acute kidney injury (AKI). Medullary hypoxia is pivotal in CM-induced AKI, as indicated by invasively and pin-point measured tissue oxygenation. MRI provides spatially resolved blood oxygenation level-dependent data using T2 * and T2 mapping. We studied CM effects on renal T2 */T2 and benchmarked them against short periods of hyperoxia, hypoxia and aortic occlusion (AO). METHODS Rats were equipped with carotid artery catheters (tip towards aorta) and supra-renal aortic occluders. T2 */T2 mapping was performed using a 9.4-T animal scanner. CM (1.5 mL iodixanol) was injected into the thoracic aorta with the animal in the scanner followed by 2 h of T2 */T2 mapping. For T2 */T2 assessment, regions of interest in the cortex (C), outer medulla (OM), inner medulla (IM) and papilla (P) were determined according to morphological features. RESULTS Hyperoxia increased T2 * in C (by 17%) and all medullary layers (25-35%). Hypoxia decreased T2 * in C (40%) and all medullary layers (55-60%). AO decreased T2 * in C (18%) and all medullary layers (30-40%). Upon injection of CM, T2 * increased transiently, then decreased, reaching values 10-20% below baseline in C and OM and 30-40% below baseline in IM and P. CONCLUSION T2 * mapping corroborates data previously obtained with invasive methods and demonstrates that CM injection affects renal medullary oxygenation. CM-induced T2 * decrease in OM was small vs. hypoxia and aortic occlusion. T2 * decrease obtained for hypoxia was more pronounced than for AO. This indicates that T2 * may not accurately reflect blood oxygenation under certain conditions.
Collapse
Affiliation(s)
| | - K. Cantow
- Center for Cardiovascular Research; Institut für Vegetative Physiologie; Charité - Universitätsmedizin Berlin; Berlin; Germany
| | - J. Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin; Germany
| | - B. Flemming
- Center for Cardiovascular Research; Institut für Vegetative Physiologie; Charité - Universitätsmedizin Berlin; Berlin; Germany
| | - A. Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin; Germany
| | - M. Ladwig
- Center for Cardiovascular Research; Institut für Vegetative Physiologie; Charité - Universitätsmedizin Berlin; Berlin; Germany
| | | | - E. Seeliger
- Center for Cardiovascular Research; Institut für Vegetative Physiologie; Charité - Universitätsmedizin Berlin; Berlin; Germany
| |
Collapse
|
150
|
Affiliation(s)
- Zhou Yijiang
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhu Jianhua
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Lin Feili
- Department of Internal Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|