101
|
Tong JJ, Xu SQ, Zong HX, Pan MJ, Teng YZ, Xu JH. Prevalence and risk factors associated with vertebral osteoporotic fractures in patients with rheumatoid arthritis. Clin Rheumatol 2019; 39:357-364. [PMID: 31691041 DOI: 10.1007/s10067-019-04787-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/16/2019] [Accepted: 09/21/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To explore the prevalence and risk factors of osteoporosis (OP) and vertebral osteoporotic fracture (VOPF) in patients with rheumatoid arthritis (RA). METHODS Anteroposterior and lateral X-ray examination of the vertebral column (T4-L4) was used for the semi-quantitative assessment of VOPF. Bone mineral density was measured by dual-energy X-ray absorptiometry. RESULTS Of 865 RA patients, the prevalence of OP and VOPF was 33.6% and 20.2%, respectively. Patients with OP or VOPF were older, and had longer term use and a larger daily amount and cumulative dose of glucocorticoids (GCs), longer disease duration, and higher Health Assessment Questionnaire (HAQ) scores and Sharp scores than patients without OP or VOPF (P < 0.05). OP was also correlated with higher disease activity. The patients treated with GCs had higher incidences of OP and VOPF than the patients without GCs (P < 0.05). The cutoff values in the area under curve (AUC) of the daily dose or treatment course of GCs-VOPF were 9 mg and 37.5 days. Older age, female sex, and a higher Sharp score were risk factors for OP in RA patients, while higher BMI was a protective factor. Older age and a high GC daily dose were risk factors for VOPF in RA patients. CONCLUSIONS RA patients have a high prevalence of OP and VOPF. Older age, female sex, lower BMI, and higher activity and severity of RA are closely related with OP. Older age and a higher GC daily dose are risk factors for VOPF in RA patients. Key Points • Older age, female sex, lower BMI, and a higher Sharp score were risk factors for OP in RA patients. • Older age and a high GC daily dose were risk factors for VOPF in RA patients. • OP and VOPF in RA patients were correlated with longer disease duration and higher severity of RA.
Collapse
Affiliation(s)
- Jing-Jing Tong
- Department of Rheumatology & Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Sheng-Qian Xu
- Department of Rheumatology & Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - He-Xiang Zong
- Department of Rheumatology & Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Mei-Juan Pan
- Department of Rheumatology & Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yu-Zhu Teng
- Department of Rheumatology & Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jian-Hua Xu
- Department of Rheumatology & Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| |
Collapse
|
102
|
Ahmad M, Hachemi Y, Paxian K, Mengele F, Koenen M, Tuckermann J. A Jack of All Trades: Impact of Glucocorticoids on Cellular Cross-Talk in Osteoimmunology. Front Immunol 2019; 10:2460. [PMID: 31681333 PMCID: PMC6811614 DOI: 10.3389/fimmu.2019.02460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GCs) are known to have a strong impact on the immune system, metabolism, and bone homeostasis. While these functions have been long investigated separately in immunology, metabolism, or bone biology, the understanding of how GCs regulate the cellular cross-talk between innate immune cells, mesenchymal cells, and other stromal cells has been garnering attention rather recently. Here we review the recent findings of GC action in osteoporosis, inflammatory bone diseases (rheumatoid and osteoarthritis), and bone regeneration during fracture healing. We focus on studies of pre-clinical animal models that enable dissecting the role of GC actions in innate immune cells, stromal cells, and bone cells using conditional and function-selective mutant mice of the GC receptor (GR), or mice with impaired GC signaling. Importantly, GCs do not only directly affect cellular functions, but also influence the cross-talk between mesenchymal and immune cells, contributing to both beneficial and adverse effects of GCs. Given the importance of endogenous GCs as stress hormones and the wide prescription of pharmaceutical GCs, an improved understanding of GC action is decisive for tackling inflammatory bone diseases, osteoporosis, and aging.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Yasmine Hachemi
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Kevin Paxian
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Florian Mengele
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
- Praxisklinik für Orthopädie, Unfall- und Neurochirurgie Prof. Bischoff/ Dr. Spies/ Dr. Mengele, Neu-Ulm, Germany
| | - Mascha Koenen
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| |
Collapse
|
103
|
Shen GY, Ren H, Shang Q, Zhao WH, Zhang ZD, Yu X, Huang JJ, Tang JJ, Yang ZD, Liang D, Jiang XB. Let-7f-5p regulates TGFBR1 in glucocorticoid-inhibited osteoblast differentiation and ameliorates glucocorticoid-induced bone loss. Int J Biol Sci 2019; 15:2182-2197. [PMID: 31592234 PMCID: PMC6775285 DOI: 10.7150/ijbs.33490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
Previous studies indicated that let-7 enhances osteogenesis and bone formation of human adipose-derived mesenchymal stem cells (MSCs). We also have confirmed that let-7f-5p expression was upregulated during osteoblast differentiation in rat bone marrow-derived MSCs (BMSCs) and was downregulated in the vertebrae of patients with glucocorticoid (GC)-induced osteoporosis (GIOP). The study was performed to determine the role of let-7f-5p in GC-inhibited osteogenic differentiation of murine BMSCs in vitro and in GIOP in vivo. Here, we report that dexamethasone (Dex) inhibited osteogenic differentiation of BMSCs and let-7f-5p expression, while increasing the expression of transforming growth factor beta receptor 1 (TGFBR1), a direct target of let-7f-5p during osteoblast differentiation under Dex conditions. In addition, let-7f-5p promoted osteogenic differentiation of BMSCs, as indicated by the promotion of alkaline phosphatase (ALP) staining and activity, Von Kossa staining, and osteogenic marker expression (Runx2,Osx, Alp, and Ocn), but decreased TGFBR1 expression in the presence of Dex. However, overexpression of TGFBR1 reversed the upregulation of let-7f-5p during Dex-treated osteoblast differentiation. Knockdown of TGFBR1 reversed the effect of let-7f-5p downregulation during Dex-treated osteogenic differentiation of BMSCs. We also found that glucocorticoid receptor (GR) mediated transcriptional silencing of let-7f-5p and its knockdown enhanced Dex-inhibited osteogenic differentiation. Further, when injected in vivo, agomiR-let-7f-5p significantly reversed bone loss induced by Dex, as well as increased osteogenic marker expression (Runx2, Osx, Alp, and Ocn) and decreased TGFBR1 expression in bone extracts. These findings indicated that the regulatory axis of GR/let-7f-5p/TGFBR1 may be important for Dex-inhibited osteoblast differentiation and that let-7f-5p may be a useful therapeutic target for GIOP.
Collapse
Affiliation(s)
- Geng-Yang Shen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hui Ren
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wen-Hua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhi-Da Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jin-Jing Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jing-Jing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhi-Dong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Bing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
104
|
Escoter-Torres L, Caratti G, Mechtidou A, Tuckermann J, Uhlenhaut NH, Vettorazzi S. Fighting the Fire: Mechanisms of Inflammatory Gene Regulation by the Glucocorticoid Receptor. Front Immunol 2019; 10:1859. [PMID: 31440248 PMCID: PMC6693390 DOI: 10.3389/fimmu.2019.01859] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
For many decades, glucocorticoids have been widely used as the gold standard treatment for inflammatory conditions. Unfortunately, their clinical use is limited by severe adverse effects such as insulin resistance, cardiometabolic diseases, muscle and skin atrophies, osteoporosis, and depression. Glucocorticoids exert their effects by binding to the Glucocorticoid Receptor (GR), a ligand-activated transcription factor which both positively, and negatively regulates gene expression. Extensive research during the past several years has uncovered novel mechanisms by which the GR activates and represses its target genes. Genome-wide studies and mouse models have provided valuable insight into the molecular mechanisms of inflammatory gene regulation by GR. This review focusses on newly identified target genes and GR co-regulators that are important for its anti-inflammatory effects in innate immune cells, as well as mutations within the GR itself that shed light on its transcriptional activity. This research progress will hopefully serve as the basis for the development of safer immune suppressants with reduced side effect profiles.
Collapse
Affiliation(s)
- Laura Escoter-Torres
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Giorgio Caratti
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Aikaterini Mechtidou
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Jan Tuckermann
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Nina Henriette Uhlenhaut
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Sabine Vettorazzi
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| |
Collapse
|
105
|
Pfänder P, Fidan M, Burret U, Lipinski L, Vettorazzi S. Cdk5 Deletion Enhances the Anti-inflammatory Potential of GC-Mediated GR Activation During Inflammation. Front Immunol 2019; 10:1554. [PMID: 31354714 PMCID: PMC6635475 DOI: 10.3389/fimmu.2019.01554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
The suppression of activated pro-inflammatory macrophages during immune response has a major impact on the outcome of many inflammatory diseases including sepsis and rheumatoid arthritis. The pro- and anti-inflammatory functions of macrophages have been widely studied, whereas their regulation under immunosuppressive treatments such as glucocorticoid (GC) therapy is less well-understood. GC-mediated glucocorticoid receptor (GR) activation is crucial to mediate anti-inflammatory effects. In addition, the anti-cancer drug roscovitine, that is currently being tested in clinical trials, was recently described to regulate inflammatory processes by inhibiting different Cdks such as cyclin-dependent kinase 5 (Cdk5). Cdk5 was identified as a modulator of inflammatory processes in different immune cells and furthermore described to influence GR gene expression in the brain. Whether roscovitine can enhance the immunosuppressive effects of GCs and if the inhibition of Cdk5 affects GR gene regulatory function in innate immune cells, such as macrophages, has not yet been investigated. Here, we report that roscovitine enhances the immunosuppressive Dexamethasone (Dex) effect on the inducible nitric oxide synthase (iNos) expression, which is essential for immune regulation. Cdk5 deletion in macrophages prevented iNos protein and nitric oxide (NO) generation after a combinatory treatment with inflammatory stimuli and Dex. Cdk5 deletion in macrophages attenuated the GR phosphorylation on serine 211 after Dex treatment alone and in combination with inflammatory stimuli, but interestingly increased the GR-dependent anti-inflammatory target gene dual-specificity phosphatase 1 (Dusp1, Mkp1). Mkp1 phosphatase activity decreases the activation of its direct target p38Mapk, reduced iNos expression and NO production upon inflammatory stimuli and Dex treatment in the absence of Cdk5. Taken together, we identified Cdk5 as a potential novel regulator of NO generation in inflammatory macrophages under GC treatment. Our data suggest that GC treatment in combination with specific Cdk5 inhibtior(s) provides a stronger suppression of inflammation and could thus replace high-dose GC therapy which has severe side effects in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Pauline Pfänder
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Ute Burret
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Lena Lipinski
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| |
Collapse
|
106
|
Coury F, Peyruchaud O, Machuca-Gayet I. Osteoimmunology of Bone Loss in Inflammatory Rheumatic Diseases. Front Immunol 2019; 10:679. [PMID: 31001277 PMCID: PMC6456657 DOI: 10.3389/fimmu.2019.00679] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades, the field of osteoimmunology has emerged in response to a range of evidence demonstrating the reciprocal relationship between the immune system and bone. In particular, localized bone loss, in the form of joint erosions and periarticular osteopenia, as well as systemic osteoporosis, caused by inflammatory rheumatic diseases including rheumatoid arthritis, the prototype of inflammatory arthritis has highlighted the importance of this interplay. Osteoclast-mediated resorption at the interface between synovium and bone is responsible for the joint erosion seen in patients suffering from inflammatory arthritis. Clinical studies have helped to validate the impact of several pathways on osteoclast formation and activity. Essentially, the expression of pro-inflammatory cytokines as well as Receptor Activator of Nuclear factor κB Ligand (RANKL) is, both directly and indirectly, increased by T cells, stimulating osteoclastogenesis and resorption through a crucial regulator of immunity, the Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). Furthermore, in rheumatoid arthritis, autoantibodies, which are accurate predictors both of the disease and associated structural damage, have been shown to stimulate the differentiation of osteoclasts, resulting in localized bone resorption. It is now also evident that osteoblast-mediated bone formation is impaired by inflammation both in joints and the skeleton in rheumatoid arthritis. This review summarizes the substantial progress that has been made in understanding the pathophysiology of bone loss in inflammatory rheumatic disease and highlights therapeutic targets potentially important for the cure or at least an alleviation of this destructive process.
Collapse
Affiliation(s)
- Fabienne Coury
- INSERM, UMR1033 LYOS, Lyon, France.,University Claude Bernard Lyon I, Lyon, France.,Department of Rheumatology, Lyon Sud Hospital, Lyon, France
| | - Olivier Peyruchaud
- INSERM, UMR1033 LYOS, Lyon, France.,University Claude Bernard Lyon I, Lyon, France
| | - Irma Machuca-Gayet
- INSERM, UMR1033 LYOS, Lyon, France.,University Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
107
|
Glantschnig C, Koenen M, Gil‐Lozano M, Karbiener M, Pickrahn I, Williams‐Dautovich J, Patel R, Cummins CL, Giroud M, Hartleben G, Vogl E, Blüher M, Tuckermann J, Uhlenhaut H, Herzig S, Scheideler M. A miR‐29a‐driven negative feedback loop regulates peripheral glucocorticoid receptor signaling. FASEB J 2019; 33:5924-5941. [DOI: 10.1096/fj.201801385rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christina Glantschnig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Mascha Koenen
- Institute of Comparative Molecular EndocrinologyUlm University Ulm Germany
| | - Manuel Gil‐Lozano
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Michael Karbiener
- Division of Phoniatrics, Speech, and SwallowingDepartment of OtorhinolaryngologyUniversity HospitalMedical University of Graz Graz Austria
| | - Ines Pickrahn
- Department of Legal MedicineUniversity of Salzburg Salzburg Austria
| | | | - Rucha Patel
- Department of Pharmaceutical SciencesUniversity of Toronto Toronto Ontario Canada
| | - Carolyn L. Cummins
- Department of Pharmaceutical SciencesUniversity of Toronto Toronto Ontario Canada
| | - Maude Giroud
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Götz Hartleben
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Elena Vogl
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Matthias Blüher
- Clinic for Endocrinology and NephrologyMedical Research Center Leipzig Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular EndocrinologyUlm University Ulm Germany
| | - Henriette Uhlenhaut
- Research Group Molecular EndocrinologyHelmholtz Center Munich Neuherberg Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
- School of MedicineTechnical University Munich Munich Germany
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| |
Collapse
|
108
|
Savvidou O, Milonaki M, Goumenos S, Flevas D, Papagelopoulos P, Moutsatsou P. Glucocorticoid signaling and osteoarthritis. Mol Cell Endocrinol 2019; 480:153-166. [PMID: 30445185 DOI: 10.1016/j.mce.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Glucocorticoids are steroid hormones synthesized and released by the adrenal cortex. Their main function is to maintain cell homeostasis through a variety of signaling pathways, responding to changes in an organism's environment or developmental status. Mimicking the actions of natural glucocorticoids, synthetic glucocorticoids have been recruited to treat many diseases that implicate glucocorticoid receptor signaling such as osteoarthritis. In osteoarthritis, synthetic glucocorticoids aim to alleviate inflammation and pain. The variation of patients' response and the possibility of complications associated with their long-term use have led to a need for a better understanding of glucocorticoid receptor signaling in osteoarthritis. In this review, we performed a literature search in the molecular pathways that link the osteoarthritic joint to the glucocorticoid receptor signaling. We hope that this information will advance research in the field and propose new molecular targets for the development of more optimized therapies for osteoarthritis.
Collapse
Affiliation(s)
- Olga Savvidou
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Mandy Milonaki
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Stavros Goumenos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Dimitrios Flevas
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Panayiotis Papagelopoulos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| |
Collapse
|
109
|
Shimazu K, Fukumitsu S, Ishijima T, Toyoda T, Nakai Y, Abe K, Aida K, Okada S, Hino A. The Anti-Arthritis Effect of Olive-Derived Maslinic Acid in Mice is Due to its Promotion of Tissue Formation and its Anti-Inflammatory Effects. Mol Nutr Food Res 2018; 63:e1800543. [DOI: 10.1002/mnfr.201800543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/05/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Kyoko Shimazu
- Innovation Center; Nippon Flour Mills Co., Ltd.; 5-1-3 Midorigaoka Atsugi Kanagawa Japan
| | - Satoshi Fukumitsu
- Innovation Center; Nippon Flour Mills Co., Ltd.; 5-1-3 Midorigaoka Atsugi Kanagawa Japan
| | - Tomoko Ishijima
- Graduate School of Agricultural and Life Science; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo Japan
| | - Tsudoi Toyoda
- Graduate School of Agricultural and Life Science; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo Japan
| | - Yuji Nakai
- Institute for Food Sciences; Hirosaki University; 2-1-1 Yanagawa Aomori Aomori Japan
| | - Keiko Abe
- Graduate School of Agricultural and Life Science; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo Japan
- Group of Food Functionality Assessment; Kanagawa Institute of Industrial Science and Technology; 3-25-13 Tonomachi Kawasaki-ku, Kawasaki Kanagawa Japan
| | - Kazuhiko Aida
- Innovation Center; Nippon Flour Mills Co., Ltd.; 5-1-3 Midorigaoka Atsugi Kanagawa Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Science; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo Japan
| | - Akihiro Hino
- Innovation Center; Nippon Flour Mills Co., Ltd.; 5-1-3 Midorigaoka Atsugi Kanagawa Japan
| |
Collapse
|
110
|
Wang L, Heckmann BL, Yang X, Long H. Osteoblast autophagy in glucocorticoid-induced osteoporosis. J Cell Physiol 2018; 234:3207-3215. [PMID: 30417506 DOI: 10.1002/jcp.27335] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/10/2018] [Indexed: 02/05/2023]
Abstract
Administration of glucocorticoids is an effective strategy for treating many inflammatory and autoimmune diseases. However, glucocorticoid treatment can have adverse effects on bone, leading to glucocorticoid-induced osteoporosis (GIO), the most common form of secondary osteoporosis. Although the pathogenesis of GIO has been studied for decades, over the past ten years the autophagy machinery has been implicated as a novel mechanism. Autophagy in osteoblasts, osteocytes, and osteoclasts plays a critical role in the maintenance of bone homeostasis. Herein, we specifically discuss how osteoblast autophagy responds to glucocorticoids and its role in the development of GIO.
Collapse
Affiliation(s)
- Lufei Wang
- Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xianrui Yang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Hu Long
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
111
|
Koenen M, Culemann S, Vettorazzi S, Caratti G, Frappart L, Baum W, Krönke G, Baschant U, Tuckermann JP. Glucocorticoid receptor in stromal cells is essential for glucocorticoid-mediated suppression of inflammation in arthritis. Ann Rheum Dis 2018; 77:1610-1618. [PMID: 29997111 PMCID: PMC6225806 DOI: 10.1136/annrheumdis-2017-212762] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Glucocorticoid (GC) therapy is frequently used to treat rheumatoid arthritis due to potent anti-inflammatory actions of GCs. Direct actions of GCs on immune cells were suggested to suppress inflammation. OBJECTIVES Define the role of the glucocorticoid receptor (GR) in stromal cells for suppression of inflammatory arthritis. METHODS Bone marrow chimeric mice lacking the GR in the hematopoietic or stromal compartment, respectively, and mice with impaired GR dimerisation (GRdim) were analysed for their response to dexamethasone (DEX, 1 mg/kg) treatment in serum transfer-induced arthritis (STIA). Joint swelling, cell infiltration (histology), cytokines, cell composition (flow cytometry) and gene expression were analysed and RNASeq of wild type and GRdim primary murine fibroblast-like synoviocytes (FLS) was performed. RESULTS GR deficiency in immune cells did not impair GC-mediated suppression of STIA. In contrast, mice with GR-deficient or GR dimerisation-impaired stromal cells were resistant to GC treatment, despite efficient suppression of cytokines. Intriguingly, in mice with impaired GR function in the stromal compartment, GCs failed to stimulate non-classical, non-activated macrophages (Ly6Cneg, MHCIIneg) and associated anti-inflammatory markers CD163, CD36, AnxA1, MerTK and Axl. Mice with GR deficiency in FLS were partially resistant to GC-induced suppression of STIA. Accordingly, RNASeq analysis of DEX-treated GRdim FLS revealed a distinct gene signature indicating enhanced activity and a failure to reduce macrophage inflammatory protein (Mip)-1α and Mip-1β. CONCLUSION We report a novel anti-inflammatory mechanism of GC action that involves GR dimerisation-dependent gene regulation in non-immune stromal cells, presumably FLS. FLS control non-classical, anti-inflammatory polarisation of macrophages that contributes to suppression of inflammation in arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cytokines/biosynthesis
- Dexamethasone/pharmacology
- Dexamethasone/therapeutic use
- Dimerization
- Gene Expression Regulation/drug effects
- Glucocorticoids/pharmacology
- Glucocorticoids/therapeutic use
- Metabolism, Inborn Errors/metabolism
- Metabolism, Inborn Errors/pathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Receptors, Glucocorticoid/deficiency
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/physiology
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Synoviocytes/drug effects
- Synoviocytes/metabolism
- Transplantation Chimera
Collapse
Affiliation(s)
- Mascha Koenen
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Stephan Culemann
- Tuckermann Lab, Leibniz Institute for Age Research–Fritz-Lipmann-Institute, Jena, Germany
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Sabine Vettorazzi
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
- Tuckermann Lab, Leibniz Institute for Age Research–Fritz-Lipmann-Institute, Jena, Germany
| | - Giorgio Caratti
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Lucien Frappart
- Tuckermann Lab, Leibniz Institute for Age Research–Fritz-Lipmann-Institute, Jena, Germany
- INSERM, Oncogenèse et Progression Tumorale, Universitè Claude Bernard Lyon I, Lyon, France
| | - Wolfgang Baum
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Ulrike Baschant
- Tuckermann Lab, Leibniz Institute for Age Research–Fritz-Lipmann-Institute, Jena, Germany
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
- Tuckermann Lab, Leibniz Institute for Age Research–Fritz-Lipmann-Institute, Jena, Germany
| |
Collapse
|
112
|
Chaperonin 60 sustains osteoblast autophagy and counteracts glucocorticoid aggravation of osteoporosis by chaperoning RPTOR. Cell Death Dis 2018; 9:938. [PMID: 30224697 PMCID: PMC6141469 DOI: 10.1038/s41419-018-0970-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022]
Abstract
Glucocorticoid excess medication interrupts osteoblast homeostasis and exacerbates bone mass and microstructure loss ramping up the pathogenesis of osteoporotic disorders. Heat shock protein 60 (HSP60) is found to maintain protein function within cellular microenvironment upon encountering detrimental stress. In this study, we revealed that supraphysiological dexamethasone decreased HSP60 expression along with deregulated autophagy in osteoblasts cultures. This chaperonin is required to sustain autophagic markers Atg4, and Atg12 expression, LC3-II conversion, and autophagic puncta formation, and alleviated the glucocorticoid-induced loss of osteogenic gene expression and mineralized matrix accumulation. Regulator-associated protein of mTOR complex 1 (RPTOR) existed in HSP60 immunoprecipitate contributing to the HSP60-promoted autophagy and osteogenesis because knocking down RPTOR impaired autophagic influx and osteogenic activity. HSP60 shielded from RPTOR dysfunction by reducing the glucocorticoid-induced RPTOR de-phosphorylation, aggregation, and ubiquitination. In vivo, forced RPTOR expression attenuated the methylprednisolone-induced loss of osteoblast autophagy, bone mass, and trabecular microstructure in mice. HSP60 transgenic mice displayed increased cortical bone, mineral acquisition, and osteoblast proliferation along with higher osteogenesis of bone marrow mesenchymal cells than those of wild-type mice. HSP60 overexpression retained RPTOR signaling, sustained osteoblast autophagy, and compromised the severity of glucocorticoid-induced bone loss and sparse trabecular histopathology. Taken together, HSP60 is essential to maintain osteoblast autophagy, which facilitates mineralized matrix production. It fends off glucocorticoid-induced osteoblast apoptosis and bone loss by stabilizing RPTOR action to autophagy. This study offers a new insight into the mechanistic by which chaperonin protects against the glucocorticoid-induced osteoblast dysfunction and bone loss.
Collapse
|
113
|
Yang P, Lv S, Wang Y, Peng Y, Ye Z, Xia Z, Ding G, Cao X, Crane JL. Preservation of type H vessels and osteoblasts by enhanced preosteoclast platelet-derived growth factor type BB attenuates glucocorticoid-induced osteoporosis in growing mice. Bone 2018; 114:1-13. [PMID: 29800693 PMCID: PMC6309783 DOI: 10.1016/j.bone.2018.05.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Survival of chronic diseases in childhood is often achieved utilizing glucocorticoids, but comes with significant side effects, including glucocorticoid-induced osteoporosis (GIO). Knowledge of the mechanism of GIO is limited to the adult skeleton. We explored the effect of genetic loss and inhibition of cathepsin K (Ctsk) as a potential treatment target in a young GIO mouse model as genetic loss of cathepsin K results in a mild form of osteopetrosis secondary to impaired osteoclast bone resorption with maintenance of bone formation. We first characterized the temporal osteoclast and osteoblast progenitor populations in Ctsk-/- and wild type (WT) mice in the primary and secondary spongiosa, as sites representative of trabecular bone modeling and remodeling, respectively. In the primary spongiosa, Ctsk-/- mice had decreased numbers of osteoclasts at young ages (2 and 4 weeks) and increased osteoblast lineage cells at later age (8 weeks) relative to WT littermates. In the secondary spongiosa, Ctsk-/- mice had greater numbers of osteoclasts and osteoblast lineage cells relative to WT littermates. We next developed a young GIO mouse model with prednisolone 10 mg/m2/day injected intraperitoneally daily from 2 through 6 weeks of age. Overall, WT-prednisolone mice had lower bone volume per tissue volume, whereas Ctsk-/--prednisolone mice maintained a similar bone volume relative to Ctsk-/--vehicle controls. WT-prednisolone mice exhibited a decreased number of osteoclasts, tartrate-resistant acid phosphatase and platelet-derived growth factor type BB (PDGF-BB) co-positive cells, type H endothelial cells, and osteoblasts relative to WT-vehicle mice in both the primary and secondary spongiosa. Interestingly, Ctsk-/--prednisolone mice demonstrated a paradoxical response with increased numbers of all parameters in primary spongiosa and no change in secondary spongiosa. Finally, treatment with a cathepsin K inhibitor prevented WT-prednisolone decline in osteoclasts, osteoblasts, type H vessels, and bone volume. These data demonstrate that cells in the primary and secondary spongiosa respond differently to glucocorticoids and genetic manipulation. Inhibition of osteoclast resorption that preserves osteoclast coupling factors, such as through inhibition of cathepsin K, may be a potential preventive treatment strategy against GIO in the growing skeleton.
Collapse
Affiliation(s)
- Ping Yang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832008, China
| | - Shan Lv
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Jiangsu, China
| | - Yan Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Endocrinology Department of Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, China
| | - Yi Peng
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Orthopedic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zixing Ye
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Peking Union Medical College, Beijing, China
| | - Zhuying Xia
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoxian Ding
- Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Jiangsu, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet L Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
114
|
Shen G, Ren H, Shang Q, Qiu T, Yu X, Zhang Z, Huang J, Zhao W, Zhang Y, Liang D, Jiang X. Autophagy as a target for glucocorticoid-induced osteoporosis therapy. Cell Mol Life Sci 2018; 75:2683-2693. [PMID: 29427075 PMCID: PMC11105583 DOI: 10.1007/s00018-018-2776-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/25/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Autophagy takes part in regulating the eukaryotic cells function and the progression of numerous diseases, but its clinical utility has not been fully developed yet. Recently, mounting evidences highlight an important correlation between autophagy and bone homeostasis, mediated by osteoclasts, osteocytes, bone marrow mesenchymal stem cells, and osteoblasts, and autophagy plays a vital role in the pathogenesis of glucocorticoid-induced osteoporosis (GIOP). The combinations of autophagy activators/inhibitors with anti-GIOP first-line drugs or some new autophagy-based manipulators, such as regulation of B cell lymphoma 2 family proteins and caspase-dependent clearance of autophagy-related gene proteins, are likely to be the promising approaches for GIOP clinical treatments. In view of the important role of autophagy in the pathogenesis of GIOP, here we review the potential mechanisms about the impacts of autophagy in GIOP and its association with GIOP therapy.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuzhuo Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
115
|
Hachemi Y, Rapp AE, Picke AK, Weidinger G, Ignatius A, Tuckermann J. Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J Mol Endocrinol 2018; 61:R75-R90. [PMID: 29588427 PMCID: PMC5976078 DOI: 10.1530/jme-18-0024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/27/2018] [Indexed: 12/29/2022]
Abstract
Glucocorticoid hormones (GCs) have profound effects on bone metabolism. Via their nuclear hormone receptor - the GR - they act locally within bone cells and modulate their proliferation, differentiation, and cell death. Consequently, high glucocorticoid levels - as present during steroid therapy or stress - impair bone growth and integrity, leading to retarded growth and glucocorticoid-induced osteoporosis, respectively. Because of their profound impact on the immune system and bone cell differentiation, GCs also affect bone regeneration and fracture healing. The use of conditional-mutant mouse strains in recent research provided insights into the cell-type-specific actions of the GR. However, despite recent advances in system biology approaches addressing GR genomics in general, little is still known about the molecular mechanisms of GCs and GR in bone cells. Here, we review the most recent findings on the molecular mechanisms of the GR in general and the known cell-type-specific actions of the GR in mesenchymal cells and their derivatives as well as in osteoclasts during bone homeostasis, GC excess, bone regeneration and fracture healing.
Collapse
Affiliation(s)
- Yasmine Hachemi
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| | - Anna E Rapp
- Institute of Orthopaedic Research and BiomechanicsUlm University Medical Centre, Ulm, Germany
| | - Ann-Kristin Picke
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular BiologyUlm University, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and BiomechanicsUlm University Medical Centre, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| |
Collapse
|
116
|
Bergström I, Isaksson H, Koskela A, Tuukkanen J, Ohlsson C, Andersson G, Windahl SH. Prednisolone treatment reduces the osteogenic effects of loading in mice. Bone 2018; 112:10-18. [PMID: 29635039 DOI: 10.1016/j.bone.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 11/25/2022]
Abstract
Glucocorticoid treatment, a major cause of drug-induced osteoporosis and fractures, is widely used to treat inflammatory conditions and diseases. By contrast, mechanical loading increases bone mass and decreases fracture risk. With these relationships in mind, we investigated whether mechanical loading interacts with GC treatment in bone. Three-month-old female C57BL/6 mice were treated with high-dose prednisolone (15 mg/60 day pellets/mouse) or vehicle for two weeks. During the treatment, right tibiae were subjected to short periods of cyclic compressive loading three times weekly, while left tibiae were used as physiologically loaded controls. The bones were analyzed using peripheral quantitative computed tomography, histomorphometry, real-time PCR, three-point bending and Fourier transform infrared micro-spectroscopy. Loading alone increased trabecular volumetric bone mineral density (vBMD), cortical thickness, cortical area, osteoblast-associated gene expression, osteocyte- and osteoclast number, and bone strength. Prednisolone alone decreased cortical area and thickness and osteoblast-associated gene expression. Importantly, prednisolone treatment decreased the load-induced increase in trabecular vBMD by 57% (p < 0.001) and expression of osteoblast-associated genes, while completely abolishing the load-induced increase in cortical area, cortical thickness, number of osteocytes and osteoclasts, and bone strength. When combined, loading and prednisolone decreased the collagen content. In conclusion, high-dose prednisolone treatment strongly inhibits the loading-induced increase in trabecular BMD, and abolishes the loading-induced increase in cortical bone mass. This phenomenon could be due to prednisolone inhibition of osteoblast differentiation and function.
Collapse
Affiliation(s)
- I Bergström
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, CLINTECH, Karolinska Institutet, Huddinge, Sweden
| | - H Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - A Koskela
- Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - J Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - C Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - G Andersson
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - S H Windahl
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, F46, Karolinska University Hospital, 141 86 Huddinge, Sweden.
| |
Collapse
|
117
|
Huang Y, Cai GQ, Peng JP, Shen C. Glucocorticoids induce apoptosis and matrix metalloproteinase-13 expression in chondrocytes through the NOX4/ROS/p38 MAPK pathway. J Steroid Biochem Mol Biol 2018. [PMID: 29526705 DOI: 10.1016/j.jsbmb.2018.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the results from our previous study, dexamethasone (Dex) increases reactive oxygen species (ROS) levels and subsequently induces cell death and matrix catabolism in chondrocytes. Nevertheless, the mechanism underlying this phenomenon remains unclear. Nicotinamide adenine dinucleotide (phosphate) (NADPH) oxidase 4 (NOX4) is one of the major enzymes responsible for intracellular ROS production during the inflammatory process. The objective of the current study was to investigate the role of NOX4 in Dex-induced ROS over-production. Healthy chondrocytes were harvested from the cartilage debris from 6 female patients. NOX4 and p38 mitogen-activated protein kinase (MAPK) expression levels in these cells were evaluated in the presence of Dex. Changes in the number of apoptotic and viable Dex-treated chondrocytes were recorded after the cells were treated with NOX and p38 MAPK inhibitors. Changes in matrix metalloproteinase 13 (MMP-13) expression levels in Dex-treated chondrocytes were also investigated. The Dex treatment increased NOX4 expression via the glucocorticoid receptor (GR). Treatment of cells with apocynin, a NOX inhibitor, decreased intracellular ROS levels and inhibited p38 MAPK activation. Treatment of cells with a ROS scavenger also reduced p38 MAPK expression. Treatment of cells with a NOX inhibitor, ROS scavenger and p38 MAPK inhibitor rescued chondrocytes from Dex-induced apoptosis. Moreover, treatment of cells with these agents blocked MMP-13 expression in Dex-treated chondrocytes. NOX4 silencing also suppressed p38 MAPK and MMP-13 expression. Dex triggered apoptosis and MMP-13 expression through the NOX4/ROS/p38 MAPK signaling pathway. NOX4 may be a therapeutic target in the management of Dex-induced complications.
Collapse
Affiliation(s)
- Ying Huang
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Gui-Quan Cai
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Jian-Ping Peng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Chao Shen
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| |
Collapse
|
118
|
Glucocorticoids suppress Wnt16 expression in osteoblasts in vitro and in vivo. Sci Rep 2018; 8:8711. [PMID: 29880826 PMCID: PMC5992207 DOI: 10.1038/s41598-018-26300-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/09/2018] [Indexed: 01/21/2023] Open
Abstract
Glucocorticoid-induced osteoporosis is a frequent complication of systemic glucocorticoid (GC) therapy and mainly characterized by suppressed osteoblast activity. Wnt16 derived from osteogenic cells is a key determinant of bone mass. Here, we assessed whether GC suppress bone formation via inhibiting Wnt16 expression. GC treatment with dexamethasone (DEX) decreased Wnt16 mRNA levels in murine bone marrow stromal cells (mBMSCs) time- and dose-dependently. Similarly, Wnt16 expression was also suppressed after DEX treatment in calvarial organ cultures. Consistently, mice receiving GC-containing slow-release prednisolone pellets showed lower skeletal Wnt16 mRNA levels and bone mineral density than placebo-treated mice. The suppression of Wnt16 by GCs was GC-receptor-dependent as co-treatment of mBMSCs with DEX and the GR antagonist RU-486 abrogated the GC-mediated suppression of Wnt16. Likewise, DEX failed to suppress Wnt16 expression in GR knockout-mBMSCs. In addition, Wnt16 mRNA levels were unaltered in bone tissue of GC-treated GR dimerization-defective GRdim mice, suggesting that GCs suppress Wnt16 via direct DNA-binding mechanisms. Consistently, DEX treatment reduced Wnt16 promoter activity in MC3T3-E1 cells. Finally, recombinant Wnt16 restored DEX-induced suppression of bone formation in mouse calvaria. Thus, this study identifies Wnt16 as a novel target of GC action in GC-induced suppression of bone formation.
Collapse
|
119
|
|
120
|
Bartko J, Roschger P, Zandieh S, Brehm A, Zwerina J, Klaushofer K. Hypophosphatemia, Severe Bone Pain, Gait Disturbance, and Fatigue Fractures After Iron Substitution in Inflammatory Bowel Disease: A Case Report. J Bone Miner Res 2018; 33:534-539. [PMID: 29068481 DOI: 10.1002/jbmr.3319] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023]
Abstract
Intravenous infusions of different iron formulations are recognized as a cause of hypophosphatemia. Chronic hypophosphatemia can alter bone metabolism and bone material structure. As a consequence, osteomalacia may develop and lead to bone fragility. Herein, we report a patient with Crohn's disease presenting with persistent hypophosphatemia and insufficiency fractures while receiving regular iron infusions due to chronic gastrointestinal bleeding. Previously, the patient regularly received vitamin D and also zoledronic acid. The patient underwent bone biopsy of the iliac crest that showed typical signs of osteomalacia with dramatically increased osteoid volume and decreased bone formation. Analysis of the bone mineralization density distribution (BMDD) revealed a more complex picture: On the one hand, there was a shift to higher matrix mineralization, presumably owing to low bone turnover; on the other hand, a broadening of the BMDD indicating more heterogeneous mineralization due to osteomalacia was also evident. This is the first report on changes of bone histomorphometry and bone matrix mineralization in iron-induced osteomalacia. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Johann Bartko
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Med. Dept., Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Med. Dept., Hanusch Hospital, Vienna, Austria
| | - Shahin Zandieh
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Med. Dept., Hanusch Hospital, Vienna, Austria.,Institute of Radiology and Nuclear Medicine, Hanusch Hospital, Vienna, Austria
| | - Attila Brehm
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Med. Dept., Hanusch Hospital, Vienna, Austria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Med. Dept., Hanusch Hospital, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Med. Dept., Hanusch Hospital, Vienna, Austria
| |
Collapse
|
121
|
Liu S, Fang T, Yang L, Chen Z, Mu S, Fu Q. Gastrodin protects MC3T3-E1 osteoblasts from dexamethasone-induced cellular dysfunction and promotes bone formation via induction of the NRF2 signaling pathway. Int J Mol Med 2018; 41:2059-2069. [PMID: 29393365 PMCID: PMC5810206 DOI: 10.3892/ijmm.2018.3414] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoid (GC)-induced osteoporosis (GIO) is one of the most common secondary and iatrogenic forms of osteoporosis. GCs are widely used in clinical therapy and play a key role in the normal regulation of bone remodeling. However, the prolonged and high-dose administration of GCs results in the occurrence of osteoporosis, which is partially due to the dysfunction and apoptosis of osteoblasts and osteocytes. The aim of the present study was to investigate the effects of gastrodin, a natural bioactive compound isolated from the traditional Chinese herbal agent Gastrodia elata, on GC-treated MC3T3‑E1 murine osteoblastic cells. MC3T3‑E1 cells were exposed to dexamethasone (DEX), with or without gastrodin pretreatment, and cell viability was measured by the cell counting kit-8 (CCK-8) assay. Quantitative polymerase chain reaction analysis was performed to evaluate osteogenic gene expression, and cellular alkaline phosphatase (ALP) activity was measured as well. Alizarin Red staining of calcium deposits was found to reflect the degree of osteoblast maturity. Western blotting was performed to determine the expression of osteogenic and adipogenic differentiation key proteins, as well as nuclear factor-like 2 (NRF2) pathway‑related proteins. Annexin V-fluorescein isothiocyanate̸propidium iodide flow cytometric analysis was performed to determine osteoblast apoptosis. JC-1 staining was used to detect the changes of the mitochondrial membrane potential in cells. The results revealed that gastrodin prevented the decrease in cell viability caused by DEX-induced MC3T3‑E1 cell dysfunction, and that groups pretreated with gastrodin exhibited higher mRNA levels of osteogenic genes, such as Runx2, osterix, bone morphogenetic protein-2 and osteocalcin. Furthermore, treatment with both DEX and gastrodin was associated with increased ALP activity in MC3T3-E1 cells, as well as more calcium deposits, compared with cells treated with DEX alone. In addition, gastrodin increased osteogenic key marker protein Runx2 while activating NRF2 and downstream effector protein expression. Therefore, gastrodin may have the potential to reduce DEX-induced cell apoptosis and increase the mitochondrial membrane potential against DEX. These results demonstrated that gastrodin was able to prevent and/or delay DEX‑induced osteoporosis by improving osteoblast function, and these protective effects were verified in an animal model.
Collapse
Affiliation(s)
- Shengye Liu
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Tao Fang
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liyu Yang
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhiguang Chen
- Emergency Department, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuai Mu
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qin Fu
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
122
|
Shymanskyy IO, Lisakovska OO, Mazanova AO, Labudzynskyi DO, Khomenko AV, Veliky MM. Prednisolone and vitamin D(3) modulate oxidative metabolism and cell death pathways in blood and bone marrow mononuclear cells. UKRAINIAN BIOCHEMICAL JOURNAL 2018; 88:38-47. [PMID: 29235799 DOI: 10.15407/ubj88.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The study was designed to evaluate reactive oxygen species (ROS)/nitric oxide (NO) formation and apoptotic/necrotic cell death elicited by prednisolone in peripheral blood and bone marrow mononuclear cells and to define the efficacy of vitamin D3 to counter glucocorticoid (GC)-induced changes. It was shown that prednisolone (5 mg per kg of female Wistar rat’s body weight for 30 days) evoked ROS and NO overproduction by blood mononuclear cells (monocytes and lymphocytes) that correlated with increased cell apoptosis and necrosis. In contrast, prednisolone did not affect ROS/NO levels in bone marrow mononuclear cells that corresponded to lower level of cell death than in the control. Alterations of prooxidant processes revealed in mononuclear cells and associated with GC action were accompanied by vitamin D3 deficiency in animals, which was assessed by the decreased level of blood serum 25-hydroxivitamin D3 (25OHD3). Vitamin D3 administration (100 IU per rat daily for 30 days, concurrently with prednisolone administration) completely restored 25OHD3 content to the control values and significantly reversed ROS and NO formation in blood mononuclear cells, thus leading to decreased apoptosis. In bone marrow, vitamin D3 activated ROS/NO production and protein nitration that may play a role in prevention of prednisolone-elicited increase in bone resorption. We conclude that vitamin D3 shows a profound protection against GC-associated cellular damage through regulating intracellular ROS/NO formation and cell death pathways.
Collapse
|
123
|
Rapp AE, Hachemi Y, Kemmler J, Koenen M, Tuckermann J, Ignatius A. Induced global deletion of glucocorticoid receptor impairs fracture healing. FASEB J 2018; 32:2235-2245. [PMID: 29217668 PMCID: PMC5893166 DOI: 10.1096/fj.201700459rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although endogenous glucocorticoids (GCs) are important regulators of bone integrity and the immune system, their role in bone repair after fracture-a process highly dependent on inflammation and bone formation-is unclear. Because most effects of GCs are mediated by the glucocorticoid receptor (GR), we used an inducible global GR knockout (GRgtROSACreERT2) mouse model to eliminate endogenous GC action in all cells contributing to bone repair. The healing process was analyzed by cytokine/chemokine multiplex analysis, flow cytometry, histology, gene-expression analysis, microcomputed tomography, and biomechanical analysis. We observed increased early systemic and local inflammatory responses, as well as a significantly higher number of T cells infiltrating the fracture callus. Later in the healing process, we found impaired endochondral ossification in the absence of the GR, leading to persistent cartilage in the calli of the GRgtROSACreERT2 mice, decreased bending stiffness, and a significantly lower proportion of healed bones. Collectively, our data show that the absence of the GR significantly impairs fracture healing associated with a defective cartilage-to-bone transition, underscoring an important role of GCs during fracture healing.-Rapp, A. E., Hachemi, Y., Kemmler, J., Koenen, M., Tuckermann, J., Ignatius, A. Induced global deletion of glucocorticoid receptor impairs fracture healing.
Collapse
Affiliation(s)
- Anna E Rapp
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre
| | - Yasmine Hachemi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Julia Kemmler
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre
| | - Mascha Koenen
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre
| |
Collapse
|
124
|
Suarez-Bregua P, Guerreiro PM, Rotllant J. Stress, Glucocorticoids and Bone: A Review From Mammals and Fish. Front Endocrinol (Lausanne) 2018; 9:526. [PMID: 30250453 PMCID: PMC6139303 DOI: 10.3389/fendo.2018.00526] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GCs) are the final effector products of a neuroendocrine HPA/HPI axis governing energy balance and stress response in vertebrates. From a physiological point of view, basal GC levels are essential for intermediary metabolism and participate in the development and homeostasis of a wide range of body tissues, including the skeleton. Numerous mammalian studies have demonstrated that GC hormones exert a positive role during bone modeling and remodeling as they promote osteoblastogenesis to maintain the bone architecture. Although the pharmacological effect of the so-called stress hormones has been widely reported, the role of endogenous GCs on bone mineral metabolism as result of the endocrine stress response has been largely overlooked across vertebrates. In addition, stress responses are variable depending on the stressor (e.g., starvation, predation, and environmental change), life cycle events (e.g., migration and aging), and differ among vertebrate lineages, which react differently according to their biological, social and cognitive complexity (e.g., mineral demands, physical, and psychological stress). This review intends to summarize the endogenous GCs action on bone metabolism of mammals and fish under a variety of challenging circumstances. Particular emphasis will be given to the regulatory loop between GCs and the parathyroid hormone (PTH) family peptides, and other key regulators of mineral homeostasis and bone remodeling in vertebrates.
Collapse
Affiliation(s)
- Paula Suarez-Bregua
- Institute of Marine Research, Spanish National Research Council (IIM-CSIC), Vigo, Spain
| | | | - Josep Rotllant
- Institute of Marine Research, Spanish National Research Council (IIM-CSIC), Vigo, Spain
| |
Collapse
|
125
|
Wood CL, Soucek O, Wong SC, Zaman F, Farquharson C, Savendahl L, Ahmed SF. Animal models to explore the effects of glucocorticoids on skeletal growth and structure. J Endocrinol 2018; 236:R69-R91. [PMID: 29051192 DOI: 10.1530/joe-17-0361] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are effective for the treatment of many chronic conditions, but their use is associated with frequent and wide-ranging adverse effects including osteoporosis and growth retardation. The mechanisms that underlie the undesirable effects of GCs on skeletal development are unclear, and there is no proven effective treatment to combat them. An in vivo model that investigates the development and progression of GC-induced changes in bone is, therefore, important and a well-characterized pre-clinical model is vital for the evaluation of new interventions. Currently, there is no established animal model to investigate GC effects on skeletal development and there are pros and cons to consider with the different protocols used to induce osteoporosis and growth retardation. This review will summarize the literature and highlight the models and techniques employed in experimental studies to date.
Collapse
Affiliation(s)
- Claire L Wood
- Division of Developmental BiologyRoslin Institute, University of Edinburgh, Edinburgh, UK
| | - Ondrej Soucek
- Department of Paediatrics2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
- Department of Women's and Children's HealthKarolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Sze C Wong
- Developmental Endocrinology Research GroupSchool of Medicine, University of Glasgow, Glasgow, UK
| | - Farasat Zaman
- Department of Women's and Children's HealthKarolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Colin Farquharson
- Division of Developmental BiologyRoslin Institute, University of Edinburgh, Edinburgh, UK
| | - Lars Savendahl
- Department of Women's and Children's HealthKarolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - S Faisal Ahmed
- Developmental Endocrinology Research GroupSchool of Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
126
|
Nummenmaa E, Hämäläinen M, Moilanen LJ, Moilanen T, Vuolteenaho K, Moilanen E. TRPA1 expression is downregulated by dexamethasone and aurothiomalate in human chondrocytes: TRPA1 as a novel factor and drug target in arthritis. RMD Open 2017; 3:e000556. [PMID: 28912961 PMCID: PMC5588971 DOI: 10.1136/rmdopen-2017-000556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/04/2022] Open
Affiliation(s)
- Elina Nummenmaa
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Lauri J Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
127
|
Sasse SK, Kadiyala V, Danhorn T, Panettieri RA, Phang TL, Gerber AN. Glucocorticoid Receptor ChIP-Seq Identifies PLCD1 as a KLF15 Target that Represses Airway Smooth Muscle Hypertrophy. Am J Respir Cell Mol Biol 2017; 57:226-237. [PMID: 28375666 DOI: 10.1165/rcmb.2016-0357oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids exert important therapeutic effects on airway smooth muscle (ASM), yet few direct targets of glucocorticoid signaling in ASM have been definitively identified. Here, we show that the transcription factor, Krüppel-like factor 15 (KLF15), is directly induced by glucocorticoids in primary human ASM, and that KLF15 represses ASM hypertrophy. We integrated transcriptome data from KLF15 overexpression with genome-wide analysis of RNA polymerase (RNAP) II and glucocorticoid receptor (GR) occupancy to identify phospholipase C delta 1 as both a KLF15-regulated gene and a novel repressor of ASM hypertrophy. Our chromatin immunoprecipitation sequencing data also allowed us to establish numerous direct transcriptional targets of GR in ASM. Genes with inducible GR occupancy and putative antiinflammatory properties included IRS2, APPL2, RAMP1, and MFGE8. Surprisingly, we also observed GR occupancy in the absence of supplemental ligand, including robust GR binding peaks within the IL11 and LIF loci. Detection of antibody-GR complexes at these areas was abrogated by dexamethasone treatment in association with reduced RNA polymerase II occupancy, suggesting that noncanonical pathways contribute to cytokine repression by glucocorticoids in ASM. Through defining GR interactions with chromatin on a genome-wide basis in ASM, our data also provide an important resource for future studies of GR in this therapeutically relevant cell type.
Collapse
Affiliation(s)
| | | | - Thomas Danhorn
- 2 Center for Genes, Health, and the Environment, National Jewish Health, Denver, Colorado
| | - Reynold A Panettieri
- 3 Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey; and
| | - Tzu L Phang
- 4 Department of Medicine, University of Colorado, Denver, Colorado
| | - Anthony N Gerber
- 1 Department of Medicine and.,4 Department of Medicine, University of Colorado, Denver, Colorado
| |
Collapse
|
128
|
Chen H, Xing J, Hu X, Chen L, Lv H, Xu C, Hong D, Wu X. Inhibition of heat shock protein 90 rescues glucocorticoid-induced bone loss through enhancing bone formation. J Steroid Biochem Mol Biol 2017; 171:236-246. [PMID: 28408351 DOI: 10.1016/j.jsbmb.2017.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 01/05/2023]
Abstract
Endogenous glucocorticoids (GCs) support normal bone development and bone mass maintenance, whereas long-term exposure to pharmacological dosages of GCs uncouples bone formation and resorption, resulting in GC-induced osteoporosis (GIOP). Heat shock protein 90 (HSP90) chaperoning glucocorticoid receptor (GR) signaling prompts us to speculate that HSP90 plays critical roles in GC-mediated bone formation and GIOP. In the present study, inhibition of HSP90 activity by 17-Demethoxy-17-allyaminogeldanmycin (17-AAG) or knockdown of HSP90 expression by siRNAs attenuated dexamethasone(Dex)-induced GR nuclear accumulation and transcriptional output of GR signaling, whereas overexpression of HSP90α or HSP90β enhanced GR transactivity in C3H10T1/2 cells. Though 17-AAG itself enhanced osteoblastic differentiation, it restored the Dex(10-8M)-induced and Dex(10-6M)-negated osteoblastic differentiation in C3H10T1/2 cells and primary calvarial osteoblasts. Moreover, systemic administration of 17-AAG to mice induced not only osteoclastogenesis but also osteoblastogenesis, whereas bone formation possibly exceeded bone resorption, eventually leading to the increased bone masses. Likewise, systemic administration of 17-AAG to mice restored GC-negated osteoblastogenesis and enhanced GC-induced osteoclastogenesis, similarly, 17-AAG-induced bone formation possibly exceeded both 17-AAG- and GC-induced bone resorption, eventually resulting in rescue of GIOP. Together, the present study has revealed that inhibition of HSP90 restores GIOP through enhancing bone formation, and our findings may help to shed light on the pathogenesis of GIOP and provide targets for the therapeutic intervention of the disease.
Collapse
Affiliation(s)
- Haixiao Chen
- Department of Orthopedics, the Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai City, 317000, China
| | - Ji Xing
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xinhua Hu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lihua Chen
- Department of Orthopedics, the Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai City, 317000, China
| | - Haiyan Lv
- Department of Orthopedics, the Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai City, 317000, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Dun Hong
- Department of Orthopedics, the Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai City, 317000, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
129
|
Kinlein SA, Shahanoor Z, Romeo RD, Karatsoreos IN. Chronic Corticosterone Treatment During Adolescence Has Significant Effects on Metabolism and Skeletal Development in Male C57BL6/N Mice. Endocrinology 2017; 158:2239-2254. [PMID: 28510653 PMCID: PMC5505211 DOI: 10.1210/en.2017-00208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 01/24/2017] [Indexed: 01/06/2023]
Abstract
Glucocorticoids are potent modulators of metabolic and behavioral function. Their role as mediators in the "stress response" is well known, but arguably their primary physiological function is in the regulation of cellular and organismal metabolism. Disruption of normal glucocorticoid function is linked to metabolic disease, such as Cushing syndrome. Glucocorticoids are also elevated in many forms of obesity, suggesting that there are bidirectional effects of these potent hormones on metabolism and metabolic function. Adolescence is a time of rapid physical growth, and disruptions during this critical time likely have important implications for adult function. The hypothalamic-pituitary-adrenal axis continues to mature during this period, as do tissues that respond to glucocorticoids. In this work, we investigate how chronic noninvasive exposure to corticosterone affects metabolic outcomes (body weight, body composition, insulin, and glucose homeostasis), as well as changes in bone density in both adult and adolescent male mice. Specifically, we report a different pattern of metabolic effects in adolescent mice compared with adults, as well as an altered trajectory of recovery in adolescents and adults. Together, these data indicate the profound influence that adolescent development has on the metabolic outcomes of chronic corticosterone exposure, and describe a tractable model for understanding the short- and long-term impacts of hypercortisolemic states on physiological and neurobehavioral functions.
Collapse
Affiliation(s)
- Scott A. Kinlein
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington 99164
| | - Ziasmin Shahanoor
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, New York 10027
| | - Russell D. Romeo
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, New York 10027
| | - Ilia N. Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington 99164
| |
Collapse
|
130
|
Henneicke H, Li J, Kim S, Gasparini SJ, Seibel MJ, Zhou H. Chronic Mild Stress Causes Bone Loss via an Osteoblast-Specific Glucocorticoid-Dependent Mechanism. Endocrinology 2017; 158:1939-1950. [PMID: 28368468 DOI: 10.1210/en.2016-1658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/16/2017] [Indexed: 12/26/2022]
Abstract
Chronic stress and depression are associated with alterations in the hypothalamic-pituitary-adrenal signaling cascade and considered a risk factor for bone loss and fractures. However, the mechanisms underlying the association between stress and poor bone health are unclear. Using a transgenic (tg) mouse model in which glucocorticoid signaling is selectively disrupted in mature osteoblasts and osteocytes [11β-hydroxysteroid-dehydrogenase type 2 (HSD2)OB-tg mice], the present study examines the impact of chronic stress on skeletal metabolism and structure. Eight-week-old male and female HSD2OB-tg mice and their wild-type (WT) littermates were exposed to chronic mild stress (CMS) for the duration of 4 weeks. At the endpoint, L3 vertebrae and tibiae were analyzed by micro-computed tomography and histomorphometry, and bone turnover was measured biochemically. Compared with nonstressed controls, exposure to CMS caused an approximately threefold increase in serum corticosterone concentrations in WT and HSD2OB-tg mice of both genders. Compared with controls, CMS resulted in loss of vertebral trabecular bone mass in male WT mice but not in male HSD2OB-tg littermates. Furthermore, both tibial cortical area and area fraction were reduced in stressed WT but not in stressed HSD2OB-tg male mice. Osteoclast activity and bone resorption marker were increased in WT males following CMS, features absent in HSD2OB-tg males. Interestingly, CMS had little effect on vertebral and long-bone structural parameters in female mice. We conclude that in male mice, bone loss during CMS is mediated via enhanced glucocorticoid signaling in osteoblasts (and osteocytes) and subsequent activation of osteoclasts. Female mice appear resistant to the skeletal effects of CMS.
Collapse
Affiliation(s)
- Holger Henneicke
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
| | - Jingbao Li
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Shaanxi 710000, China
| | - Sarah Kim
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
| | - Sylvia J Gasparini
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
- Department of Endocrinology and Metabolism, Concord Hospital, University of Sydney, Sydney, New South Wales 2139, Australia
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
- Department of Endocrinology and Metabolism, Concord Hospital, University of Sydney, Sydney, New South Wales 2139, Australia
| |
Collapse
|
131
|
McAlindon TE, LaValley MP, Harvey WF, Price LL, Driban JB, Zhang M, Ward RJ. Effect of Intra-articular Triamcinolone vs Saline on Knee Cartilage Volume and Pain in Patients With Knee Osteoarthritis: A Randomized Clinical Trial. JAMA 2017; 317:1967-1975. [PMID: 28510679 PMCID: PMC5815012 DOI: 10.1001/jama.2017.5283] [Citation(s) in RCA: 473] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Synovitis is common and is associated with progression of structural characteristics of knee osteoarthritis. Intra-articular corticosteroids could reduce cartilage damage associated with synovitis but might have adverse effects on cartilage and periarticular bone. OBJECTIVE To determine the effects of intra-articular injection of 40 mg of triamcinolone acetonide every 3 months on progression of cartilage loss and knee pain. DESIGN, SETTING, AND PARTICIPANTS Two-year, randomized, placebo-controlled, double-blind trial of intra-articular triamcinolone vs saline for symptomatic knee osteoarthritis with ultrasonic features of synovitis in 140 patients. Mixed-effects regression models with a random intercept were used to analyze the longitudinal repeated outcome measures. Patients fulfilling the American College of Rheumatology criteria for symptomatic knee osteoarthritis, Kellgren-Lawrence grades 2 or 3, were enrolled at Tufts Medical Center beginning February 11, 2013; all patients completed the study by January 1, 2015. INTERVENTIONS Intra-articular triamcinolone (n = 70) or saline (n = 70) every 12 weeks for 2 years. MAIN OUTCOMES AND MEASURES Annual knee magnetic resonance imaging for quantitative evaluation of cartilage volume (minimal clinically important difference not yet defined), and Western Ontario and McMaster Universities Osteoarthritis index collected every 3 months (Likert pain subscale range, 0 [no pain] to 20 [extreme pain]; minimal clinically important improvement, 3.94). RESULTS Among 140 randomized patients (mean age, 58 [SD, 8] years, 75 women [54%]), 119 (85%) completed the study. Intra-articular triamcinolone resulted in significantly greater cartilage volume loss than did saline for a mean change in index compartment cartilage thickness of -0.21 mm vs -0.10 mm (between-group difference, -0.11 mm; 95% CI, -0.20 to -0.03 mm); and no significant difference in pain (-1.2 vs -1.9; between-group difference, -0.6; 95% CI, -1.6 to 0.3). The saline group had 3 treatment-related adverse events compared with 5 in the triamcinolone group and had a small increase in hemoglobin A1c levels (between-group difference, -0.2%; 95% CI, -0.5% to -0.007%). CONCLUSIONS AND RELEVANCE Among patients with symptomatic knee osteoarthritis, 2 years of intra-articular triamcinolone, compared with intra-articular saline, resulted in significantly greater cartilage volume loss and no significant difference in knee pain. These findings do not support this treatment for patients with symptomatic knee osteoarthritis. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01230424.
Collapse
Affiliation(s)
| | - Michael P. LaValley
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - William F. Harvey
- Division of Rheumatology, Tufts Medical Center, Boston, Massachusetts
| | - Lori Lyn Price
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, Massachusetts
| | - Jeffrey B. Driban
- Division of Rheumatology, Tufts Medical Center, Boston, Massachusetts
| | - Ming Zhang
- Division of Rheumatology, Tufts Medical Center, Boston, Massachusetts
| | - Robert J. Ward
- Division of Musculoskeletal Imaging and Intervention, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
132
|
Wang D, Chen Q, Cai F, Pan Q, Li X, Wu Q, Gan Y, Meng F, Luo P. Impacts of triamcinolone acetonide on femoral head chondrocytic structures in lumbosacral plexus block. Saudi Pharm J 2017; 25:492-497. [PMID: 28579881 PMCID: PMC5447409 DOI: 10.1016/j.jsps.2017.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To investigate impacts of triamcinolone acetonide (TRI) on femoral head chondrocytic (FHC) structures when used for lumbosacral plexus block (LPB). Methods: A total of 32 6-month-old New Zealand white rabbits were selected (averagely weighing 2.75–3.25 kg) and added TRI into nerve block solution for LPB. The rabbit were randomly divided into four groups: group A1: 2.5 ml × 2 times, group A2 2.5 ml × 4 times, group B1 5 ml × 2 times, and group B2 5 ml × 4 times; the time interval among the injection was 5 days, and the structural changes of FHC were the observed using 50/100/200 light microscope; the modified Mankin pathological scoring was also performed for the evaluation. Results: There exhibited significant microscopic changes of FHC structures between the rabbits performed LPB and the normal rabbits, among which group B2 exhibited the most serious FHC damages, and the Mankin pathological score in group B2 was much higher than those in the other three groups, and the scores of the experimental group were higher than the control group. Conclusions: The addition of TRI in LPB can damage the FHC structures, and large-dose (5 ml/once) and long-course (four times) will result in more serious injuries.
Collapse
Affiliation(s)
- Dashou Wang
- Department of Pain Management, Guizhou Provincial Orthopaedic Hospital, Guiyang 550002, China
| | - Qian Chen
- Department of Pain Management, Guizhou Provincial Orthopaedic Hospital, Guiyang 550002, China
| | - Fengjun Cai
- Department of Pain Intervention, The Third People's Hospital of Guizhou, Guiyang 500002, China
| | - Qi Pan
- Department of Pain Management, Guizhou Provincial Orthopaedic Hospital, Guiyang 550002, China
| | - Xuesong Li
- Department of Pain Intervention, Affiliated 300 Hospital of Guizhou Aviation Group, AVIC, Guiyang 550007, China
| | - Qianming Wu
- Department of Pain Management, Guizhou Provincial Orthopaedic Hospital, Guiyang 550002, China
| | - Yong Gan
- Department of Pain Management, Guizhou Provincial Orthopaedic Hospital, Guiyang 550002, China
| | - Fei Meng
- Department of Pain Intervention, Affiliated 300 Hospital of Guizhou Aviation Group, AVIC, Guiyang 550007, China
| | - Ping Luo
- Department of Critical Care Medicine, Guizhou Provincial Orthopaedic Hospital, Guiyang 550002, China
| |
Collapse
|
133
|
Aguado E, Mabilleau G, Goyenvalle E, Chappard D. Hypodynamia Alters Bone Quality and Trabecular Microarchitecture. Calcif Tissue Int 2017; 100:332-340. [PMID: 28160025 DOI: 10.1007/s00223-017-0235-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/07/2017] [Indexed: 01/06/2023]
Abstract
Disuse induces a rapid bone loss in humans and animals; hypodynamia/sedentarity is now recognized as a risk factor for osteoporosis. Hypodynamia also decreases bone mass but its effects are largely unknown and only few animal models have been described. Hypodynamic chicken is recognized as a suitable model of bone loss but the effects on the quality have not been fully explored. We have used ten chickens bred in a large enclosure (FREE group); ten others were confined in small cages with little space to move around (HYPO group). They were sacrificed at 53 days and femurs were evaluated by microcomputed tomography (microCT) and nanoindentation. Sections (4 µm thick) were analyzed by Fourier Transform InfraRed Microspectroscopy (FTIR) to see the effects on mineralization and collagen and quantitative backscattered electron imaging (qBEI) to image the mineral of the bone matrix. Trabecular bone volume and microarchitecture were significantly altered in the HYPO group. FTIR showed a significant reduction of the mineral-to-matrix ratio in the HYPO group associated with an increase in the carbonate content and an increase in crystallinity (calculated as the area ratio of subbands located at 1020 and 1030 cm-1) indicating a poor quality of the mineral. Collagen maturity (calculated as the area ratio of subbands located at 1660 and 1690 cm-1) was significantly reduced in the HYPO group. Reduced biomechanical properties were observed at the tissue level. Confined chicken represents a new model for the study of hypodynamia because bone changes are not created by a surgical lesion or a traumatic method. Animals have a reduced bone mass and present with an altered bone matrix quality which is less mineralized and whose collagen contains less crosslinks than in control chicken.
Collapse
Affiliation(s)
- Eric Aguado
- ONIRIS, Ecole Nationale Vétérinaire, route de Gachet, 44307, Nantes Cedex 3, France
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, ANGERS Cedex, France
| | - Guillaume Mabilleau
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, ANGERS Cedex, France
| | - Eric Goyenvalle
- ONIRIS, Ecole Nationale Vétérinaire, route de Gachet, 44307, Nantes Cedex 3, France
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, ANGERS Cedex, France
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, ANGERS Cedex, France.
| |
Collapse
|
134
|
Chen Q, Li C, Gong Z, Chan ECY, Snyder SA, Lam SH. Common deregulated gene expression profiles and morphological changes in developing zebrafish larvae exposed to environmental-relevant high to low concentrations of glucocorticoids. CHEMOSPHERE 2017; 172:429-439. [PMID: 28092764 DOI: 10.1016/j.chemosphere.2017.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Synthetic glucocorticoids have been detected in environmental waters and their biological potency have raised concerns of their impact on aquatic vertebrates especially fish. In this study, developing zebrafish larvae exposed to representative glucocorticoids (dexamethasone, prednisolone and triamcinolone) at 50 pM to 50 nM from 3 h post-fertilisation to 5 days post-fertilisation were investigated. Microarray analysis identified 1255, 1531, and 2380 gene probes, which correspondingly mapped to 660, 882 and 1238 human/rodent homologs, as deregulated by dexamethasone, prednisolone and triamcinolone, respectively. A total of 248 gene probes which mapped to 159 human/rodent homologs were commonly deregulated by the three glucocorticoids. These homologs were associated with over 20 molecular functions from cell cycle to cellular metabolisms, and were involved in the development and function of connective tissue, nervous, haematological, and digestive systems. Glucocorticoid receptor signalling, NRF2-mediated oxidative stress response and RAR signalling were among the top perturbed canonical pathways. Morphological analyses using four transgenic zebrafish lines revealed that the hepatic and endothelial-vascular systems were affected by all three glucocorticoids while nervous, pancreatic and myeloid cell systems were affected by one of them. Quantitative real-time PCR detected significant change in the expression of seven genes at 50 pM of all three glucocorticoids, a concentration comparable to total glucocorticoids reported in environmental waters. Three genes (cry2b, fbxo32, and klhl38b) responded robustly to all glucocorticoid concentrations tested. The common deregulated genes with the associated biological processes and morphological changes can be used for biological inference of glucocorticoid exposure in fish for future studies.
Collapse
Affiliation(s)
- Qiyu Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Caixia Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhiyuan Gong
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Shane A Snyder
- University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Siew Hong Lam
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
135
|
Tolba MF, El-Serafi AT, Omar HA. Caffeic acid phenethyl ester protects against glucocorticoid-induced osteoporosis in vivo: Impact on oxidative stress and RANKL/OPG signals. Toxicol Appl Pharmacol 2017; 324:26-35. [PMID: 28363435 DOI: 10.1016/j.taap.2017.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022]
Abstract
Glucocorticoid-induced osteoporosis (GIO) is one of the most common causes of secondary osteoporosis. Given that glucocorticoids are considered as a main component of the treatment protocols for a variety of inflammation and immune-mediated diseases besides its use as adjuvant to several chemotherapeutic agents, it is crucial to find ways to overcome this critical adverse effect. Caffeic acid phenethyl ester (CAPE), which is a natural compound derived from honeybee propolis displayed promising antiosteoporotic effects against mechanical bone injury in various studies. The current work aimed at investigating the potential protective effect of CAPE against GIO in vivo with emphasis on the modulation of oxidative status and receptor activator of NF-kB ligand (RANKL)/osteoprotegrin (OPG) signaling. The results showed that CAPE opposed dexamethasone (DEX)-mediated alterations in bone histology and tartarate-resistant acid phosphatase (TRAP) activity. In addition, CAPE restored oxidative balance, Runt-related transcription factor 2 (RunX2) expression and reduced caspase-3 activity in femur tissues. Co-administration of CAPE with DEX normalized RANKL/OPG ratio and Akt activation indicating a reduction in DEX-osteoclastogenesis. In conclusion, concurrent treatment of CAPE with DEX exhibited promising effects in the protection against DEX-induced osteoporosis through opposing osteoclastogenesis and protecting osteoblasts. The potent antioxidant activity of CAPE is, at least in part, involved in its anti-apoptotic effects and modulation of RunX2 and RANKL/OPG signals. The use of CAPE-enriched propolis formulas is strongly recommended for patients on chronic glucocorticoid therapy to help in the attenuation of GIO.
Collapse
Affiliation(s)
- Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Chapman University, Irvine 92618, CA, USA
| | - Ahmed T El-Serafi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
136
|
Abstract
Glucocorticoids (GCs; referred to clinically as corticosteroids) are steroid hormones with potent anti-inflammatory and immune modulatory profiles. Depending on the context, these hormones can also mediate pro-inflammatory activities, thereby serving as primers of the immune system. Their target receptor, the GC receptor (GR), is a multi-tasking transcription factor, changing its role and function depending on cellular and organismal needs. To get a clearer idea of how to improve the safety profile of GCs, recent studies have investigated the complex mechanisms underlying GR functions. One of the key findings includes both pro- and anti-inflammatory roles of GR, and a future challenge will be to understand how such paradoxical findings can be reconciled and how GR ultimately shifts the balance to a net anti-inflammatory profile. As such, there is consensus that GR deserves a second life as a drug target, with either refined classic GCs or a novel generation of nonsteroidal GR-targeting molecules, to meet the increasing clinical needs of today to treat inflammation and cancer.
Collapse
|
137
|
|
138
|
Ajdžanović VZ, Filipović BR, Šošić Jurjević BT, Milošević VL. Testosterone supplementation, glucocorticoid milieu and bone homeostasis in the ageing male. Fundam Clin Pharmacol 2017; 31:372-382. [PMID: 28186359 DOI: 10.1111/fcp.12277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/04/2017] [Accepted: 02/07/2017] [Indexed: 12/27/2022]
Abstract
Male ageing is entwined with a continuous fall in free testosterone levels, which contributes to the pathogenesis of bone loss. Glucocorticoid excess, either dependent on the ageing process or iatrogenically induced, was found to additionally impair the bone structure and metabolism. Cautious testosterone supplementation in this respect may positively affect the glucocorticoid milieu and bone homeostasis, while testosterone-induced changes in the glucocorticoid output could serve as a determinant of bone-related therapeutic outcome. Namely, bone mineral content/density, the parameters of trabecular bone structure as well as bone strength are enhanced, serum calcitonin levels tend to increase, while serum osteocalcin, serum parathyroid hormone and urinary calcium decrease, all upon testosterone administration to the ageing male. In parallel, testosterone application decreases glucocorticoid secretion in the animal models of male ageing, while clinical data in this field are still inconsistent. Importantly, a physiological link exists between testosterone-induced changes in glucocorticoid levels and the tendency of bone status improvement in the ageing male. We believe that the assessment of circulating adrenocorticotropic hormone concentrations together with glucocorticoid levels, reflecting the hypothalamic-pituitary-adrenal axis feedback loop operativeness during testosterone supplementation, represents a well-balanced bone-related therapeutic update.
Collapse
Affiliation(s)
- Vladimir Z Ajdžanović
- Department of Cytology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Despot Stefan Blvd. 142, 11060, Belgrade, Serbia
| | - Branko R Filipović
- Department of Cytology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Despot Stefan Blvd. 142, 11060, Belgrade, Serbia
| | - Branka T Šošić Jurjević
- Department of Cytology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Despot Stefan Blvd. 142, 11060, Belgrade, Serbia
| | - Verica Lj Milošević
- Department of Cytology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Despot Stefan Blvd. 142, 11060, Belgrade, Serbia
| |
Collapse
|
139
|
Tao SC, Yuan T, Rui BY, Zhu ZZ, Guo SC, Zhang CQ. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Am J Cancer Res 2017; 7:733-750. [PMID: 28255363 PMCID: PMC5327646 DOI: 10.7150/thno.17450] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/22/2016] [Indexed: 12/28/2022] Open
Abstract
An excess of glucocorticoids (GCs) is reported to be one of the most common causes of osteonecrosis of the femoral head (ONFH). In addition, GCs can induce bone cell apoptosis through modulating endoplasmic reticulum (ER) stress. Among the three main signal pathways in ER stress, the PERK (protein kinase RNA-like ER kinase)/CHOP (CCAAT-enhancer-binding protein homologous protein) pathway has been considered to be closely associated with apoptosis. Platelet-rich plasma (PRP) has been referred to as a concentration of growth factors and the exosomes derived from PRP (PRP-Exos) have a similar effect to their parent material. The enriched growth factors can be encapsulated into PRP-Exos and activate Akt and Erk pathways to promote angiogenesis. Activation of the Akt pathway may promote the expression of anti-apoptotic proteins like Bcl-2, while CHOP can inhibit B-cell lymphoma 2 (Bcl-2) expression to increase the level of cleaved caspase-3 and lead to cell death. Consequently, we hypothesized that PRP-Exos prevent apoptosis induced by glucocorticoid-associated ER stress in rat ONFH via the Akt/Bad/Bcl-2 signal pathway. To verify this hypothesis, a dexamethasone (DEX)-treated in vitro cell model and methylprednisolone (MPS)-treated in vivo rat model were adopted. Characterization of PRP-Exos, and effects of PRP-Exos on proliferation, apoptosis, angiogenesis, and osteogenesis of cells treated with GCs in vitro and in vivo were examined. Furthermore, the mechanism by which PRP-Exos rescue the GC-induced apoptosis through the Akt/Bad/Bcl-2 pathway was also investigated. The results indicate that PRP-Exos have the capability to prevent GC-induced apoptosis in a rat model of ONFH by promoting Bcl-2 expression via the Akt/Bad/Bcl-2 signal pathway under ER stress.
Collapse
|
140
|
Dobrowolski P, Tomaszewska E, Muszyński S, Blicharski T, Pierzynowski SG. Dietary 2-oxoglutarate prevents bone loss caused by neonatal treatment with maximal dexamethasone dose. Exp Biol Med (Maywood) 2017; 242:671-682. [PMID: 28178857 DOI: 10.1177/1535370217693322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Synthetic glucocorticoids (GCs) are widely used in the variety of dosages for treatment of premature infants with chronic lung disease, respiratory distress syndrome, allergies, asthma, and other inflammatory and autoimmune conditions. Yet, adverse effects such as glucocorticoid-induced osteoporosis and growth retardation are recognized. Conversely, 2-oxoglutarate (2-Ox), a precursor of glutamine, glutamate, and collagen amino acids, exerts protective effects on bone development. Our aim was to elucidate the effect of dietary administered 2-Ox on bone loss caused by neonatal treatment with clinically relevant maximal therapeutic dexamethasone (Dex) dose. Long bones of neonatal female piglets receiving Dex, Dex+2-Ox, or untreated were examined through measurements of mechanical properties, density, mineralization, geometry, histomorphometry, and histology. Selected hormones, bone turnover, and growth markers were also analyzed. Neonatal administration of clinically relevant maximal dose of Dex alone led to over 30% decrease in bone mass and the ultimate strength ( P < 0.001 for all). The length (13 and 7% for femur and humerus, respectively) and other geometrical parameters (13-45%) decreased compared to the control ( P < 0.001 for all). Dex impaired bone growth and caused hormonal imbalance. Dietary 2-Ox prevented Dex influence and vast majority of assessed bone parameters were restored almost to the control level. Piglets receiving 2-Ox had heavier, denser, and stronger bones; higher levels of growth hormone and osteocalcin concentration; and preserved microarchitecture of trabecular bone compared to the Dex group. 2-Ox administered postnatally had a potential to maintain bone structure of animals simultaneously treated with maximal therapeutic doses of Dex, which, in our opinion, may open up a new opportunity in developing combined treatment for children treated with GCs. Impact statement The present study has showed, for the first time, that dietary 2-oxoglutarate (2-Ox) administered postnatally has a potential to improve/maintain bone structure of animals simultaneously treated with maximal therapeutic doses of dexamethasone (Dex). It may open the new direction in searching and developing combined treatment for children treated with glucocorticoids (GCs) since growing group of children is exposed to synthetic GCs and adverse effects such as glucocorticoid-induced osteoporosis and growth retardation are recognized. Currently proposed combined therapies have numerous side effects. Thus, this study proposed a new direction in combined therapies utilizing dietary supplementation with glutamine derivative. Impairment caused by Dex in presented long bones animal model was prevented by dietary supplementation with 2-Ox and vast majority of assessed bone parameters were restored almost to the control level. These results support previous thesis on the regulatory mechanism of nutrient utilization regulated by glutamine derivatives and enrich the nutritional science.
Collapse
Affiliation(s)
- Piotr Dobrowolski
- 1 Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, Lublin 20-033, Poland
| | - Ewa Tomaszewska
- 2 Department of Biochemistry and Animal Physiology, Faculty of Veterinary Medicine, The University of Life Sciences in Lublin, Lublin 20-033, Poland
| | - Siemowit Muszyński
- 3 Department of Physics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin 20-950, Poland
| | - Tomasz Blicharski
- 4 Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Lublin 20-954, Poland.,5 Lublin Diagnostic Centre, Swidnik 21-040, Poland
| | - Stefan G Pierzynowski
- 6 Department of Biology, Lund University, Lund 22362, Sweden.,7 Innovation Centre-Edoradca, Tczew 83-110, Poland.,8 SGPlus, Trelleborg 23132, Sweden.,9 Department of Medical Biology, Institute of Rural Health, Lublin 20-950, Poland
| |
Collapse
|
141
|
Mohan G, Lay EYA, Berka H, Ringwood L, Kot A, Chen H, Yao W, Lane NE. A Novel Hybrid Compound LLP2A-Ale Both Prevented and Rescued the Osteoporotic Phenotype in a Mouse Model of Glucocorticoid-Induced Osteoporosis. Calcif Tissue Int 2017; 100:67-79. [PMID: 27679514 PMCID: PMC5215964 DOI: 10.1007/s00223-016-0195-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
Prolonged glucocorticoid (GC) administration causes secondary osteoporosis (GIOP) and non-traumatic osteonecrosis. LLP2A-Ale is a novel bone-seeking compound that recruits mesenchymal stem cells to the bone surface, stimulates bone formation, and increases bone mass. The purpose of this study was to determine if treatment with LLP2A-Ale alone or in combination with parathyroid hormone (PTH) could prevent or treat GIOP in a mouse model. Four-month-old male Swiss-Webster mice were randomized to a prevention study with placebo, GC (day 1-28), and GC + LLP2A-Ale (IV, day 1) or a treatment study with placebo, GC (days 1-56), GC + LLP2A-Ale (IV, day 28), GC + PTH, and GC + LLP2A-Ale + PTH (days 28-56). Mice were killed on day 28 (prevention study) or on day 56 (treatment study). The study endpoints included bone mass, bone strength, serum markers of bone turnover (P1NP and CTX-I) and angiogenesis (VEGF-A), surface-based bone turnover, and blood vessel density. LLP2A-Ale prevented GC-induced bone loss and increased mechanical strength in the vertebral body (days 28 and 56) and femur (day 56). LLP2A-Ale, PTH, and LLP2A-Ale + PTH treatment significantly increased the mineralizing surface, bone formation rate, mineral apposition rate, double-labeled surface, and serum P1NP level on day 56. LLP2A-Ale and PTH treatment increased femoral blood vessel density and LLP2A-Ale increased serum VEGF-A on day 28. Therefore, LLP2A-Ale monotherapy could be a potential option to both prevent and treat GC-induced osteoporosis and bone fragility.
Collapse
Affiliation(s)
- Geetha Mohan
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Evan Yu-An Lay
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Haley Berka
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Lorna Ringwood
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Alexander Kot
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Haiyan Chen
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, 4625 2nd Avenue, Suite 2006, Sacramento, CA, 95817, USA.
| |
Collapse
|
142
|
Hillard CJ, Beatka M, Sarvaideo J. Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis. Compr Physiol 2016; 7:1-15. [PMID: 28134998 DOI: 10.1002/cphy.c160005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The elucidation of Δ9-tetrahydrocannabinol as the active principal of Cannabis sativa in 1963 initiated a fruitful half-century of scientific discovery, culminating in the identification of the endocannabinoid signaling system, a previously unknown neuromodulatory system. A primary function of the endocannabinoid signaling system is to maintain or recover homeostasis following psychological and physiological threats. We provide a brief introduction to the endocannabinoid signaling system and its role in synaptic plasticity. The majority of the article is devoted to a summary of current knowledge regarding the role of endocannabinoid signaling as both a regulator of endocrine responses to stress and as an effector of glucocorticoid and corticotrophin-releasing hormone signaling in the brain. We summarize data demonstrating that cannabinoid receptor 1 (CB1R) signaling can both inhibit and potentiate the activation of the hypothalamic-pituitary-adrenal axis by stress. We present a hypothesis that the inhibitory arm has high endocannabinoid tone and also serves to enhance recovery to baseline following stress, while the potentiating arm is not tonically active but can be activated by exogenous agonists. We discuss recent findings that corticotropin-releasing hormone in the amygdala enables hypothalamic-pituitary-adrenal axis activation via an increase in the catabolism of the endocannabinoid N-arachidonylethanolamine. We review data supporting the hypotheses that CB1R activation is required for many glucocorticoid effects, particularly feedback inhibition of hypothalamic-pituitary-adrenal axis activation, and that glucocorticoids mobilize the endocannabinoid 2-arachidonoylglycerol. These features of endocannabinoid signaling make it a tantalizing therapeutic target for treatment of stress-related disorders but to date, this promise is largely unrealized. © 2017 American Physiological Society. Compr Physiol 7:1-15, 2017.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Department of Pharmacology and Toxicology, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Margaret Beatka
- Department of Pharmacology and Toxicology, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jenna Sarvaideo
- Department of Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
143
|
Liu CF, Samsa WE, Zhou G, Lefebvre V. Transcriptional control of chondrocyte specification and differentiation. Semin Cell Dev Biol 2016; 62:34-49. [PMID: 27771362 DOI: 10.1016/j.semcdb.2016.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
A milestone in the evolutionary emergence of vertebrates was the invention of cartilage, a tissue that has key roles in modeling, protecting and complementing the bony skeleton. Cartilage is elaborated and maintained by chondrocytes. These cells derive from multipotent skeletal progenitors and they perform highly specialized functions as they proceed through sequential lineage commitment and differentiation steps. They form cartilage primordia, the primary skeleton of the embryo. They then transform these primordia either into cartilage growth plates, temporary drivers of skeletal elongation and endochondral ossification, or into permanent tissues, namely articular cartilage. Chondrocyte fate decisions and differentiated activities are controlled by numerous extrinsic and intrinsic cues, and they are implemented at the gene expression level by transcription factors. The latter are the focus of this review. Meritorious efforts from many research groups have led over the last two decades to the identification of dozens of key chondrogenic transcription factors. These regulators belong to all types of transcription factor families. Some have master roles at one or several differentiation steps. They include SOX9 and RUNX2/3. Others decisively assist or antagonize the activities of these masters. They include TWIST1, SOX5/6, and MEF2C/D. Many more have tissue-patterning roles and regulate cell survival, proliferation and the pace of cell differentiation. They include, but are not limited to, homeodomain-containing proteins and growth factor signaling mediators. We here review current knowledge of all these factors, one superclass, class, and family at a time. We then compile all knowledge into transcriptional networks. We also identify remaining gaps in knowledge and directions for future research to fill these gaps and thereby provide novel insights into cartilage disease mechanisms and treatment options.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| | - William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Véronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
144
|
Baschant U, Henneicke H, Hofbauer LC, Rauner M. Sclerostin Blockade-A Dual Mode of Action After All? J Bone Miner Res 2016; 31:1787-1790. [PMID: 27597566 DOI: 10.1002/jbmr.2988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/25/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Ulrike Baschant
- Department of Medicine 3, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Holger Henneicke
- Department of Medicine 3, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.,Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine 3, Technische Universität Dresden, Dresden, Germany. .,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany. .,Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.
| | - Martina Rauner
- Department of Medicine 3, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
145
|
Dicer ablation in osteoblasts by Runx2 driven cre-loxP recombination affects bone integrity, but not glucocorticoid-induced suppression of bone formation. Sci Rep 2016; 6:32112. [PMID: 27554624 PMCID: PMC4995469 DOI: 10.1038/srep32112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIO) is one of the major side effects of long-term glucocorticoid (GC) therapy mediated mainly via the suppression of bone formation and osteoblast differentiation independently of GC receptor (GR) dimerization. Since microRNAs play a critical role in osteoblast differentiation processes, we investigated the role of Dicer dependent microRNAs in the GC-induced suppression of osteoblast differentiation. MicroRNA sequencing of dexamethasone-treated wild-type and GR dimer-deficient mesenchymal stromal cells revealed GC-controlled miRNA expression in a GR dimer-dependent and GR dimer-independent manner. To determine the functional relevance of mature miRNAs in GC-induced osteoblast suppression, mice with an osteoblast-specific deletion of Dicer (DicerRunx2Cre) were exposed to glucocorticoids. In vitro generated Dicer-deficient osteoblasts were treated with dexamethasone and analyzed for proliferation, differentiation and mineralization capacity. In vivo, abrogation of Dicer-dependent miRNA biogenesis in osteoblasts led to growth retardation and impaired bone formation. However, subjecting these mice to GIO showed that bone formation was similar reduced in DicerRunx2Cre mice and littermate control mice upon GC treatment. In line, differentiation of Dicer deficient osteoblasts was suppressed to the same extent as wild type cells by GC treatment. Therefore, Dicer-dependent small RNA biogenesis in osteoblasts plays only a minor role in the pathogenesis of GC-induced inhibition of bone formation.
Collapse
|
146
|
Glucocorticoid receptor-mediated cis-repression of osteogenic genes requires BRM-SWI/SNF. Bone Rep 2016; 5:222-227. [PMID: 28580390 PMCID: PMC5440962 DOI: 10.1016/j.bonr.2016.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoids are an effective therapy for a variety of severe inflammatory and autoimmune disorders; however, the therapeutic use of glucocorticoids is severely limited by their negative side effects, particularly on osteogenesis. Glucocorticoids regulate transcription by binding to the glucocorticoid receptor (GR), which then binds the promoters of target genes to induce either activation or repression. The gene activation effects of nuclear hormone receptors broadly require the cooperation of the chromatin remodeling complex known as SWI/SNF, which is powered by an ATPase core. The well-studied SWI/SNF ATPase, BRG1, is required for gene activation by a spectrum of nuclear hormone receptors including GR. However, glucocorticoid-induced side effects specifically related to impaired osteogenesis are mostly linked with GR-mediated repression. We have considered whether cis-repression of osteogenic genes by GR may be mediated by a distinct subclass of SWI/SNF powered by the alternative ATPase, BRM. BRM does not have an essential role in mammalian development, but plays a repressor role in osteoblast differentiation and favors adipogenic lineage selection over osteoblast commitment, effects that mirror the repressor effects of GR. The studies reported here examine three key GR cis-repression gene targets, and show that GR association with these promoters is sharply reduced in BRM deficient cells. Each of these GR-targeted genes act in a different way. Bglap encodes osteocalcin, which contributes to normal maturation of osteoblasts from committed pre-osteoblasts. The Per3 gene product acts in uncommitted mesenchymal stem cells to influence the osteoblast/adipocyte lineage selection point. Fas ligand, encoded by FasL, is a means by which osteoblasts can modulate bone degradation by osteoclasts. Repression of each of these genes by glucocorticoid favors bone loss. The essential role of BRM in cooperation with GR at each of these control points offers a novel mechanistic understanding of the role of GR in bone loss. Therapeutic use of glucocorticoids is limited by their negative effects on osteogenesis. The glucocorticoid receptor (GR) can either activate or repress gene expression. cis-Repression by GR drives a significant part of the negative osteogenic effects. The BRM-containing subclass of SWI/SNF is specifically required for cis-repression by GR. BRM depletion reduces negative effects of glucocorticoids on osteogenic gene expression.
Collapse
|
147
|
A novel role for the mineralocorticoid receptor in glucocorticoid driven vascular calcification. Vascul Pharmacol 2016; 86:87-93. [PMID: 27153999 PMCID: PMC5111541 DOI: 10.1016/j.vph.2016.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023]
Abstract
Vascular calcification, which is common in the elderly and in patients with atherosclerosis, diabetes and chronic renal disease, increases the risk of cardiovascular morbidity and mortality. It is a complex, active and highly regulated cellular process that resembles physiological bone formation. It has previously been established that pharmacological doses of glucocorticoids facilitate arterial calcification. However, the consequences for vascular calcification of endogenous glucocorticoid elevation have yet to be established. Glucocorticoids (cortisol, corticosterone) are released from the adrenal gland, but can also be generated within cells from 11-keto metabolites of glucocorticoids (cortisone, 11-dehydrocorticosterone [11-DHC]) by the enzyme, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). In the current study we hypothesized that endogenous glucocorticoids facilitate vascular smooth muscle cell (VSMC) calcification and investigated the receptor-mediated mechanism underpinning this process. In vitro studies revealed increased phosphate-induced calcification in mouse VSMCs following treatment for 7 days with corticosterone (100 nM; 7.98 fold; P < 0.01), 11-DHC (100 nM; 7.14 fold; P < 0.05) and dexamethasone (10 nM; 7.16 fold; P < 0.05), a synthetic glucocorticoid used as a positive control. Inhibition of 11β-HSD isoenzymes by 10 μM carbenoxolone reduced the calcification induced by 11-DHC (0.37 fold compared to treatment with 11-DHC alone; P < 0.05). The glucocorticoid receptor (GR) antagonist mifepristone (10 μM) had no effect on VSMC calcification in response to corticosterone or 11-DHC. In contrast, the mineralocorticoid receptor (MR) antagonist eplerenone (10 μM) significantly decreased corticosterone- (0.81 fold compared to treatment with corticosterone alone; P < 0.01) and 11-DHC-driven (0.64 fold compared to treatment with 11-DHC alone; P < 0.01) VSMC calcification, suggesting this glucocorticoid effect is MR-driven and not GR-driven. Neither corticosterone nor 11-DHC altered the mRNA levels of the osteogenic markers PiT-1, Osx and Bmp2. However, DAPI staining of pyknotic nuclei and flow cytometry analysis of surface Annexin V expression showed that corticosterone induced apoptosis in VSMCs. This study suggests that in mouse VSMCs, corticosterone acts through the MR to induce pro-calcification effects, and identifies 11β-HSD-inhibition as a novel potential treatment for vascular calcification.
Collapse
|