101
|
Montgomery MK, De Nardo W, Watt MJ. Exercise training induces depot-specific remodeling of protein secretion in skeletal muscle and adipose tissue of obese male mice. Am J Physiol Endocrinol Metab 2023; 325:E227-E238. [PMID: 37493472 DOI: 10.1152/ajpendo.00178.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Acute exercise induces changes in circulating proteins, which are known to alter metabolism and systemic energy balance. Skeletal muscle is a primary contributor to changes in the plasma proteome with acute exercise. An important consideration when assessing the endocrine function of muscle is the presence of different fiber types, which show distinct functional and metabolic properties and likely secrete different proteins. Similarly, adipokines are important regulators of systemic metabolism and have been shown to differ between depots. Given the health-promoting effects of exercise, we proposed that understanding depot-specific remodeling of protein secretion in muscle and adipose tissue would provide new insights into intertissue communication and uncover novel regulators of energy homeostasis. Here, we examined the effect of endurance exercise training on protein secretion from fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscle and visceral and subcutaneous adipose tissue. High-fat diet-fed mice were exercise trained for 6 wk, whereas a Control group remained sedentary. Secreted proteins from excised EDL and soleus muscle, inguinal, and epididymal adipose tissues were detected using mass spectrometry. We detected 575 and 784 secreted proteins from EDL and soleus muscle and 738 and 920 proteins from inguinal and epididymal adipose tissue, respectively. Of these, 331 proteins were secreted from all tissues, whereas secretion of many other proteins was tissue and depot specific. Exercise training led to substantial remodeling of protein secretion from EDL, whereas soleus showed only minor changes. Myokines released exclusively from EDL or soleus were associated with glycogen metabolism and cellular stress response, respectively. Adipokine secretion was completely refractory to exercise regulation in both adipose depots. This study provides an in-depth resource of protein secretion from muscle and adipose tissue, and its regulation following exercise training, and identifies distinct depot-specific secretion patterns that are related to the metabolic properties of the tissue of origin.NEW & NOTEWORTHY The present study examines the effects of exercise training on protein secretion from fast-twitch and slow-twitch muscle as well as visceral and subcutaneous adipose tissue of obese mice. Although exercise training leads to substantial remodeling of protein secretion from fast-twitch muscle, adipose tissue is completely refractory to exercise regulation.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
102
|
Yoshida E, Hayashida H. Influence of Practice Periodization and Sleep Duration on Oxidative Stress in High School Judo Athletes. Sports (Basel) 2023; 11:163. [PMID: 37755840 PMCID: PMC10536924 DOI: 10.3390/sports11090163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Numerous research studies have investigated the relationship between exercise, oxidative stress level, and condition in athletes who engage in intense training on a daily basis. However, it is known that oxidative stress is affected by exercise, sleep, and the psychological state, but there are only a few studies that have comprehensively examined oxidative stress based on the actual practice periods and living conditions of athletes. Therefore, our study aimed to explore the influence of three distinct training periods (short training period, intensive training period, and pre-competition periods) as well as life situations (sleep and number of steps) on oxidative stress levels (diacron reactive oxygen metabolites: d-ROMs) in high school judo athletes. The results showed that, among the three periods, the level of oxidative stress increased the most during the pre-competition period, and the value was higher than during the training period, when the intensity of training was highest. The levels of the d-ROMs values during the pre-competition period were negatively correlated with the amount of sleep on the previous day. The findings suggest that, besides the exercise intensity, factors such as sleep duration and other life situations should be regarded as critical considerations for high school judo athletes.
Collapse
Affiliation(s)
| | - Harumi Hayashida
- Graduate School of Sport Sciences, Toin University of Yokohama, 1614 Kuroganecho, Aoba Ward, Yokohama 225-0025, Japan;
| |
Collapse
|
103
|
Dong H, Tsai SY. Mitochondrial Properties in Skeletal Muscle Fiber. Cells 2023; 12:2183. [PMID: 37681915 PMCID: PMC10486962 DOI: 10.3390/cells12172183] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria are the primary source of energy production and are implicated in a wide range of biological processes in most eukaryotic cells. Skeletal muscle heavily relies on mitochondria for energy supplements. In addition to being a powerhouse, mitochondria evoke many functions in skeletal muscle, including regulating calcium and reactive oxygen species levels. A healthy mitochondria population is necessary for the preservation of skeletal muscle homeostasis, while mitochondria dysregulation is linked to numerous myopathies. In this review, we summarize the recent studies on mitochondria function and quality control in skeletal muscle, focusing mainly on in vivo studies of rodents and human subjects. With an emphasis on the interplay between mitochondrial functions concerning the muscle fiber type-specific phenotypes, we also discuss the effect of aging and exercise on the remodeling of skeletal muscle and mitochondria properties.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
104
|
Putera HD, Doewes RI, Shalaby MN, Ramírez-Coronel AA, Clayton ZS, Abdelbasset WK, Murtazaev SS, Jalil AT, Rahimi P, Nattagh-Eshtivani E, Malekahmadi M, Pahlavani N. The effect of conjugated linoleic acids on inflammation, oxidative stress, body composition and physical performance: a comprehensive review of putative molecular mechanisms. Nutr Metab (Lond) 2023; 20:35. [PMID: 37644566 PMCID: PMC10466845 DOI: 10.1186/s12986-023-00758-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Conjugated linoleic acids (CLAs) are polyunsaturated fatty acids primarily found in dairy products and ruminant animal products such as beef, lamb, and butter. Supplementation of CLAs has recently become popular among athletes due to the variety of health-promoting effects, including improvements in physical performance. Preclinical and some clinical studies have shown that CLAs can reduce inflammation and oxidative stress and favorably modulate body composition and physical performance; however, the results of previously published clinical trials are mixed. Here, we performed a comprehensive review of previously published clinical trials that assessed the role of CLAs in modulating inflammation, oxidative stress, body composition, and select indices of physical performance, emphasizing the molecular mechanisms governing these changes. The findings of our review demonstrate that the effect of supplementation with CLAs on inflammation and oxidative stress is controversial, but this supplement can decrease body fat mass and increase physical performance. Future well-designed randomized clinical trials are warranted to determine the effectiveness of (1) specific doses of CLAs; (2) different dosing durations of CLAs; (3) various CLA isomers, and the exact molecular mechanisms by which CLAs positively influence oxidative stress, inflammation, body composition, and physical performance.
Collapse
Affiliation(s)
- Husna Dharma Putera
- Department of Surgery, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Rumi Iqbal Doewes
- Faculty of Sport, Universitas Sebelas Maret, Jl. Ir. Sutami, 36A, Kentingan, Surakarta, Indonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Azogues, Ecuador
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Saidmurodkhon S Murtazaev
- Department of Therapeutic Pediatric Dentistry, Dean of the Faculty of International Education, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific Affairs, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elyas Nattagh-Eshtivani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahsa Malekahmadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat-e Heydariyeh, Iran.
| |
Collapse
|
105
|
Almuraikhy S, Anwardeen N, Doudin A, Sellami M, Domling A, Agouni A, Althani AA, Elrayess MA. Antioxidative Stress Metabolic Pathways in Moderately Active Individuals. Metabolites 2023; 13:973. [PMID: 37755253 PMCID: PMC10535328 DOI: 10.3390/metabo13090973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Physical activity (PA) is known to have beneficial effects on health, primarily through its antioxidative stress properties. However, the specific metabolic pathways that underlie these effects are not fully understood. This study aimed to investigate the metabolic pathways that are involved in the protective effects of moderate PA in non-obese and healthy individuals. Data on 305 young, non-obese participants were obtained from the Qatar Biobank. The participants were classified as active or sedentary based on their self-reported PA levels. Plasma metabolomics data were collected and analyzed to identify differences in metabolic pathways between the two groups. The results showed that active participants had increased activation of antioxidative, stress-related pathways, including lysoplasmalogen, plasmalogen, phosphatidylcholine, vitamin A, and glutathione. Additionally, there were significant associations between glutathione metabolites and certain clinical traits, including bilirubin, uric acid, hemoglobin, and iron. This study provides new insights into the metabolic pathways that are involved in the protective effects of moderate PA in non-obese and healthy individuals. The findings may have implications for the development of new therapeutic strategies that target these pathways.
Collapse
Affiliation(s)
- Shamma Almuraikhy
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9713 AV Groningen, The Netherlands
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmma Doudin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maha Sellami
- Physical Education Department (PE), College of Education, Qatar University, Doha P.O. Box 2713, Qatar
| | - Alexander Domling
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9713 AV Groningen, The Netherlands
| | - Abdelali Agouni
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmaa A. Althani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Sciences, College of Health Science, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
106
|
Wallis TJM, Minnion M, Freeman A, Bates A, Otto JM, Wootton SA, Fletcher SV, Grocott MPW, Feelisch M, Jones MG, Jack S. Individualised Exercise Training Enhances Antioxidant Buffering Capacity in Idiopathic Pulmonary Fibrosis. Antioxidants (Basel) 2023; 12:1645. [PMID: 37627640 PMCID: PMC10451244 DOI: 10.3390/antiox12081645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Exercise training is recommended for patients with idiopathic pulmonary fibrosis (IPF); however, the mechanism(s) underlying its physiological benefits remain unclear. We investigated the effects of an individualised aerobic interval training programme on exercise capacity and redox status in IPF patients. IPF patients were recruited prospectively to an 8-week, twice-weekly cardiopulmonary exercise test (CPET)-derived structured responsive exercise training programme (SRETP). Systemic redox status was assessed pre- and post-CPET at baseline and following SRETP completion. An age- and sex-matched non-IPF control cohort was recruited for baseline comparison only. At baseline, IPF patients (n = 15) had evidence of increased oxidative stress compared with the controls as judged by; the plasma reduced/oxidised glutathione ratio (median, control 1856 vs. IPF 736 p = 0.046). Eleven IPF patients completed the SRETP (median adherence 88%). Following SRETP completion, there was a significant improvement in exercise capacity assessed via the constant work-rate endurance time (+82%, p = 0.003). This was accompanied by an improvement in post-exercise redox status (in favour of antioxidants) assessed via serum total free thiols (median increase, +0.26 μmol/g protein p = 0.005) and total glutathione concentration (+0.73 μM p = 0.03), as well as a decrease in post-exercise lipid peroxidation products (-1.20 μM p = 0.02). Following SRETP completion, post-exercise circulating nitrite concentrations were significantly lower compared with baseline (-0.39 μM p = 0.04), suggestive of exercise-induced nitrite utilisation. The SRETP increased both endurance time and systemic antioxidant capacity in IPF patients. The observed reduction in nitrite concentrations provides a mechanistic rationale to investigate nitrite/nitrate supplementation in IPF patients.
Collapse
Affiliation(s)
- Tim J. M. Wallis
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Magdalena Minnion
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Anna Freeman
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Andrew Bates
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- Department of Critical Care and Anaesthesia, University Hospital Southampton, Southampton SO16 6YD, UK
| | - James M. Otto
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- Department of Critical Care and Anaesthesia, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Stephen A. Wootton
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- NIHR Southampton Biomedical Research Centre, Nutrition and Metabolism, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Sophie V. Fletcher
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Michael P. W. Grocott
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- Department of Critical Care and Anaesthesia, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Martin Feelisch
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Mark G. Jones
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sandy Jack
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- Department of Critical Care and Anaesthesia, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
107
|
Fowler MA, Wong JB, Harrison AL. Oxidative physiology of two small and highly migratory Arctic seabirds: Arctic terns ( Sterna paradisaea) and long-tailed jaegers ( Stercorarius longicaudus). CONSERVATION PHYSIOLOGY 2023; 11:coad060. [PMID: 37916041 PMCID: PMC10616233 DOI: 10.1093/conphys/coad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/21/2023] [Accepted: 08/14/2023] [Indexed: 11/03/2023]
Abstract
Arctic ecosystems are changing rapidly. The tundra supports nesting migratory seabirds that spend most of their year over the ocean. Migrations are demanding, but it is unclear how physiological capability may equip organisms to respond to their changing environments. For two migratory seabird species nesting in Alaska, USA, the Arctic tern (n = 10) and the long-tailed jaeger (n = 8), we compared oxidative physiology and aerobic capacity measured during incubation and we recorded individual movement paths using electronic tracking tags. Within species, we hypothesized that individuals with longer-distance migrations would show higher oxidative stress and display better aerobic capacity than shorter-distance migrants. We examined blood parameters relative to subsequent fall migration in jaegers and relative to previous spring migration in terns. We present the first measurements of oxidative stress in these species and the first migratory movements of long-tailed jaegers in the Pacific Ocean. Arctic terns displayed positive correlation of oxidative variables, or better integration than jaegers. Relative to physiological sampling, pre-breeding northward migration data were available for terns and post-breeding southward data were available for jaegers. Terns reached a farther maximum distance from the colony than jaegers (16 199 ± 275 km versus 10 947 ± 950 km) and rate of travel northward (447 ± 41.8 km/day) was positively correlated with hematocrit, but we found no other relationships. In jaegers, there were no relationships between individuals' physiology and southward rate of travel (193 ± 52.3 km/day) or migratory distance. While it is not clear whether the much longer migrations of the terns is related to their better integration, or to another factor, our results spark hypotheses that could be evaluated through a controlled phylogenetic study. Species with better integration may be less susceptible to environmental factors that increase oxidative stress, including thermal challenges or changes in prey distribution as the Arctic climate changes rapidly.
Collapse
Affiliation(s)
- Melinda A. Fowler
- Department of Biology/Chemistry. Springfield College, 263 Alden Street, Springfield, MA 01109 USA
| | - Joanna B. Wong
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Bird Migration, Swiss Ornithological Institute, 6204 Sempach, Switzerland
| | - Autumn-Lynn Harrison
- Smithsonian‘s National Zoo and Conservation Biology Institute, Migratory Bird Center, 3001 Connecticut Avenue, NW, Washington, DC. 20008 USA
| |
Collapse
|
108
|
Caturano A, D’Angelo M, Mormone A, Russo V, Mollica MP, Salvatore T, Galiero R, Rinaldi L, Vetrano E, Marfella R, Monda M, Giordano A, Sasso FC. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr Issues Mol Biol 2023; 45:6651-6666. [PMID: 37623239 PMCID: PMC10453126 DOI: 10.3390/cimb45080420] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Oxidative stress is a critical factor in the pathogenesis and progression of diabetes and its associated complications. The imbalance between reactive oxygen species (ROS) production and the body's antioxidant defence mechanisms leads to cellular damage and dysfunction. In diabetes, chronic hyperglycaemia and mitochondrial dysfunction contribute to increased ROS production, further exacerbating oxidative stress. This oxidative burden adversely affects various aspects of diabetes, including impaired beta-cell function and insulin resistance, leading to disrupted glucose regulation. Additionally, oxidative stress-induced damage to blood vessels and impaired endothelial function contribute to the development of diabetic vascular complications such as retinopathy, nephropathy, and cardiovascular diseases. Moreover, organs and tissues throughout the body, including the kidneys, nerves, and eyes, are vulnerable to oxidative stress, resulting in diabetic nephropathy, neuropathy, and retinopathy. Strategies to mitigate oxidative stress in diabetes include antioxidant therapy, lifestyle modifications, and effective management of hyperglycaemia. However, further research is necessary to comprehensively understand the underlying mechanisms of oxidative stress in diabetes and to evaluate the efficacy of antioxidant interventions in preventing and treating diabetic complications. By addressing oxidative stress, it might be possible to alleviate the burden of diabetes and improve patient outcomes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy; (M.D.)
| | - Margherita D’Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy; (M.D.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Andrea Mormone
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Vincenzo Russo
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, I-80134 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy; (M.D.)
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, I-80138 Naples, Italy
| |
Collapse
|
109
|
Izzo LG, El Nakhel C, Rouphael Y, Proietti S, Paglialunga G, Moscatello S, Battistelli A, Iovane M, Romano LE, De Pascale S, Aronne G. Applying productivity and phytonutrient profile criteria in modelling species selection of microgreens as Space crops for astronaut consumption. FRONTIERS IN PLANT SCIENCE 2023; 14:1210566. [PMID: 37636122 PMCID: PMC10450622 DOI: 10.3389/fpls.2023.1210566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Introduction Long-duration missions in outer Space will require technologies to regenerate environmental resources such as air and water and to produce food while recycling consumables and waste. Plants are considered the most promising biological regenerators to accomplish these functions, due to their complementary relationship with humans. Plant cultivation for Space starts with small plant growth units to produce fresh food to supplement stowed food for astronauts' onboard spacecrafts and orbital platforms. The choice of crops must be based on limiting factors such as time, energy, and volume. Consequently, small, fast-growing crops are needed to grow in microgravity and to provide astronauts with fresh food rich in functional compounds. Microgreens are functional food crops recently valued for their color and flavor enhancing properties, their rich phytonutrient content and short production cycle. Candidate species of microgreens to be harvested and eaten fresh by crew members, belong to the families Brassicaceae, Asteraceae, Chenopodiaceae, Lamiaceae, Apiaceae, Amarillydaceae, Amaranthaceae, and Cucurbitaceae. Methods In this study we developed and applied an algorithm to objectively compare numerous genotypes of microgreens intending to select those with the best productivity and phytonutrient profile for cultivation in Space. The selection process consisted of two subsequent phases. The first selection was based on literature data including 39 genotypes and 25 parameters related to growth, phytonutrients (e.g., tocopherol, phylloquinone, ascorbic acid, polyphenols, lutein, carotenoids, violaxanthin), and mineral elements. Parameters were implemented in a mathematical model with prioritization criteria to generate a ranking list of microgreens. The second phase was based on germination and cultivation tests specifically designed for this study and performed on the six top species resulting from the first ranking list. For the second selection, experimental data on phytonutrients were expressed as metabolite production per day per square meter. Results and discussion In the final ranking list radish and savoy cabbage resulted with the highest scores based on their productivity and phytonutrient profile. Overall, the algorithm with prioritization criteria allowed us to objectively compare candidate species and obtain a ranking list based on the combination of numerous parameters measured in the different species. This method can be also adapted to new species, parameters, or re-prioritizing the parameters for specific selection purposes.
Collapse
Affiliation(s)
- Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Simona Proietti
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Gabriele Paglialunga
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Stefano Moscatello
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Alberto Battistelli
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Maurizio Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Leone Ermes Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
110
|
Mufti A, Feriani A, Ouchari W, Mandour YM, Tlili N, Ibrahim MA, Mahmoud MF, Sobeh M. Leonotis ocymifolia (Burm.f.) Iwarsson aerial parts aqueous extract mitigates cisplatin-induced nephrotoxicity via attenuation of inflammation, and DNA damage. Front Pharmacol 2023; 14:1221486. [PMID: 37593171 PMCID: PMC10428015 DOI: 10.3389/fphar.2023.1221486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Herein, we explored the protective effect of Leonotis ocymifolia (Burm.f.) Iwarsson aerial parts extract (LO) against cisplatin (CP)-induced nephrotoxicity in rats and profiled their phytocontents. A total of 31 compounds belonging to organic and phenolic acids and their glycosides as well as flavonoids and their O- and C-glycosides were identified through LC-MS/MS. The DPPH and FRAP assays revealed that the extract had powerful antioxidant properties. The in vivo results demonstrated that administering LO extract for 30 days (40 and 80 mg/kg b. w.) significantly improved the altered renal injury markers via reducing creatinine (high dose only) and uric acid levels compared to the Cp-group. The deleterious action of cisplatin on renal oxidative stress markers (GSH, MDA, SOD, and CAT) were also mitigated by LO-pretreatment. The reduction of the inflammatory marker (IL-6), and inhibition of DNA fragmentation, highlighted the prophylactic action of LO in kidney tissue. Molecular docking followed by a 100 ns molecular dynamic simulation analyses revealed that, amongst the 31 identified compounds in LO, chlorogenic and caffeoylmalic acids had the most stable binding to IL-6. The nephroprotective effects were further confirmed by histopathological observations, which showed improvement in ultrastructural changes induced by cisplatin. The observed findings reinforce the conclusion that L. ocymifolia extract exerts nephroprotective properties, which could be related to its antioxidant and anti-inflammatory activities. Further studies are required to determine the therapeutic doses and the proper administration time.
Collapse
Affiliation(s)
- Afoua Mufti
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Wafae Ouchari
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Yasmine M. Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de L’Environnement, Université de Carthage, Carthage, Tunisia
| | | | - Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mansour Sobeh
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
111
|
Fang Z, Chen X, Liu M, Zuo L, Zhou B, Zheng G, Chen H, Hao G. Associations of pyrethroid exposure with skeletal muscle strength and mass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89651-89660. [PMID: 37454383 DOI: 10.1007/s11356-023-28784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to examine the associations of pyrethroid exposure with handgrip strength and skeletal muscle mass and potential modification effects in US adults. The data from the National Health and Nutrition Examination Survey was used. Handgrip strength was determined with a handgrip dynamometer, and we quantified muscle mass by using the appendicular skeletal muscle index (ASMI). Urinary 3-Phenoxybenzoic Acid (3-PBA), a validated biomarker for pyrethroid exposure, was used in the primary analysis. After adjusting for other covariates, participants exposed to the highest tertile of 3-PBA exposure had significantly lower handgrip strength (β = -1.88, 95% CI: -3.29, -0.23, P = 0.026) than those exposed to the lowest tertile of 3-PBA. Similarly, the 3-PBA exposure was marginally significantly associated with ASMI (Tertile 3 vs. Tertile 1: β = -0.07, 95% CI: -0.14, -0.01, P = 0.056). Significant interactions were found between 3-PBA and body mass index (BMI) on handgrip strength and ASMI (P interaction < 0.05), which indicated a potential moderation effect of BMI on the associations. In conclusion, pyrethroid exposure was adversely associated with handgrip strength and skeletal muscle mass, especially in overweight and obese populations. Further studies are warranted to confirm our results and to explore the potential mechanisms.
Collapse
Affiliation(s)
- Zhenger Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Mingliang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Biying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Guangjun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Haiyan Chen
- Department of Parasitic Disease and Endemic Disease Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Guang Hao
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, No. 283 Jianghai Avenue, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
112
|
Dent JR, Stocks B, Campelj DG, Philp A. Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise. Semin Cell Dev Biol 2023; 143:3-16. [PMID: 35351374 DOI: 10.1016/j.semcdb.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/26/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Endurance exercise is well established to increase mitochondrial content and function in skeletal muscle, a process termed mitochondrial biogenesis. Current understanding is that exercise initiates skeletal muscle mitochondrial remodeling via modulation of cellular nutrient, energetic and contractile stress pathways. These subtle changes in the cellular milieu are sensed by numerous transduction pathways that serve to initiate and coordinate an increase in mitochondrial gene transcription and translation. The result of these acute signaling events is the promotion of growth and assembly of mitochondria, coupled to a greater capacity for aerobic ATP provision in skeletal muscle. The aim of this review is to highlight the acute metabolic events induced by endurance exercise and the subsequent molecular pathways that sense this transient change in cellular homeostasis to drive mitochondrial adaptation and remodeling.
Collapse
Affiliation(s)
- Jessica R Dent
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Dean G Campelj
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Medical School, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
113
|
Maugeri G, Amato A, Sortino M, D Agata V, Musumeci G. The Influence of Exercise on Oxidative Stress after Spinal Cord Injury: A Narrative Review. Antioxidants (Basel) 2023; 12:1401. [PMID: 37507940 PMCID: PMC10376509 DOI: 10.3390/antiox12071401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injury (SCI) is an irreversible disease resulting in partial or total loss of sensory and motor function. The pathophysiology of SCI is characterized by an initial primary injury phase followed by a secondary phase in which reactive oxygen species (ROSs) and associated oxidative stress play hallmark roles. Physical exercise is an indispensable means of promoting psychophysical well-being and improving quality of life. It positively influences the neuromuscular, cardiovascular, respiratory, and immune systems. Moreover, exercise may provide a mechanism to regulate the variation and equilibrium between pro-oxidants and antioxidants. After a brief overview of spinal cord anatomy and the different types of spinal cord injury, the purpose of this review is to investigate the evidence regarding the effect of exercise on oxidative stress among individuals with SCI.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alessandra Amato
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Martina Sortino
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Velia D Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, 95123 Catania, Italy
| |
Collapse
|
114
|
Tan R, Price KM, Wideen LE, Lincoln IG, Karl ST, Seals JP, Paniagua KK, Hagen DW, Tchaprazian I, Bailey SJ, Pennell A. Dietary nitrate ingested with and without pomegranate supplementation does not improve resistance exercise performance. Front Nutr 2023; 10:1217192. [PMID: 37485396 PMCID: PMC10358845 DOI: 10.3389/fnut.2023.1217192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
This study tested the hypothesis that co-ingesting nitrate (NO3-)-rich beetroot juice (BR) and pomegranate powder (POM) would enhance neuromuscular performance during vertical countermovement jumps, explosive kneeling countermovement push-ups, and back squats compared to BR ingestion alone. Fifteen recreationally-active males were assigned in a double-blind, randomized, crossover design, to supplement in 3 conditions: (1) NO3--depleted beetroot juice (PL; 0.10 mmol NO3-) with two empty gelatin capsules; (2) NO3--rich beetroot juice (BR; 11.8 mmol NO3-) with two empty gelatin capsules, and (3) BR with 1,000 mg of POM powder in two capsules (BR + POM). Participants completed 5 countermovement jumps and 5 kneeling countermovement push-ups interspersed by 1 min of recovery. Subsequently, participants performed 2 sets of 2 × 70% one-repetition maximum back squats, interspersed by 2 min of recovery. Plasma [NO3-] and nitrite ([NO2-]) were elevated following BR and BR + POM compared with PL and POM (p < 0.001) with no differences between BR and BR + POM (p > 0.05) or PL and POM (p > 0.05). Peak power during countermovement jumps increased by 3% following BR compared to BR + POM (88.50 ± 11.46 vs. 85.80 ± 10.14 W/Kg0.67, p = 0.009) but not PL (88.50 ± 11.46 vs. 85.58 ± 10.05 W/Kg0.67, p = 0.07). Neuromuscular performance was not different between conditions during explosive kneeling push-ups and back squats (p > 0.05). These data provide insight into the efficacy of NO3- to modulate explosive resistance exercise performance and indicate that supplementing with BR alone or combined with POM has limited ergogenic potential on resistance exercise. Furthermore, caution is required when combining BR with POM, as this could compromise aspects of resistance exercise performance, at least when compared to BR ingested independently.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Katherine M. Price
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Lauren E. Wideen
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Isabella G. Lincoln
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Sean T. Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Jacob P. Seals
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | | | - Dylan W. Hagen
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Isaac Tchaprazian
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Adam Pennell
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| |
Collapse
|
115
|
Bi Y, Liu X, Liu Y, Wang M, Shan Y, Yin Y, Meng X, Sun F, Li H, Li Z. Molecular and biochemical investigations of the anti-fatigue effects of tea polyphenols and fruit extracts of Lycium ruthenicum Murr. on mice with exercise-induced fatigue. Front Mol Biosci 2023; 10:1223411. [PMID: 37416624 PMCID: PMC10319583 DOI: 10.3389/fmolb.2023.1223411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Background: The molecular mechanisms regulating the therapeutic effects of plant-based ingredients on the exercise-induced fatigue (EIF) remain unclear. The therapeutic effects of both tea polyphenols (TP) and fruit extracts of Lycium ruthenicum (LR) on mouse model of EIF were investigated. Methods: The variations in the fatigue-related biochemical factors, i.e., lactate dehydrogenase (LDH), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), and interleukin-6 (IL-6), in mouse models of EIF treated with TP and LR were determined. The microRNAs involved in the therapeutic effects of TP and LR on the treatment of mice with EIF were identified using the next-generation sequencing technology. Results: Our results revealed that both TP and LR showed evident anti-inflammatory effect and reduced oxidative stress. In comparison with the control groups, the contents of LDH, TNF-α, IL-6, IL-1β, and IL-2 were significantly decreased and the contents of SOD were significantly increased in the experimental groups treated with either TP or LR. A total of 23 microRNAs (21 upregulated and 2 downregulated) identified for the first time by the high-throughput RNA sequencing were involved in the molecular response to EIF in mice treated with TP and LR. The regulatory functions of these microRNAs in the pathogenesis of EIF in mice were further explored based on Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses with a total of over 20,000-30,000 target genes annotated and 44 metabolic pathways enriched in the experimental groups based on GO and KEGG databases, respectively. Conclusion: Our study revealed the therapeutic effects of TP and LR and identified the microRNAs involved in the molecular mechanisms regulating the EIF in mice, providing strong experimental evidence to support further agricultural development of LR as well as the investigations and applications of TP and LR in the treatment of EIF in humans, including the professional athletes.
Collapse
Affiliation(s)
- Yingxin Bi
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Xianjun Liu
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Yue Liu
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Mengyuan Wang
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Xianglong Meng
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, United States
| | - Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| |
Collapse
|
116
|
Silva J, Borges L, Weimann E, Belmiro Dias B, Gomes Faria F, Ferreira Salgado B, de Freitas P, Cristina Pithon-Curi T, Hatanaka E. A Single Bout of High Heels Dancing Causes an Increase in Circulating Markers of Muscle Tissue Degradation and MMP-3 in Young Healthy Women. TRANSLATIONAL SPORTS MEDICINE 2023; 2023:8852889. [PMID: 38654916 PMCID: PMC11022759 DOI: 10.1155/2023/8852889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 04/26/2024]
Abstract
Prolonged wearing of high heels can cause chronic injury and inflammation. Herein, we investigated the presence of muscle injury, inflammation, and neutrophil function in young women after a single bout of stiletto dance class. Sixteen volunteers (23.4 ± 3.8 years; 61.7 ± 8.1 kg; 23.4 ± 2.3 kg/m2; and 27.2 ± 3.8% body fat) participated in the study. The plasma biomarkers matrix metalloproteinase 3 (MMP-3), muscle damage (myoglobin (Mb), total creatine kinase (CK), and lactate dehydrogenase (LDH)), and inflammation (interleukin 8 (IL-8), tumour necrosis factor-alpha (TNF-α), interleukin (IL]-1β, and IL-6) were quantified before and immediately after a single stiletto class (60 min) of moderate intensity. After class, our data showed that the plasma concentration of MMP-3, Mb, and CK increased by 56% (p = 0.04; d = 0.8), 113% (p = 0.007; d = 1.1), and 21% (p < 0.001; d = 0.4), respectively. Reactive oxygen species produced by neutrophils and the plasma concentration of IL-8, TNF-α, IL-1β, and IL-6 were not affected under the study conditions. We concluded that a single bout of stiletto dance class caused muscle damage but did not alter the plasma concentration of proinflammatory cytokines. These findings are crucial in preventing the progress of chronic injuries that are often noted in dancers with synovitis and arthritis.
Collapse
Affiliation(s)
- Jamila Silva
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Instituto de Ciências da Atividade Física e Esportes (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Leandro Borges
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Instituto de Ciências da Atividade Física e Esportes (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Eleine Weimann
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Instituto de Ciências da Atividade Física e Esportes (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Beatriz Belmiro Dias
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Instituto de Ciências da Atividade Física e Esportes (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Flavio Gomes Faria
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Instituto de Ciências da Atividade Física e Esportes (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Beatriz Ferreira Salgado
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Instituto de Ciências da Atividade Física e Esportes (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Paulo de Freitas
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Instituto de Ciências da Atividade Física e Esportes (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Tania Cristina Pithon-Curi
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Instituto de Ciências da Atividade Física e Esportes (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Elaine Hatanaka
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Instituto de Ciências da Atividade Física e Esportes (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| |
Collapse
|
117
|
Fernández-Lázaro D, Domínguez-Ortega C, Busto N, Santamaría-Peláez M, Roche E, Gutiérez-Abejón E, Mielgo-Ayuso J. Influence of N-Acetylcysteine Supplementation on Physical Performance and Laboratory Biomarkers in Adult Males: A Systematic Review of Controlled Trials. Nutrients 2023; 15:nu15112463. [PMID: 37299425 DOI: 10.3390/nu15112463] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
N-acetylcysteine (NAC) is used as a sports supplement for its ability to modulate exercise-induced oxidative damage through its antioxidant actions and maintenance of glutathione homeostasis, positioning NAC as a strategy to improve physical performance. We aimed to evaluate the current evidence on the benefits of NAC supplementation on physical performance and laboratory biomarkers in adult men. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed studies indexed in the Web of Science, Scopus, and PubMed to assess the effects of NAC on physical performance, laboratory biomarkers, and adverse effects in adult men. Original articles published up to 30 April 2023 with a controlled trial design comparing NAC supplementation with a control group were included. The modified McMaster Critical Review Form for Quantitative Studies was used as an assessment tool and the Cochrane Risk of Bias was applied. Of the 777 records identified in the search, 16 studies met the inclusion and exclusion criteria. Overall, most of the trials reported beneficial effects of NAC supplementation and no serious adverse events were reported. Participants supplemented with NAC showed significant improvements in exercise performance, antioxidant capacity, and glutathione homeostasis. However, there was no clear evidence of beneficial effects of NAC supplementation on haematological markers, inflammatory response, and muscle behaviour. NAC supplementation appears to be safe and may regulate glutathione homeostasis, have antioxidant effects, and improve exercise performance. However, further studies are needed to clarify the relevance of its use.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Research Group "Nutrition and Physical Activity", Spanish Nutrition Society "SEÑ", 28010 Madrid, Spain
| | - Carlos Domínguez-Ortega
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Hematology Service of "Santa Bárbara Hospital", Castile and Leon Health (SACyL), 42003 Soria, Spain
- Hematology Service of "Latorre Hospital", 42004 Soria, Spain
| | - Natalia Busto
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Mirian Santamaría-Peláez
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Enrique Roche
- Research Group "Nutrition and Physical Activity", Spanish Nutrition Society "SEÑ", 28010 Madrid, Spain
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernandez, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Eduardo Gutiérez-Abejón
- Pharmacological Big Data Laboratory, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Pharmacy Directorate, Castilla y León Health Council, 47007 Valladolid, Spain
| | - Juan Mielgo-Ayuso
- Research Group "Nutrition and Physical Activity", Spanish Nutrition Society "SEÑ", 28010 Madrid, Spain
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
118
|
Jacome Burbano MS, Robin JD, Bauwens S, Martin M, Donati E, Martínez L, Lin P, Sacconi S, Magdinier F, Gilson E. Non-canonical telomere protection role of FOXO3a of human skeletal muscle cells regulated by the TRF2-redox axis. Commun Biol 2023; 6:561. [PMID: 37231173 DOI: 10.1038/s42003-023-04903-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Telomeric repeat binding factor 2 (TRF2) binds to telomeres and protects chromosome ends against the DNA damage response and senescence. Although the expression of TRF2 is downregulated upon cellular senescence and in various aging tissues, including skeletal muscle tissues, very little is known about the contribution of this decline to aging. We previously showed that TRF2 loss in myofibers does not trigger telomere deprotection but mitochondrial dysfunction leading to an increased level of reactive oxygen species. We show here that this oxidative stress triggers the binding of FOXO3a to telomeres where it protects against ATM activation, revealing a previously unrecognized telomere protective function of FOXO3a, to the best of our knowledge. We further showed in transformed fibroblasts and myotubes that the telomere properties of FOXO3a are dependent on the C-terminal segment of its CR2 domain (CR2C) but independent of its Forkhead DNA binding domain and of its CR3 transactivation domain. We propose that these non-canonical properties of FOXO3a at telomeres play a role downstream of the mitochondrial signaling induced by TRF2 downregulation to regulate skeletal muscle homeostasis and aging.
Collapse
Affiliation(s)
| | - Jérôme D Robin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Serge Bauwens
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Marjorie Martin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Emma Donati
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Lucia Martínez
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Peipei Lin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, International Research Project in Hematology, Cancer and Aging, RuiJin Hospital, Shanghai Jiao Tong University School, Shanghai, China
| | - Sabrina Sacconi
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
- Peripheral Nervous System, Muscle and ALS, Neuromuscular & ALS Center of Reference, FHU Oncoage, Nice University Hospital, Pasteur 2, Nice, France
| | | | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France.
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, International Research Project in Hematology, Cancer and Aging, RuiJin Hospital, Shanghai Jiao Tong University School, Shanghai, China.
- Department of Genetics, CHU; FHU OncoAge, Nice, France.
| |
Collapse
|
119
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on muscular power output: Influence of supplementation strategy and population. Nitric Oxide 2023:S1089-8603(23)00047-2. [PMID: 37244391 DOI: 10.1016/j.niox.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability its potential ergogenic effects across various population groups. This narrative review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular power output in healthy adults, athletes, older adults and some clinical populations. Areas for further research are also recommended including a focus individualized nitrate dosing regimens to optimize nitric oxide bioavailability and to promote muscular power enhancements in different populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
120
|
Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and Sports Performance. Nutrients 2023; 15:nu15102371. [PMID: 37242253 DOI: 10.3390/nu15102371] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The role of reactive oxygen species and antioxidant response in training adaptations and sports performance has been a large issue investigated in the last few years. The present review aims to analyze the role of reactive oxygen species and antioxidant response in sports performance. For this aim, the production of reactive oxygen species in physical activities, the effect of reactive oxygen species on sports performance, the relationship between reactive oxygen species and training adaptations, inflammation, and the microbiota, the effect of antioxidants on recovery and sports performance, and strategies to use antioxidants supplementations will be discussed. Finally, practical applications derived from this information are discussed. The reactive oxygen species (ROS) production during physical activity greatly influences sports performance. This review concludes that ROS play a critical role in the processes of training adaptation induced by resistance training through a reduction in inflammatory mediators and oxidative stress, as well as appropriate molecular signaling. Additionally, it has been established that micronutrients play an important role in counteracting free radicals, such as reactive oxygen species, which cause oxidative stress, and the effects of antioxidants on recovery, sports performance, and strategies for using antioxidant supplements, such as vitamin C, vitamin E, resveratrol, coenzyme Q10, selenium, and curcumin to enhance physical and mental well-being.
Collapse
Affiliation(s)
| | | | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | |
Collapse
|
121
|
Yu B, Cai Z, Liu J, Zhao W, Fu X, Gu Y, Zhang J. Transcriptome and co-expression network analysis reveals the molecular mechanism of inosine monophosphate-specific deposition in chicken muscle. Front Physiol 2023; 14:1199311. [PMID: 37265843 PMCID: PMC10229883 DOI: 10.3389/fphys.2023.1199311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
The inosine monophosphate (IMP) content in chicken meat is closely related to muscle quality and is an important factor affecting meat flavor. However, the molecular regulatory mechanisms underlying the IMP-specific deposition in muscle remain unclear. This study performed transcriptome analysis of muscle tissues from different parts, feeding methods, sexes, and breeds of 180-day-old Jingyuan chickens, combined with differential expression and weighted gene co-expression network analysis (WGCNA), to identify the functional genes that regulate IMP deposition. Out of the four comparison groups, 1,775, 409, 102, and 60 differentially expressed genes (DEGs) were identified, of which PDHA2, ACSS2, PGAM1, GAPDH, PGM1, GPI, and TPI1 may be involved in the anabolic process of muscle IMP in the form of energy metabolism or amino acid metabolism. WGCNA identified 11 biofunctional modules associated with IMP deposition. The brown, midnight blue, red, and yellow modules were strongly correlated with IMP and cooking loss (p < 0.05). Functional enrichment analysis showed that glycolysis/gluconeogenesis, arginine and proline metabolism, and pyruvate metabolism, regulated by PYCR1, SMOX, and ACSS2, were necessary for muscle IMP-specific deposition. In addition, combined analyses of DEGs and four WGCNA modules identified TGIF1 and THBS1 as potential candidate genes affecting IMP deposition in muscle. This study explored the functional genes that regulate muscle development and IMP synthesis from multiple perspectives, providing an important theoretical basis for improving the meat quality and molecular breeding of Jingyuan chickens.
Collapse
|
122
|
Hu G, Xu L, Ito O. Impacts of High Fructose Diet and Chronic Exercise on Nitric Oxide Synthase and Oxidative Stress in Rat Kidney. Nutrients 2023; 15:nu15102322. [PMID: 37242205 DOI: 10.3390/nu15102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic exercise (Ex) exerts antihypertensive and renoprotective effects in rats fed a high fructose diet (HFr). To elucidate the mechanisms, the impacts of an HFr and Ex on the nitric oxide (NO) system and oxidative stress in the kidney were examined. Rats were fed a control diet or an HFr, and a part of the HFr-fed rats underwent treadmill running for 12 weeks. The HFr did not affect nitrate/nitrite (NOx) levels in plasma and urine, and Ex increased the NOx levels. The HFr increased thiobarbituric acid reactive substance (TBARS) levels in plasma and urine, and Ex decreased the HFr-increased TBARS levels in plasma. The HFr increased the neuronal and endothelial NO synthase (nNOS and eNOS) expressions, and Ex enhanced the HFr-increased eNOS expression. The HFr inhibited the eNOS phosphorylation at serine 1177, and Ex restored the HFr-inhibited eNOS phosphorylation. The HFr increased xanthine oxidase and NADPH oxidase activities, and Ex restored the HFr-increased xanthine oxidase activity but enhanced the HFr-increased NADPH oxidase activity. The HFr increased the nitrotyrosine levels, and Ex attenuated the HFr-increased levels. These results indicate that although Ex enhances the HFr-increased eNOS expression and NADPH oxidase activity, an HFr inhibits renal eNOS phosphorylation and NO bioavailability, whereas Ex ameliorates them.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai 983-8536, Japan
| | - Lusi Xu
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai 983-8536, Japan
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| | - Osamu Ito
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
123
|
Huang D, Zhong S, Yan H, Lai S, Lam M, Jia Y. Association between serum zinc levels and suicidal ideation in US adults: A population-based cross-sectional study. J Affect Disord 2023; 329:359-368. [PMID: 36801424 DOI: 10.1016/j.jad.2023.02.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Evidence suggests that the homeostatic disruption of zinc, copper, and selenium might contribute to the pathophysiology of mental disorders. However, the specific relationship between the serum levels of these trace elements with suicidal ideation remains poorly understood. This study aimed to investigated the association among suicidal ideation on serum levels of zinc, copper, and selenium. METHODS The cross-sectional study was conducted using data from a nationally representative sample of the National Health and Nutrition Examination Survey (NHANES) 2011-2016. Suicidal ideation was assessed using Item #9 of the Patient Health Questionnaire-9 Items. Multivariate regression models and restricted cubic splines were performed and E-value was calculated. RESULTS A total of 4561 participants aged 20 years and older were analyzed, of whom 4.08 % had suicidal ideation. The serum zinc levels were lower in the suicidal ideation group than in the non-suicidal ideation group (P = 0.021). In Crude Model, the serum zinc levels were associated with a higher suicidal ideation risk in the second quartile compared with the highest quartile [odds ratio (OR) = 2.63; 95 % confidence interval (CI): 1.53-4.53]. The association persisted (OR = 2.35; 95 % CI: 1.20-4.58) after full adjustment, with E-value 2.44. A nonlinear relationship was observed between serum zinc levels and suicidal ideation (P = 0.028). No relationship was observed between suicidal ideation and serum copper or selenium levels (all P > 0.05). CONCLUSIONS Decreased serum zinc levels may increase susceptibility to suicidal ideation. Future studies are needed to validate the findings of this study.
Collapse
Affiliation(s)
- Dong Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Meifong Lam
- Psychiatric service of the Centro Hospitalar Conde de São Januário, Macao 999078, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
124
|
Tuncay A, Crabtree DR, Muggeridge DJ, Husi H, Cobley JN. Performance benchmarking microplate-immunoassays for quantifying target-specific cysteine oxidation reveals their potential for understanding redox-regulation and oxidative stress. Free Radic Biol Med 2023; 204:252-265. [PMID: 37192685 DOI: 10.1016/j.freeradbiomed.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
The antibody-linked oxi-state assay (ALISA) for quantifying target-specific cysteine oxidation can benefit specialist and non-specialist users. Specialists can benefit from time-efficient analysis and high-throughput target and/or sample n-plex capacities. The simple and accessible "off-the-shelf" nature of ALISA brings the benefits of oxidative damage assays to non-specialists studying redox-regulation. Until performance benchmarking establishes confidence in the "unseen" microplate results, ALISA is unlikely to be widely adopted. Here, we implemented pre-set pass/fail criteria to benchmark ALISA by evaluating immunoassay performance in diverse contexts. ELISA-mode ALISA assays were accurate, reliable, and sensitive. For example, the average inter-assay CV for detecting 20%- and 40%-oxidised PRDX2 or GAPDH standards was 4.6% (range: 3.6-7.4%). ALISA displayed target-specificity. Immunodepleting the target decreased the signal by ∼75%. Single-antibody formatted ALISA failed to quantify the matrix-facing alpha subunit of the mitochondrial ATP synthase. However, RedoxiFluor quantified the alpha subunit displaying exceptional performance in the single-antibody format. ALISA discovered that (1) monocyte-to-macrophage differentiation amplified PRDX2-oxidation in THP-1 cells and (2) exercise increased GAPDH-specific oxidation in human erythrocytes. The "unseen" microplate data were "seen-to-be-believed" via orthogonal visually displayed immunoassays like the dimer method. Finally, we established target (n = 3) and sample (n = 100) n-plex capacities in ∼4 h with 50-70 min hands-on time. Our work showcases the potential of ALISA to advance our understanding of redox-regulation and oxidative stress.
Collapse
Affiliation(s)
- Ahmet Tuncay
- Division of Biomedical Science, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK
| | - Daniel R Crabtree
- Division of Biomedical Science, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK
| | | | - Holger Husi
- Division of Biomedical Science, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK
| | - James N Cobley
- Division of Biomedical Science, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK; Cysteine Redox Technology Group, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
125
|
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, Ulmann L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051050. [PMID: 37237915 DOI: 10.3390/antiox12051050] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Céline Loiseau
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Claire Mayer
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Martine Côme
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Isabelle Martin
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
126
|
Marmett B, Carvalho RB, Silva GND, Dorneles GP, Romão PRT, Nunes RB, Rhoden CR. The role of O 3 exposure and physical activity status on redox state, inflammation, and pulmonary toxicity of young men: A cross-sectional study. ENVIRONMENTAL RESEARCH 2023; 231:116020. [PMID: 37119842 DOI: 10.1016/j.envres.2023.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
The exposure to traffic-related air pollutants, such as NO2 and O3, are associated with detrimental health effects, becoming one of the greatest public health issues worldwide. Exercising in polluted environments could result in harmful outcomes for health and may blunt the physiological adaptations of exercise training. This study aimed to investigate the influence of physical activity and O3 exposure on redox status, an inflammatory marker, response to stress, and pulmonary toxicity of healthy young individuals. We performed a cross-sectional study with 100 individuals that, based on their exposure to O3 and physical fitness (PF) level, were distributed in four groups: Low PF + Low O3; Low PF + High O3; High PF + Low O3; High PF + High O3. We evaluated personal exposure to NO2 and O3, physical activity level, variables of oxidative stress (SOD, ROS, CAT, GSH, TBARS), pulmonary toxicity (CC16), and inflammatory mediators (IL-1β, IL-4, IL-6, IL-10, TNF-α, HSP70). Spearman correlation test to check the association among the variables was used and to compare groups we used one-way ANOVA followed by Bonferroni's post hoc and Kruskal Wallis test followed by Dunn's post hoc. O3 levels correlated with physical activity (r = 0.25; p = 0.01) but not with age or markers of body composition (p > 0.05). The individuals with high physical fitness that were less exposed to O3 presented higher CAT activity (p < 0.001), lower TBARS (p < 0.01) and IL-1β concentrations (p < 0.01), higher IL-6 (p < 0.05) and IL-10 concentrations (p < 0.05), lower IL-6:1L-10 ratio (p < 0.05), lower CC16 levels (p < 0.05), and higher HSP70 concentration (p < 0.05). Physical activity could result in higher exposure to O3 that could partially blunt some exercise adaptations, while high physical fitness improved the antioxidant defense system, systemic inflammatory mediators, and pulmonary toxicity.
Collapse
Affiliation(s)
- Bruna Marmett
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Roseana Boek Carvalho
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Gedaias Noronha da Silva
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Gilson Pires Dorneles
- Laboratory of Cellular and Molecular Immunology, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cellular and Molecular Immunology, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ramiro Barcos Nunes
- Research Department - Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense, Gravataí, Brazil
| | - Cláudia Ramos Rhoden
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
127
|
Stein JA, Farina EK, Karl JP, Thompson LA, Knapik JJ, Pasiakos SM, McClung JP, Lieberman HR. Biomarkers of oxidative stress, diet and exercise distinguish soldiers selected and non-selected for special forces training. Metabolomics 2023; 19:39. [PMID: 37041398 PMCID: PMC10090007 DOI: 10.1007/s11306-023-01998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
INTRODUCTION The metabolomic profiles of Soldiers entering the U.S. Special Forces Assessment and Selection course (SFAS) have not been evaluated. OBJECTIVES To compare pre-SFAS blood metabolomes of Soldiers selected during SFAS versus those not selected, and explore the relationships between the metabolome, physical performance, and diet quality. METHODS Fasted blood samples and food frequency questionnaires were collected from 761 Soldiers prior to entering SFAS to assess metabolomic profiles and diet quality, respectively. Physical performance was assessed throughout SFAS. RESULTS Between-group differences (False Discovery Rate < 0.05) in 108 metabolites were detected. Selected candidates had higher levels of compounds within xenobiotic, pentose phosphate, and corticosteroid metabolic pathways, while non-selected candidates had higher levels of compounds potentially indicative of oxidative stress (i.e., sphingomyelins, acylcarnitines, glutathione, amino acids). Multiple compounds higher in non-selected versus selected candidates included: 1-carboxyethylphenylalanine; 4-hydroxy-nonenal-glutathione; α-hydroxyisocaproate; hexanoylcarnitine; sphingomyelin and were associated with lower diet quality and worse physical performance. CONCLUSION: Candidates selected during SFAS had higher pre-SFAS levels of circulating metabolites that were associated with resistance to oxidative stress, higher physical performance and higher diet quality. In contrast, non-selected candidates had higher levels of metabolites potentially indicating elevated oxidative stress. These findings indicate that Soldiers who were selected for continued Special Forces training enter the SFAS course with metabolites associated with healthier diets and better physical performance. Additionally, the non-selected candidates had higher levels of metabolites that may indicate elevated oxidative stress, which could result from poor nutrition, non-functional overreaching/overtraining, or incomplete recovery from previous physical activity.
Collapse
Affiliation(s)
- Jesse A Stein
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA.
- Oak Ridge Institute for Science and Education, Belcamp, MD, USA.
| | - Emily K Farina
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - Lauren A Thompson
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - Joseph J Knapik
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - James P McClung
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - Harris R Lieberman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| |
Collapse
|
128
|
Mendes S, Leal DV, Baker LA, Ferreira A, Smith AC, Viana JL. The Potential Modulatory Effects of Exercise on Skeletal Muscle Redox Status in Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24076017. [PMID: 37046990 PMCID: PMC10094245 DOI: 10.3390/ijms24076017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Kidney Disease (CKD) is a global health burden with high mortality and health costs. CKD patients exhibit lower cardiorespiratory and muscular fitness, strongly associated with morbidity/mortality, which is exacerbated when they reach the need for renal replacement therapies (RRT). Muscle wasting in CKD has been associated with an inflammatory/oxidative status affecting the resident cells' microenvironment, decreasing repair capacity and leading to atrophy. Exercise may help counteracting such effects; however, the molecular mechanisms remain uncertain. Thus, trying to pinpoint and understand these mechanisms is of particular interest. This review will start with a general background about myogenesis, followed by an overview of the impact of redox imbalance as a mechanism of muscle wasting in CKD, with focus on the modulatory effect of exercise on the skeletal muscle microenvironment.
Collapse
Affiliation(s)
- Sara Mendes
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Diogo V Leal
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Luke A Baker
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Aníbal Ferreira
- Nova Medical School, 1169-056 Lisbon, Portugal
- NephroCare Portugal SA, 1750-233 Lisbon, Portugal
| | - Alice C Smith
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - João L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| |
Collapse
|
129
|
Wan J, Yu X, Liu J, Li J, Ai T, Yin C, Liu H, Qin R. A special polysaccharide hydrogel coated on Brasenia schreberi: preventive effects against ulcerative colitis via modulation of gut microbiota. Food Funct 2023; 14:3564-3575. [PMID: 36946057 DOI: 10.1039/d2fo03207d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ulcerative colitis (UC) is a growing health concern in humans, but it can be prevented by using special dietary strategies. Young stems and leaves of Brasenia schreberi (BS) are coated with a special polysaccharide hydrogel (BS mucilage) which can be beneficial for colon health. The aim of this study was to investigate the preventive effects of BS mucilage against UC in a DSS-treated mouse model. Although containing only 0.3% solid content, our research showed that BS mucilage effectively attenuated the disease activity index (DAI) and the spleen index and downregulated IL-1β, IL-18, IL-6 and CAT mRNA levels in DSS-treated mice, which is a promising UC alleviation function. Additionally, BS mucilage also improved the propionate and butyrate levels in mouse feces and alleviated the imbalanced gut microbiota induced by DSS. The abundance of pro-inflammatory and colorectal cancer related bacteria, such as Prevotella, Ruminococcus, Acutalibacter and Christensenella, was decreased by BS mucilage feeding, whereas the abundance of anti-inflammatory and SCFA-producing bacteria including Alistipes and Odoribacter was increased. In conclusion, the current study shows that the daily consumption of BS mucilage could be an effective way to prevent UC in mice, via modulation of gut microbiota.
Collapse
Affiliation(s)
- Jiawei Wan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Xiujuan Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingyang Ai
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Cong Yin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| |
Collapse
|
130
|
Sajjadi SS, Bagherniya M, Soleimani D, Siavash M, Askari G. Effect of propolis on mood, quality of life, and metabolic profiles in subjects with metabolic syndrome: a randomized clinical trial. Sci Rep 2023; 13:4452. [PMID: 36932147 PMCID: PMC10022550 DOI: 10.1038/s41598-023-31254-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Metabolic syndrome (MeS) is a common multifaceted disorder. Plants contain antioxidant bioactive compounds, which are beneficial to improve the health condition of patients with MeS. Propolis is a hive natural product that is composed of various constituent. We aimed to assess the effects of Iranian propolis as a natural and safe agent on indicators of MeS, quality of life and mood status in individuals with MeS. In total, 66 interested eligible patients recruited to the present study. Participants were randomly assigned to consume a tablet at dose of 250 mg of propolis extract, twice daily for 12 weeks or placebo. Propolis supplementation could lead to a significant reduction in waist circumference (WC), increase in physical functioning, general health and the overall score of SF-36 compared with placebo group (P-value < 0.05). However, no significant differences were observed regarding other anthropometric indices and biochemical parameters between two groups (P-value > 0.05). The current study indicated that propolis can be effective in decreasing WC and improving physical health and quality of life, while had no significant effects on other components of MeS among subjects with this syndrome. Clinical trials registration Iran Registry of Clinical Trials.ir IRCT20121216011763N49, registration date 23/12/2020.
Collapse
Affiliation(s)
- Sana Sadat Sajjadi
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Soleimani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansour Siavash
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
131
|
Cebrián-Ponce Á, Irurtia A, Castizo-Olier J, Garnacho-Castaño MV, Espasa-Labrador J, Noriega Z, Carrasco-Marginet M. Bioelectrical, Anthropometric, and Hematological Analysis to Assess Body Fluids and Muscle Changes in Elite Cyclists during the Giro d’Italia. BIOLOGY 2023; 12:biology12030450. [PMID: 36979142 PMCID: PMC10045318 DOI: 10.3390/biology12030450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
This study aimed to characterize and monitor the body fluid and muscle changes during the Giro d’Italia in nine elite cyclists via bioelectrical (whole-body and muscle-localized) anthropometric and hematological analysis. There were three checkpoint assessments: at the beginning, middle, and end of the race. The Wilcoxon signed-rank test was used to compare the data at baseline and follow up. The Spearman correlation was used to explore relationships between variables. Hotelling’s T2 test was used to determine bioelectrical differences in the complex vector. Bodyweight did not change during the competition, despite bioelectrical and hematological data indicating that at the first half of the race, there was a fluid gain, and in the second half a fluid loss occurred, reaching baseline values. These changes were especially prevalent in the extracellular water compartment. Significant correlations between whole-body bioelectrical vector changes and red blood cell parameter changes were reported. The muscle group most sensitive to changes were the calves. Quadriceps, hamstrings, and calves reported a PhA decrease trend during the first half of the race, and an increase during the second half. Bioelectrical impedance vector analysis appears to be sensitive enough to detect hydration and cellular integrity adaptions induced by competitions as demanding as the Giro d’Italia.
Collapse
Affiliation(s)
- Álex Cebrián-Ponce
- INEFC-Barcelona Sports Sciences Research Group, Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038 Barcelona, Spain
| | - Alfredo Irurtia
- INEFC-Barcelona Sports Sciences Research Group, Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038 Barcelona, Spain
| | - Jorge Castizo-Olier
- School of Health Sciences, TecnoCampus, Pompeu Fabra University, 08302 Barcelona, Spain
| | - Manuel Vicente Garnacho-Castaño
- DAFNiS Research Group (Pain, Physical Activity, Nutrition and Health), Campus Docent Sant Joan de Déu, University of Barcelona, 08830 Sant Boi de Llobregat, Spain
- Faculty of Health Sciences, Valencian International University (VIU), 46002 Valencia, Spain
| | - Javier Espasa-Labrador
- INEFC-Barcelona Sports Sciences Research Group, Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038 Barcelona, Spain
| | - Zeasseska Noriega
- INEFC-Barcelona Sports Sciences Research Group, Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038 Barcelona, Spain
| | - Marta Carrasco-Marginet
- INEFC-Barcelona Sports Sciences Research Group, Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038 Barcelona, Spain
- Correspondence: ; Tel.: +34-667-76-20-69
| |
Collapse
|
132
|
Milk Fat Globule Membrane Relieves Fatigue via Regulation of Oxidative Stress and Gut Microbiota in BALB/c Mice. Antioxidants (Basel) 2023; 12:antiox12030712. [PMID: 36978962 PMCID: PMC10045747 DOI: 10.3390/antiox12030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Milk fat globule membranes (MFGMs) are complex structures that incorporate bioactive proteins and lipids to assist in infant development. However, the antifatigue and antioxidant potentials of MFGM have not been investigated. In this study, repeated force swimming measured fatigue in male BALB/c mice fed MFGM and saline for 18 weeks. The MFGM supplementation increased the time to exhaustion by 42.7% at 6 weeks and 30.6% at 14 weeks (p < 0.05). Fatigue and injury-related biomarkers, including blood glucose, lactic acid, and lactate dehydrogenase, were ameliorated after free swimming (p < 0.05). The activity of antioxidant enzymes in blood serum increased at 18 weeks, while malondialdehyde (MDA) content decreased by 45.0% after the MFGM supplementation (p < 0.05). The Pearson correlation analysis showed a high correlation between fatigue-related indices and antioxidant levels. The increased protein expression of hepatic Nrf2 reduced the protein expression of Caspase-3 in the gastrocnemius muscle (p < 0.05). Moreover, the MFGM supplementation increased the relative abundance of Bacteroides, Butyricimonas, and Anaerostipes. Our results demonstrate that MFGM may maintain redox homeostasis to relieve fatigue, suggesting the potential application of MFGM as an antifatigue and antioxidant dietary supplement.
Collapse
|
133
|
Zhang Z, Li GY, Jiang Y, Zheng Y, Gower AL, Destrade M, Cao Y. Noninvasive measurement of local stress inside soft materials with programmed shear waves. SCIENCE ADVANCES 2023; 9:eadd4082. [PMID: 36888699 PMCID: PMC9995030 DOI: 10.1126/sciadv.add4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Mechanical stresses across different length scales play a fundamental role in understanding biological systems' functions and engineering soft machines and devices. However, it is challenging to noninvasively probe local mechanical stresses in situ, particularly when the mechanical properties are unknown. We propose an acoustoelastic imaging-based method to infer the local stresses in soft materials by measuring the speeds of shear waves induced by custom-programmed acoustic radiation force. Using an ultrasound transducer to excite and track the shear waves remotely, we demonstrate the application of the method by imaging uniaxial and bending stresses in an isotropic hydrogel and the passive uniaxial stress in a skeletal muscle. These measurements were all done without the knowledge of the constitutive parameters of the materials. The experiments indicate that our method will find broad applications, ranging from health monitoring of soft structures and machines to diagnosing diseases that alter stresses in soft tissues.
Collapse
Affiliation(s)
- Zhaoyi Zhang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Guo-Yang Li
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02139, USA
| | - Yuxuan Jiang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Yang Zheng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Artur L. Gower
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Michel Destrade
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Yanping Cao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
134
|
Gaytan SL, Lawan A, Chang J, Nurunnabi M, Bajpeyi S, Boyle JB, Han SM, Min K. The beneficial role of exercise in preventing doxorubicin-induced cardiotoxicity. Front Physiol 2023; 14:1133423. [PMID: 36969584 PMCID: PMC10033603 DOI: 10.3389/fphys.2023.1133423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Doxorubicin is a highly effective chemotherapeutic agent widely used to treat a variety of cancers. However, the clinical application of doxorubicin is limited due to its adverse effects on several tissues. One of the most serious side effects of doxorubicin is cardiotoxicity, which results in life-threatening heart damage, leading to reduced cancer treatment success and survival rate. Doxorubicin-induced cardiotoxicity results from cellular toxicity, including increased oxidative stress, apoptosis, and activated proteolytic systems. Exercise training has emerged as a non-pharmacological intervention to prevent cardiotoxicity during and after chemotherapy. Exercise training stimulates numerous physiological adaptations in the heart that promote cardioprotective effects against doxorubicin-induced cardiotoxicity. Understanding the mechanisms responsible for exercise-induced cardioprotection is important to develop therapeutic approaches for cancer patients and survivors. In this report, we review the cardiotoxic effects of doxorubicin and discuss the current understanding of exercise-induced cardioprotection in hearts from doxorubicin-treated animals.
Collapse
Affiliation(s)
- Samantha L. Gaytan
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ahmed Lawan
- Department of Biological Sciences, College of Science, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Jongwha Chang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | - Sudip Bajpeyi
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Jason B. Boyle
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| | - Kisuk Min
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| |
Collapse
|
135
|
Ying Z, Yuyang H, Meiying L, Bingyu S, Linlin L, Mingshou L, Min Q, Huanan G, Xiuqing Z. High Fischer ratio peptide of hemp seed: Preparation and anti-fatigue evaluation in vivo and in vitro. Food Res Int 2023; 165:112534. [PMID: 36869539 DOI: 10.1016/j.foodres.2023.112534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/02/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The high Fischer (F) ratio hemp peptide (HFHP) was prepared by enrichment using activated carbon adsorption, ultrafiltration, and Sephadex G-25 gel filtration chromatography. The OD220/OD280 ratio reached 47.1 with a molecular weight distribution from 180 to 980 Da, a peptide yield up to 21.7 %, and the F value was 31.5. HFHP had high scavenging ability of DPPH, hydroxyl free radicals, and superoxide. Mice experiments showed that the HFHP increased the activity of superoxide dismutase and glutathione peroxidase. The HFHP had no effect on the body weight of mice, but prolonged their weight-bearing swimming time. The lactic acid, serum urea nitrogen, and malondialdehyde of the mice after swimming was reduced, and the liver glycogen increased. The correlation analysis indicated that the HFHP had significant anti-oxidation and anti-fatigue properties.
Collapse
Affiliation(s)
- Zhu Ying
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Huang Yuyang
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Li Meiying
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Sun Bingyu
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Liu Linlin
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Lv Mingshou
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Qu Min
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Guan Huanan
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Zhu Xiuqing
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| |
Collapse
|
136
|
Concerted phenotypic flexibility of avian erythrocyte size and number in response to dietary anthocyanin supplementation. Front Zool 2023; 20:9. [PMID: 36829190 PMCID: PMC9951440 DOI: 10.1186/s12983-023-00487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Endurance flight impose substantial oxidative costs on the avian oxygen delivery system. In particular, the accumulation of irreversible damage in red blood cells can reduce the capacity of blood to transport oxygen and limit aerobic performance. Many songbirds consume large amounts of anthocyanin-rich fruit, which is hypothesized to reduce oxidative costs, enhance post-flight regeneration, and enable greater aerobic capacity. While their antioxidant benefits appear most straightforward, the effects of anthocyanins on blood composition remain so far unknown. We fed thirty hand-raised European starlings (Sturnus vulgaris) two semisynthetic diets (with or without anthocyanin supplement) and manipulated the extent of flight activity in a wind tunnel (daily flying or non-flying for over two weeks) to test for their interactive effects on functionally important haematological variables. RESULTS Supplemented birds had on average 15% more and 4% smaller red blood cells compared to non-supplemented individuals and these diet effects were independent of flight manipulation. Haemoglobin content was 7% higher in non-supplemented flying birds compared to non-flying birds, while similar haemoglobin content was observed among supplemented birds that were flown or not. Neither diet nor flight activity influenced haematocrit. CONCLUSION The concerted adjustments suggest that supplementation generally improved antioxidant protection in blood, which could prevent the excess removal of cells from the bloodstream and may have several implications on the oxygen delivery system, including improved gas exchange and blood flow. The flexible haematological response to dietary anthocyanins may also suggest that free-ranging species preferentially consume anthocyanin-rich fruits for their natural blood doping, oxygen delivery-enhancement effects.
Collapse
|
137
|
Henning T, Kochlik B, Ara I, González-Gross M, Fiorillo E, Marongiu M, Cucca F, Rodriguez-Artalejo F, Carnicero Carreño JA, Rodriguez-Mañas L, Grune T, Weber D. Patterns of Dietary Blood Markers Are Related to Frailty Status in the FRAILOMIC Validation Phase. Nutrients 2023; 15:nu15051142. [PMID: 36904142 PMCID: PMC10005398 DOI: 10.3390/nu15051142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
The influence of nutritional factors on frailty syndrome is still poorly understood. Thus, we aimed to confirm cross-sectional associations of diet-related blood biomarker patterns with frailty and pre-frailty statuses in 1271 older adults from four European cohorts. Principal component analysis (PCA) was performed based on plasma levels of α-carotene, β-carotene, lycopene, lutein + zeaxanthin, β-cryptoxanthin, α-tocopherol, γ-tocopherol and retinol. Cross-sectional associations between biomarker patterns and frailty status, according to Fried's frailty criteria, were assessed by using general linear models and multinomial logistic regression models as appropriate with adjustments for the main potential confounders. Robust subjects had higher concentrations of total carotenoids, β-carotene and β-cryptoxanthin than frail and pre-frail subjects and had higher lutein + zeaxanthin concentrations than frail subjects. No associations between 25-Hydroxyvitamin D3 and frailty status were observed. Two distinct biomarker patterns were identified in the PCA results. The principal component 1 (PC1) pattern was characterized by overall higher plasma levels of carotenoids, tocopherols and retinol, and the PC2 pattern was characterized by higher loadings for tocopherols, retinol and lycopene together and lower loadings for other carotenoids. Analyses revealed inverse associations between PC1 and prevalent frailty. Compared to participants in the lowest quartile of PC1, those in the highest quartile were less likely to be frail (odds ratio: 0.45, 95% CI: 0.25-0.80, p = 0.006). In addition, those in the highest quartile of PC2 showed higher odds for prevalent frailty (2.48, 1.28-4.80, p = 0.007) than those in the lowest quartile. Our findings strengthen the results from the first phase of the FRAILOMIC project, indicating carotenoids are suitable components for future biomarker-based frailty indices.
Collapse
Affiliation(s)
- Thorsten Henning
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Bastian Kochlik
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
- CIBER of Frailty and Healthy Aging, CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marcela González-Gross
- ImFINE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- CIBER on Physiopathology of Obesity and Nutrition, CIBEROBN, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council (CNR), 09042 Monserrato, Italy
| | - Michele Marongiu
- Institute for Genetic and Biomedical Research, National Research Council (CNR), 09042 Monserrato, Italy
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, National Research Council (CNR), 09042 Monserrato, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Fernando Rodriguez-Artalejo
- Department of Preventive Medicine and Public Health, CIBERESP and IMDEA-Food Institute, Universidad Autonoma de Madrid, CEI UAM + CSIC, 28029 Madrid, Spain
| | - Jose Antonio Carnicero Carreño
- CIBER of Frailty and Healthy Aging, CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Foundation, Getafe University Hospital, 28905 Getafe, Spain
| | - Leocadio Rodriguez-Mañas
- CIBER of Frailty and Healthy Aging, CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Division of Geriatrics, Hospital Universitario de Getafe, 28905 Getafe, Spain
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Correspondence:
| |
Collapse
|
138
|
Bhadra J, Sridhar N, Fajrial AK, Hammond N, Xue D, Ding X. Acoustic streaming enabled moderate swimming exercise reduces neurodegeneration in C. elegans. SCIENCE ADVANCES 2023; 9:eadf5056. [PMID: 36812319 PMCID: PMC9946341 DOI: 10.1126/sciadv.adf5056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Regular physical exercise has been shown to delay and alleviate neurodegenerative diseases. Yet, optimum physical exercise conditions that provide neuronal protection and exercise-related factors remain poorly understood. Here, we create an Acoustic Gym on a chip through the surface acoustic wave (SAW) microfluidic technology to precisely control the duration and intensity of swimming exercise of model organisms. We find that precisely dosed swimming exercise enabled by acoustic streaming decreases neuronal loss in two different neurodegenerative disease models of Caenorhabditis elegans, a Parkinson's disease model and a tauopathy model. These findings highlight the importance of optimum exercise conditions for effective neuronal protection, a key characteristic of healthy aging in the elderly population. This SAW device also paves avenues for screening for compounds that can enhance or replace the beneficial effects of exercise and for identifying drug targets for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Joyita Bhadra
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Nakul Sridhar
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
| | - Apresio Kefin Fajrial
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
| | - Nia Hammond
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Xiaoyun Ding
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
139
|
Safety of beta-alanine supplementation in humans: a narrative review. SPORT SCIENCES FOR HEALTH 2023. [DOI: 10.1007/s11332-023-01052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
140
|
Cui Q, Bi H, Lv Z, Wu Q, Hua J, Gu B, Huo C, Tang M, Chen Y, Chen C, Chen S, Zhang X, Wu Z, Lao Z, Sheng N, Shen C, Zhang Y, Wu ZY, Jin Z, Yang P, Liu H, Li J, Bai G. Diverse CMT2 neuropathies are linked to aberrant G3BP interactions in stress granules. Cell 2023; 186:803-820.e25. [PMID: 36738734 DOI: 10.1016/j.cell.2022.12.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023]
Abstract
Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Bi
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Zhanyun Lv
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qigui Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Hua
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Bokai Gu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Huo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingmin Tang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmaceutical Sciences, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Yanqin Chen
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Chongjiu Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sihan Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinrui Zhang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhangrui Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengkai Lao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming 650201, China
| | - Chengyong Shen
- Department of Neurobiology, The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Yongdeng Zhang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhi-Ying Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Huaqing Liu
- Department of Pharmaceutical Sciences, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ge Bai
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
141
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
142
|
Xiao M, Guo W, Zhang C, Zhu Y, Li Z, Shao C, Jiang J, Yang Z, Zhang J, Lin L. Jian Pi Sheng Sui Gao (JPSSG) alleviation of skeletal myoblast cell apoptosis, oxidative stress, and mitochondrial dysfunction to improve cancer-related fatigue in an AMPK-SIRT1- and HIF-1-dependent manner. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:156. [PMID: 36846003 PMCID: PMC9951005 DOI: 10.21037/atm-22-6611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Background Jian Pi Sheng Sui Gao (JPSSG), a Chinese traditional herbal paste, possesses certain efficacy in patients with cancer-related fatigue (CRF); however, its related mechanism remains unclear. Hence, network pharmacology analysis, followed by in vivo and in vitro experiments were conducted in this study with the aim to evaluate the effect of JPSSG on CRF and clarify its potential mechanism. Methods Network pharmacology analysis was performed. Subsequently, 12 mice were injected with CT26 cells to establish CRF mouse models and randomly divided into a model group (n=6) and JPSSG group (n=6); meanwhile, another 6 normal mice served as a control group. Then, 3.0 g/kg JPSSG was given to mice in JPSSG group for 15 days, while mice in the n control and model groups received phosphate-buffered saline (PBS) of the same volume for 15 days. For the in vitro experiment, CT26 conditioned medium (CM) was established; meanwhile, the mitochondrial damage model was constructed through C2C12 myotubes stimulated with H2O2. C2C12 myotubes were divided into 5 groups: control group (without treatment), CM group, CM + JPSSG group, H2O2 group, and H2O2 + JGSSP group. Results Network pharmacology analysis identified 87 bioactive compounds and 132 JPSSG-CRF interaction targets. Moreover, according to the Kyoto Encyclopedia of Genes and Genomes enrichment analysis and the subsequent in vivo and in vitro experiments, JPSSG activated adenosine 5'-monophosphate-activated protein kinase-silent-information-regulator factor 2-related-enzyme 1 (AMPK-SIRT1) and hypoxia-inducible factor-1 (HIF-1) signaling pathways during CRF. Moreover, the in vivo experiment showed that JPSSG attenuated CRF in mice, reflected by increased distance traveled, mobile time in open field test, and swimming time in exhaustive swimming test, and decreased absolute rest time and tail suspension test in the JPSSG group (vs. model group). Furthermore, JPSSG upregulated gastrocnemius weight, adenosine triphosphate (ATP), superoxide dismutase (SOD), and the cross-sectional area of the gastrocnemius. With regard to in vitro study, JPSSG elevated cell viability, B-cell lymphoma-2, ATP, SOD, and mitochondrial membrane potential, while it decreased apoptosis rate, cleaved-caspase3, malondialdehyde, and reactive oxygen species in C2C12 myotubes. Conclusions JPSSG ameliorates CRF via alleviating skeletal myoblast cell apoptosis, oxidative stress, and mitochondrial dysfunction in an AMPK-SIRT1- and HIF-1-dependent manner.
Collapse
Affiliation(s)
- Min Xiao
- Clinical Discipline of Integrated Chinese and Western Medicine, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China;,Department of Rheumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Wei Guo
- Clinical Discipline of Integrated Chinese and Western Medicine, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chi Zhang
- Clinical Discipline of Integrated Chinese and Western Medicine, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yukun Zhu
- Department of Science and Education, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhiling Li
- Department of Rheumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Cui Shao
- Clinical Discipline of Integrated Chinese and Western Medicine, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiling Jiang
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhenjiang Yang
- Department of Oncology and Hematology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jianyong Zhang
- Department of Rheumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lizhu Lin
- Clinical Discipline of Integrated Chinese and Western Medicine, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
143
|
Brizzolari A, Bosco G, Vezzoli A, Dellanoce C, Barassi A, Paganini M, Cialoni D, Mrakic-Sposta S. Seasonal Oxy-Inflammation and Hydration Status in Non-Elite Freeskiing Racer: A Pilot Study by Non-Invasive Analytic Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3157. [PMID: 36833850 PMCID: PMC9960265 DOI: 10.3390/ijerph20043157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Freeskiing is performed in an extreme environment, with significant physical effort that can induce reactive oxygen species (ROS) generation and dehydration. This study aimed to investigate the evolution of the oxy-inflammation and hydration status during a freeskiing training season with non-invasive methods. Eight trained freeskiers were investigated during a season training: T0 (beginning), T1-T3 (training sessions), and T4 (after the end). Urine and saliva were collected at T0, before (A) and after (B) T1-T3, and at T4. ROS, total antioxidant capacity (TAC), interleukin-6 (IL-6), nitric oxide (NO) derivatives, neopterin, and electrolyte balance changes were investigated. We found significant increases in ROS generation (T1A-B +71%; T2A-B +65%; T3A-B +49%; p < 0.05-0.01) and IL-6 (T2A-B +112%; T3A-B +133%; p < 0.01). We did not observe significant variation of TAC and NOx after training sessions. Furthermore, ROS and IL-6 showed statistically significant differences between T0 and T4 (ROS +48%, IL-6 +86%; p < 0.05). Freeskiing induced an increase in ROS production, which can be contained by antioxidant defense activation, and in IL-6, as a consequence of physical activity and skeletal muscular contraction. We did not find deep changes in electrolytes balance, likely because all freeskiers were well-trained and very experienced.
Collapse
Affiliation(s)
- Andrea Brizzolari
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- DAN Europe Research Division, 64026 Roseto degli Abruzzi, Italy
| | - Gerardo Bosco
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20162 Milan, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20162 Milan, Italy
| | - Alessandra Barassi
- Department of Health Sciences, Università degli Studi of Milan, 20142 Milan, Italy
| | - Matteo Paganini
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Danilo Cialoni
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- DAN Europe Research Division, 64026 Roseto degli Abruzzi, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20162 Milan, Italy
| |
Collapse
|
144
|
Wang Y, Wang Y, Li S, Jin H, Duan J, Lu X, Qin Y, Song J, Li X, Jin X. Insights of Chinese herbal medicine for mitochondrial dysfunction in chronic cerebral hypoperfusion induced cognitive impairment: Existed evidences and potential directions. Front Pharmacol 2023; 14:1138566. [PMID: 36843941 PMCID: PMC9950122 DOI: 10.3389/fphar.2023.1138566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is one of the main pathophysiological markers of cognitive impairment in central nervous system diseases. Mitochondria are cores of energy generation and information process. Mitochondrial dysfunction is the key upstream factors of CCH induced neurovascular pathology. Increasing studies explored the molecular mechanisms of mitochondrial dysfunction and self-repair for effective targets to improve CCH-related cognitive impairment. The clinical efficacy of Chinese herbal medicine in the treatment of CCH induced cognitive impairment is definite. Existed evidences from pharmacological studies have further proved that, Chinese herbal medicine could improve mitochondrial dysfunction and neurovascular pathology after CCH by preventing calcium overload, reducing oxidative stress damage, enhancing antioxidant capacity, inhibiting mitochondria-related apoptosis pathway, promoting mitochondrial biogenesis and preventing excessive activation of mitophagy. Besides, CCH mediated mitochondrial dysfunction is one of the fundamental causes for neurodegeneration pathology aggravation. Chinese herbal medicine also has great potential therapeutic value in combating neurodegenerative diseases by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yefei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shixin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Huihui Jin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayu Duan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiyue Lu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yinglin Qin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiale Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianglan Jin
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Xianglan Jin,
| |
Collapse
|
145
|
Zhou K, Liu M, Wang Y, Liu H, Manor B, Bao D, Zhang L, Zhou J. Effects of molecular hydrogen supplementation on fatigue and aerobic capacity in healthy adults: A systematic review and meta-analysis. Front Nutr 2023; 10:1094767. [PMID: 36819697 PMCID: PMC9934906 DOI: 10.3389/fnut.2023.1094767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background Fatigue is oftentimes induced by high-intensity exercise potentially via the exceeded amount of reactive oxygen species, leading to diminished functions (e.g., aerobic capacity) and increased risk of injuries. Studies indicate that molecular hydrogen (H2), with antioxidant and anti-inflammatory properties, may be a promising strategy to alleviate fatigue and improve aerobic capacity. However, such effects have not been comprehensively characterized. Objective To systematically assess the effects of in taking H2 on fatigue and aerobic capacity in healthy adults. Methods The search was conducted in August 2022 in five databases. Studies with randomized controlled or crossover designs that investigated the rating of perceived exertion (RPE), maximal oxygen uptake (VO2max), peak oxygen uptake (VO2peak), and endurance performance were selected. The data (mean ± standard deviation and sample size) were extracted from the included studies and were converted into the standardized mean difference (SMD). Random-effects meta-analyses were performed. Subgroup analysis was used to analyze potential sources of heterogeneity due to intervention period, training status, and type of exercise. Results Seventeen publications (19 studies) consisting of 402 participants were included. The pooled effect sizes of H2 on RPE (SMDpooled = -0.38, 95%CI -0.65 to -0.11, p = 0.006, I 2 = 33.6%, p = 0.149) and blood lactate (SMDpooled = -0.42, 95% CI -0.72 to -0.12, p = 0.006, I 2 = 35.6%, p = 0.114) were small yet significant with low heterogeneity. The pooled effect sizes of H2 on VO2max and VO2peak (SMDpooled = 0.09, 95% CI -0.10 to 0.29, p = 0.333, I 2 = 0%, p = 0.998) and endurance performance (SMDpooled = 0.01, 95% CI -0.23 to 0.25, p = 0.946, I 2 = 0%, p > 0.999) were not significant and trivial without heterogeneity. Subgroup analysis revealed that the effects of H2 on fatigue were impacted significantly by the training status (i.e., untrained and trained), period of H2 implementation, and exercise types (i.e., continuous and intermittent exercises). Conclusions This meta-analysis provides moderate evidence that H2 supplementation alleviates fatigue but does not enhance aerobic capacity in healthy adults. Systematic review registration www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022351559.
Collapse
Affiliation(s)
- Kaixiang Zhou
- College of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Meng Liu
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Yubo Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Haoyang Liu
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Brad Manor
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China,*Correspondence: Dapeng Bao ✉
| | - Luyu Zhang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China,Luyu Zhang ✉
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
146
|
Thome T, Kim K, Dong G, Ryan TE. The Role of Mitochondrial and Redox Alterations in the Skeletal Myopathy Associated with Chronic Kidney Disease. Antioxid Redox Signal 2023; 38:318-337. [PMID: 36245209 PMCID: PMC9986033 DOI: 10.1089/ars.2022.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/12/2022]
Abstract
Significance: An estimated 700 million people globally suffer from chronic kidney disease (CKD). In addition to increasing cardiovascular disease risk, CKD is a catabolic disease that results in a loss of muscle mass and function, which are strongly associated with mortality and a reduced quality of life. Despite the importance of muscle health and function, there are no treatments available to prevent or attenuate the myopathy associated with CKD. Recent Advances: Recent studies have begun to unravel the changes in mitochondrial and redox homeostasis within skeletal muscle during CKD. Impairments in mitochondrial metabolism, characterized by reduced oxidative phosphorylation, are found in both rodents and patients with CKD. Associated with aberrant mitochondrial function, clinical and preclinical findings have documented signs of oxidative stress, although the molecular source and species are ill-defined. Critical Issues: First, we review the pathobiology of CKD and its associated myopathy, and we review muscle cell bioenergetics and redox biology. Second, we discuss evidence from clinical and preclinical studies that have implicated the involvement of mitochondrial and redox alterations in CKD-associated myopathy and review the underlying mechanisms reported. Third, we discuss gaps in knowledge related to mitochondrial and redox alterations on muscle health and function in CKD. Future Directions: Despite what has been learned, effective treatments to improve muscle health in CKD remain elusive. Further studies are needed to uncover the complex mitochondrial and redox alterations, including post-transcriptional protein alterations, in patients with CKD and how these changes interact with known or unknown catabolic pathways contributing to poor muscle health and function. Antioxid. Redox Signal. 38, 318-337.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
147
|
Šet V, Lenasi H. Does Hyperbaric Oxygenation Improve Athletic Performance? J Strength Cond Res 2023; 37:482-493. [PMID: 35900773 DOI: 10.1519/jsc.0000000000004281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABSTRACT Šet, V, and Lenasi, H. Does hyperbaric oxygenation improve athletic performance? J Strength Cond Res 37(2): 482-493, 2023-Hyperbaric oxygen (HBO) has been suggested to affect oxygen availability and performance, and delay the onset of fatigue. Many mechanisms of HBO-induced alterations have been proposed, including modulation of various metabolic pathways, and the antioxidant defense mechanisms. As exercise per se affects similar aspects, it is tempting to speculate that simultaneous application of both, exercise and HBO might have synergistic effects. The aim of this review was to search through the currently available literature and evaluate the effect of acute exposure to HBO on exercise performance, potential effects of a combination of HBO and physical training, and to elucidate some possible mechanisms behind. We conducted searches in the PubMed and Scopus databases (search term: "hyperbaric" AND "oxygen" AND "exercise") and in relevant hyperbaric textbook and assessed potentially eligible full texts for details. Meta-analysis could not be performed because of a few available and rather heterogeneous studies. Twenty-seven studies were included in the final assessment (14 on exercise during HBO, 9 on exercise following HBO, 4 on applying HBO during recovery and rest between exercise bouts, and 3 on a combination of HBO and training). The results are contradictory, showing either positive or none ergogenic effects. There is some risk of bias and placebo effect. Discrepant findings of the available studies might partly be explained by different protocols applied, both regarding HBO and exercise intensity and regimen. There is a need for further research with well-designed trials to evaluate the effect of HBO on performance before recommending it to routine use in athletes.
Collapse
Affiliation(s)
- Vida Šet
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
148
|
Michel CP, Bendahan D, Giannesini B, Vilmen C, Le Fur Y, Messonnier LA. Effects of hydroxyurea on skeletal muscle energetics and force production in a sickle cell disease murine model. J Appl Physiol (1985) 2023; 134:415-425. [PMID: 36603048 DOI: 10.1152/japplphysiol.00333.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hydroxyurea (HU) is commonly used as a treatment for patients with sickle cell disease (SCD) to enhance fetal hemoglobin production. This increased production is expected to reduce anemia (which depresses oxygen transport) and abnormal Hb content alleviating clinical symptoms such as vaso-occlusive crisis and acute chest syndrome. The effects of HU on skeletal muscle bioenergetics in vivo are still unknown. Due to the beneficial effects of HU upon oxygen delivery, improved skeletal muscle energetics and function in response to a HU treatment have been hypothesized. Muscle energetics and function were analyzed during a standardized rest-exercise-recovery protocol, using 31P-magnetic resonance spectroscopy in Townes SCD mice. Measurements were performed in three groups of mice: one group of 2-mo-old mice (SCD2m, n = 8), another one of 4-mo-old mice (SCD4m, n = 8), and a last group of 4-mo-old mice that have been treated from 2 mo of age with HU at 50 mg/kg/day (SCD4m-HU, n = 8). As compared with SCD2m mice, SCD4m mice were heavier and displayed a lower acidosis. As lower specific forces were developed by SCD4m compared with SCD2m, greater force-normalized phosphocreatine consumption and oxidative and nonoxidative costs of contraction were also reported. HU-treated mice (SCD4m-HU) displayed a significantly higher specific force production as compared with untreated mice (SCD4m), whereas muscle energetics was unchanged. Overall, our results support a beneficial effect of HU on muscle function.NEW & NOTEWORTHY Our results highlighted that force production decreases between 2 and 4 mo of age in SCD mice thereby indicating a decrease of muscle function during this period. Of interest, HU treatment seemed to blunt the observed age effect given that SCD4m-HU mice displayed a higher specific force production as compared with SCD4m mice. In that respect, HU treatment would help to maintain a higher capacity of force production during aging in SCD.
Collapse
Affiliation(s)
| | - David Bendahan
- CNRS, CRMBM, Aix-Marseille Université, Marseille, France
| | | | | | - Yann Le Fur
- CNRS, CRMBM, Aix-Marseille Université, Marseille, France
| | - Laurent A Messonnier
- Laboratoire Interuniversitaire de Biologie de la Motricité EA7424, Université Savoie Mont Blanc, Chambéry, France
| |
Collapse
|
149
|
Doherty R, Madigan S, Warrington G, Ellis JG. Sleep and Nutrition in Athletes. CURRENT SLEEP MEDICINE REPORTS 2023. [DOI: 10.1007/s40675-022-00244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
150
|
Oba PM, Carroll MQ, Sieja KM, de Souza Nogueira JP, Yang X, Epp TY, Warzecha CM, Varney JL, Fowler JW, Coon CN, Swanson KS. Effects of a Saccharomyces cerevisiae fermentation product on fecal characteristics, metabolite concentrations, and microbiota populations of dogs subjected to exercise challenge. J Anim Sci 2023; 101:skac424. [PMID: 36573478 PMCID: PMC9890449 DOI: 10.1093/jas/skac424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The objective of this study was to determine the fecal characteristics, microbiota, and metabolites of dogs fed a Saccharomyces cerevisiae fermentation product (SCFP) and subjected to exercise challenge in untrained and trained states. Thirty-six adult dogs (18 male, 18 female; mean age: 7.1 yr; mean body weight: 29.0 kg) were randomly assigned to control or SCFP-supplemented (250 mg/dog/d) diets and fed for 10 wk. After 3 wk, dogs were given an exercise challenge (6.5 km run), with fresh fecal samples collected pre- and post-challenge. Dogs were then trained by a series of distance-defined running exercise regimens over 7 wk (two 6.4 km runs/wk for 2 wk; two 9.7 km runs/wk for 2 wk; two 12.9 km runs/wk for 2 wk; two 3.2 km runs/wk). Dogs were then given exercise challenge (16 km run) in the trained state, with fresh fecal samples collected pre- and post-challenge. Fecal microbiota data were evaluated using QIIME2, while all other data were analyzed using the Mixed Models procedure of SAS. Effects of diet, exercise, and diet*exercise were tested with P < 0.05 considered significant. Exercise challenge reduced fecal pH and ammonia in both treatments, and in untrained and trained dogs. After the exercise challenge in untrained dogs, fecal indole, isobutyrate, and isovalerate were reduced, while acetate and propionate were increased. Following the exercise challenge in trained dogs, fecal scores and butyrate decreased, while isobutyrate and isovalerate increased. SCFP did not affect fecal scores, pH, dry matter, or metabolites, but fecal Clostridium was higher in controls than in SCFP-fed dogs over time. SCFP and exercise challenge had no effect on alpha or beta diversity in untrained dogs. However, the weighted principal coordinate analysis plot revealed clustering of dogs before and after exercise in trained dogs. After exercise challenge, fecal Collinsella, Slackia, Blautia, Ruminococcus, and Catenibacterium were higher and Bacteroides, Parabacteroides, Prevotella, Phascolarctobacterium, Fusobacterium, and Sutterella were lower in both untrained and trained dogs. Using qPCR, SCFP increased fecal Turicibacter, and tended to increase fecal Lactobacillus vs. controls. Exercise challenge increased fecal Turicibacter and Blautia in both untrained and trained dogs. Our findings show that exercise and SCFP may affect the fecal microbiota of dogs. Exercise was the primary cause of the shifts, however, with trained dogs having more profound changes than untrained dogs.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meredith Q Carroll
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kelly M Sieja
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Xiaojing Yang
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tammi Y Epp
- Cargill, Incorporated, Wayzata, MN 55391, USA
| | | | | | | | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|