101
|
Wu B, Li HX, Lian J, Guo YJ, Tang YH, Chang ZJ, Hu LF, Zhao GJ, Hong GL, Lu ZQ. Nrf2 overexpression protects against paraquat-induced A549 cell injury primarily by upregulating P-glycoprotein and reducing intracellular paraquat accumulation. Exp Ther Med 2018; 17:1240-1247. [PMID: 30679998 PMCID: PMC6327482 DOI: 10.3892/etm.2018.7044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/26/2018] [Indexed: 12/26/2022] Open
Abstract
Paraquat (PQ) intoxication causes thousands of mortalities every year, worldwide. Its pulmonary-targeted accumulation and the acute lung injury it subsequently causes, remain a challenge for detoxification treatment. A previous study has demonstrated that the upregulation of nuclear factor erythroid-2 related factor 2 (Nrf2) prevents PQ toxicity in cell line and murine models. As Nrf2 target genes include a group of membrane transporters, the current study assessed the protective mechanism exerted by Nrf2 against PQ toxicity and intracellular PQ accumulation via its effects on P-glycoprotein (P-gp), a downstream transporter of Nrf2. Adenovirus vectors containing the Nrf2 gene were transfected into A549 cells. Cell proliferation was assessed by Cell Counting Kit-8. The levels of LDH, MDA, SOD, TNF-α, IL-6 levels were detected using their respective ELISA kits. In addition, the levels of Nrf2 and P-gp protein expression were detected by western blot analysis. The concentration of PQ was measured by HPLC. The results revealed that overexpressed Nrf2 significantly increased P-gp protein levels, decreased the intracellular accumulation of PQ and attenuated PQ-induced toxicity. However, the protective effects of Nrf2 overexpression on PQ-challenged A549 cells were abrogated following cyclosporine A treatment, a competitive inhibitor of P-gp, which also increased intracellular PQ levels. These data indicated that Nrf2 gene overexpression prevented PQ toxicity in A549 cells, potentially via the upregulation of P-gp activity and the inhibition of intracellular PQ accumulation. Thus, Nrf2 and P-gp may serve as potential therapeutic targets for the treatment of PQ-induced injury.
Collapse
Affiliation(s)
- Bin Wu
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hai-Xiao Li
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jie Lian
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yong-Jie Guo
- Department of Intensive Care Unit, Jiaxing Maternal and Child Health-Care Center, Jiaxing, Zhejiang 314000, P.R. China
| | - Ya-Hui Tang
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zi-Juan Chang
- Emergency Center, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Lu-Feng Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guang-Ju Zhao
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guang-Liang Hong
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhong-Qiu Lu
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
102
|
Ooi BK, Chan KG, Goh BH, Yap WH. The Role of Natural Products in Targeting Cardiovascular Diseases via Nrf2 Pathway: Novel Molecular Mechanisms and Therapeutic Approaches. Front Pharmacol 2018; 9:1308. [PMID: 30498447 PMCID: PMC6249275 DOI: 10.3389/fphar.2018.01308] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/25/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are closely linked to cellular oxidative stress and inflammation. This may be resulted from the imbalance generation of reactive oxygen species and its role in promoting inflammation, thereby contributing to endothelial dysfunction and cardiovascular complications. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a significant role in regulating expression of antioxidant and cytoprotective enzymes in response to oxidative stress. Natural products have emerged as a potential source of bioactive compounds which have shown to protect against atherogenesis development by activating Nrf2 signaling. This review aims to provide a comprehensive summary of the published data on the function, regulation and activation of Nrf2 as well as the molecular mechanisms of natural products in regulating Nrf2 signaling. The beneficial effects of using natural bioactive compounds as a promising therapeutic approach for the prevention and treatment of CVDs are reviewed.
Collapse
Affiliation(s)
- Bee Kee Ooi
- School of Biosciences, Taylor’s University, Subang Jaya, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Wei Hsum Yap
- School of Biosciences, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|
103
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
104
|
Jadkauskaite L, Bahri R, Farjo N, Farjo B, Jenkins G, Bhogal R, Haslam I, Bulfone-Paus S, Paus R. Nuclear factor (erythroid-derived 2)-like-2 pathway modulates substance P-induced human mast cell activation and degranulation in the hair follicle. J Allergy Clin Immunol 2018; 142:1331-1333.e8. [PMID: 29859202 DOI: 10.1016/j.jaci.2018.04.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/31/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Jadkauskaite
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Rajia Bahri
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| | | | - Bessam Farjo
- Farjo Medical Centre, Manchester, United Kingdom
| | - Gail Jenkins
- Unilever R&D Colworth, Colworth Science Park, Bedfordshire, United Kingdom
| | - Ranjit Bhogal
- Unilever R&D Colworth, Colworth Science Park, Bedfordshire, United Kingdom
| | - Iain Haslam
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Silvia Bulfone-Paus
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Department of Dermatology, University of Miami, Miller School of Medicine, Miami, Fla.
| |
Collapse
|
105
|
Bahreyni A, Avan A, Shabani M, Ryzhikov M, Fiuji H, Soleimanpour S, Khazaei M, Hassanian SM. Therapeutic potential of A2 adenosine receptor pharmacological regulators in the treatment of cardiovascular diseases, recent progress, and prospective. J Cell Physiol 2018; 234:1295-1299. [PMID: 30146778 DOI: 10.1002/jcp.27161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
Abstract
Adenosine and its analogs are of particular interest as potential therapeutic agents for treatment of cardiovascular diseases (CVDs). A2 adenosine receptor subtypes (A2a and A2b) are extensively expressed in cardiovascular system, and modulation of these receptors using A2 adenosine receptor agonists or antagonists regulates heart rate, blood pressure, heart rate variability, and cardiovascular toxicity during both normoxia and hypoxia conditions. Regulation of A2 adenosine receptor signaling via specific and novel pharmacological regulators is a potentially novel therapeutic approach for a better understanding and hence a better management of CVDs. This review summarizes the role of pharmacological A2 adenosine receptor regulators in the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Department of Clinical Biochemistry and Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Shabani
- Department of Medical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Washington University, St. Louis, Missouri
| | - Hamid Fiuji
- Department of Biochemistry, Payam-e-Noor University, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
106
|
Buglak NE, Jiang W, Bahnson ESM. Cinnamic aldehyde inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia in Zucker Diabetic Fatty rats. Redox Biol 2018; 19:166-178. [PMID: 30172101 PMCID: PMC6122148 DOI: 10.1016/j.redox.2018.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/15/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis remains the number one cause of death and disability worldwide. Atherosclerosis is treated by revascularization procedures to restore blood flow to distal tissue, but these procedures often fail due to restenosis secondary to neointimal hyperplasia. Diabetes mellitus is a metabolic disorder that accelerates both atherosclerosis development and onset of restenosis. Strategies to inhibit restenosis aim at reducing neointimal hyperplasia by inhibiting vascular smooth muscle cell (VSMC) proliferation and migration. Since increased production of reactive oxygen species promotes VSMC proliferation and migration, redox intervention to maintain vascular wall redox homeostasis holds the potential to inhibit arterial restenosis. Cinnamic aldehyde (CA) is an electrophilic Nrf2 activator that has shown therapeutic promise in diabetic rodent models. Nrf2 is a transcription factor that regulates the antioxidant response. Therefore, we hypothesized that CA would activate Nrf2 and would inhibit neointimal hyperplasia after carotid artery balloon injury in the Zucker Diabetic Fatty (ZDF) rat. In primary ZDF VSMC, CA inhibited cell growth by MTT with an EC50 of 118 ± 7 μM. At a therapeutic dose of 100 μM, CA inhibited proliferation of ZDF VSMC in vitro and reduced the proliferative index within the injured artery in vivo, as well as migration of ZDF VSMC in vitro. CA activated the Nrf2 pathway in both ZDF VSMC and injured carotid arteries while also increasing antioxidant defenses and reducing markers of redox dysfunction. Additionally, we noted a significant reduction of neutrophils (69%) and macrophages (78%) within the injured carotid arteries after CA treatment. Lastly, CA inhibited neointimal hyperplasia evidenced by a 53% reduction in the intima:media ratio and a 61% reduction in vessel occlusion compared to arteries treated with vehicle alone. Overall CA was capable of activating Nrf2, and inhibiting neointimal hyperplasia after balloon injury in a rat model of diabetic restenosis.
Collapse
MESH Headings
- Acrolein/analogs & derivatives
- Acrolein/therapeutic use
- Animals
- Antioxidants/therapeutic use
- Cell Proliferation/drug effects
- Cells, Cultured
- Diabetes Complications/metabolism
- Diabetes Complications/pathology
- Diabetes Complications/prevention & control
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/pathology
- Hyperplasia/etiology
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Hyperplasia/prevention & control
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- NF-E2-Related Factor 2/metabolism
- Neointima/etiology
- Neointima/metabolism
- Neointima/pathology
- Neointima/prevention & control
- Rats, Zucker
- Tunica Intima/drug effects
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Nicholas E Buglak
- Department of Surgery, Division of Vascular Surgery, University of North Carolina at Chapel Hill, NC 27599, USA; Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, NC 27599, USA; Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Wulin Jiang
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, NC 27599, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Edward S M Bahnson
- Department of Surgery, Division of Vascular Surgery, University of North Carolina at Chapel Hill, NC 27599, USA; Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, NC 27599, USA; Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
107
|
Li ST, Dai Q, Zhang SX, Liu YJ, Yu QQ, Tan F, Lu SH, Wang Q, Chen JW, Huang HQ, Liu PQ, Li M. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol Sin 2018; 39:1294-1304. [PMID: 29323338 DOI: 10.1038/aps.2017.143] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023] Open
Abstract
Ulinastatin (UTI) is a broad-spectrum serine protease inhibitor isolated and purified from human urine with strong anti-inflammatory and cytoprotective actions, which is widely used for the treatment of various diseases, such as pancreatitis and sepsis. Although the therapeutic effects of UTI are reported to be associated with a variety of mechanisms, the signaling pathways mediating the anti-inflammatory action of UTI remain to be elucidated. In the present study we carried out a systematic study on the anti-inflammatory and anti-oxidative mechanisms of UTI and their relationships in LPS-treated RAW264.7 cells. Pretreatment with UTI (1000 and 5000 U/mL) dose-dependently decreased the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, iNOS) and upregulated anti-inflammatory cytokines (IL-10 and TGF-β1) in LPS-treated RAW264.7 cells. UTI pretreatment significantly inhibited the nuclear translocation of NF-κB by preventing the degradation of IκB-α. UTI pretreatment only markedly inhibited the phosphorylation of JNK at Thr183, but it did not affect the phosphorylation of JNK at Tyr185, ERK-1/2 and p38 MAPK; JNK was found to function upstream of the IκB-α/NF-κB signaling pathway. Furthermore, UTI pretreatment significantly suppressed LPS-induced ROS production by activating PI3K/Akt pathways and the nuclear translocation of Nrf2 via promotion of p62-associated Keap1 degradation. However, JNK was not involved in mediating the anti-oxidative stress effects of UTI. In summary, this study shows that UTI exerts both anti-inflammatory and anti-oxidative effects by targeting the JNK/NF-κB and PI3K/Akt/Nrf2 pathways.
Collapse
|
108
|
Moreno ÉM, Leal SM, Stashenko EE, García LT. Induction of programmed cell death in Trypanosoma cruzi by Lippia alba essential oils and their major and synergistic terpenes (citral, limonene and caryophyllene oxide). BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:225. [PMID: 30053848 PMCID: PMC6062979 DOI: 10.1186/s12906-018-2293-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/18/2018] [Indexed: 11/10/2022]
Abstract
Background Chagas Disease caused by Trypanosoma cruzi infection, is one of the most important neglected tropical diseases (NTD), without an effective therapy for the successful parasite eradication or for the blocking of the disease’s progression, in its advanced stages. Due to their low toxicity, wide pharmacologic spectrum, and potential synergies, medicinal plants as Lippia alba, offer a promising reserve of bioactive molecules. The principal goal of this work is to characterize the inhibitory properties and cellular effects of the Citral and Carvone L. alba chemotype essential oils (EOs) and their main bioactive terpenes (and the synergies among them) on T. cruzi forms. Methods Twelve L. alba EOs, produced under diverse environmental conditions, were extracted by microwave assisted hydrodistillation, and chemically characterized using gas chromatography coupled mass spectrometry. Trypanocidal activity and cytotoxicity were determined for each oil, and their major compounds, on epimastigotes (Epi), trypomastigotes (Tryp), amastigotes (Amas), and Vero cells. Pharmacologic interactions were defined by a matrix of combinations among the most trypanocidal terpenes (limonene, carvone; citral and caryophyllene oxide). The treated cell phenotype was assessed by fluorescent and optic microscopy, flow cytometry, and DNA electrophoresis assays. Results The L. alba EOs displayed significant differences in their chemical composition and trypanocidal performance (p = 0.0001). Citral chemotype oils were more trypanocidal than Carvone EOs, with Inhibitory Concentration 50 (IC50) of 14 ± 1.5 μg/mL, 22 ± 1.4 μg/mL and 74 ± 4.4 μg/mL, on Epi, Tryp and Amas, respectively. Limonene exhibited synergistic interaction with citral, caryophyllene oxide and Benznidazole (decreasing by 17 times its IC50) and was the most effective and selective treatment. The cellular analysis suggested that these oils or their bioactive terpenes (citral, caryophyllene oxide and limonene) could be inducing T. cruzi cell death by an apoptotic-like mechanism. Conclusions EOs extracted from L. alba Citral chemotype demonstrated significant trypanocidal activity on the three forms of T. cruzi studied, and their composition and trypanocidal performance were influenced by production parameters. Citral, caryophyllene oxide, and limonene showed a possible induction of an apoptotic-like phenotype. The best selective anti-T. cruzi activity was achieved by limonene, the effects of which were also synergic with citral, caryophyllene oxide and benznidazole.
Collapse
|
109
|
Gillespie S, Holloway PM, Becker F, Rauzi F, Vital SA, Taylor KA, Stokes KY, Emerson M, Gavins FNE. The isothiocyanate sulforaphane modulates platelet function and protects against cerebral thrombotic dysfunction. Br J Pharmacol 2018; 175:3333-3346. [PMID: 29797311 DOI: 10.1111/bph.14368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Platelet activation provides a critical link between inflammation and thrombosis. Sulforaphane (SFN), a naturally occurring isothiocyanate, has been shown to display both anti-inflammatory and anti-thrombotic actions in the systemic microvasculature. As inflammation promotes thrombosis and vice versa, in this study we investigated whether SFN is able to reduce inflammatory potentiation of thrombotic events, suppress platelet activation and thrombus formation in the cerebral microvasculature. EXPERIMENTAL APPROACH Thrombosis was induced in the murine brain using the light/dye-injury model, in conjunction with LPS treatment, with and without SFN treatment. In vitro and in vivo platelet assays (aggregation, flow and other functional tests) were also employed, using both human and murine platelets. KEY RESULTS SFN was found to reduce LPS-mediated enhancement of thrombus formation in the cerebral microcirculation. In tail-bleed experiments, LPS treatment prolonged bleeding time, and SFN treatment was found to protect against this LPS-induced derangement of platelet function. SFN inhibited collagen-mediated platelet aggregation in vitro and in vivo and the associated adhesion and impaired calcium signalling. Furthermore, glycoprotein VI was shown to be involved in the protective effects observed with SFN treatment. CONCLUSIONS AND IMPLICATIONS The data presented here provide evidence for the use of SFN in preventing stroke in selected high-risk patient cohorts.
Collapse
Affiliation(s)
| | - Paul M Holloway
- Division of Brain Sciences, Imperial College London, London, UK.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Felix Becker
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, Muenster, Germany
| | - Francesca Rauzi
- Platelet Biology Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Shantel A Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Kirk A Taylor
- Platelet Biology Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Michael Emerson
- Platelet Biology Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Felicity N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA.,Department of Neurology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| |
Collapse
|
110
|
González-Bosch C. Priming plant resistance by activation of redox-sensitive genes. Free Radic Biol Med 2018; 122:171-180. [PMID: 29277443 DOI: 10.1016/j.freeradbiomed.2017.12.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
Priming by natural compounds is an interesting alternative for sustainable agriculture, which also contributes to explore the molecular mechanisms associated with stress tolerance. Although hosts and stress types eventually determine the mode of action of plant-priming agents, it highlights that many of them act on redox signalling. These include vitamins thiamine, riboflavin and quercetin; organic acids like pipecolic, azelaic and hexanoic; volatile organic compounds such as methyl jasmonate; cell wall components like chitosans and oligogalacturonides; H2O2, etc. This review provides data on how priming inducers promote stronger and faster responses to stress by modulating the oxidative environment, and interacting with signalling pathways mediated by salycilic acid, jasmonic acid and ethylene. The histone modifications involved in priming that affect the transcription of defence-related genes are also discussed. Despite the evolutionary distance between plants and animals, and the fact that the plant innate immunity takes place in each plant cell, they show many similarities in the molecular mechanisms that underlie pathogen perception and further signalling to activate defence responses. This review highlights the similarities between priming through redox signalling in plants and in mammalian cells. The strategies used by pathogens to manipulate the host´s recognition and the further activation of defences also show similarities in both kingdoms. Moreover, phytochemicals like sulforaphane and 12-oxo-phytodienoic acid prime both plant and mammalian responses by activating redox-sensitive genes. Hence research data into the priming of plant defences can provide additional information and a new viewpoint for priming mammalian defence, and vice versa.
Collapse
Affiliation(s)
- Carmen González-Bosch
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
111
|
Patel B, Mann GE, Chapple SJ. Concerted redox modulation by sulforaphane alleviates diabetes and cardiometabolic syndrome. Free Radic Biol Med 2018; 122:150-160. [PMID: 29427794 DOI: 10.1016/j.freeradbiomed.2018.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
Abstract
Diabetes and cardiometabolic disorders such as hypertension and obesity are major risk factors for the development of cardiovascular disease, with a wealth of evidence suggesting that oxidative stress is linked to the initiation and pathogenesis of these disease processes. With yearly increases in the global incidence of cardiovascular diseases (CVD) and diabetes, numerous studies have focused on characterizing whether upregulating antioxidant defenses through exogenous antioxidants (e.g. vitamin E, vitamin C) or activation of endogenous defenses (e.g. the Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant defense pathway) may be of benefit. The dietary isothiocyanate sulforaphane (SFN) is currently the subject of several clinical trials for a variety of disease states, including the evaluation of its therapeutic potential to ameliorate diabetic and cardiometabolic complications. SFN is a well characterized and potent Nrf2 inducer, however recent studies suggest its protective actions may be in part mediated by its modulation of various pro-inflammatory (e.g. Nuclear factor-kappa B (NFκB)) and metabolic (e.g. Peroxisome Proliferator-Activator Receptor Gamma (PPARγ)) signaling pathways. The focus of this review is to provide a detailed analysis of the known mechanisms by which SFN modulates Nrf2, NFκB and PPARγ signaling and crosstalk and to provide a critical evaluation of the evidence linking these transcriptional pathways with diabetic and cardiometabolic complications and SFN mediated cytoprotection. To allow comparison between rodent and human studies, we discuss the published bioavailability of SFN metabolites achieved in rodents and man in the context of Nrf2, NFκB and PPARγ signaling. Furthermore, we provide an update on the functional outcomes and implicated signaling pathways reported in recent clinical trials with SFN in Type 2 diabetic patients.
Collapse
Affiliation(s)
- Bijal Patel
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Giovanni E Mann
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Sarah J Chapple
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
112
|
Bai Y, Chen Q, Sun YP, Wang X, Lv L, Zhang LP, Liu JS, Zhao S, Wang XL. Sulforaphane protection against the development of doxorubicin-induced chronic heart failure is associated with Nrf2 Upregulation. Cardiovasc Ther 2018. [PMID: 28636290 DOI: 10.1111/1755-5922.12277] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Doxorubicin (DOX) is an anthracycline antitumor drug. However, its clinical use is limited by dose-dependent cardiotoxicity and even progresses to chronic heart failure (CHF). OBJECTIVE This study aims to investigate whether the Nrf2 activator, sulforaphane (SFN), can prevent DOX-induced CHF. METHODS Male Sprague-Dawley rats which received treatment for 6 weeks were divided into four groups (n=30 per group): control, SFN, DOX and DOX plus SFN group. RESULTS Results revealed that DOX induced progressive cardiac damage as indicated by increased cardiac injury markers, cardiac inflammation, fibrosis and oxidative stress. SFN significantly prevented DOX-induced progressive cardiac dysfunction between 2-6 weeks and prevented DOX-induced cardiac function deterioration. Furthermore, it significantly decreased ejection fraction and increased the expression of brain natriuretic peptide. SFN also almost completely prevented DOX-induced cardiac oxidative stress, inflammation and fibrosis. SFN upregulated NF-E2-related factor 2 (Nrf2) expression and transcription activity, which was reflected by the increased mRNA expression of Nrf2 and its downstream genes. Furthermore, in cultured H9c2 cardiomyocytes, the protective effect of SFN against DOX-induced fibrotic and inflammatory responses was abolished by Nrf2 silencing. CONCLUSION We arrived at the conclusion that DOX-induced CHF can be prevented by SFN through the upregulation of Nrf2 expression and transcriptional function.
Collapse
Affiliation(s)
- Yang Bai
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun, China
| | - Qiang Chen
- School of Public Health, Jilin University, Changchun, China
| | - Yun-Peng Sun
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun, China
| | - Xuan Wang
- Department of Pharmacology, The College of Basic Medicine of Jilin University, Changchun, China
| | - Li Lv
- The Jilin Province People's Hospital, Changchun, China
| | - Li-Ping Zhang
- The Cardiovascular Department, The First Hospital of Jilin University, Changchun, China
| | - Jin-Sha Liu
- The Cardiovascular Department, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Song Zhao
- The Spine Surgery Department, The First Hospital of Jilin University, Changchun, China
| | - Xiao-Lu Wang
- The Jilin Province People's Hospital, Changchun, China
| |
Collapse
|
113
|
Blekkenhorst LC, Bondonno CP, Lewis JR, Woodman RJ, Devine A, Bondonno NP, Lim WH, Zhu K, Beilin LJ, Thompson PL, Prince RL, Hodgson JM. Cruciferous and Total Vegetable Intakes Are Inversely Associated With Subclinical Atherosclerosis in Older Adult Women. J Am Heart Assoc 2018; 7:JAHA.117.008391. [PMID: 29618474 PMCID: PMC6015430 DOI: 10.1161/jaha.117.008391] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Dietary patterns rich in fruits and vegetables are considered to reduce atherosclerotic disease presentation and are reported to be inversely associated with subclinical measures of atherosclerosis, such as carotid artery intima‐media thickness (IMT) and plaque. However, the effect of vegetable intake alone, and relationships to specific types of vegetables containing different phytochemical profiles, is important. The aim of this study was to investigate the associations of total vegetable intake and specific vegetables grouped according to phytochemical constituents with common carotid artery IMT (CCA‐IMT) and carotid plaque severity in a cohort of older adult women (aged ≥70 years). Methods and Results Total vegetable intake was calculated at baseline (1998) using a validated food frequency questionnaire. Vegetable types included cruciferous, allium, yellow/orange/red, leafy green, and legumes. In 2001, CCA‐IMT (n=954) and carotid focal plaque (n=968) were assessed using high‐resolution B‐mode carotid ultrasonography. Mean (SD) total vegetable intake was 199.9 (78.0) g/d. Women consuming ≥3 servings of vegetables each day had ≈4.6% to 5.0% lower mean CCA‐IMT (P=0.014) and maximum CCA‐IMT (P=0.004) compared with participants consuming <2 servings of vegetables. For each 10 g/d higher in cruciferous vegetable intake, there was an associated 0.006 mm (0.8%) lower mean CCA‐IMT (P<0.01) and 0.007 mm (0.8%) lower maximum CCA‐IMT (P<0.01). Other vegetable types were not associated with CCA‐IMT (P>0.05). No associations were observed between vegetables and plaque severity (P>0.05). Conclusions Increasing vegetables in the diet with a focus on consuming cruciferous vegetables may have benefits for the prevention of subclinical atherosclerosis in older adult women. Clinical Trial Registration URL: http://www.anzctr.org.au. Unique identifier: ACTRN12615000750583.
Collapse
Affiliation(s)
- Lauren C Blekkenhorst
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia .,Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,Medical School, Queen Elizabeth Medical Centre Unit, University of Western Australia, Nedlands, Western Australia, Australia
| | - Catherine P Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Medical School, Queen Elizabeth Medical Centre Unit, University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Kidney Research, Children's Hospital at Westmead, New South Wales, Australia.,School of Public Health, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicola P Bondonno
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Wai H Lim
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Kun Zhu
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Lawrence J Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Peter L Thompson
- Department of Cardiovascular Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Richard L Prince
- Medical School, Queen Elizabeth Medical Centre Unit, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jonathan M Hodgson
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
114
|
Yang W, Wu F, Luo T, Zhang Y. CCAAT/enhancer binding protein homologous protein knockdown alleviates hypoxia-induced myocardial injury in rat cardiomyocytes exposed to high glucose. Exp Ther Med 2018; 15:4213-4222. [PMID: 29725368 PMCID: PMC5920208 DOI: 10.3892/etm.2018.5944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Diabetic patients are more sensitive to ischemic injury than non-diabetics. Endoplasmic reticulum (ER) stress has been reported to be closely associated with the pathophysiology of ischemic injury in diabetes. The aim of the present study was to investigate the mechanisms involved in the progression of diabetes complicated by myocardial infarction (MI) and further verify the role of CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP) using an in vitro model of diabetes/MI. The rats were exposed to 65 mg/kg streptozotocin (STZ) and left anterior descending (LAD) coronary artery ligation. ST-segment elevation, heart rate, left ventricular systolic pressure (LVSP) and LV end-diastolic pressure (LVEDP) were measured. Serum creatinine kinase-MB (CK-MB) and cardiac troponin T (cTnT) levels were examined by ELISA. Infarct size and apoptosis were measured by triphenyltetrazolium chloride staining and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assay. Pathological changes were evaluated by hematoxylin and eosin staining. H9c2 cells were used to establish an in vitro model of diabetes complicated by MI. Following CHOP knockdown, cell viability, cell cycle distribution and apoptosis were examined by Cell Counting Kit-8 assay, flow cytometry and Hoechst staining. Glucose-regulated protein 78 (GRP78), CHOP, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), endoplasmic reticulum oxidoreductase 1 (Ero1)-α, Ero1β and protein disulfide isomerase (PDI) levels in both myocardial tissues and H9c2 cells were determined by western blotting. In the present study, diabetes complicated by MI promoted ST-segment elevation and myocardial apoptosis, increased infarct size, induced pathological changes and elevated LVEDP, CK-MB, cTnT, GRP78, CHOP, Bax, Ero1α, Ero1β and PDI; however, it decreased heart rate, LVSP and Bcl-2. Additionally, high glucose combined with hypoxic treatment reduced cell viability, induced cell cycle arrest at G1 phase, promoted cell apoptosis, and activated the GRP78/CHOP and Ero1/PDI signaling pathways, which were reversed by CHOP knockdown. Thus, CHOP may be an effective therapeutic target for the treatment of diabetes complicated by MI.
Collapse
Affiliation(s)
- Wenqi Yang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Fang Wu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ting Luo
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuelan Zhang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
115
|
Bose C, Awasthi S, Sharma R, Beneš H, Hauer-Jensen M, Boerma M, Singh SP. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS One 2018; 13:e0193918. [PMID: 29518137 PMCID: PMC5843244 DOI: 10.1371/journal.pone.0193918] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/20/2018] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common malignancy in women of the Western world. Doxorubicin (DOX) continues to be used extensively to treat early-stage or node-positive breast cancer, human epidermal growth factor receptor-2 (HER2)-positive breast cancer, and metastatic disease. We have previously demonstrated in a mouse model that sulforaphane (SFN), an isothiocyanate isolated from cruciferous vegetables, protects the heart from DOX-induced toxicity and damage. However, the effects of SFN on the chemotherapeutic efficacy of DOX in breast cancer are not known. Present studies were designed to investigate whether SFN alters the effects of DOX on breast cancer regression while also acting as a cardioprotective agent. Studies on rat neonatal cardiomyocytes and multiple rat and human breast cancer cell lines revealed that SFN protects cardiac cells but not cancer cells from DOX toxicity. Results of studies in a rat orthotopic breast cancer model indicated that SFN enhanced the efficacy of DOX in regression of tumor growth, and that the DOX dosage required to treat the tumor could be reduced when SFN was administered concomitantly. Additionally, SFN enhanced mitochondrial respiration in the hearts of DOX-treated rats and reduced cardiac oxidative stress caused by DOX, as evidenced by the inhibition of lipid peroxidation, the activation of NF-E2-related factor 2 (Nrf2) and associated antioxidant enzymes. These studies indicate that SFN not only acts synergistically with DOX in cancer regression, but also protects the heart from DOX toxicity through Nrf2 activation and protection of mitochondrial integrity and functions.
Collapse
Affiliation(s)
- Chhanda Bose
- University of Arkansas for Medical Sciences, Department of Geriatrics, Little Rock, Arkansas, United States of America
| | - Sanjay Awasthi
- Texas Tech Health Sciences Center, Division of Hematology & Oncology, Department of Internal Medicine, Lubbock, Texas, United States of America
| | - Rajendra Sharma
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, Arkansas, United States of America
| | - Helen Beneš
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, Little Rock, Arkansas, United States of America
| | - Martin Hauer-Jensen
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, Arkansas, United States of America
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, Arkansas, United States of America
| | - Sharda P. Singh
- Texas Tech Health Sciences Center, Division of Hematology & Oncology, Department of Internal Medicine, Lubbock, Texas, United States of America
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| |
Collapse
|
116
|
Abstract
The NFE2L2 gene encodes the transcription factor Nrf2 best known for regulating the expression of antioxidant and detoxification genes. Gene knockout approaches have demonstrated its universal cytoprotective features. While Nrf2 has been the topic of intensive research in cancer biology since its discovery in 1994, understanding the role of Nrf2 in cardiovascular disease has just begun. The literature concerning Nrf2 in experimental models of atherosclerosis, ischemia, reperfusion, cardiac hypertrophy, heart failure, and diabetes supports its cardiac protective character. In addition to antioxidant and detoxification genes, Nrf2 has been found to regulate genes participating in cell signaling, transcription, anabolic metabolism, autophagy, cell proliferation, extracellular matrix remodeling, and organ development, suggesting that Nrf2 governs damage resistance as well as wound repair and tissue remodeling. A long list of small molecules, most derived from natural products, have been characterized as Nrf2 inducers. These compounds disrupt Keap1-mediated Nrf2 ubquitination, thereby prohibiting proteasomal degradation and allowing Nrf2 protein to accumulate and translocate to the nucleus, where Nrf2 interacts with sMaf to bind to ARE in the promoter of genes. Recently alternative mechanisms driving Nrf2 protein increase have been revealed, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of Nrf2, and de novo Nrf2 protein translation. We review here a large volume of literature reporting historical and recent discoveries about the function and regulation of Nrf2 gene. Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Anthony J Maltagliati
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
117
|
Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16:14. [PMID: 29370858 PMCID: PMC5785894 DOI: 10.1186/s12967-018-1381-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Bethsebie L Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahdeo Prasad
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | | |
Collapse
|
118
|
Prattichizzo F, De Nigris V, Spiga R, Mancuso E, La Sala L, Antonicelli R, Testa R, Procopio AD, Olivieri F, Ceriello A. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res Rev 2018; 41:1-17. [PMID: 29081381 DOI: 10.1016/j.arr.2017.10.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterised by chronic low-grade inflammation, recently referred to as 'metaflammation', a relevant factor contributing to the development of both diabetes and its complications. Nonetheless, 'canonical' anti-inflammatory drugs do not yield satisfactory results in terms of prevention of diabetes progression and of cardiovascular events, suggesting that the causal mechanisms fostering metaflammation deserve further research to identify new druggable targets. Metaflammation resembles ageing-induced low-grade inflammation, previously referred to as inflammageing, in terms of clinical presentation and the molecular profile, pointing to a common aetiology for both conditions. Along with the mechanisms proposed to fuel inflammageing, here we dissect a plethora of pathological cascades triggered by gluco- and lipotoxicity, converging on candidate phenomena possibly explaining the enduring pro-inflammatory program observed in diabetic tissues, i.e. persistent immune-system stimulation, accumulation of senescent cells, epigenetic rearrangements, and alterations in microbiota composition. We discuss the possibility of harnessing these recent discoveries in future therapies for T2DM. Moreover, we review recent evidence regarding the ability of diets and physical exercise to modulate selected inflammatory pathways relevant for the diabetic pathology. Finally, we examine the latest findings showing putative anti-inflammatory mechanisms of anti-hyperglycaemic agents with proven efficacy against T2DM-induced cardiovascular complications, in order to gain insights into quickly translatable therapeutic approaches.
Collapse
|
119
|
Jiang X, Hong Y, Zhao D, Meng X, Zhao L, Du Y, Wang Z, Zheng Y, Cai L, Jiang H. Low dose radiation prevents doxorubicin-induced cardiotoxicity. Oncotarget 2017; 9:332-345. [PMID: 29416617 PMCID: PMC5787469 DOI: 10.18632/oncotarget.23013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/26/2017] [Indexed: 02/02/2023] Open
Abstract
This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yaqiong Hong
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xinxin Meng
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lijing Zhao
- The School of Basic Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Yanwei Du
- Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Zan Wang
- Department of Internal Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yan Zheng
- Department of Gerontology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lu Cai
- Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
120
|
The Sulforaphane and pyridoxamine supplementation normalize endothelial dysfunction associated with type 2 diabetes. Sci Rep 2017; 7:14357. [PMID: 29085055 PMCID: PMC5662716 DOI: 10.1038/s41598-017-14733-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
In this study we investigate pyridoxamine (PM) and/or sulforaphane (SFN) as therapeutic interventions to determine whether activators of NFE2-related factor 2 (Nrf2) can be used in addition with inhibitors of advanced glycation end products (AGE) formation to attenuate oxidative stress and improve endothelial dysfunction in type 2 diabetes. Goto-kakizaki (GK) rats, an animal model of non-obese type 2 diabetes, were treated with or without PM and/or SFN during 8 weeks and compared with age-matched Wistar rats. At the end of the treatment, nitric oxide (NO)-dependent and independent vasorelaxation in isolated aorta and mesenteric arteries were evaluated. Metabolic profile, NO bioavailability and vascular oxidative stress, AGE and Nrf2 levels were also assessed. Diabetic GK rats presented significantly lower levels of Nrf2 and concomitantly exhibited higher levels of oxidative stress and endothelial dysfunction. PM and SFN as monotherapy were capable of significantly improving endothelial dysfunction in aorta and mesenteric arteries decreasing vascular oxidative damage, AGE and HbA1c levels. Furthermore, SFN + PM proved more effective reducing systemic free fatty acids levels, normalizing endothelial function, NO bioavailability and glycation in GK rats. Activators of Nrf2 can be used therapeutically in association with inhibitors of AGE and cross-linking formation to normalize endothelial dysfunction in type 2 diabetes.
Collapse
|
121
|
Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep 2017; 7:14130. [PMID: 29074861 PMCID: PMC5658327 DOI: 10.1038/s41598-017-14520-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Upon oxidative stress and aging, Nrf2 (NFE2-related factor2) triggers antioxidant defense genes to defends against homeostatic failure. Using human(h) or rat(r) lens epithelial cells (LECs) and aging human lenses, we showed that a progressive increase in oxidative load during aging was linked to a decline in Prdx6 expression. DNA binding experiments using gel-shift and ChIP assays demonstrated a progressive reduction in Nrf2/ARE binding (-357/-349) of Prdx6 promoter. The promoter (-918) with ARE showed a marked reduction in young vs aged hLECs, which was directly correlated to decreased Nrf2/ARE binding. A Nrf2 activator, Sulforaphane (SFN), augmented Prdx6, catalase and GSTπ expression in dose-dependent fashion, and halted Nrf2 dysregulation of these antioxidants. SFN reinforced Nrf2/DNA binding and increased promoter activities by enhancing expression and facilitating Nrf2 translocalization in nucleus. Conversely, promoter mutated at ARE site did not respond to SFN, validating the SFN-mediated restoration of Nrf2/ARE signaling. Furthermore, SFN rescued cells from UVB-induced toxicity in dose-dependent fashion, which was consistent with SFN's dose-dependent activation of Nrf2/ARE interaction. Importantly, knockdown of Prdx6 revealed that Prdx6 expression was prerequisite for SFN-mediated cytoprotection. Collectively, our results suggest that loss of Prdx6 caused by dysregulation of ARE/Nrf2 can be attenuated through a SFN, to combat diseases associated with aging.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa, Japan.
| | - Bhavana Chhunchha
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA
| | - Prerna Singh
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa, Japan
| | - Dhirendra P Singh
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA.
| |
Collapse
|
122
|
Blekkenhorst LC, Bondonno CP, Lewis JR, Devine A, Zhu K, Lim WH, Woodman RJ, Beilin LJ, Prince RL, Hodgson JM. Cruciferous and Allium Vegetable Intakes are Inversely Associated With 15-Year Atherosclerotic Vascular Disease Deaths in Older Adult Women. J Am Heart Assoc 2017; 6:e006558. [PMID: 29066442 PMCID: PMC5721860 DOI: 10.1161/jaha.117.006558] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Higher vegetable intake is consistently associated with lower atherosclerotic vascular disease (ASVD) events. However, the components responsible and mechanisms involved are uncertain. Nonnutritive phytochemicals may be involved. The objective of this study was to investigate the associations of total vegetable intake and types of vegetables grouped according to phytochemical constituents with ASVD mortality. METHODS AND RESULTS The cohort consisted of 1226 Australian women aged 70 years and older without clinical ASVD or diabetes mellitus at baseline (1998). Vegetable intakes were calculated per serving (75 g/d) and were also classified into prespecified types relating to phytochemical constituents. ASVD-related deaths were ascertained from linked mortality data. During 15 years (15 947 person-years) of follow-up, 238 ASVD-related deaths occurred. A 1-serving increment of vegetable intake was associated with a 20% lower hazard of ASVD-related death (multivariable-adjusted hazard ratio, 0.80; 95% confidence interval, 0.69-0.94 [P=0.005]). In multivariable-adjusted models for vegetable types, cruciferous (per 10-g/d increase: hazard ratio, 0.87; 95% confidence interval, 0.81-0.94 [P<0.001]) and allium (per 5-g/d increase: hazard ratio, 0.82; 95% confidence interval, 0.73-0.94 [P=0.003]) vegetables were inversely associated with ASVD-related deaths. The inclusion of other vegetable types, as well as lifestyle and cardiovascular risk factors, did not alter these associations. Yellow/orange/red (P=0.463), leafy green (P=0.063), and legume (P=0.379) vegetables were not significant. CONCLUSIONS Consistent with current evidence, higher cruciferous and allium vegetable intakes were associated with a lower risk of ASVD mortality. In addition, cruciferous and allium vegetables are recognized to be a good source of several nonnutritive phytochemicals such as organosulfur compounds. CLINICAL TRIAL REGISTRATION URL: http://www.anzctr.org.au. Unique identifier: ACTRN12617000640303.
Collapse
Affiliation(s)
- Lauren C Blekkenhorst
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, The University of Western Australia, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, The University of Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Joshua R Lewis
- School of Medicine and Pharmacology, Queen Elizabeth Medical Centre Unit, The University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Kidney Research, Children's Hospital at Westmead, New South Wales, Australia
- School of Public Health, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kun Zhu
- School of Medicine and Pharmacology, Queen Elizabeth Medical Centre Unit, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Wai H Lim
- School of Medicine and Pharmacology, Queen Elizabeth Medical Centre Unit, The University of Western Australia, Nedlands, Western Australia, Australia
- Renal Medicine Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia
| | - Lawrence J Beilin
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, The University of Western Australia, Perth, Western Australia, Australia
| | - Richard L Prince
- School of Medicine and Pharmacology, Queen Elizabeth Medical Centre Unit, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jonathan M Hodgson
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, The University of Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
123
|
Dacosta C, Bao Y. The Role of MicroRNAs in the Chemopreventive Activity of Sulforaphane from Cruciferous Vegetables. Nutrients 2017; 9:nu9080902. [PMID: 28825609 PMCID: PMC5579695 DOI: 10.3390/nu9080902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is an increasingly significant cause of mortality whose risk is linked to diet and inversely correlated with cruciferous vegetable consumption. This is likely to be partly attributable to the isothiocyanates derived from eating these vegetables, such as sulforaphane, which is extensively characterised for cytoprotective and tumour-suppressing activities. However, its bioactivities are likely to extend in complexity beyond those currently known; further insight into these bioactivities could aid the development of sulforaphane-based chemopreventive or chemotherapeutic strategies. Evidence suggests that sulforaphane modulates the expression of microRNAs, many of which are known to regulate genes involved at various stages of colorectal carcinogenesis. Based upon existing knowledge, there exist many plausible mechanisms by which sulforaphane may regulate microRNAs. Thus, there is a strong case for the further investigation of the roles of microRNAs in the anti-cancer effects of sulforaphane. There are several different types of approach to the wide-scale profiling of microRNA differential expression. Array-based methods may involve the use of RT-qPCR or complementary hybridisation probe chips, and tend to be relatively fast and economical. Cloning and deep sequencing approaches are more expensive and labour-intensive, but are worth considering where viable, for their greater sensitivity and ability to detect novel microRNAs.
Collapse
Affiliation(s)
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK. .
| |
Collapse
|
124
|
de Oliveira MR, de Bittencourt Brasil F, Fürstenau CR. Sulforaphane Promotes Mitochondrial Protection in SH-SY5Y Cells Exposed to Hydrogen Peroxide by an Nrf2-Dependent Mechanism. Mol Neurobiol 2017; 55:4777-4787. [PMID: 28730528 DOI: 10.1007/s12035-017-0684-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/07/2017] [Indexed: 12/20/2022]
Abstract
Sulforaphane (SFN; C6H11NOS2) is an isothiocyanate found in cruciferous vegetables, such as broccoli, kale, and radish. SFN exhibits antioxidant, anti-apoptotic, anti-tumor, and anti-inflammatory activities in different cell types. However, it was not previously demonstrated whether and how this natural compound would exert mitochondrial protection experimentally. Therefore, we investigated here the effects of a pretreatment (for 30 min) with SFN at 5 μM on mitochondria obtained from human neuroblastoma SH-SY5Y cells exposed to hydrogen peroxide (H2O2) at 300 μM for 24 h. We found that SFN prevented loss of viability in H2O2-treated SH-SY5Y cells. Furthermore, SFN decreased lipid peroxidation, protein carbonylation, and protein nitration in mitochondrial membranes of H2O2-exposed cells. Importantly, SFN enhanced the levels of both cellular and mitochondrial glutathione (GSH). SFN also suppressed the H2O2-mediated inhibition of mitochondrial components involved in the maintenance of the bioenergetics state, such as aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase, as well as complexes I and V. Consequently, SFN prevented the decline induced by H2O2 on the levels of ATP in SH-SY5Y cells. Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor by using small interfering RNA (siRNA) abolished the mitochondrial and cellular protection elicited by SFN. Therefore, SFN abrogated the H2O2-induced mitochondrial impairment by an Nrf2-dependent manner.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Departamento de Química/ICET, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiaba, MT, Brazil.
| | | | - Cristina Ribas Fürstenau
- Instituto de Genética e Bioquímica (INGEB), Universidade Federal de Uberlândia (UFU), Patos de Minas, MG, Brazil
| |
Collapse
|
125
|
Shukla K, Pal PB, Sonowal H, Srivastava SK, Ramana KV. Aldose Reductase Inhibitor Protects against Hyperglycemic Stress by Activating Nrf2-Dependent Antioxidant Proteins. J Diabetes Res 2017; 2017:6785852. [PMID: 28740855 PMCID: PMC5504933 DOI: 10.1155/2017/6785852] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 12/30/2022] Open
Abstract
We have shown earlier that pretreatment of cultured cells with aldose reductase (AR) inhibitors prevents hyperglycemia-induced mitogenic and proinflammatory responses. However, the effects of AR inhibitors on Nrf2-mediated anti-inflammatory responses have not been elucidated yet. We have investigated how AR inhibitor fidarestat protects high glucose- (HG-) induced cell viability changes by increasing the expression of Nrf2 and its dependent phase II antioxidant enzymes. Fidarestat pretreatment prevents HG (25 mM)-induced Thp1 monocyte viability. Further, treatment of Thp1 monocytes with fidarestat caused a time-dependent increase in the expression as well as the DNA-binding activity of Nrf2. In addition, fidarestat augmented the HG-induced Nrf2 expression and activity and also upregulated the expression of Nrf2-dependent proteins such as hemeoxygenase-1 (HO1) and NQO1 in Thp1 cells. Similarly, treatment with AR inhibitor also induced the expression of Nrf2 and HO1 in STZ-induced diabetic mice heart and kidney tissues. Further, AR inhibition increased the HG-induced expression of antioxidant enzymes such as SOD and catalase and activation of AMPK-α1 in Thp1 cells. Our results thus suggest that pretreatment with AR inhibitor prepares the monocytes against hyperglycemic stress by overexpressing the Nrf2-dependent antioxidative proteins.
Collapse
Affiliation(s)
- Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pabitra Bikash Pal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satish K. Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V. Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
126
|
Consumption of Fruit or Fiber-Fruit Decreases the Risk of Cardiovascular Disease in a Mediterranean Young Cohort. Nutrients 2017; 9:nu9030295. [PMID: 28304346 PMCID: PMC5372958 DOI: 10.3390/nu9030295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/27/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Fiber and fiber-rich foods have been inversely associated with cardiovascular disease (CVD), but the evidence is scarce in young and Mediterranean cohorts. We used Cox regression models to assess the association between quintiles of total fiber and fiber from different sources, and the risk of CVD adjusted for the principal confounding factors in a Mediterranean cohort of young adults, the SUN (Seguimiento Universidad de Navarra, Follow-up) cohort. After a median follow-up of 10.3 years, we observed 112 cases of CVD among 17,007 participants (61% female, mean age 38 years). We observed an inverse association between fiber intake and CVD events (p for trend = 0.024) and also between the highest quintile of fruit consumption (hazard ratio (HR) 0.51, 95% confidence interval (CI) 0.27–0.95) or whole grains consumption (HR 0.43 95% CI 0.20–0.93) and CVD compared to the lowest quintile, and also a HR of 0.58 (95% CI 0.37–0.90) for the participants who ate at least 175 g/day of fruit. Only the participants in the highest quintile of fruit-derived fiber intake had a significantly lower risk of CVD (HR 0.52, 95% CI 0.28–0.97). The participants who ate at least one serving per week of cruciferous vegetables had a lower risk than those who did not (HR 0.52, 95% CI 0.30–0.89). In conclusion, high fruit consumption, whole grain consumption, or consumption of at least one serving/week of cruciferous vegetables may be protective against CVD in young Mediterranean populations.
Collapse
|
127
|
Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, Samykutty A, Zhang L, Yan J, Miller D, Suttles J, Zhang HG. Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Mol Ther 2017; 25:1641-1654. [PMID: 28274798 DOI: 10.1016/j.ymthe.2017.01.025] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/19/2022] Open
Abstract
The intestinal immune system is continuously exposed to massive amounts of nanoparticles derived from food. Whether nanoparticles from plants we eat daily have a role in maintaining intestinal immune homeostasis is poorly defined. Here, we present evidence supporting our hypothesis that edible nanoparticles regulate intestinal immune homeostasis by targeting dendritic cells (DCs). Using three mouse colitis models, our data show that orally given nanoparticles isolated from broccoli extracts protect mice against colitis. Broccoli-derived nanoparticle (BDN)-mediated activation of adenosine monophosphate-activated protein kinase (AMPK) in DCs plays a role in not only prevention of DC activation but also induction of tolerant DCs. Adoptively transferring DCs pre-pulsed with total BDN lipids, but not sulforaphane (SFN)-depleted BDN lipids, prevented DSS-induced colitis in C57BL/6 (B6) mice, supporting the role of BDN SFN in the induction of DC tolerance. Adoptively transferring AMPK+/+, but not AMPK-/-, DCs pre-pulsed with SFN prevented DSS-induced colitis in B6 mice, further supporting the DC AMPK role in SFN-mediated prevention of DSS-induced colitis. This finding could open new preventive or therapeutic avenues to address intestinal-related inflammatory diseases via activating AMPK.
Collapse
Affiliation(s)
- Zhongbin Deng
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Yuan Rong
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Yun Teng
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jingyao Mu
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiaoying Zhuang
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Michael Tseng
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Abhilash Samykutty
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Lifeng Zhang
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jun Yan
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Donald Miller
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jill Suttles
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex VA Medical Center, Louisville, KY 40206, USA; Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
128
|
Han Z, Xu Q, Li C, Zhao H. Effects of sulforaphane on neural stem cell proliferation and differentiation. Genesis 2017; 55. [PMID: 28142224 DOI: 10.1002/dvg.23022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
Abstract
Sulforaphane (SFN) is a natural organosulfur compound with anti-oxidant and anti-inflammation properties. The objective of this study is to investigate the effect of SFN on the proliferation and differentiation of neural stem cells (NSC). NSCs were exposed to SFN at the concentrations ranging from 0.25 to 10 µM. Cell viability was evaluated with MTT assay and lactate dehydogenase (LDH) release assay. The proliferation of NSCs was evaluated with neurosphere formation assay and Ki-67 staining. The level of Tuj-1 was evaluated with immunostaining and Western blot to assess NSC neuronal differentiation. The expression of key proteins in the Wnt signaling pathway, including β-catenin and cyclin D1, in response to SFN treatment or the Wnt inhibitor, DKK-1, was determined by Western blotting. No significant cytotoxicity was seen for SFN on NSCs with SFN at concentrations of less than 10 µM. On the contrary, SFN of low concentrations stimulated cell proliferation and prominently increased neurosphere formation and NSC differentiation to neurons. SFN treatment upregulated Wnt signaling in the NSCs, whereas DKK-1 attenuated the effects of SFN. SFN is a drug to promote NSC proliferation and neuronal differentiation when used at low concentrations. These protective effects are mediated by Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhenxian Han
- Department of Pharmacy, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, 163001, China
| | - Qian Xu
- Department of Pharmacy, The Third Hospital of Daqing, Daqing, Heilongjiang Province, 163712, China
| | - Changfu Li
- Department of Gastroenterology, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, 163001, China
| | - Hong Zhao
- Key Laboratory of Biological Medicine Preparations, Institute of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| |
Collapse
|
129
|
Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj 2017; 1861:802-813. [PMID: 28115205 DOI: 10.1016/j.bbagen.2017.01.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The balance between oxidation and anti-oxidation is believed to be critical in maintaining healthy biological systems. However, our endogenous antioxidant defense systems are incomplete without exogenous antioxidants and, therefore, there is a continuous demand for exogenous antioxidants to prevent stress and ageing associated disorders. Nanotechnology has yielded enormous variety of nanomaterials (NMs) of which metallic and carbonic (mainly fullerenes) NMs, with redox property, have been found to be strong scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. SCOPE OF REVIEW Redox activity of metal based NMs and membrane translocation time of fullerene NMs seem to be the major determinants in ROS scavenging potential exhibited by these NMs. A comprehensive knowledge about the effects of ROS scavenging NMs in cellular antioxidant signalling is largely lacking. This review compiles the mechanisms of ROS scavenging as well as antioxidant signalling of the aforementioned metallic and fullerene NMs. MAJOR CONCLUSIONS Direct interaction between NMs and proteins does greatly affect the corona/adsorption formation dynamics but such interaction does not provide the explanation behind diverse biological outcomes induced by NMs. Indirect interaction, however, that could occur via NMs uptake and dissolution, NMs ROS induction and ROS scavenging property, and NMs membrane translocation time seem to work as a central mode of interaction. GENERAL SIGNIFICANCE The usage of potential antioxidant NMs in biological systems would greatly impact the field of nanomedicine. ROS scavenging NMs hold great promise in the future treatment of ROS related degenerative disorders.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia; King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Aws Alshamsan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
130
|
de Oliveira MR, de Souza ICC, Fürstenau CR. Carnosic Acid Induces Anti-Inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Involving a Crosstalk Between the Nrf2/HO-1 Axis and NF-κB. Mol Neurobiol 2017; 55:890-897. [DOI: 10.1007/s12035-017-0389-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
|
131
|
Okada M, Yamamoto A, Aizawa SI, Taga A, Terashima H, Kodama S. HPLC Separation of Sulforaphane Enantiomers in Broccoli and Its Sprouts by Transformation into Diastereoisomers Using Derivatization with (S)-Leucine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:244-250. [PMID: 27989117 DOI: 10.1021/acs.jafc.6b04966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Racemic sulforaphane, which was derivatized with (S)-leucine (l-leucine), was resolved by reversed phase HPLC with UV detection. The optimum mobile phase conditions were found to be 10 mM citric acid (pH 2.8) containing 22% methanol at 35 °C using detection at 254 nm. Sulforaphane enantiomers in florets and stems of five brands of broccoli and leaves and stems of three brands of broccoli sprouts were analyzed by the proposed HPLC method. Both sulforaphane enantiomers were detected in all of the samples. The S/R ratios of sulforaphane in broccoli samples were 1.5-2.6/97.4-98.5% for florets and 5.0-12.1/87.9-95.0% for stems. The S/R ratios in broccoli sprout samples were higher than those in broccoli samples and were found to be 8.3-19.7/80.3-91.7% for leaves and 37.0-41.8/58.2-63.0% for stems. (S)-Sulforaphane detected in the broccoli and its sprout samples was positively identified by separately using an HPLC with a chiral column (Chiralpak AD-RH) and mass spectrometry.
Collapse
Affiliation(s)
- Makiko Okada
- School of Science, Tokai University , 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Atsushi Yamamoto
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University , 1200 Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan
| | - Sen-Ichi Aizawa
- Graduate School of Science and Engineering, University of Toyama , 3190 Gofuku, Toyama 930-8555, Japan
| | - Atsushi Taga
- School of Pharmacy, Kinki University , 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Hiroyuki Terashima
- GL Sciences Inc. , 30F, Tokyo Square Tower, 22-1 Nishishinjuku 6-chome, Shinjuku-ku, Tokyo 163-1130, Japan
| | - Shuji Kodama
- School of Science, Tokai University , 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
132
|
Takagi T, Inoue H, Takahashi N, Katsumata-Tsuboi R, Uehara M. Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP. Biochem Biophys Res Commun 2016; 483:718-724. [PMID: 27979663 DOI: 10.1016/j.bbrc.2016.12.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 11/17/2022]
Abstract
Sulforaphane (SFN), a kind of isothiocyanate, is derived from broccoli sprouts. It has anti-tumor, anti-inflammatory, and anti-oxidation activity. The molecular function of SFN in the inhibition of osteoclast differentiation is not well-documented. In this study, we assessed the effect of SFN on osteoclast differentiation in vitro. SFN inhibited osteoclast differentiation in both bone marrow cells and RAW264.7 cells. Key molecules involved in the inhibitory effects of SFN on osteoclast differentiation were determined using a microarray analysis, which showed that SFN inhibits osteoclast-associated genes, such as osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells cytoplasmic-1, tartrate-resistant acid phosphatase, and cathepsin K. Moreover, the mRNA expression levels of the cell-cell fusion molecules dendritic cell specific transmembrane protein (DC-STAMP) and osteoclast stimulatory transmembrane protein (OC-STAMP) were strongly suppressed in cells treated with SFN. Furthermore, SFN increased the phosphorylation of signal transducer and activator of transcription 1 (STAT1), a regulator of macrophage and osteoclast cell fusion. Thus, our data suggested that SFN significantly inhibits the cell-cell fusion molecules DC-STAMP and OC-STAMP by inducing the phosphorylation of STAT1 (Tyr701), which might be regulated by interactions with OSCAR.
Collapse
Affiliation(s)
- Tomohiro Takagi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Rie Katsumata-Tsuboi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
133
|
Upregulation of NRF2 through autophagy/ERK 1/2 ameliorates ionizing radiation induced cell death of human osteosarcoma U-2 OS. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 813:10-17. [PMID: 28010924 DOI: 10.1016/j.mrgentox.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/14/2023]
Abstract
The antioxidative response mediated by transcription factor NRF2 is thought to be a pivotal cellular defense system against various extrinsic stresses. It has been reported that activation of the NRF2 pathway confers cells with resistance to ionizing radiation-induced damage. However, the underlying mechanism remains largely unknown. In the current research, it was found that α-particle radiation has the ability to stimulate NRF2 expression in human osteosarcoma U-2 OS cells. Knockdown of cellular NRF2 level by shRNA-mediated gene silencing decreased the survival rate, increased the micronucleus formation rate and apoptosis rate in irradiated cells. Consistently, knockdown of NRF2 resulted in decreased expression of p65 and Bcl-2, and increased expression of p53 and Bax. Besides, it was observed that increased expression of NRF2 was partially dependent on radiation induced phosphorylation of ERK 1/2. Further results showed that radiation promoted autophagy flux which leads to the enhanced phosphorylation of ERK 1/2, as evidenced by the resultls that knockdown of ATG5 (Autophagy protein 5) gene by shRNA suppressed both radiation induced ERK 1/2 phosphorylation and NRF2 upregulation. Based on these results, it is proposed that attenuation of NRF2 antioxidative pathway can sensitize U-2 OS cells to radiation, where NRF2 antioxidative response is regulated by autophagy mediated activation of ERK 1/2 kinases.
Collapse
|
134
|
Sulforaphane effects on postinfarction cardiac remodeling in rats: modulation of redox-sensitive prosurvival and proapoptotic proteins. J Nutr Biochem 2016; 34:106-17. [DOI: 10.1016/j.jnutbio.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 12/24/2022]
|
135
|
Holloway PM, Gillespie S, Becker F, Vital SA, Nguyen V, Alexander JS, Evans PC, Gavins FNE. Sulforaphane induces neurovascular protection against a systemic inflammatory challenge via both Nrf2-dependent and independent pathways. Vascul Pharmacol 2016; 85:29-38. [PMID: 27401964 DOI: 10.1016/j.vph.2016.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 12/25/2022]
Abstract
Sepsis is often characterized by an acute brain inflammation and dysfunction, which is associated with increased morbidity and mortality worldwide. Preventing cerebral leukocyte recruitment may provide the key to halt progression of systemic inflammation to the brain. Here we investigated the influence of the anti-inflammatory and anti-oxidant compound, sulforaphane (SFN) on lipopolysaccharide (LPS)-induced cellular interactions in the brain. The inflammatory response elicited by LPS was blunted by SFN administration (5 and 50mg/kg i.p.) 24h prior to LPS treatment in WT animals, as visualized and quantified using intravital microscopy. This protective effect of SFN was lost in Nrf2-KO mice at the lower dose tested, however 50mg/kg SFN revealed a partial effect, suggesting SFN works in part independently of Nrf2 activity. In vitro, SFN reduced neutrophil recruitment to human brain endothelial cells via a down regulation of E-selectin and vascular cell adhesion molecule 1 (VCAM-1). Our data confirm a fundamental dose-dependent role of SFN in limiting cerebral inflammation. Furthermore, our data demonstrate that not only is Nrf2 in part essential in mediating these neuroprotective effects, but they occur via down-regulation of E-selectin and VCAM-1. In conclusion, SFN may provide a useful therapeutic drug to reduce cerebral inflammation in sepsis.
Collapse
Affiliation(s)
- Paul M Holloway
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Scarlett Gillespie
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Felix Becker
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Department for General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - Shantel A Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Victoria Nguyen
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Paul C Evans
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Felicity N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Division of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
136
|
Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics. Toxicol Appl Pharmacol 2016; 303:45-57. [DOI: 10.1016/j.taap.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
|
137
|
Wang W, Guan C, Sun X, Zhao Z, Li J, Fu X, Qiu Y, Huang M, Jin J, Huang Z. Tanshinone IIA protects against acetaminophen-induced hepatotoxicity via activating the Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:589-596. [PMID: 27161400 DOI: 10.1016/j.phymed.2016.02.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/02/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Tanshinone IIA (Tan), the main active component of Salvia miltiorrhiza, has been demonstrated to have antioxidant activity. Acetaminophen (APAP), a widely used antipyretic and analgesic, can cause severe hepatotoxicity and liver failure when taken overdose. Oxidative stress has been reported to be involved in APAP-induced liver failure. PURPOSE This study aimed to investigate the effect of Tan on APAP-induced hepatotoxicity and the underlying mechanisms involved. STUDY DESIGN C57BL/6J mice were divided into six groups: (1) control, (2) APAP group, (3) APAP+Tan (30mg/kg) group, (4) Tan (30mg/kg) group, (5) APAP+Tan (10mg/kg) group, (6) Tan (10mg/kg) group. Mice in group 3 and 5 were pre-treated with specified dose of Tan by gavage and subsequently injected with an overdose of APAP intraperitoneally (i.p., 300mg/kg). The effect of Tan on Nrf2 pathway was investigated in HepG2 cells and mice. METHODS Plasma aspartate transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH), liver glutathione (GSH), glutathione transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) levels were determined after mice were sacrificed. Lipid peroxidation and histological examination were performed. The effect of Tan on the Nrf2 pathway was detected by western blotting and qRT-PCR. RESULTS Tan pretreatment reduced APAP-induced liver injury. Tan was able to activate Nrf2 and increase the expression levels of Nrf2 target genes, including glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H:quinine oxidoreductase 1 (NQO1) and hemeoxygenase-1 (HO-1), in a dose-dependent manner in HepG2 cells. Consistent with our observations in HepG2 cells, Tan increased nuclear Nrf2 accumulation and upregulated mRNA and protein levels of the Nrf2 target genes GCLC, NQO1 and HO-1 in C57BL/6J mice compared with mice treated with APAP alone. CONCLUSIONS Our results demonstrate that Tan pretreatment could protect the liver from APAP-induced hepatic injury by activating the Nrf2 pathway. Tan may provide a new strategy for the protection against APAP-induced liver injury.
Collapse
Affiliation(s)
- Wenwen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Cuiwen Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; The Third People's Hospital, Nanhai District, Foshan 528244, PR China
| | - Xiaozhe Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhongxiang Zhao
- School of Chinese MateriaMedica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jia Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xinlu Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yuwen Qiu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|