101
|
Anyona SB, Kempaiah P, Raballah E, Davenport GC, Were T, Konah SN, Vulule JM, Hittner JB, Gichuki CW, Ong'echa JM, Perkins DJ. Reduced systemic bicyclo-prostaglandin-E2 and cyclooxygenase-2 gene expression are associated with inefficient erythropoiesis and enhanced uptake of monocytic hemozoin in children with severe malarial anemia. Am J Hematol 2012; 87:782-9. [PMID: 22730036 DOI: 10.1002/ajh.23253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/26/2012] [Indexed: 11/09/2022]
Abstract
In holoendemic Plasmodium falciparum transmission areas, severe malaria primarily occurs in children aged <48 months and manifests as severe malarial anemia [SMA; hemoglobin (Hb) < 6.0 g/dL]. Induction of high levels of prostaglandin-E(2) (PGE(2)) through inducible cyclooxygenase-2 (COX-2) is an important host-defense mechanism against invading pathogens. We have previously shown that COX-2-derived PGE(2) levels are reduced in children residing in hyperendemic transmission regions with cerebral malaria and in those with mixed sequelae of anemia and hyperparasitemia. Our in vitro studies further demonstrated that reduced PGE(2) was due to downregulation of COX-2 gene products following phagocytosis of malarial pigment (hemozoin, PfHz). However, as COX-2-PGE(2) pathways and the impact of naturally acquired PfHz on erythropoietic responses have not been determined in children with SMA, plasma and urinary bicyclo-PGE(2)/creatinine and leukocytic COX-2 transcripts were determined in parasitized children (<36 months) stratified into SMA (n = 36) and non-SMA (Hb ≥ 6.0 g/dL; n = 38). Children with SMA had significantly reduced plasma (P = 0.001) and urinary (P < 0.001) bicyclo-PGE(2)/creatinine and COX-2 transcripts (P = 0.007). There was a significant positive association between Hb and both plasma (r = 0.363, P = 0.002) and urinary (r = 0.500, P = 0.001)] bicyclo-PGE(2)/creatinine. Furthermore, decreased systemic bicyclo-PGE(2)/creatinine was associated with inefficient erythropoiesis (i.e., reticulocyte production index; RPI < 2.0, P = 0.026). Additional analyses demonstrated that plasma (P = 0.031) and urinary (P = 0.070) bicyclo-PGE(2)/creatinine and COX-2 transcripts (P = 0.026) progressively declined with increasing concentrations of naturally acquired PfHz by monocytes. Results presented here support a model in which reduced COX-2-derived PGE(2), driven in part by naturally acquired PfHz by monocytes, promotes decreased erythropoietic responses in children with SMA.
Collapse
Affiliation(s)
- Samuel B Anyona
- Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, University of New Mexico, Kisumu, Kenya
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Jadus MR, Natividad J, Mai A, Ouyang Y, Lambrecht N, Szabo S, Ge L, Hoa N, Dacosta-Iyer MG. Lung cancer: a classic example of tumor escape and progression while providing opportunities for immunological intervention. Clin Dev Immunol 2012; 2012:160724. [PMID: 22899945 PMCID: PMC3414063 DOI: 10.1155/2012/160724] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/29/2012] [Accepted: 04/30/2012] [Indexed: 12/31/2022]
Abstract
Lung cancers remain one of the most common and deadly cancers in the world today (12.5% of newly diagnosed cancers) despite current advances in chemo- and radiation therapies. Often, by the time these tumors are diagnosed, they have already metastasized. These tumors demonstrate the classic hallmarks of cancer in that they have advanced defensive strategies allowing them to escape various standard oncological treatments. Immunotherapy is making inroads towards effectively treating other fatal cancers, such as melanoma, glioblastoma multiforme, and castrate-resistant prostate cancers. This paper will cover the escape mechanisms of bronchogenic lung cancer that must be overcome before they can be successfully treated. We also review the history of immunotherapy directed towards lung cancers.
Collapse
Affiliation(s)
- Martin R Jadus
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Bhola NE, Freilino ML, Joyce SC, Sen M, Thomas SM, Sahu A, Cassell A, Chen CS, Grandis JR. Antitumor mechanisms of targeting the PDK1 pathway in head and neck cancer. Mol Cancer Ther 2012; 11:1236-46. [PMID: 22491800 DOI: 10.1158/1535-7163.mct-11-0936] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
G-protein-coupled receptors (GPCR) activate the epidermal growth factor receptor (EGFR) and mediate EGFR-independent signaling pathways to promote the growth of a variety of cancers, including head and neck squamous cell carcinoma (HNSCC). Identification of the common signaling mechanisms involved in GPCR-induced EGFR-dependent and EGFR-independent processes will facilitate the development of more therapeutic strategies. In this study, we hypothesized that phosphoinositide-dependent kinase 1 (PDK1) contributes to GPCR-EGFR cross-talk and signaling in the absence of EGFR and suggests that inhibition of the PDK1 pathway may be effective in the treatment of HNSCC. The contribution of PDK1 to the EGFR-dependent and EGFR-independent signaling in HNSCC was determined using RNA interference, a kinase-dead mutant, and pharmacologic inhibition. In vivo xenografts studies were also carried out to determine the efficacy of targeting PDK1 alone or in combination with the U.S. Food and Drug Administration-approved EGFR inhibitor cetuximab. PDK1 contributed to both GPCR-induced EGFR activation and cell growth. PDK1 also mediated activation of p70S6K in the absence of EGFR. Blockade of PDK1 with a small molecule inhibitor (AR-12) abrogated HNSCC growth, induced apoptosis, and enhanced the antiproliferative effects of EGFR tyrosine kinase inhibitors in vitro. HNSCC xenografts expressing kinase-dead PDK1 showed increased sensitivity to cetuximab compared with vector-transfected controls. Administration of AR-12 substantially decreased HNSCC tumor growth in vivo. These cumulative results show that PDK1 is a common signaling intermediate in GPCR-EGFR cross-talk and EGFR-independent signaling, and in which targeting the PDK1 pathway may represent a rational therapeutic strategy to enhance clinical responses to EGFR inhibitors in HNSCC.
Collapse
Affiliation(s)
- Neil E Bhola
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Anti-tumour activity of 4-(4-fluorophenyl)amino-5,6,7-trimethoxyquinazoline against tumour cells in vitro. Cell Biol Int 2012; 36:377-82. [PMID: 22073964 DOI: 10.1042/cbi20110312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to create novel, potent and selective anti-cancer agents, the action of 4-(4-fluorophenyl)amino-5,6,7-trimethoxyquinazoline (compound 1018) on 10 different kinds of tumour cells were assayed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide]. It possesses a broad spectrum of anti-cancer activity. The mechanism of action of 4-(4-fluorophenyl)amino-5,6,7-trimethoxyquinazoline (hereafter referred to as compound 1018) against tumour cells was studied in androgen-independent prostate cancer PC-3 cells by microscopic observation, LDH (lactate dehydrogenase) release assay and Western blotting. Its activity was dose-dependent, with an IC50 of 13.0±1.4 μM after 72 h treatment. Microscopy and LDH release assay indicated that the effect was through anti-proliferation rather than cytotoxicity. Western blot analysis also showed that treatment of cells with 50 μM compound 1018 for 30 min almost completely inhibited EGF (epidermal growth factor)-induced phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2), which suggests that its anti-proliferative effect is largely associated due to ERK1/2 activation being inhibited. Thus compound 1018 is a potential anti-cancer agent.
Collapse
|
105
|
The Crosstalk of PTGS2 and EGF Signaling Pathways in Colorectal Cancer. Cancers (Basel) 2011; 3:3894-908. [PMID: 24213116 PMCID: PMC3763401 DOI: 10.3390/cancers3043894] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/07/2011] [Accepted: 10/09/2011] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is now the second-leading cause of cancer deaths in the USA. Colorectal cancer progression and metastasis depends on the orchestration of the aberrant signaling pathways that control tumor cell proliferation, survival and migration/invasion. Epidemiological, clinical, and animal studies have demonstrated that prostaglandin-endoperoxide synthase 2 (PTGS2) and epithelial growth factor (EGF) signaling pathways play key roles in promoting colorectal cancer growth and metastasis. In this review, we highlight major advances in our understanding of the roles of PTGS2 and EGF signaling in colorectal cancer.
Collapse
|
106
|
Heinrich EL, Walser TC, Krysan K, Liclican EL, Grant JL, Rodriguez NL, Dubinett SM. The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis. CANCER MICROENVIRONMENT 2011; 5:5-18. [PMID: 21922183 DOI: 10.1007/s12307-011-0089-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/30/2011] [Indexed: 12/21/2022]
Abstract
The inflammatory tumor microenvironment (TME) has many roles in tumor progression and metastasis, including creation of a hypoxic environment, increased angiogenesis and invasion, changes in expression of microRNAs (miRNAs) and an increase in a stem cell phenotype. Each of these has an impact on epithelial mesenchymal transition (EMT), particularly through the downregulation of E-cadherin. Here we review seminal work and recent findings linking the role of inflammation in the TME, EMT and lung cancer initiation, progression and metastasis. Finally, we discuss the potential of targeting aspects of inflammation and EMT in cancer prevention and treatment.
Collapse
Affiliation(s)
- Eileen L Heinrich
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 37-131 CHS Building, Los Angeles, CA, 90095, USA
| | | | | | | | | | | | | |
Collapse
|
107
|
Involvement of COX-2/PGE(2) Pathway in the Upregulation of MMP-9 Expression in Pancreatic Cancer. Gastroenterol Res Pract 2011; 2011:214269. [PMID: 21760774 PMCID: PMC3132487 DOI: 10.1155/2011/214269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/03/2011] [Indexed: 01/23/2023] Open
Abstract
COX-2 and MMP-9 have been reported to show an overexpression in pancreatic cancer, and thus an attempt to explore the correlation between them has become a target of this study. Besides, PGE(2), a product of COX-2, was also under research as to whether it is involved in the upregulation of MMP-9 expression by COX-2. Expression of COX-2 and MMP-9 mRNA varied in pancreatic adenocarcinomas, and the mRNA level of COX-2 was correlated positively with MMP-9. Both BxPC-3 and Capan-1 cells had strong expression of COX-2 and MMP-9. MMP-9 expression was downregulated significantly in BxPC-3 and Capan-1 cells after treatment with COX-2 inhibitors or COX-2 siRNA plasmids, and upregulated in BxPC-3 significantly by exogenous TNF-α, LPS or PGE(2). The upregulation of MMP-9 by TNF-α or LPS was inhibited by COX-2 inhibitor NS398. There was a significant increase in the migration of BxPC-3 cells with TNF-α, LPS, or PGE(2) treatment; however, the increase caused by TNF-α or LPS was also inhibited remarkably by NS398. Our findings demonstrated that COX-2 upregulates MMP-9 expression in pancreatic cancer, and PGE(2) may be involved in it.
Collapse
|
108
|
Harding P, LaPointe MC. Prostaglandin E2 increases cardiac fibroblast proliferation and increases cyclin D expression via EP1 receptor. Prostaglandins Leukot Essent Fatty Acids 2011; 84:147-52. [PMID: 21342756 PMCID: PMC3071899 DOI: 10.1016/j.plefa.2011.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
PGE(2) affects growth of many cell types. Thus, we hypothesized that PGE(2) would stimulate growth of cardiac fibroblasts. To test our hypothesis we used neonatal rat ventricular fibroblasts (NVF). RT-PCR demonstrated the presence of all 4 PGE(2) receptor (EPs) mRNAs in NVF. Using flow cytometry, we found that PGE(2) decreased the percentage of cells in G0/G1 and increased the number of cells in S phase. PGE(2) also increased expression of cyclin D3, a known regulator of the cell cycle and this effect was mimicked by the EP1/EP3 agonist sulprostone. Next, we found that treatment of NVF with PGE(2) increased phosphorylation of p42/44 MAPK and Akt and that PGE(2)-stimulation of cyclin D3 was antagonized with both a MEK inhibitor and a PI3 kinase inhibitor. In conclusion, PGE(2) stimulates cardiac fibroblast proliferation via EP1 and/or EP3, p42/44 MAPK and Akt-regulation of cyclin D3. These results may be relevant to cardiac fibrosis.
Collapse
Affiliation(s)
- Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA.
| | | |
Collapse
|
109
|
Gomperts BN, Spira A, Massion PP, Walser TC, Wistuba II, Minna JD, Dubinett SM. Evolving concepts in lung carcinogenesis. Semin Respir Crit Care Med 2011; 32:32-43. [PMID: 21500122 DOI: 10.1055/s-0031-1272867] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lung carcinogenesis is a complex, stepwise process that involves the acquisition of genetic mutations and epigenetic changes that alter cellular processes, such as proliferation, differentiation, invasion, and metastasis. Here, we review some of the latest concepts in the pathogenesis of lung cancer and highlight the roles of inflammation, the "field of cancerization," and lung cancer stem cells in the initiation of the disease. Furthermore, we review how high throughput genomics, transcriptomics, epigenomics, and proteomics are advancing the study of lung carcinogenesis. Finally, we reflect on the potential of current in vitro and in vivo models of lung carcinogenesis to advance the field and on the areas of investigation where major breakthroughs will lead to the identification of novel chemoprevention strategies and therapies for lung cancer.
Collapse
Affiliation(s)
- Brigitte N Gomperts
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
OBJECTIVES Targeting the cyclooxygenase-2 (COX-2)/prostanoid pathway is considered an intriguing approach for therapy and prevention of several cancers. However, the molecular mechanisms that underlie the protumorigenic properties of COX-2 in pancreatic cancer (PaCa) are still poorly understood. The purpose of the present study was to characterize the phenotype of COX-2 expressing syngeneic PaCa cells. METHODS Cyclooxygenase-2-negative MIA PaCa-2 cells were stably transduced with COX-2 or control viruses (MP2 and MP2). Prostaglandin E2 (PGE2) production was measured by liquid chromatography and tandem mass spectrometry. Anchorage-dependent and -independent cell growth was analyzed by cell count and 3-dimensional collagen cell culture system, respectively. Changes in apoptotic gene expression were measured by a polymerase chain reaction array. The growth of tumors in vivo was evaluated in a xenograft animal model. RESULTS Stable expression of COX-2 increased anchorage-dependent and -independent cell growth, which was accompanied by elevated PGE2 production. Several significant differences in apoptotic gene expression were detected between MP2 and MP2 cells. Furthermore, MP2 cells grew faster than MP2 cells in a xenograft animal model. CONCLUSIONS Our results will provide the basis for more mechanistic studies on the role of COX-2 in PaCa and may help to develop novel therapeutic strategies aiming at the COX-2/prostanoid pathway.
Collapse
|
111
|
Surh I, Rundhaug J, Pavone A, Mikulec C, Abel E, Fischer SM. Upregulation of the EP1 receptor for prostaglandin E2 promotes skin tumor progression. Mol Carcinog 2011; 50:458-68. [PMID: 21268127 DOI: 10.1002/mc.20730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/08/2010] [Accepted: 11/29/2010] [Indexed: 11/08/2022]
Abstract
Prostaglandin E(2) (PGE(2) ) has been shown to promote the development of murine skin tumors. EP1 is 1 of the 4 PGE(2) G-protein-coupled membrane receptors expressed by murine keratinocytes. EP1 mRNA levels were increased ∼2-fold after topical treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or exposure to ultraviolet (UV) light, as well as increased ∼3- to 12-fold in tumors induced by 7,12-dimethyl-benz[a]anthracene (DMBA) initiation/TPA promotion or by UV exposure. To determine the effect of EP1 levels on tumor development, we generated BK5.EP1 transgenic mice that overexpress EP1 in the basal layer of the epidermis. Skins of these mice were histologically indistinguishable from wild type (WT) mice and had similar levels of proliferation after TPA treatment. Using a DMBA/TPA carcinogenesis protocol, BK5.EP1 mice had a reduced tumor multiplicity compared to WT mice, likely due to the observed down-regulation of protein kinase C (PKC). However, the BK5.EP1 mice had an ∼8-fold higher papilloma to carcinoma conversion rate. When DMBA/anthralin was used, BK5.EP1 mice produced more tumors than WT mice, as well as a ninefold increase in carcinomas, indicating that the tumor response is dependent on the type of tumor promoter agent used. Additionally, although almost undetectable in WT mice, cyclooxygenase-2 (COX-2) was expressed in the untreated epidermis of BK5.EP1 mice. While TPA highly induced COX-2 in WT mice, COX-2 expression in the BK5.EP1 mice did not change after TPA treatment; PGE(2) levels were likewise affected. These data indicate that EP1 is more important in tumor progression than in tumor promotion and that it indirectly regulates COX-2 expression.
Collapse
Affiliation(s)
- Inok Surh
- The University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | | | | | | | |
Collapse
|
112
|
Cyclooxygenase-2 up-regulates vascular endothelial growth factor via a protein kinase C pathway in non-small cell lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:6. [PMID: 21219643 PMCID: PMC3027119 DOI: 10.1186/1756-9966-30-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 01/10/2011] [Indexed: 12/03/2022]
Abstract
Background Vascular endothelial growth factor (VEGF) expression is up-regulated via a cyclooxygenase-2 (COX-2)-dependent mechanism in non-small cell lung cancer (NSCLC), but the specific signaling pathway involved is unclear. Our aim was to investigate the signaling pathway that links COX-2 with VEGF up-regulation in NSCLC. Material and methods COX-2 expression in NSCLC samples was detected immunohistochemically, and its association with VEGF, microvessel density (MVD), and other clinicopathological characteristics was determined. The effect of COX-2 treatment on the proliferation of NSCLC cells (A549, H460 and A431 cell lines) was assessed using the tetrazolium-based MTT method, and VEGF expression in tumor cells was evaluated by flow cytometry. COX-2-induced VEGF expression in tumor cells was monitored after treatment with inhibitors of protein kinase C (PKC), PKA, prostaglandin E2 (PGE2), and an activator of PKC. Results COX-2 over-expression correlated with MVD (P = 0.036) and VEGF expression (P = 0.001) in NSCLC samples, and multivariate analysis demonstrated an association of VEGF with COX-2 expression (P = 0.001). Exogenously applied COX-2 stimulated the growth of NSCLCs, exhibiting EC50 values of 8.95 × 10-3, 11.20 × 10-3, and 11.20 × 10-3 μM in A549, H460, and A431 cells, respectively; COX-2 treatment also enhanced tumor-associated VEGF expression with similar potency. Inhibitors of PKC and PGE2 attenuated COX-2-induced VEGF expression in NLCSCs, whereas a PKC activator exerted a potentiating effect. Conclusion COX-2 may contribute to VEGF expression in NSCLC. PKC and downstream signaling through prostaglandin may be involved in these COX-2 actions.
Collapse
|
113
|
Rizzo MT. Cyclooxygenase-2 in oncogenesis. Clin Chim Acta 2010; 412:671-87. [PMID: 21187081 DOI: 10.1016/j.cca.2010.12.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 02/07/2023]
Abstract
Compelling experimental and clinical evidence supports the notion that cyclooxygenase-2, the inducible isoform of cyclooxygenase, plays a crucial role in oncogenesis. Clinical and epidemiological data indicate that aberrant regulation of cyclooxygenase-2 in certain solid tumors and hematological malignancies is associated with adverse clinical outcome. Moreover, findings extrapolated from experimental studies in cultured tumor cells and animal tumor models indicate that cyclooxygenase-2 critically influences all stages of tumor development from tumor initiation to tumor progression. Cyclooxygenase-2 elicits cell-autonomous effects on tumor cells resulting in stimulation of growth, increased cell survival, enhanced tumor cell invasiveness, stimulation of neovascularization, and tumor evasion from the host immune system. Additionally, the oncogenic effects of cyclooxygenase-2 stem from its unique ability to impact tumor cell surroundings and create a proinflammatory environment conducive for tumor development, growth and progression. The initial enthusiasm generated by the availability of cyclooxygenase-2 selective inhibitors for cancer prevention and therapy has been lessened by the severe cardiovascular adverse side effects associated with their long-term use, as well as by the mixed results of recent clinical trials evaluating the efficacy of cyclooxygenase-2 inhibitors in adjuvant chemotherapy. Therefore, our ability to efficiently target the oncogenic effects of cyclooxygenase-2 for therapeutic and preventive purposes strictly depends on a better understanding of the spatial and temporal aspects of its activation in tumor cells along with a clearer elucidation of the signaling networks whereby cyclooxygenase-2 affects tumor cells and their interactions with the tumor microenvironment. This knowledge has the potential of leading to the identification of novel cyclooxygenase-2-dependent molecular and signaling networks that can be exploited to improve cancer prevention and therapy.
Collapse
Affiliation(s)
- Maria Teresa Rizzo
- Signal Transduction Laboratory, Methodist Research Institute, Clarian Health and Department of Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
114
|
NFAT and CREB regulate Kaposi's sarcoma-associated herpesvirus-induced cyclooxygenase 2 (COX-2). J Virol 2010; 84:12733-53. [PMID: 20943963 DOI: 10.1128/jvi.01065-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
COX-2 has been implicated in Kaposi's sarcoma-associated herpesvirus (KSHV) latency and pathogenesis (A. George Paul, N. Sharma-Walia, N. Kerur, C. White, and B. Chandran, Cancer Res. 70:3697-3708, 2010; P. P. Naranatt, H. H. Krishnan, S. R. Svojanovsky, C. Bloomer, S. Mathur, and B. Chandran, Cancer Res. 64:72-84, 2004; N. Sharma-Walia, A. G. Paul, V. Bottero, S. Sadagopan, M. V. Veettil, N. Kerur, and B. Chandran, PLoS Pathog. 6:e1000777, 2010; N. Sharma-Walia, H. Raghu, S. Sadagopan, R. Sivakumar, M. V. Veettil, P. P. Naranatt, M. M. Smith, and B. Chandran, J. Virol. 80:6534-6552, 2006). However, the precise regulatory mechanisms involved in COX-2 induction during KSHV infection have never been explored. Here, we identified cis-acting elements involved in the transcriptional regulation of COX-2 upon KSHV de novo infection. Promoter analysis using human COX-2 promoter deletion and mutation reporter constructs revealed that nuclear factor of activated T cells (NFAT) and the cyclic AMP (cAMP) response element (CRE) modulate KSHV-mediated transcriptional regulation of COX-2. Along with multiple KSHV-induced signaling pathways, infection-induced prostaglandin E(2) (PGE(2)) also augmented COX-2 transcription. Infection of endothelial cells markedly induced COX-2 expression via a cyclosporine A-sensitive, calcineurin/NFAT-dependent pathway. KSHV infection increased intracellular cAMP levels and activated protein kinase A (PKA), which phosphorylated the CRE-binding protein (CREB) at serine 133, which probably led to interaction with CRE in the COX-2 promoter, thereby enhancing COX-2 transcription. PKA selective inhibitor H-89 pretreatment strongly inhibited CREB serine 133, indicating the involvement of a cAMP-PKA-CREB-CRE loop in COX-2 transcriptional regulation. In contrast to phosphatidylinositol 3-kinase and protein kinase C, inhibition of FAK and Src effectively reduced KSHV infection-induced COX-2 transcription and protein levels. Collectively, our study indicates that mediation of COX-2 transcription upon KSHV infection is a paradigm of a complex regulatory milieu involving the interplay of multiple signal cascades and transcription factors. Intervention at each step of COX-2/PGE(2) induction can be used as a potential therapeutic target to treat KSHV-associated neoplasm and control inflammatory sequels of KSHV infection.
Collapse
|
115
|
Reckamp K, Gitlitz B, Chen LC, Patel R, Milne G, Syto M, Jezior D, Zaknoen S. Biomarker-based phase I dose-escalation, pharmacokinetic, and pharmacodynamic study of oral apricoxib in combination with erlotinib in advanced nonsmall cell lung cancer. Cancer 2010; 117:809-18. [PMID: 20922800 DOI: 10.1002/cncr.25473] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 01/17/2023]
Abstract
BACKGROUND Apricoxib, a novel once-daily selective cyclooxygenase-2 inhibitor, was investigated in combination with erlotinib for recurrent stage IIIB/IV nonsmall cell lung cancer to determine the maximum tolerated dose, dose-limiting toxicity, and recommended phase II dose (RP2D) based on changes in urinary prostaglandin E₂ metabolite (PGE-M). METHODS Patients received escalating doses of apricoxib (100, 200, and 400 mg/day) in combination with erlotinib 150 mg/day until disease progression or unacceptable toxicity. Urinary PGE-M was used to assess biologic activity and inform the optimal biologic dose. RESULTS Twenty patients were treated (3 at 100 mg; 3 at 200 mg; 14 at 400 mg apricoxib) with a median of 4 cycles (range, 2-14 cycles); 8 patients (40%) received prior EGFR-directed therapies. No dose-limiting toxicity was observed. Study drug-related adverse events (AEs) included diarrhea, rash, dry skin, anemia, fatigue, and increased serum creatinine; 4 patients had grade ≥ 3 drug-related AEs (diarrhea, perforated duodenal ulcer, hypophosphatemia, and deep vein thrombosis). The RP2D was 400 mg/day based on safety, biologic activity based on decreases in urinary PGE-M, and pharmacokinetics. One patient had a partial response, and 11 had stable disease. Stable disease was observed in patients who had received prior EGFR inhibitor therapy but was greater in patients not previously treated with an EGFR inhibitor. Seventeen patients had elevated urinary PGE-M at baseline, and 14 (70%) had a decrease from baseline, which was associated with disease control. CONCLUSIONS Apricoxib plus erlotinib was well tolerated and yielded a 60% disease control rate. A phase II trial is currently investigating 400 mg/day apricoxib plus 150 mg/day erlotinib in patients selected based on change in urinary PGE-M.
Collapse
Affiliation(s)
- Karen Reckamp
- City of Hope Comprehensive Cancer Center, Duarte, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thorac Oncol 2010; 5:585-90. [PMID: 20234320 DOI: 10.1097/jto.0b013e3181d60fd7] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) is constitutively overexpressed in a variety of epithelial malignancies and is usually associated with a poor prognosis. COX-2-derived prostaglandin E2 transforms CD4+CD25+ T regulatory (Treg) cells (Tregs), and Tregs are thought to moderate the antitumor immune response. Herein, we investigated the prognostic value of tumor-infiltrating Treg cells and their correlation with COX-2 expression in resected non-small cell lung cancer (NSCLC). MATERIAL AND METHODS Intratumoral COX-2 and Treg expression were retrospectively assessed using immunohistochemistry in paraffin-embedded samples from 100 patients who had undergone complete resections for NSCLC. The expressions of COX-2 and Foxp3, which was most specific Treg cell marker, were compared with the clinicopathological variables, and the correlation between Foxp3+ Tregs and COX-2 expression was analyzed. RESULTS The recurrence-free survival (RFS) of patients with elevated COX-2 expression was significantly worse than that of patients without COX-2 expression. Tumor-infiltrating Foxp3-positive lymphocytes were positively correlated with COX-2 expression. The median count for Foxp3-positive lymphocytes was 3 (minimum-maximum, 0-24) in 10 high-power fields. The RFS of patients with tumors containing >or=3 Foxp3-positive cells (Foxp3 expression group) was significantly worse than that of patients with tumors containing <3 Foxp3-positive cells. In a multivariate analysis, only nodal status was an independent predictor of a significantly shorter RFS. However, in node-negative NSCLC, Foxp3 expression was an independent predictor of a significantly shorter RFS. CONCLUSIONS Tumor-infiltrating Foxp3+ Tregs were positively correlated with intratumoral COX-2 expression and were associated with a worse RFS, especially among patients with node-negative NSCLC.
Collapse
|
117
|
Hernandez Y, Sotolongo J, Breglio K, Conduah D, Chen A, Xu R, Hsu D, Ungaro R, Hayes LA, Pastorini C, Abreu MT, Fukata M. The role of prostaglandin E2 (PGE 2) in toll-like receptor 4 (TLR4)-mediated colitis-associated neoplasia. BMC Gastroenterol 2010; 10:82. [PMID: 20637112 PMCID: PMC2912804 DOI: 10.1186/1471-230x-10-82] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 07/16/2010] [Indexed: 01/29/2023] Open
Abstract
Background We have previously found that TLR4-deficient (TLR4-/-) mice demonstrate decreased expression of mucosal PGE 2 and are protected against colitis-associated neoplasia. However, it is still unclear whether PGE 2 is the central factor downstream of TLR4 signaling that promotes intestinal tumorigenesis. To further elucidate critical downstream pathways involving TLR4-mediated intestinal tumorigenesis, we examined the effects of exogenously administered PGE 2 in TLR4-/- mice to see if PGE 2 bypasses the protection from colitis-associated tumorigenesis. Method Mouse colitis-associated neoplasia was induced by azoxymethane (AOM) injection followed by two cycles of dextran sodium sulfate (DSS) treatment. Two different doses of PGE 2 (high dose group, 200 μg, n = 8; and low dose group, 100 μg, n = 6) were administered daily during recovery period of colitis by gavage feeding. Another group was given PGE 2 during DSS treatment (200 μg, n = 5). Inflammation and dysplasia were assessed histologically. Mucosal Cox-2 and amphiregulin (AR) expression, prostanoid synthesis, and EGFR activation were analyzed. Results In control mice treated with PBS, the average number of tumors was greater in WT mice (n = 13) than in TLR4-/- mice (n = 7). High dose but not low dose PGE 2 treatment caused an increase in epithelial proliferation. 28.6% of PBS-treated TLR4-/- mice developed dysplasia (tumors/animal: 0.4 ± 0.2). By contrast, 75.0% (tumors/animal: 1.5 ± 1.2, P < 0.05) of the high dose group and 33.3% (tumors/animal: 0.3 ± 0.5) of the low dose group developed dysplasia in TLR4-/- mice. Tumor size was also increased by high dose PGE 2 treatment. Endogenous prostanoid synthesis was differentially affected by PGE 2 treatment during acute and recovery phases of colitis. Exogenous administration of PGE 2 increased colitis-associated tumorigenesis but this only occurred during the recovery phase. Lastly, PGE 2 treatment increased mucosal expression of AR and Cox-2, thus inducing EGFR activation and forming a positive feedback mechanism to amplify mucosal Cox-2. Conclusions These results highlight the importance of PGE 2 as a central downstream molecule involving TLR4-mediated intestinal tumorigenesis.
Collapse
Affiliation(s)
- Yasmin Hernandez
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Wei J, Yan W, Li X, Ding Y, Tai HH. Thromboxane receptor α mediates tumor growth and angiogenesis via induction of vascular endothelial growth factor expression in human lung cancer cells. Lung Cancer 2010; 69:26-32. [DOI: 10.1016/j.lungcan.2009.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/09/2009] [Accepted: 09/20/2009] [Indexed: 11/16/2022]
|
119
|
Moody TW, Switzer C, Santana-Flores W, Ridnour LA, Berna M, Thill M, Jensen RT, Sparatore A, Del Soldato P, Yeh GC, Roberts DD, Giaccone G, Wink DA. Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells. Lung Cancer 2010; 68:154-60. [PMID: 19628293 PMCID: PMC3835159 DOI: 10.1016/j.lungcan.2009.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/10/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
Abstract
The effects of dithiolethione modified valproate, diclofenac and sulindac on non-small cell lung cancer (NSCLC) cells were investigated. Sulfur(S)-valproate and S-diclofenac at 1 microg/ml concentrations significantly reduced prostaglandin (PG)E(2) levels in NSCLC cell lines A549 and NCI-H1299 as did the COX-2 inhibitor DuP-697. In vitro, S-valproate, S-diclofenac and S-sulindac half-maximally inhibited the clonal growth of NCI-H1299 cells at 6, 6 and 15 microg/ml, respectively. Using the MTT assay, 10 microg/ml S-valproate, NO-aspirin and Cay10404, a selective COX-2 inhibitor, but not SC-560, a selective COX-1 inhibitor, inhibited the growth of A549 cells. In vivo, 18mg/kg i.p. of S-valproate and S-diclofenac, but not S-sulindac, significantly inhibited A549 or NCI-H1299 xenograft proliferation in nude mice, but had no effect on the nude mouse body weight. The mechanism by which S-valproate and S-diclofenac inhibited the growth of NSCLC cells was investigated. Nitric oxide-aspirin but not S-valproate caused apoptosis of NSCLC cells. By Western blot, S-valproate and S-diclofenac increased E-cadherin but reduced vimentin and ZEB1 (a transcriptional suppressor of E-cadherin) protein expression in NSCLC cells. Because S-valproate and S-diclofenac inhibit the growth of NSCLC cells and reduce PGE(2) levels, they may prove beneficial in the chemoprevention and/or therapy of NSCLC.
Collapse
Affiliation(s)
- Terry W Moody
- National Cancer Institute, Office of the Director, Center for Cancer Research, Bethesda, MD 20892-1500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Lett 2010; 295:7-16. [PMID: 20381235 DOI: 10.1016/j.canlet.2010.03.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 12/20/2022]
Abstract
The use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with lower risks for esophageal, gastric and colon cancers as well as other solid tumors. The antitumor effect of NSAIDs is mediated through cyclooxygenase-2 (COX-2)-dependent and -independent regulation of oncogenic and tumor-suppressive pathways. Recent discoveries have shed new light on the regulation of COX-2 at the molecular level in these cancers. Moreover, prostaglandin E(2) (PGE(2)), a COX-2-derived eicosanoid, has been found to affect numerous tumorigenic processes. In this connection, PGE(2) activates multiple intracellular signaling pathways, including (1) transactivation of epidermal growth factor receptor (EGFR); (2) protein kinase C-dependent, EGFR-independent activation of extracellular signal-regulated kinase (ERK) and the transcription factors activator protein-1 and c-Myc; (3) G-protein-mediated activation of beta-catenin/TCF-dependent transcription. Activation of these signaling pathways by PGE(2) is mediated by EP receptors whose inhibitors suppress gastrointestinal carcinogenesis. Taken together, COX-2 expression is dysregulated in many types of cancer and COX-2-derived PGE(2) elicits multiple oncogenic signals to promote carcinogenesis. Targeting PGE(2) signaling by EP receptor antagonists holds promise for the development of targeted therapy for the treatment of cancer.
Collapse
|
121
|
Kim JI, Lakshmikanthan V, Frilot N, Daaka Y. Prostaglandin E2 promotes lung cancer cell migration via EP4-betaArrestin1-c-Src signalsome. Mol Cancer Res 2010; 8:569-77. [PMID: 20353998 DOI: 10.1158/1541-7786.mcr-09-0511] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many human cancers express elevated levels of cyclooxygenase-2 (COX-2), an enzyme responsible for the biosynthesis of prostaglandins. Available clinical data establish the protective effect of COX-2 inhibition on human cancer progression. However, despite these encouraging outcomes, the appearance of unwanted side effects remains a major hurdle for the general application of COX-2 inhibitors as effective cancer drugs. Hence, a better understanding of the molecular signals downstream of COX-2 is needed for the elucidation of drug targets that may improve cancer therapy. Here, we show that the COX-2 product prostaglandin E(2) (PGE(2)) acts on cognate receptor EP4 to promote the migration of A549 lung cancer cells. Treatment with PGE(2) enhances tyrosine kinase c-Src activation, and blockade of c-Src activity represses the PGE(2)-mediated lung cancer cell migration. PGE(2) affects target cells by activating four receptors named EP1 to EP4. Use of EP subtype-selective ligand agonists suggested that EP4 mediates prostaglandin-induced A549 lung cancer cell migration, and this conclusion was confirmed using a short hairpin RNA approach to specifically knock down EP4 expression. Proximal EP4 effectors include heterotrimeric Gs and betaArrestin proteins. Knockdown of betaArrestin1 expression with shRNA significantly impaired the PGE(2)-induced c-Src activation and cell migration. Together, these results support the idea that increased expression of the COX-2 product PGE(2) in the lung tumor microenvironment may initiate a mitogenic signaling cascade composed of EP4, betaArrestin1, and c-Src which mediates cancer cell migration. Selective targeting of EP4 with a ligand antagonist may provide an efficient approach to better manage patients with advanced lung cancer.
Collapse
Affiliation(s)
- Jae Il Kim
- Department of Pathology, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | |
Collapse
|
122
|
Abstract
Urothelial cell carcinoma is the fifth most common cancer and the costliest to treat. This is largely because of all new cases, about 70% present as superficial disease and this while rarely fatal, tends to recur, requiring long-term follow-up and repeat interventions. The standard of care, intravesical chemo- and immunotherapy, while effective, is associated with a considerable side-effect profile and approximately 30% of patients either fail to respond to treatment or suffer recurrent disease within 5 years. Muscle-invasive bladder cancer is life threatening, showing modest chemosensitivity, and usually requires radical cystectomy. Although bladder cancer is fairly well-genetically characterized, clinical trials with molecularly targeted agents have, in comparison to other solid tumors such as lung, breast and prostate, been few in number and largely unsuccessful, with no new agents being registered in the last 20 years. Hence, bladder cancer represents a considerable opportunity and challenge for molecularly targeted therapy.
Collapse
|
123
|
NF-kappaB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts. Br J Nutr 2010; 104:503-12. [PMID: 20338073 DOI: 10.1017/s0007114510000826] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous studies have reported the anti-inflammatory properties of pomegranate extracts, suggesting that ellagitannins (ET) and ellagic acid (EA) are the main anti-inflammatory compounds. However, both ET and EA are metabolised in vivo by the gut microbiota to yield urolithins (Uro) which can be found in the gut and in systemic bloodstream. The present study was carried out to evaluate the individual effect of EA and their microbiota-derived metabolites Uro on colon fibroblasts upon IL-1beta treatment as an in vitro inflammation model. Uro-A and Uro-B (10 microm) inhibited PGE2 production (85 and 40 %, respectively) after IL-1beta stimulation, whereas EA did not show any effect. Uro-A, but not Uro-B, down-regulated cyclo-oxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) mRNA expression and protein levels. Both Uro inhibited NF-kappaB translocation to nucleus. Slight but significant effects were found in the activation of mitogen-activated protein kinase (MAPK) pathways. Uro-A lowered c-Jun N-terminal kinase phosphorylation state, and both Uro inhibited p38 activation. No metabolites derived from Uro or EA were found in the cell media upon incubation of EA or Uro with the cells, and only traces of the compounds were found inside the cells. The present results suggest that Uro, mainly Uro-A, are the main compounds that are responsible for the pomegranate anti-inflammatory properties. The mechanism of action implicated seems to be via the inhibition of activation of NF-kappaB and MAPK, down-regulation of COX-2 and mPGES-1 expressions, and consequently,via the reduction of PGE2 production. Taking into account that Uro did not enter the cells, a competitive binding for IL-1beta membrane receptor cannot be discarded.
Collapse
|
124
|
Abstract
Eicosanoids, including prostaglandins and leukotrienes, are biologically active lipids that have been implicated in various pathological processes, such as inflammation and cancer. This Review highlights our understanding of the intricate roles of eicosanoids in epithelial-derived tumours and their microenvironment. The knowledge of how these lipids orchestrate the complex interactions between transformed epithelial cells and the surrounding stromal cells is crucial for understanding tumour evolution, progression and metastasis. Understanding the molecular mechanisms underlying the role of prostaglandins and other eicosanoids in cancer progression will help to develop more effective cancer chemopreventive and/or therapeutic agents.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | |
Collapse
|
125
|
Sharma-Walia N, Paul AG, Bottero V, Sadagopan S, Veettil MV, Kerur N, Chandran B. Kaposi's sarcoma associated herpes virus (KSHV) induced COX-2: a key factor in latency, inflammation, angiogenesis, cell survival and invasion. PLoS Pathog 2010; 6:e1000777. [PMID: 20169190 PMCID: PMC2820536 DOI: 10.1371/journal.ppat.1000777] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 01/19/2010] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma (KS), an enigmatic endothelial cell vascular neoplasm, is characterized by the proliferation of spindle shaped endothelial cells, inflammatory cytokines (ICs), growth factors (GFs) and angiogenic factors. KSHV is etiologically linked to KS and expresses its latent genes in KS lesion endothelial cells. Primary infection of human micro vascular endothelial cells (HMVEC-d) results in the establishment of latent infection and reprogramming of host genes, and cyclooxygenase-2 (COX-2) is one of the highly up-regulated genes. Our previous study suggested a role for COX-2 in the establishment and maintenance of KSHV latency. Here, we examined the role of COX-2 in the induction of ICs, GFs, angiogenesis and invasive events occurring during KSHV de novo infection of endothelial cells. A significant amount of COX-2 was detected in KS tissue sections. Telomerase-immortalized human umbilical vein endothelial cells supporting KSHV stable latency (TIVE-LTC) expressed elevated levels of functional COX-2 and microsomal PGE2 synthase (m-PGES), and secreted the predominant eicosanoid inflammatory metabolite PGE2. Infected HMVEC-d and TIVE-LTC cells secreted a variety of ICs, GFs, angiogenic factors and matrix metalloproteinases (MMPs), which were significantly abrogated by COX-2 inhibition either by chemical inhibitors or by siRNA. The ability of these factors to induce tube formation of uninfected endothelial cells was also inhibited. PGE2, secreted early during KSHV infection, profoundly increased the adhesion of uninfected endothelial cells to fibronectin by activating the small G protein Rac1. COX-2 inhibition considerably reduced KSHV latent ORF73 gene expression and survival of TIVE-LTC cells. Collectively, these studies underscore the pivotal role of KSHV induced COX-2/PGE2 in creating KS lesion like microenvironment during de novo infection. Since COX-2 plays multiple roles in KSHV latent gene expression, which themselves are powerful mediators of cytokine induction, anti-apoptosis, cell survival and viral genome maintainence, effective inhibition of COX-2 via well-characterized clinically approved COX-2 inhibitors could potentially be used in treatment to control latent KSHV infection and ameliorate KS. Kaposi's sarcoma associated herpes virus (KSHV), with a 160 kb DNA genome, has evolved with two distinct life cycle phases, namely latency and lytic replication. KS, a complex angioproliferative disease, is regulated by a balance between pro-angiogenic and anti-angiogenic factors. In our previous study, we showed that KSHV modulates host factors COX-2/PGE2 for its own advantage to promote its latent (persistent) infection. The premise that COX-2 is involved in growth and progression of several types of solid cancers and inflammation associated diseases has been well documented but has never been studied in KS. Here, utilizing COX-2 inhibition strategies, including chemical inhibition and a gene silencing approach, we systematically identified the potential role of KSHV induced COX-2/PGE2 in viral pathogenesis related events such as secretion of inflammatory and angiogenic cytokines, MMPs and cell adhesion in de novo infected or latently infected endothelial cells. We report that COX-2/PGE2 inhibition down-regulates viral latent gene expression and survival of latently infected endothelial cells. The data emanating from our in vitro studies is valuable, informative and requires further examination using an in vitro angiogenic model and in vivo nude mice model to further validate COX-2 as a novel therapeutic to target latent infection and the associated diseases like KS.
Collapse
Affiliation(s)
- Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America.
| | | | | | | | | | | | | |
Collapse
|
126
|
Sharma SD, Meeran SM, Katiyar SK. Proanthocyanidins Inhibit In vitro and In vivo Growth of Human Non–Small Cell Lung Cancer Cells by Inhibiting the Prostaglandin E2 and Prostaglandin E2 Receptors. Mol Cancer Ther 2010; 9:569-80. [DOI: 10.1158/1535-7163.mct-09-0638] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
127
|
Walser TC, Yanagawa J, Garon E, Lee JM, Dubinett SM. Tumor Microenvironment. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
128
|
Prostaglandin E2promotes cell proliferationviaprotein kinase C/extracellular signal regulated kinase pathway-dependent induction of c-Myc expression in human esophageal squamous cell carcinoma cells. Int J Cancer 2009; 125:2540-6. [DOI: 10.1002/ijc.24607] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
129
|
Limsukon A, Susanto I, Soo Hoo GW, Dubinett SM, Batra RK. Regression of recurrent respiratory papillomatosis with celecoxib and erlotinib combination therapy. Chest 2009; 136:924-926. [PMID: 19736197 DOI: 10.1378/chest.08-2639] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Recurrent respiratory papillomatosis (RRP) can be difficult to manage. Symptoms are related to recurrent tracheobronchial papillomas and are usually treated with bronchoscopic removal. Other modalities are added when the papilloma burden becomes too great or recurrence is too frequent, but with limited efficacy. We report a patient with progressive RRP that had become refractory to available therapy. Because papillomas overexpress epidermal growth factor receptor, along with increased expression of cyclooxygenase-2 and prostaglandin E2, it was reasoned that a combination therapy of erlotinib and celecoxib would be effective in controlling papilloma growth. After institutional approval and informed patient consent, this combination was initiated. There was a striking improvement in the number and appearance of respiratory tract papillomas, with elimination of the need for repeated papilloma removal. Pretreatment and posttreatment images document this response, and the improvement has now been maintained for nearly 2 years with effective therapy.
Collapse
Affiliation(s)
- Atikun Limsukon
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA; Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Irawan Susanto
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Guy W Soo Hoo
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA; Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Raj K Batra
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA.
| |
Collapse
|
130
|
Gray SG, Al-Sarraf N, Baird AM, Cathcart MC, McGovern E, O'Byrne KJ. Regulation of EP receptors in non-small cell lung cancer by epigenetic modifications. Eur J Cancer 2009; 45:3087-97. [PMID: 19818596 DOI: 10.1016/j.ejca.2009.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/29/2009] [Accepted: 09/04/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cyclooxygenase (COX)-2 is frequently overexpressed in non-small cell lung cancer (NSCLC) and results in increased levels of prostaglandin E2 (PGE(2)), an important signalling molecule implicated in tumourigenesis. PGE(2) exerts its effects through the E prostanoid (EP) receptors (EPs1-4). METHODS The expression and epigenetic regulation of the EPs were evaluated in a series of resected fresh frozen NSCLC tumours and cell lines. RESULTS EP expression was dysregulated in NSCLC being up and downregulated compared to matched control samples. For EPs1, 3 and 4 no discernible pattern emerged. EP2 mRNA however was frequently downregulated, with low levels being observed in 13/20 samples as compared to upregulation in 5/20 samples examined. In NSCLC cell lines DNA CpG methylation was found to be important for the regulation of EP3 expression, the demethylating agent decitabine upregulating expression. Histone acetylation was also found to be a critical regulator of EP expression, with the histone deacteylase inhibitors trichostatin A, phenylbutyrate and suberoylanilide hydroxamic acid inducing increased expression of EPs2-4. Direct chromatin remodelling was demonstrated at the promoters for EPs2-4. CONCLUSIONS These results indicate that EP expression is variably altered from tumour to tumour in NSCLC. EP2 expression appears to be predominantly downregulated and may have an important role in the pathogenesis of the disease. Epigenetic regulation of the EPs may be central to the precise role COX-2 may play in the evolution of individual tumours.
Collapse
Affiliation(s)
- Steven G Gray
- Dept. of Clinical Medicine, Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland
| | | | | | | | | | | |
Collapse
|
131
|
Kim YM, Park SY, Pyo H. Cyclooxygenase-2 (COX-2) negatively regulates expression of epidermal growth factor receptor and causes resistance to gefitinib in COX-2-overexpressing cancer cells. Mol Cancer Res 2009; 7:1367-77. [PMID: 19671676 DOI: 10.1158/1541-7786.mcr-09-0004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Overexpression of cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) has been detected in many types of cancer. Although COX-2 and EGFR are closely related to each other, the exact mechanism of COX-2 in tumors has not been well understood. In this study, we investigated the relationship between COX-2 and EGFR in cancer cells. Using two cell lines stably overexpressing COX-2 (HCT-116-COX-2 and H460-COX-2) and a stable line of COX-2 knockdown MOR-P cells, we analyzed patterns of COX-2 and EGFR expression. To observe the effects of COX-2 on EGFR expression and activity, we did comparative analyses after treatment with various drugs (EGF, celecoxib, prostaglandin E(2), gefitinib, Ro-31-8425, PD98059, and SP600125) in HCT-116-Mock versus HCT-116-COX-2 cells and H460-Mock versus H460-COX-2 cells. Overexpression of COX-2 specifically down-regulated EGFR expression at the level of transcription. COX-2-overexpressing cells have a decreased sensitivity to gefitinib. COX-2 induced activation of extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) but suppressed Akt activation. JNK inhibition by SP600125, a specific JNK inhibitor, resulted in restoration of EGFR levels in COX-2-overexpressing cells, whereas ERK inhibition by PD98059 did not. Overexpressed COX-2 negatively regulates EGFR expression via JNK activation, leading to gefitinib resistance. COX-2 may also regulate ERK activity independently of EGFR. Therefore, resistance of COX-2-overexpressing cells to gefitinib may be due to decreased expression of EGFR by JNK activation and EGFR-independent elevation of ERK activity by COX-2. The ability of COX-2 to inhibit EGFR expression and gefitinib effects may have significance in clinical cancer therapy.
Collapse
Affiliation(s)
- Young Mee Kim
- Research Institute and Hospital, National Cancer Center, 809 Madu-1-dong, Ilsan-donggu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea
| | | | | |
Collapse
|
132
|
Baglole CJ, Ray DM, Bernstein SH, Feldon SE, Smith TJ, Sime PJ, Phipps RP. More Than Structural Cells, Fibroblasts Create and Orchestrate the Tumor Microenvironment. Immunol Invest 2009; 35:297-325. [PMID: 16916756 DOI: 10.1080/08820130600754960] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The tumor microenvironment comprises many cell types including infiltrating immune cells such as lymphocytes, endothelial cells and a complex stroma consisting mainly of fibroblasts. Fibroblasts are heterogeneous and consist of Thy-1+ and Thy-1- subsets that define different biosynthetic and differentiation potential. They produce mediators linked to carcinogenesis and metastasis, including Cox-2 and PGE2, both of which are also increased in most cancers. This review will highlight the emerging role of the complex fibroblastic stroma in establishing a microenvironment supporting malignant transformation, tumor growth and attenuation of host anti-tumor immune responses.
Collapse
Affiliation(s)
- Carolyn J Baglole
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, and Lymphoma Biology Program, James P. Wilmot Cancer Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Kim YM, Lee EJ, Park SY, Cho KH, Kim JY, Pyo H. Cyclooxygenase-2 up-regulates ataxia telangiectasia and Rad3 related through extracellular signal-regulated kinase activation. Mol Cancer Res 2009; 7:1158-68. [PMID: 19584262 DOI: 10.1158/1541-7786.mcr-08-0493] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclooxygenase-2 (COX-2) overexpression caused prolonged G2 arrest after exposure to ionizing radiation (IR) in our previous study. We were therefore interested in investigating the function of COX-2 in the G2 checkpoint pathway. Interestingly, we found that cells in which COX-2 is overexpressed showed up-regulated ataxia telangiectasia and Rad3 related (ATR) expression compared with control cells. In this study, we investigated the mechanism of ATR up-regulation by COX-2 and tested our hypothesis that COX-2-induced extracellular signal-regulated kinase (ERK) activation mediates up-regulation of ATR by COX-2. To investigate the relationship between COX-2 and ATR, we used two stable COX-2-overexpressing cancer cell lines (HCT116-COX-2 and H460-COX-2), a COX-2 knockdown A549 lung cancer cell line (AS), and an ATR knockdown HCT116 cell line. Cells were treated with various drugs [celecoxib, prostaglandin E2 (PGE2), PD98059, U0126, and hydroxyurea] and were then analyzed using reverse transcription-PCR, confocal microscopy, Western blotting, and clonogenic assay. COX-2-overexpressing cells were shown to have increased ERK phosphorylation and ATR expression compared with control cells, whereas AS cells were shown to have decreased levels of phospho-ERK and ATR. In addition, exogenously administered PGE2 increased ERK phosphorylation. Inhibition of ERK phosphorylation decreased ATR expression in both HCT116-COX-2 and A549 cells. HCT116-COX-2 cells were resistant to IR or hydroxyurea compared with HCT116-Mock cells, whereas administration of ATR shRNA showed the opposite effect. COX-2 stimulates ERK phosphorylation via PGE2. This COX-2-induced ERK activation seems to increase ATR expression and activity in endogenous COX-2-overexpressing cancer cells as well as in COX-2-overexpressing stable cell lines.
Collapse
Affiliation(s)
- Young Mee Kim
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | | | | | | | | | | |
Collapse
|
134
|
Li X, Tai HH. Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis 2009; 30:1606-13. [PMID: 19570744 DOI: 10.1093/carcin/bgp161] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies implicate that activation of thromboxane A(2) receptor (TP) induced cell proliferation and transformation in several cell lines. We report here that the activation of TP by its agonist, [1S-[1alpha, 2alpha (Z), 3beta (1E, 3S*), 4alpha]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo [2.2.1] hept-2-yl]-5-heptenoic acid (I-BOP), induced Nurr1 expression and stimulated proliferation of human lung cancer cells. Nurr1, an orphan nuclear receptor in the nuclear receptor subfamily 4A subfamily, has been implicated in cell proliferation, differentiation and apoptosis. I-BOP markedly induced Nurr1 messenger RNA and protein levels as compared with other subfamily members, Nur77 and Nor-1. The signaling pathways of I-BOP-induced Nurr1 expression were examined by using various inhibitors of signaling molecules. The induction of Nurr1 expression by I-BOP appeared to be mediated through protein kinase A (PKA)/cAMP response element binding (CREB), protein kinase C and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways and not related to epidermal growth factor receptor and prostaglandin E(2) pathways. Transcriptional activation of Nurr1 gene by I-BOP was further investigated at the promoter level in H157 cells. 5'-Deletion analysis, site-directed mutagenesis and luciferase reporter assay demonstrated that Nurr1 expression was induced by I-BOP in a PKA/CREB-dependent manner. Further studies have revealed that Nurr1 may mediate cyclin D1 expression and I-BOP-induced cell proliferation in H157 cells since small interfering RNA of Nurr1 blocked I-BOP-induced cyclin D1 expression and cell proliferation and also decreased cell growth rate. These results provide strong evidence that Nurr1 plays a significant role in cell proliferation and may mediate TP agonist-induced proliferation in lung cancer cells.
Collapse
Affiliation(s)
- Xiuling Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | | |
Collapse
|
135
|
Agarwal S, Achari C, Praveen D, Roy KR, Reddy GV, Reddanna P. Inhibition of 12-LOX and COX-2 reduces the proliferation of human epidermoid carcinoma cells (A431) by modulating the ERK and PI3K-Akt signalling pathways. Exp Dermatol 2009; 18:939-46. [PMID: 19558494 DOI: 10.1111/j.1600-0625.2009.00874.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eicosanoids, the oxygenated metabolites of arachidonic acid (AA), mediate a variety of human diseases, such as cancer, inflammation and arthritis. To evaluate the role of eicosanoids in epidermoid carcinoma, the expression of AA metabolizing enzymes, such as lipoxygenases (LOXs) and cyclooxygenases (COXs), was analysed in a human epidermoid carcinoma cell line (A431). These studies revealed overexpression of 12-R-LOX and COX-2 in A431 cells. Baicalein (a 12-LOX inhibitor) and celecoxib (a COX-2 inhibitor) significantly reduced thymidine incorporation, whereas 12-(R)-HETE and 12-(S)-HETE (12-LOX metabolites) and PGE(2) (COX-2 metabolite) significantly enhanced thymidine incorporation, suggesting a role for these enzymes in the regulation of A431 cell proliferation. Further studies on the mechanism of cell death by baicalein and celecoxib revealed that the induction of apoptosis in A431 cells was associated with reduction in the Bcl-2/Bax ratio, release of cytochrome c, activation of caspase-3 and PARP cleavage. The apoptosis induced by baicalein and celecoxib was mediated by down regulation of ERK and PI3K-Akt pathways. Further, 12-(R)-HETE, 12-(S)-HETE and PGE(2) upregulated the p-ERK and p-Akt levels, suggesting the involvement of ERK and Akt pathways in the 12-LOX- and COX-2-mediated regulation of growth in A431 cells. Our findings suggest that 12-R-LOX and COX-2 play a critical role in the regulation of growth in epidermoid carcinoma and that their inhibitors may be of potential therapeutic importance.
Collapse
Affiliation(s)
- Smita Agarwal
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
136
|
Choi EM, Kim SR, Lee EJ, Han JA. Cyclooxygenase-2 functionally inactivates p53 through a physical interaction with p53. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1354-65. [PMID: 19465063 DOI: 10.1016/j.bbamcr.2009.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 05/01/2009] [Accepted: 05/18/2009] [Indexed: 01/05/2023]
Abstract
Cyclooxygenase-2 (COX-2), an endoplasmic reticulum-resident protein, has been known to promote tumorigenesis, but the exact mechanisms involved have not been identified. We have previously reported that COX-2 physically interacts with the tumor suppressor p53 and regulates its function. However, it remains to be elucidated how COX-2 can interact with p53 residing in different compartments and whether their interaction is involved in the regulation of p53 function. We here demonstrated that upon genotoxic stress, COX-2 and p53 accumulate in the nucleus, where they physically interact with one another. We also showed that an amino-terminal region (amino acids 1-126) of COX-2 interacts with the DNA-binding domain of p53. The p53-interacting region was critical for COX-2-mediated inhibition of p53 DNA-binding and transcriptional activity as well as p53- and genotoxic stress-induced apoptosis. In addition, an active site mutant of COX-2 (S516Q) as well as wild-type COX-2 potently inhibited p53 transcriptional activity and genotoxic stress-induced apoptosis. These results suggest that COX-2 principally inhibits p53 function through a catalytic activity-independent mechanism and that COX-2 inhibits p53 function through a physical interaction with p53 in the nucleus. These findings provide novel insight into the action mechanisms of COX-2 and strongly suggest that the functional inactivation of p53 by COX-2 can be one of the mechanisms by which COX-2 promotes tumorigenesis.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Biochemistry and Molecular Biology, Kangwon National University College of Medicine, Chuncheon 200-701, South Korea
| | | | | | | |
Collapse
|
137
|
Jeong KJ, Park SY, Seo JH, Lee KB, Choi WS, Han JW, Kang JK, Park CG, Kim YK, Lee HY. Lysophosphatidic acid receptor 2 and Gi/Src pathway mediate cell motility through cyclooxygenase 2 expression in CAOV-3 ovarian cancer cells. Exp Mol Med 2009; 40:607-16. [PMID: 19116446 DOI: 10.3858/emm.2008.40.6.607] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipids and involves in various cellular events, including tumor cell migration. In the present study, we investigated LPA receptor and its transactivation to EGFR for cyclooxygenase-2 (COX-2) expression and cell migration in CAOV-3 ovarian cancer cells. LPA induced COX-2 expression in a dose-dependent manner, and pretreatment of the cells with pharmacological inhibitors of Gi (pertussis toxin), Src (PP2), EGF receptor (EGFR) (AG1478), ERK (PD98059) significantly inhibited LPA- induced COX-2 expression. Consistent to these results, transfection of the cells with selective Src siRNA attenuated COX-2 expression by LPA. LPA stimulated CAOV-3 cell migration that was abrogated by pharmacological inhibitors and antibody of EP2. Higher expression of LPA2 mRNA was observed in CAOV-3 cells, and transfection of the cells with a selective LPA2 siRNA significantly inhibited LPA-induced activation of EGFR and ERK, as well as COX-2 expression. Importantly, LPA2 siRNA also blocked LPA-induced ovarian cancer cell migration. Collectively, our results clearly show the significance of LPA2 and Gi/Src pathway for LPA-induced COX-2 expression and cell migration that could be a promising drug target for ovarian cancer cell metastasis.
Collapse
Affiliation(s)
- Kang Jin Jeong
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Dubinett SM, Mao JT, Hazra S. Focusing downstream in lung cancer prevention: 15-hydroxyprostaglandin dehydrogenase. Cancer Prev Res (Phila) 2009; 1:223-5. [PMID: 19138963 DOI: 10.1158/1940-6207.capr-08-0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, UCLA Lung Cancer Research Program, Johnsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1690, USA.
| | | | | |
Collapse
|
139
|
Zhang W, Bhola N, Kalyankrishna S, Gooding W, Hunt J, Seethala R, Grandis JR, Siegfried JM. Kinin b2 receptor mediates induction of cyclooxygenase-2 and is overexpressed in head and neck squamous cell carcinomas. Mol Cancer Res 2009; 6:1946-56. [PMID: 19074839 DOI: 10.1158/1541-7786.mcr-07-2197] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bradykinin has been shown to promote growth and migration of head and neck squamous cell carcinoma (HNSCC) cells via epidermal growth factor receptor (EGFR) transactivation. It has also been reported that bradykinin can cause the induction of cyclooxygenase-2 (COX-2), a protumorigenic enzyme, via the mitogen-activated protein kinase (MAPK) pathway in human airway cells. To determine whether COX-2 is up-regulated by bradykinin in HNSCC, the current study investigated bradykinin-induced EGFR transactivation, MAPK activation, and COX-2 expression in human HNSCC cells. Bradykinin induced a concentration- and time-dependent induction of COX-2 protein in HNSCC, which was preceded by phosphorylation of EGFR and MAPK. These effects were abolished by the B2 receptor (B2R) antagonist HOE140 but not by the B1 receptor (B1R) antagonist Lys-[Leu(8)]des-Arg(9)-bradykinin. COX-2 induction was accompanied by increased release of prostaglandin E(2). No effect of a B1R agonist (des-Arg(9)-bradykinin) on p-MAPK or COX-2 expression was observed. B2R protein was found to be expressed in all four head and neck cell lines tested. Immunohistochemical analysis and immunoblot analysis revealed that B2R, but not B1R, was significantly overexpressed in HNSCC tumors compared with levels in normal mucosa from the same patient. In HNSCC cells, the bradykinin-induced expression of COX-2 was inhibited by the EGFR kinase inhibitor gefitinib or mitogen-activated protein kinase kinase inhibitors (PD98059 or U0126). These results suggest that EGFR and MAPK are required for COX-2 induction by bradykinin. Up-regulation of the B2R in head and neck cancers suggests that this pathway is involved in HNSCC tumorigenesis.
Collapse
Affiliation(s)
- Weiping Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Zou H, Thomas SM, Yan ZW, Grandis JR, Vogt A, Li LY. Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J 2009; 23:425-32. [PMID: 18832597 PMCID: PMC2638965 DOI: 10.1096/fj.08-112771] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 09/11/2008] [Indexed: 12/19/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an activated oncogene in many cancers. It can be transactivated by ligands of G protein-coupled receptors (GPCRs). We show here that a novel gene, human rhomboid family-1 (RHBDF1), which was recently reported to have a pivotal role in epithelial cancer cell growth in culture and in xenograft tumors, participates in the modulation of GPCR-mediated EGFR transactivation. The RHBDF1 protein localizes mainly in the endoplasmic reticulum. Silencing the RHBDF1 gene in head and neck squamous cancer cell line 1483 cells with siRNA causes an inhibition of gastrin-releasing peptide (GRP) -induced phosphorylation of EGFR and EGFR-dependent signaling proteins p44/42 MAPK and AKT, accompanied by an inhibition of GRP-induced survival, proliferation, and invasion of the cells. The EGFR signaling pathway itself remains intact, however, as the cells remain responsive to exogenous EGF. In addition, RHBDF1 gene silencing disrupts GRP-stimulated secretion of EGFR ligand TGF-alpha, but not the production of latent TGF-alpha, whereas engineered overexpression of RHBDF1 markedly accelerates the secretion of TGF-alpha. These findings are consistent with the view that RHBDF1 is critically involved in a GPCR ligand-stimulated process leading to the activation of latent EGFR ligands.
Collapse
Affiliation(s)
- Huafei Zou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
141
|
Zheng Y, Ritzenthaler JD, Sun X, Roman J, Han S. Prostaglandin E2 Stimulates Human Lung Carcinoma Cell Growth through Induction of Integrin-Linked Kinase: The Involvement of EP4 and Sp1. Cancer Res 2009; 69:896-904. [PMID: 19176380 DOI: 10.1158/0008-5472.can-08-2677] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ying Zheng
- Department of Medicine, Division of Pulmonary, Emory University School of Medicine, Atlanta, USA
| | | | | | | | | |
Collapse
|
142
|
Scott A, Salgia R. Biomarkers in lung cancer: from early detection to novel therapeutics and decision making. Biomark Med 2008; 2:577-586. [PMID: 19802373 DOI: 10.2217/17520363.2.6.577] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lung cancer remains a significant cause of mortality worldwide. While advances in therapy continue to be made, the overall prognosis for patients diagnosed with lung cancer remains poor. Historically, markers such as age, performance status and disease stage have been used to risk-stratify patients and guide therapeutic decisions. These parameters provide some useful information, but more sensitive markers are clearly needed. Molecular and genetic studies have identified several such markers, which appear to play critical roles in carcinogenesis and affect patient outcomes. This article reviews a number of biomarkers that have been identified in lung cancer, and their prognostic and predictive roles.
Collapse
Affiliation(s)
- April Scott
- University of Chicago, Department of Medicine, Section of Hematology/Oncology, and University of Chicago Cancer Research Center, 5841 S Maryland Avenue, Chicago, IL 60637, USA
| | | |
Collapse
|
143
|
Sansone P, Piazzi G, Paterini P, Strillacci A, Ceccarelli C, Minni F, Biasco G, Chieco P, Bonafè M. Cyclooxygenase-2/carbonic anhydrase-IX up-regulation promotes invasive potential and hypoxia survival in colorectal cancer cells. J Cell Mol Med 2008; 13:3876-87. [PMID: 19017360 PMCID: PMC4516535 DOI: 10.1111/j.1582-4934.2008.00580.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation promotes colorectal carcinogenesis. Tumour growth often generates a hypoxic environment in the inner tumour mass. We here report that, in colon cancer cells, the expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) associates with that of the hypoxia response gene carbonic anhydrase-IX (CA-IX). The COX-2 knockdown, achieved by the stable infection of a COX-2 specific short harpin RNA interference (shCOX-2), down-regulates CA-IX gene expression. In colorectal cancer (CRC) cells, PGE2, the main COX-2 gene products, promotes CA-IX gene expression by ERK1/2 activation. In normoxic environment, shCOX-2 infected/CA-IX siRNA transfected CRC cells show a reduced level of active metalloproteinase-2 (MMP-2) that associates with a decreased extracellular matrix invasion capacity. In presence of hypoxia, COX-2 gene expression and PGE2 production increase. The knockdown of COX-2/CA-IX blunts the survival capability of CRC cells in hypoxia. At a high cell density, a culture condition that creates a mild pericellular hypoxic environment, the expression of COX-2/CA-IX genes is increased and triggers the invasive potential of colon cancer cells. In human colon cancer tissues, COX-2/CA-IX protein expression levels, assessed by Western blot and immunohistochemistry, correlate each other and increase with tumour stage. In conclusion, these data indicate that COX-2/CA-IX interplay promotes the aggressive behaviour of CRC cells.
Collapse
Affiliation(s)
- Pasquale Sansone
- Center for Applied Biomedical Research, St Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Chamorro CI, Weber G, Grönberg A, Pivarcsi A, Ståhle M. The human antimicrobial peptide LL-37 suppresses apoptosis in keratinocytes. J Invest Dermatol 2008; 129:937-44. [PMID: 18923446 DOI: 10.1038/jid.2008.321] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human cathelicidin antimicrobial peptide LL-37 is involved in various aspects of skin biology, including protection against infection, wound healing, and also in psoriasis. The tight regulation of apoptosis is critical in tissue repair and its deregulation is a part of the psoriasis phenotype. Despite being involved in cell death of several cell types, virtually nothing is known about the function of LL-37 in keratinocyte apoptosis. Here we report that LL-37 peptide protects primary human keratinocytes and HaCaT cells from apoptosis induced by the topoisomerase I inhibitor camptothecin (CAM). In particular, pretreatment with LL-37 significantly decreased caspase-3 activity after CAM-treatment. Expression profiling of keratinocytes treated with LL-37 identified the upregulation of cyclooxygenase-2 (COX-2) expression, a gene implicated in protection from apoptosis. In addition to inducing COX-2 expression, LL-37 stimulated the production of its product, prostaglandin E-2 (PGE-2). Moreover, LL-37 induced the expression of inhibitor of apoptosis-2 (IAP-2), implicated in the COX-2/PGE-2 antiapoptotic pathway. Pretreatment with a selective COX-2 inhibitor abolished the antiapoptotic effect of LL-37 and reduced IAP-2 expression implicating that the antiapoptotic effect of LL-37 in keratinocytes is mediated by a COX-2-dependent mechanism involving IAP-2. Thus, overexpression of LL-37 may contribute to reduced keratinocyte apoptosis in conditions such as psoriasis.
Collapse
Affiliation(s)
- Clara I Chamorro
- Dermatology and Venereology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
145
|
Mosa AS, Hansen MB, Tilotta CM, Bindslev N. EP4and EP2Receptor Subtypes Involved in Colonic Secretion in Rat. Basic Clin Pharmacol Toxicol 2008; 103:214-21. [DOI: 10.1111/j.1742-7843.2008.00257.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
146
|
Yu L, Wu WKK, Li ZJ, Wong HPS, Tai EKK, Li HT, Wu YC, Cho CH. E series of prostaglandin receptor 2-mediated activation of extracellular signal-regulated kinase/activator protein-1 signaling is required for the mitogenic action of prostaglandin E2 in esophageal squamous-cell carcinoma. J Pharmacol Exp Ther 2008; 327:258-67. [PMID: 18583546 DOI: 10.1124/jpet.108.141275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The use of nonsteroidal anti-inflammatory drugs is associated with a lower risk for esophageal squamous cell carcinoma, in which overexpression of cyclooxygenase-2 (COX-2) is frequently reported. Prostaglandin E(2) (PGE(2)), a COX-2-derived eicosanoid, is implicated in the promotion of cancer growth. However, the precise role of PGE(2) in the disease development of esophageal squamous cell carcinoma remains elusive. In this study, we investigated the effect of PGE(2) on the proliferation of cultured esophageal squamous cell carcinoma cells (HKESC-1). Results showed that HKESC-1 cells expressed all four series of prostaglandin (EP) receptors, namely, EP1 to EP4 receptors. In this regard, PGE(2) and the EP2 receptor agonist (+/-)-15-deoxy-16S-hydroxy-17-cyclobutyl PGE(1) methyl ester (butaprost) markedly increased HKESC-1 cell proliferation. Moreover, the mitogenic effect of PGE(2) was significantly attenuated by RNA interference-mediated knockdown of the EP2 receptor, indicating that this receptor mediated the mitogenic effect of PGE(2). In this connection, PGE(2) and butaprost induced phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2), whose down-regulation by RNA interference significantly attenuated PGE(2)-induced cell proliferation. In addition, PGE(2) and butaprost increased c-Fos expression and activator protein 1 (AP-1) transcriptional activity, which were abolished by the mitogen-activated protein kinase/Erk kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)-butadiene ethanolate (U0126). AP-1-binding inhibitor curcumin also partially reversed the mitogenic effect of PGE(2). Taken together, these data demonstrate for the first time that the EP2 receptor mediates the mitogenic effect of PGE(2) in esophageal squamous cell carcinoma via activation of the Erk/AP-1 pathway. This study supports the growth-promoting action of PGE(2) in esophageal squamous cell carcinoma and the potential application of EP2 receptor antagonists in the treatment of this disease.
Collapse
Affiliation(s)
- Le Yu
- Department of Pharmacology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Sureban SM, Ramalingam S, Natarajan G, May R, Subramaniam D, Bishnupuri KS, Morrison AR, Dieckgraefe BK, Brackett DJ, Postier RG, Houchen CW, Anant S. Translation regulatory factor RBM3 is a proto-oncogene that prevents mitotic catastrophe. Oncogene 2008; 27:4544-56. [PMID: 18427544 DOI: 10.1038/onc.2008.97] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RNA-binding proteins play a key role in post-transcriptional regulation of mRNA stability and translation. We have identified that RBM3, a translation regulatory protein, is significantly upregulated in human tumors, including a stage-dependent increase in colorectal tumors. Forced RBM3 overexpression in NIH3T3 mouse fibroblasts and SW480 human colon epithelial cells increases cell proliferation and development of compact multicellular spheroids in soft agar suggesting the ability to induce anchorage-independent growth. In contrast, downregulating RBM3 in HCT116 colon cancer cells with specific siRNA decreases cell growth in culture, which was partially overcome when treated with prostaglandin E(2), a product of cyclooxygenase (COX)-2 enzyme activity. Knockdown also resulted in the growth arrest of tumor xenografts. We have also identified that RBM3 knockdown increases caspase-mediated apoptosis coupled with nuclear cyclin B1, and phosphorylated Cdc25c, Chk1 and Chk2 kinases, implying that under conditions of RBM3 downregulation, cells undergo mitotic catastrophe. RBM3 enhances COX-2, IL-8 and VEGF mRNA stability and translation. Conversely, RBM3 knockdown results in loss in the translation of these transcripts. These data demonstrate that the RNA stabilizing and translation regulatory protein RBM3 is a novel proto-oncogene that induces transformation when overexpressed and is essential for cells to progress through mitosis.
Collapse
Affiliation(s)
- S M Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Tumor response to combination celecoxib and erlotinib therapy in non-small cell lung cancer is associated with a low baseline matrix metalloproteinase-9 and a decline in serum-soluble E-cadherin. J Thorac Oncol 2008; 3:117-24. [PMID: 18303430 DOI: 10.1097/jto.0b013e3181622bef] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Cyclooxygenase-2 overexpression may mediate resistance to epidermal growth factor receptor tyrosine kinase inhibition through prostaglandin E2-dependent promotion of epithelial to mesenchymal transition (EMT). Suppression of epithelial markers, such as E-cadherin, can lead to resistance to erlotinib. Prostaglandin E2 down-regulates E-cadherin expression by up-regulating transcriptional repressors, including ZEB1 and Snail. Furthermore, E-cadherin can be modulated by matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs), promoting tumor invasion and metastasis. Markers of EMT and tumor invasion were evaluated in patient serum from a phase I clinical trial investigating the combination of celecoxib and erlotinib in non-small cell lung cancer (NSCLC) patients. METHODS Samples from 22 subjects were evaluated. Soluble E-cadherin (sEC) was evaluated by enzyme linked immunosorbent assay in patient serum at baseline, week 4, and week 8 of treatment. Other markers of EMT and angiogenesis were evaluated by enzyme linked immunosorbent assay, including MMP-9, TIMP-1, and CCL15. RESULTS Serum sEC, MMP-9, TIMP-1, and CCL15 levels were determined at baseline and week 8. Patients with a partial response to therapy had a significant decrease in sEC, TIMP-1, and CCL15 at week 8. In patients who responded to the combination therapy, baseline MMP-9 was significantly lower compared with nonresponders (p = 0.006). CONCLUSIONS sEC, MMP-9, TIMP-1, and CCL15 levels correlate with response to combination therapy with erlotinib and celecoxib in patients with NSCLC. A randomized phase II trial is planned comparing erlotinib and celecoxib with erlotinib plus placebo in advanced NSCLC. This study will prospectively assess these and other biomarkers in serum and tumor tissue.
Collapse
|
149
|
Effect of lumiracoxib on proliferation and apoptosis of human nonsmall cell lung cancer cells in vitro. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200804010-00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
150
|
Fidler MJ, Argiris A, Patel JD, Johnson DH, Sandler A, Villaflor VM, Coon J, Buckingham L, Kaiser K, Basu S, Bonomi P. The Potential Predictive Value of Cyclooxygenase-2 Expression and Increased Risk of Gastrointestinal Hemorrhage in Advanced Non–Small Cell Lung Cancer Patients Treated with Erlotinib and Celecoxib. Clin Cancer Res 2008; 14:2088-94. [DOI: 10.1158/1078-0432.ccr-07-4013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|