101
|
Advances in antibody-based therapy in oncology. NATURE CANCER 2023; 4:165-180. [PMID: 36806801 DOI: 10.1038/s43018-023-00516-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 01/10/2023] [Indexed: 02/22/2023]
Abstract
Monoclonal antibodies are a growing class of targeted cancer therapeutics, characterized by exquisite specificity, long serum half-life, high affinity and immune effector functions. In this review, we outline key advances in the field with a particular focus on recent and emerging classes of engineered antibody therapeutic candidates, discuss molecular structure and mechanisms of action and provide updates on clinical development and practice.
Collapse
|
102
|
Nelson MH, Fritzell S, Miller R, Werchau D, Van Citters D, Nilsson A, Misher L, Ljung L, Bader R, Deronic A, Chunyk AG, Schultz L, Varas LA, Rose N, Håkansson M, Gross J, Furebring C, Pavlik P, Sundstedt A, Veitonmäki N, Ramos HJ, Säll A, Dahlman A, Bienvenue D, von Schantz L, McMahan CJ, Askmyr M, Hernandez-Hoyos G, Ellmark P. The Bispecific Tumor Antigen-Conditional 4-1BB x 5T4 Agonist, ALG.APV-527, Mediates Strong T-Cell Activation and Potent Antitumor Activity in Preclinical Studies. Mol Cancer Ther 2023; 22:89-101. [PMID: 36343381 PMCID: PMC9808321 DOI: 10.1158/1535-7163.mct-22-0395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
4-1BB (CD137) is an activation-induced costimulatory receptor that regulates immune responses of activated CD8 T and natural killer cells, by enhancing proliferation, survival, cytolytic activity, and IFNγ production. The ability to induce potent antitumor activity by stimulating 4-1BB on tumor-specific cytotoxic T cells makes 4-1BB an attractive target for designing novel immuno-oncology therapeutics. To minimize systemic immune toxicities and enhance activity at the tumor site, we have developed a novel bispecific antibody that stimulates 4-1BB function when co-engaged with the tumor-associated antigen 5T4. ALG.APV-527 was built on the basis of the ADAPTIR bispecific platform with optimized binding domains to 4-1BB and 5T4 originating from the ALLIGATOR-GOLD human single-chain variable fragment library. The epitope of ALG.APV-527 was determined to be located at domain 1 and 2 on 4-1BB using X-ray crystallography. As shown in reporter and primary cell assays in vitro, ALG.APV-527 triggers dose-dependent 4-1BB activity mediated only by 5T4 crosslinking. In vivo, ALG.APV-527 demonstrates robust antitumor responses, by inhibiting growth of established tumors expressing human 5T4 followed by a long-lasting memory immune response. ALG.APV-527 has an antibody-like half-life in cynomolgus macaques and was well tolerated at 50.5 mg/kg. ALG.APV-527 is uniquely designed for 5T4-conditional 4-1BB-mediated antitumor activity with potential to minimize systemic immune activation and hepatotoxicity while providing efficacious tumor-specific responses in a range of 5T4-expressing tumor indications as shown by robust activity in preclinical in vitro and in vivo models. On the basis of the combined preclinical dataset, ALG.APV-527 has potential as a promising anticancer therapeutic for the treatment of 5T4-expressing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jane Gross
- Aptevo Therapeutics Inc., Seattle, Washington
| | | | | | | | | | | | - Anna Säll
- Alligator Bioscience AB, Lund, Sweden
| | | | | | | | | | | | | | - Peter Ellmark
- Alligator Bioscience AB, Lund, Sweden.,Department of Immunotechnology, Lund University, Lund, Sweden.,Corresponding Author: Peter Ellmark, Alligator Bioscience, Medicon Village, 223 81 Lund, Sweden. Phone: 467-9721-2739; E-mail:
| |
Collapse
|
103
|
Gulhati P, Schalck A, Jiang S, Shang X, Wu CJ, Hou P, Ruiz SH, Soto LS, Parra E, Ying H, Han J, Dey P, Li J, Deng P, Sei E, Maeda DY, Zebala JA, Spring DJ, Kim M, Wang H, Maitra A, Moore D, Clise-Dwyer K, Wang YA, Navin NE, DePinho RA. Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer. NATURE CANCER 2023; 4:62-80. [PMID: 36585453 PMCID: PMC9925045 DOI: 10.1038/s43018-022-00500-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/18/2022] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells. Translational analyses confirmed the expression of 41BB and LAG3 in human PDAC. Since single and dual ICTs were not curative, T cell-activating ICTs were combined with a CXCR1/2 inhibitor targeting immunosuppressive myeloid cells. Triple therapy resulted in durable complete responses. Given similar profiles in human PDAC and the availability of these agents for clinical testing, our findings provide a testable hypothesis for this lethal disease.
Collapse
Affiliation(s)
- Pat Gulhati
- Department of Medical Oncology, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aislyn Schalck
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharia Hernandez Ruiz
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jincheng Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prasenjit Dey
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emi Sei
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kim
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dirk Moore
- Department of Biostatistics, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
104
|
Claus C, Ferrara-Koller C, Klein C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. MAbs 2023; 15:2167189. [PMID: 36727218 PMCID: PMC9897756 DOI: 10.1080/19420862.2023.2167189] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
The clinical development of 4-1BB agonists for cancer immunotherapy has raised substantial interest during the past decade. The first generation of 4-1BB agonistic antibodies entering the clinic, urelumab (BMS-663513) and utomilumab (PF-05082566), failed due to (liver) toxicity or lack of efficacy, respectively. The two antibodies display differences in the affinity and the 4-1BB receptor epitope recognition, as well as the isotype, which determines the Fc-gamma-receptor (FcγR) crosslinking activity. Based on this experience a very diverse landscape of second-generation 4-1BB agonists addressing the liabilities of first-generation agonists has recently been developed, with many entering clinical Phase 1 and 2 studies. This review provides an overview focusing on differences and their scientific rationale, as well as challenges foreseen during the clinical development of these molecules.
Collapse
Affiliation(s)
- Christina Claus
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Claudia Ferrara-Koller
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| |
Collapse
|
105
|
Jhajj HS, Lwo TS, Yao EL, Tessier PM. Unlocking the potential of agonist antibodies for treating cancer using antibody engineering. Trends Mol Med 2023; 29:48-60. [PMID: 36344331 PMCID: PMC9742327 DOI: 10.1016/j.molmed.2022.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Agonist antibodies that target immune checkpoints, such as those in the tumor necrosis factor receptor (TNFR) superfamily, are an important class of emerging therapeutics due to their ability to regulate immune cell activity, especially for treating cancer. Despite their potential, to date, they have shown limited clinical utility and further antibody optimization is urgently needed to improve their therapeutic potential. Here, we discuss key antibody engineering approaches for improving the activity of antibody agonists by optimizing their valency, specificity for different receptors (e.g., bispecific antibodies) and epitopes (e.g., biepitopic or biparatopic antibodies), and Fc affinity for Fcγ receptors (FcγRs). These powerful approaches are being used to develop the next generation of cancer immunotherapeutics with improved efficacy and safety.
Collapse
Affiliation(s)
- Harkamal S Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
106
|
Müller D. Targeting Co-Stimulatory Receptors of the TNF Superfamily for Cancer Immunotherapy. BioDrugs 2023; 37:21-33. [PMID: 36571696 PMCID: PMC9836981 DOI: 10.1007/s40259-022-00573-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
The clinical approval of immune checkpoint inhibitors is an important advancement in the field of cancer immunotherapy. However, the percentage of beneficiaries is still limited and it is becoming clear that combination therapies are required to further enhance the treatment efficacy. The potential of strategies targeting the immunoregulatory network by "hitting the gas pedal" as opposed to "blocking the brakes" is being recognized and intensively investigated. Hence, next to immune checkpoint inhibitors, agonists of co-stimulatory receptors of the tumor necrosis factor superfamily (TNF-SF) are emerging as promising options to expand the immunomodulatory toolbox. In this review the development of different categories of recombinant antibody and ligand-based agonists of 4-1BB, OX40, and GITR is summarized and discussed in the context of the challenges presented by the structural and mechanistical features of the TNFR-SF. An overview of current formats, trends, and clinical studies is provided.
Collapse
Affiliation(s)
- Dafne Müller
- grid.5719.a0000 0004 1936 9713Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
107
|
Triggering of lymphocytes by CD28, 4-1BB, and PD-1 checkpoints to enhance the immune response capacities. PLoS One 2022; 17:e0275777. [PMID: 36480493 PMCID: PMC9731445 DOI: 10.1371/journal.pone.0275777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/24/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor infiltrating lymphocytes (TILs) usually become exhausted and dysfunctional owing to chronic contact with tumor cells and overexpression of multiple inhibitor receptors. Activation of TILs by targeting the inhibitory and stimulatory checkpoints has emerged as one of the most promising immunotherapy prospectively. We investigated whether triggering of CD28, 4-1BB, and PD-1 checkpoints simultaneously or alone could enhance the immune response capacity of lymphocytes. In this regard, anti-PD-1, CD80-Fc, and 4-1BBL-Fc proteins were designed and produced in CHO-K1 cells as an expression host. Following confirmation of the Fc fusion proteins' ability to bind to native targets expressed on engineered CHO-K1 cells (CHO-K1/hPD-1, CHO-K1/hCD28, CHO-K1/hCTLA4, and CHO-K1/h4-1BB), the effects of each protein, on its own and in various combinations, were assessed in vitro on T cell proliferation, cytotoxicity, and cytokines secretion using the Mixed lymphocyte reaction (MLR) assay, 7-AAD/CFSE cell-mediated cytotoxicity assay, and a LEGENDplex™ Human Th Cytokine Panel, respectively. MLR results demonstrated that T cell proliferation in the presence of the combinations of anti-PD-1/CD80-Fc, CD80-Fc/4-1BBL-Fc, and anti-PD-1/CD80-Fc/4-1BBL-Fc proteins was significantly higher than in the untreated condition (1.83-, 1.91-, and 2.02-fold respectively). Furthermore, anti-PD-1 (17%), 4-1BBL-Fc (19.2%), anti-PD-1/CD80-Fc (18.6%), anti-PD-1/4-1BBL-Fc (21%), CD80-Fc/4-1BBL-Fc (18.5%), and anti-PD-1/CD80-Fc/4-1BBL-Fc (17.3%) significantly enhanced cytotoxicity activity compared to untreated condition (7.8%). However, concerning the cytokine production, CD80-Fc and 4-1BBL-Fc alone or in combination significantly increased the secretion of IFN-γ, TNF-α, and IL-2 compared with the untreated conditions. In conclusion, this research establishes that the various combinations of produced anti-PD-1, CD80-Fc, and 4-1BBL-Fc proteins can noticeably induce the immune response in vitro. Each of these combinations may be effective in killing or destroying cancer cells depending on the type and stage of cancer.
Collapse
|
108
|
Wang F, Yang M, Luo W, Zhou Q. Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:243-262. [PMID: 39036549 PMCID: PMC11256730 DOI: 10.1016/j.jncc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint inhibitor-based immunotherapy has revolutionized the treatment approach of non-small cell lung cancer (NSCLC). Monoclonal antibodies against programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) are widely used in clinical practice, but other antibodies that can circumvent innate and acquired resistance are bound to undergo preclinical and clinical studies. However, tumor cells can develop and facilitate the tolerogenic nature of the tumor microenvironment (TME), resulting in tumor progression. Therefore, the immune escape mechanisms exploited by growing lung cancer involve a fine interplay between all actors in the TME. A better understanding of the molecular biology of lung cancer and the cellular/molecular mechanisms involved in the crosstalk between lung cancer cells and immune cells in the TME could identify novel therapeutic weapons in the old war against lung cancer. This article discusses the role of TME in the progression of lung cancer and pinpoints possible advances and challenges of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingyi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weichi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
109
|
Liu L, Chen J. Therapeutic antibodies for precise cancer immunotherapy: current and future perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:555-569. [PMID: 37724258 PMCID: PMC10471122 DOI: 10.1515/mr-2022-0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/25/2022] [Indexed: 09/20/2023]
Abstract
Antibodies, as one of the most important components of host adaptive immune system, play an important role in defense of infectious disease, immune surveillance, and autoimmune disease. Due to the development of recombinant antibody technology, antibody therapeutics become the largest and rapidly expanding drug to provide major health benefits to patients, especially for the treatment of cancer patients. Many antibody-based therapeutic strategies have been developed including monoclonal antibodies, antibody-drug conjugates, bispecific and trispecific antibodies and pro-antibodies with promising results from both clinical and pre-clinical trials. However, the response rate and side-effect still vary between patients with undefined mechanisms. Here, we summarized the current and future perspectives of antibody-based cancer immunotherapeutic strategies for designing next-generation drugs.
Collapse
Affiliation(s)
- Longchao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiahui Chen
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
110
|
Hamid O, Chiappori AA, Thompson JA, Doi T, Hu-Lieskovan S, Eskens FALM, Ros W, Diab A, Spano JP, Rizvi NA, Wasser JS, Angevin E, Ott PA, Forgie A, Yang W, Guo C, Chou J, El-Khoueiry AB. First-in-human study of an OX40 (ivuxolimab) and 4-1BB (utomilumab) agonistic antibody combination in patients with advanced solid tumors. J Immunother Cancer 2022; 10:jitc-2022-005471. [PMID: 36302562 PMCID: PMC9621185 DOI: 10.1136/jitc-2022-005471] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ivuxolimab (PF-04518600) and utomilumab (PF-05082566) are humanized agonistic IgG2 monoclonal antibodies against OX40 and 4-1BB, respectively. This first-in-human, multicenter, open-label, phase I, dose-escalation/dose-expansion study explored safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity of ivuxolimab+utomilumab in patients with advanced solid tumors. METHODS Dose-escalation: patients with advanced bladder, gastric, or cervical cancer, melanoma, head and neck squamous cell carcinoma, or non-small cell lung cancer (NSCLC) who were unresponsive to available therapies, had no standard therapy available or declined standard therapy were enrolled into five dose cohorts: ivuxolimab (0.1-3 mg/kg every 2 weeks (Q2W)) intravenously plus utomilumab (20 or 100 mg every 4 weeks (Q4W)) intravenously. Dose-expansion: patients with melanoma (n=10) and NSCLC (n=20) who progressed on prior anti-programmed death receptor 1/programmed death ligand-1 and/or anti-cytotoxic T-lymphocyte-associated antigen 4 (melanoma) received ivuxolimab 30 mg Q2W intravenously plus utomilumab 20 mg Q4W intravenously. Adverse events (AEs) were graded per National Cancer Institute Common Terminology Criteria for Adverse Events V.4.03 and efficacy was assessed using Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1 and immune-related RECIST (irRECIST). Paired tumor biopsies and whole blood were collected to assess pharmacodynamic effects and immunophenotyping. Whole blood samples were collected longitudinally for immunophenotyping. RESULTS Dose-escalation: 57 patients were enrolled; 2 (3.5%) patients with melanoma (0.3 mg/kg+20 mg and 0.3 mg/kg+100 mg) achieved partial response (PR), 18 (31.6%) patients achieved stable disease (SD); the disease control rate (DCR) was 35.1% across all dose levels. Dose-expansion: 30 patients were enrolled; 1 patient with NSCLC achieved PR lasting >77 weeks. Seven of 10 patients with melanoma (70%) and 7 of 20 patients with NSCLC (35%) achieved SD: median (range) duration of SD was 18.9 (13.9-49.0) weeks for the melanoma cohort versus 24.1 (14.3-77.9+) weeks for the NSCLC cohort; DCR (NSCLC) was 40%. Grade 3-4 treatment-emergent AEs were reported in 28 (49.1%) patients versus 11 (36.7%) patients in dose-escalation and dose-expansion, respectively. There were no grade 5 AEs deemed attributable to treatment. Ivuxolimab area under the concentration-time curve increased in a dose-dependent manner at 0.3-3 mg/kg doses. CONCLUSIONS Ivuxolimab+utomilumab was found to be well tolerated and demonstrated preliminary antitumor activity in selected groups of patients. TRIAL REGISTRATION NUMBER NCT02315066.
Collapse
Affiliation(s)
- Omid Hamid
- Translational Research and Immunotherapy, The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California, USA
| | | | | | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Siwen Hu-Lieskovan
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ferry A L M Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Willeke Ros
- Department of Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Adi Diab
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Jean-Philippe Spano
- Medical Oncology, APHP-Sorbonne University, IPLEs Inserm1136, Pitie-Salpetrière Hospital-Paris, Paris, France
| | - Naiyer A Rizvi
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Jeffrey S Wasser
- Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Eric Angevin
- Drug Development Department, Institut Gustave Roussy, Villejuif, France
| | - Patrick A Ott
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alison Forgie
- Translational Oncology, Pfizer Inc, San Francisco, California, USA
| | - Wenjing Yang
- Oncology Computational Biology, Pfizer Inc, San Diego, Calfornia, USA
| | - Cen Guo
- Clinical Pharmacology, Pfizer Inc, San Diego, California, USA
| | - Jeffrey Chou
- Early Oncology Development and Clinical Research, Pfizer Inc, San Francisco, California, USA
| | - Anthony B El-Khoueiry
- Department of Internal Medicine, Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| |
Collapse
|
111
|
|
112
|
Reitinger C, Ipsen-Escobedo A, Hornung C, Heger L, Dudziak D, Lux A, Nimmerjahn F. Modulation of urelumab glycosylation separates immune stimulatory activity from organ toxicity. Front Immunol 2022; 13:970290. [PMID: 36248847 PMCID: PMC9558126 DOI: 10.3389/fimmu.2022.970290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Checkpoint control and immunomodulatory antibodies have become important tools for modulating tumor or self-reactive immune responses. A major issue preventing to make full use of the potential of these immunomodulatory antibodies are the severe side-effects, ranging from systemic cytokine release syndrome to organ-specific toxicities. The IgG Fc-portion has been demonstrated to contribute to both, the desired as well as the undesired antibody activities of checkpoint control and immunomodulatory antibodies via binding to cellular Fcγ-receptors (FcγR). Thus, choosing IgG subclasses, such as human IgG4, with a low ability to interact with FcγRs has been identified as a potential strategy to limit FcγR or complement pathway dependent side-effects. However, even immunomodulatory antibodies on the human IgG4 background may interact with cellular FcγRs and show dose limiting toxicities. By using a humanized mouse model allowing to study the immunomodulatory activity of human checkpoint control antibodies in vivo, we demonstrate that deglycosylation of the CD137-specific IgG4 antibody urelumab results in an amelioration of liver toxicity, while maintaining T cell stimulatory activity. In addition, our results emphasize that antibody dosing impacts the separation of side-effects of urelumab from its therapeutic activity via IgG deglycosylation. Thus, glycoengineering of human IgG4 antibodies may be a possible approach to limit collateral damage by immunomodulatory antibodies and allow for a greater therapeutic window of opportunity.
Collapse
Affiliation(s)
- Carmen Reitinger
- Chair of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Ipsen-Escobedo
- Chair of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Chiara Hornung
- Chair of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
- Medical Immunology Campus Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Anja Lux
- Chair of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Erlangen, Germany
- *Correspondence: Falk Nimmerjahn,
| |
Collapse
|
113
|
Wang YT, Ji WD, Jiao HM, Lu A, Chen KF, Liu QB. Targeting 4-1BB for tumor immunotherapy from bench to bedside. Front Immunol 2022; 13:975926. [PMID: 36189243 PMCID: PMC9523430 DOI: 10.3389/fimmu.2022.975926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Immune dysfunction has been proposed as a factor that may contribute to disease progression. Emerging evidence suggests that immunotherapy aims to abolish cancer progression by modulating the balance of the tumor microenvironment. 4-1BB (also known as CD137 and TNFRS9), a member of tumor necrosis factor receptor superfamily, has been validated as an extremely attractive and promising target for immunotherapy due to the upregulated expression in the tumor environment and its involvement in tumor progression. More importantly, 4-1BB-based immunotherapy approaches have manifested powerful antitumor effects in clinical trials targeting 4-1BB alone or in combination with other immune checkpoints. In this review, we will summarize the structure and expression of 4-1BB and its ligand, discuss the role of 4-1BB in the microenvironment and tumor progression, and update the development of drugs targeting 4-1BB. The purpose of the review is to furnish a comprehensive overview of the potential of 4-1BB as an immunotherapeutic target and to discuss recent advances and prospects for 4-1BB in cancer therapy.
Collapse
Affiliation(s)
- Ya-Tao Wang
- First People’s Hospital of Shangqiu, Henan Province, Shangqiu, China
| | - Wei-Dong Ji
- First People’s Hospital of Shangqiu, Henan Province, Shangqiu, China
| | - Hong-Mei Jiao
- First People’s Hospital of Shangqiu, Henan Province, Shangqiu, China
| | - Ang Lu
- First People’s Hospital of Shangqiu, Henan Province, Shangqiu, China
| | - Kun-Feng Chen
- First People’s Hospital of Shangqiu, Henan Province, Shangqiu, China
- *Correspondence: Qi-Bing Liu, ; Kun-Feng Chen,
| | - Qi-Bing Liu
- Department of Pharmacy, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Pharmacology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- *Correspondence: Qi-Bing Liu, ; Kun-Feng Chen,
| |
Collapse
|
114
|
Kim AMJ, Nemeth MR, Lim SO. 4-1BB: A promising target for cancer immunotherapy. Front Oncol 2022; 12:968360. [PMID: 36185242 PMCID: PMC9515902 DOI: 10.3389/fonc.2022.968360] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy, powered by its relative efficacy and safety, has become a prominent therapeutic strategy utilized in the treatment of a wide range of diseases, including cancer. Within this class of therapeutics, there is a variety of drug types such as immune checkpoint blockade therapies, vaccines, and T cell transfer therapies that serve the purpose of harnessing the body’s immune system to combat disease. Of these different types, immune checkpoint blockades that target coinhibitory receptors, which dampen the body’s immune response, have been widely studied and established in clinic. In contrast, however, there remains room for the development and improvement of therapeutics that target costimulatory receptors and enhance the immune response against tumors, one of which being the 4-1BB (CD137/ILA/TNFRSF9) receptor. 4-1BB has been garnering attention as a promising therapeutic target in the setting of cancer, amongst other diseases, due to its broad expression profile and ability to stimulate various signaling pathways involved in the generation of a potent immune response. Since its discovery and demonstration of potential as a clinical target, major progress has been made in the knowledge of 4-1BB and the development of clinical therapeutics that target it. Thus, we seek to summarize and provide a comprehensive update and outlook on those advancements in the context of cancer and immunotherapy.
Collapse
Affiliation(s)
- Alyssa Min Jung Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Macy Rose Nemeth
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Seung-Oe Lim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute of Drug Discovery, Purdue University, West Lafayette, IN, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
- *Correspondence: Seung-Oe Lim,
| |
Collapse
|
115
|
Meraviglia-Crivelli D, Villanueva H, Menon AP, Zheleva A, Moreno B, Villalba-Esparza M, Pastor F. A pan-tumor-siRNA aptamer chimera to block nonsense-mediated mRNA decay inflames and suppresses tumor progression. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:413-425. [PMID: 35991316 PMCID: PMC9379514 DOI: 10.1016/j.omtn.2022.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/15/2022] [Indexed: 12/21/2022]
Abstract
Immune-checkpoint blockade (ICB) therapy has changed the clinical outcome of many types of aggressive tumors, but there still remain many cancer patients that do not respond to these treatments. There is an unmet need to develop a feasible clinical therapeutic platform to increase the rate of response to ICB. Here we use a previously described clinically tested aptamer (AS1411) conjugated with SMG1 RNAi (AS1411-SMG1 aptamer-linked siRNA chimeras [AsiCs]) to inhibit the nonsense-mediated RNA decay pathway inducing tumor inflammation and improving response to ICB. The aptamer AS1411 shows binding to numerous mouse and human tumor cell lines tested. AS1411 induces tumor cytotoxicity in long incubation times, which allows for the use of the aptamer as a carrier to target the RNAi inhibition to the tumor. The AS1411-SMG1 AsiCs induce a strong antitumor response in local and systemic treatment in different types of tumors. Finally, AS1411-SMG1 AsiCs are well tolerated with no detected side effects.
Collapse
Affiliation(s)
- Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Ashwathi Puravankara Menon
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Angelina Zheleva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
| | - María Villalba-Esparza
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| |
Collapse
|
116
|
Cheng LS, Cheng YF, Liu WT, Shen A, Zhang D, Xu T, Yin W, Cheng M, Ma X, Wang F, Zhao Q, Zeng X, Zhang Y, Shen G. A humanized 4-1BB-targeting agonistic antibody exerts potent antitumor activity in colorectal cancer without systemic toxicity. Lab Invest 2022; 20:415. [PMID: 36076251 PMCID: PMC9461191 DOI: 10.1186/s12967-022-03619-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022]
Abstract
Background Colorectal cancer (CRC) is one of the most common malignancies and the patient survival rate remains unacceptably low. The anti-programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) antibody-based immune checkpoint inhibitors have been added to CRC treatment regimens, however, only a fraction of patients benefits. As an important co-stimulatory molecule, 4-1BB/CD137 is mainly expressed on the surface of immune cells including T and natural killer (NK) cells. Several agonistic molecules targeting 4-1BB have been clinically unsuccessful due to systemic toxicity or weak antitumor effects. We generated a humanized anti-4-1BB IgG4 antibody, HuB6, directed against a unique epitope and hypothesized that it would promote antitumor immunity with high safety. Methods The antigen binding specificity, affinity and activity of HuB6 were determined by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), biolayer interferometry (BLI) and flow cytometry. The antitumor effects were evaluated in humanized mice bearing syngeneic tumors, and possible toxicity was evaluated in humanized mice and cynomolgus monkeys. Results HuB6 showed high specificity and affinity for a binding epitope distinct from those of other known 4-1BB agonists, including utomilumab and urelumab, and induced CD8 + T, CD4 + T and NK cell stimulation dependent on Fcγ receptor (FcγR) crosslinking. HuB6 inhibited CRC tumor growth in a dose-dependent manner, and the antitumor effect was similar with urelumab and utomilumab in humanized mouse models of syngeneic CRC. Furthermore, HuB6 combined with an anti-PD-L1 antibody significantly inhibited CRC growth in vivo. Additionally, HuB6 induced antitumor immune memory in tumor model mice rechallenged with 4 × 106 tumor cells. Toxicology data for humanized 4-1BB mice and cynomolgus monkeys showed that HuB6 could be tolerated up to a 180 mg/kg dose without systemic toxicity. Conclusions This study demonstrated that HuB6 should be a suitable candidate for further clinical development and a potential agent for CRC immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03619-w.
Collapse
Affiliation(s)
- Lian-Sheng Cheng
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Yong-Feng Cheng
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Wen-Ting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Aolin Shen
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Tingjuan Xu
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Wu Yin
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Min Cheng
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Xiaopeng Ma
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Yan Zhang
- School of Health Service Management, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.
| |
Collapse
|
117
|
Sugyo A, Tsuji AB, Sudo H, Narita Y, Taniguchi K, Nemoto T, Isomura F, Awaya N, Kamata-Sakurai M, Higashi T. In vivo validation of the switch antibody concept: SPECT/CT imaging of the anti-CD137 switch antibody Sta-MB shows high uptake in tumors but low uptake in normal organs in human CD137 knock-in mice. Transl Oncol 2022; 23:101481. [PMID: 35820360 PMCID: PMC9284450 DOI: 10.1016/j.tranon.2022.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/19/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022] Open
Abstract
CD137 is an attractive target for cancer immunotherapy, but its expression in normal tissues induces some adverse effects in patients receiving CD137-targeted therapy. To overcome this issue, we developed a switch antibody, STA551, that binds to CD137 only under high ATP concentrations around cells. This study quantified biodistribution of murine switch antibodies in human CD137 knock-in mice to show the viability of the switch antibody concept in vivo. We utilized four antibodies: Sta-MB, Ure-MB, Sta-mIgG1, and KLH-MB. Sta-MB is a switch antibody having the variable region of STA551. The MB is a murine Fc highly binding to murine Fcγ receptor II. Ure-MB has a variable region mimicking the clinically available anti-CD137 agonist antibody urelumab, binding to CD137 regardless of ATP concentration. Sta-mIgG1 has the same variable region as Sta-MB but has the standard murine constant region. KLH-MB binds to keyhole limpet hemocyanin. The four antibodies were radiolabeled with In-111, SPECT/CT imaging was conducted in human CD137 knock-in mice, and the uptake in regions of interest was quantified. 111In-labeled Sta-MB and Sta-mIgG1 showed high uptake in tumors but low uptake in the lymph nodes and spleen in human CD137 knock-in mice. On the other hand, Ure-MB highly accumulated not only in tumors but also in the lymph nodes and spleen. KLH-MB showed low uptake in the tumors, lymph nodes, and spleen. The present study provides evidence that the switch antibody concept works in vivo. Our findings encourage further clinical imaging studies to evaluate the biodistribution of STA551 in patients.
Collapse
Affiliation(s)
- Aya Sugyo
- Department of Molecular Imaging and Theranostics, iQMS, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, iQMS, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, Japan.
| | - Hitomi Sudo
- Department of Molecular Imaging and Theranostics, iQMS, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, Japan
| | - Yoshinori Narita
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, Japan
| | - Kenji Taniguchi
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, Japan
| | - Takayuki Nemoto
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, Japan
| | - Fumihisa Isomura
- Chugai Research Institute for Medical Science, Inc., 1-135 Komakado, Gotemba, Shizuoka, Japan
| | - Norihiro Awaya
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo, Japan
| | - Mika Kamata-Sakurai
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, iQMS, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, Japan.
| |
Collapse
|
118
|
Yu C, Li Q, Zhang Y, Wen ZF, Dong H, Mou Y. Current status and perspective of tumor immunotherapy for head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:941750. [PMID: 36092724 PMCID: PMC9458968 DOI: 10.3389/fcell.2022.941750] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) have a high incidence and mortality rate, and investigating the pathogenesis and potential therapeutic strategies of HNSCC is required for further progress. Immunotherapy is a considerable therapeutic strategy for HNSCC due to its potential to produce a broad and long-lasting antitumor response. However, immune escape, which involves mechanisms including dyregulation of cytokines, perturbation of immune checkpoints, and recruitment of inhibitory cell populations, limit the efficacy of immunotherapy. Currently, multiple immunotherapy strategies for HNSCC have been exploited, including immune checkpoint inhibitors, costimulatory agonists, antigenic vaccines, oncolytic virus therapy, adoptive T cell transfer (ACT), and epidermal growth factor receptor (EGFR)-targeted therapy. Each of these strategies has unique advantages, and the appropriate application of these immunotherapies in HNSCC treatment has significant value for patients. Therefore, this review comprehensively summarizes the mechanisms of immune escape and the characteristics of different immunotherapy strategies in HNSCC to provide a foundation and consideration for the clinical treatment of HNSCC.
Collapse
Affiliation(s)
- Chenhang Yu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiang Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Fa Wen
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Dong
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yongbin Mou
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
119
|
Peper-Gabriel JK, Pavlidou M, Pattarini L, Morales-Kastresana A, Jaquin TJ, Gallou C, Hansbauer EM, Richter M, Lelievre H, Scholer-Dahirel A, Bossenmaier B, Sancerne C, Riviere M, Grandclaudon M, Zettl M, Bel Aiba RS, Rothe C, Blanc V, Olwill SA. The PD-L1/4-1BB Bispecific Antibody-Anticalin Fusion Protein PRS-344/S095012 Elicits Strong T-Cell Stimulation in a Tumor-Localized Manner. Clin Cancer Res 2022; 28:3387-3399. [PMID: 35121624 PMCID: PMC9662934 DOI: 10.1158/1078-0432.ccr-21-2762] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Accepted: 02/02/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE While patients responding to checkpoint blockade often achieve remarkable clinical responses, there is still significant unmet need due to resistant or refractory tumors. A combination of checkpoint blockade with further T-cell stimulation mediated by 4-1BB agonism may increase response rates and durability of response. A bispecific molecule that blocks the programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis and localizes 4-1BB costimulation to a PD-L1-positive (PD-L1+) tumor microenvironment (TME) or tumor draining lymph nodes could maximize antitumor immunity and increase the therapeutic window beyond what has been reported for anti-4-1BB mAbs. EXPERIMENTAL DESIGN We generated and characterized the PD-L1/4-1BB bispecific molecule PRS-344/S095012 for target binding and functional activity in multiple relevant in vitro assays. Transgenic mice expressing human 4-1BB were transplanted with human PD-L1-expressing murine MC38 cells to assess in vivo antitumoral activity. RESULTS PRS-344/S095012 bound to its targets with high affinity and efficiently blocked the PD-1/PD-L1 pathway, and PRS-344/S095012-mediated 4-1BB costimulation was strictly PD-L1 dependent. We demonstrated a synergistic effect of both pathways on T-cell stimulation with the bispecific PRS-344/S095012 being more potent than the combination of mAbs. PRS-344/S095012 augmented CD4-positive (CD4+) and CD8-positive (CD8+) T-cell effector functions and enhanced antigen-specific T-cell stimulation. Finally, PRS-344/S095012 demonstrated strong antitumoral efficacy in an anti-PD-L1-resistant mouse model in which soluble 4-1BB was detected as an early marker for 4-1BB agonist activity. CONCLUSIONS The PD-L1/4-1BB bispecific PRS-344/S095012 efficiently combines checkpoint blockade with a tumor-localized 4-1BB-mediated stimulation burst to antigen-specific T cells, more potent than the combination of mAbs, supporting the advancement of PRS-344/S095012 toward clinical development. See related commentary by Shu et al., p. 3182.
Collapse
Affiliation(s)
| | | | - Lucia Pattarini
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | | | | | - Catherine Gallou
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | | | | | - Helene Lelievre
- Institut de Recherches Internationales Servier Oncology R&D Unit, Suresnes, France
| | - Alix Scholer-Dahirel
- Institut de Recherches Internationales Servier Oncology R&D Unit, Suresnes, France
| | | | - Celine Sancerne
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | - Matthieu Riviere
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | - Maximilien Grandclaudon
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | - Markus Zettl
- Pieris Pharmaceuticals GmbH, Hallbergmoos, Germany
| | | | | | - Veronique Blanc
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | | |
Collapse
|
120
|
Chocarro L, Bocanegra A, Blanco E, Fernández-Rubio L, Arasanz H, Echaide M, Garnica M, Ramos P, Piñeiro-Hermida S, Vera R, Escors D, Kochan G. Cutting-Edge: Preclinical and Clinical Development of the First Approved Lag-3 Inhibitor. Cells 2022; 11:2351. [PMID: 35954196 PMCID: PMC9367598 DOI: 10.3390/cells11152351] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized medical practice in oncology since the FDA approval of the first ICI 11 years ago. In light of this, Lymphocyte-Activation Gene 3 (LAG-3) is one of the most important next-generation immune checkpoint molecules, playing a similar role as Programmed cell Death protein 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4). 19 LAG-3 targeting molecules are being evaluated at 108 clinical trials which are demonstrating positive results, including promising bispecific molecules targeting LAG-3 simultaneously with other ICIs. Recently, a new dual anti-PD-1 (Nivolumab) and anti-LAG-3 (Relatimab) treatment developed by Bristol Myers Squibb (Opdualag), was approved by the Food and Drug Administration (FDA) as the first LAG-3 blocking antibody combination for unresectable or metastatic melanoma. This novel immunotherapy combination more than doubled median progression-free survival (PFS) when compared to nivolumab monotherapy (10.1 months versus 4.6 months). Here, we analyze the large clinical trial responsible for this historical approval (RELATIVITY-047), and discuss the preclinical and clinical developments that led to its jump into clinical practice. We will also summarize results achieved by other LAG-3 targeting molecules with promising anti-tumor activities currently under clinical development in phases I, I/II, II, and III. Opdualag will boost the entry of more LAG-3 targeting molecules into clinical practice, supporting the accumulating evidence highlighting the pivotal role of LAG-3 in cancer.
Collapse
Affiliation(s)
- Luisa Chocarro
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ana Bocanegra
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ester Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), 31001 Pamplona, Spain
| | - Leticia Fernández-Rubio
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Hugo Arasanz
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain;
| | - Miriam Echaide
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Maider Garnica
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Pablo Ramos
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ruth Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain;
| | - David Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Grazyna Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| |
Collapse
|
121
|
Designing antibodies as therapeutics. Cell 2022; 185:2789-2805. [PMID: 35868279 DOI: 10.1016/j.cell.2022.05.029] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022]
Abstract
Antibody therapeutics are a large and rapidly expanding drug class providing major health benefits. We provide a snapshot of current antibody therapeutics including their formats, common targets, therapeutic areas, and routes of administration. Our focus is on selected emerging directions in antibody design where progress may provide a broad benefit. These topics include enhancing antibodies for cancer, antibody delivery to organs such as the brain, gastrointestinal tract, and lungs, plus antibody developability challenges including immunogenicity risk assessment and mitigation and subcutaneous delivery. Machine learning has the potential, albeit as yet largely unrealized, for a transformative future impact on antibody discovery and engineering.
Collapse
|
122
|
Warmuth S, Gunde T, Snell D, Brock M, Weinert C, Simonin A, Hess C, Tietz J, Johansson M, Spiga FM, Heiz R, Flückiger N, Wagen S, Zeberer J, Diem D, Mahler D, Wickihalder B, Muntwiler S, Chatterjee B, Küttner B, Bommer B, Yaman Y, Lichtlen P, Urech D. Engineering of a trispecific tumor-targeted immunotherapy incorporating 4-1BB co-stimulation and PD-L1 blockade. Oncoimmunology 2022; 10:2004661. [PMID: 35844969 PMCID: PMC9278964 DOI: 10.1080/2162402x.2021.2004661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Co-stimulatory 4-1BB receptors on tumor-infiltrating T cells are a compelling target for overcoming resistance to immune checkpoint inhibitors, but initial clinical studies of 4-1BB agonist mAbs were accompanied by liver toxicity. We sought to engineer a tri-specific antibody-based molecule that stimulates intratumoral 4-1BB and blocks PD-L1/PD-1 signaling without systemic toxicity and with clinically favorable pharmacokinetics. Recombinant fusion proteins were constructed using scMATCH3 technology and humanized antibody single-chain variable fragments against PD-L1, 4-1BB, and human serum albumin. Paratope affinities were optimized using single amino acid substitutions, leading to design of the drug candidate NM21-1480. Multiple in vitro experiments evaluated pharmacodynamic properties of NM21-1480, and syngeneic mouse tumor models assessed antitumor efficacy and safety of murine analogues. A GLP multiple-dose toxicology study evaluated its safety in non-human primates. NM21-1480 inhibited PD-L1/PD-1 signaling with a potency similar to avelumab, and it potently stimulated 4-1BB signaling only in the presence of PD-L1, while exhibiting an EC50 that was largely independent of PD-L1 density. NM21-1480 exhibited high efficacy for co-activation of pre-stimulated T cells and dendritic cells. In xenograft models in syngeneic mice, NM21-1480 induced tumor regression and tumor infiltration of T cells without causing systemic T-cell activation. A GLP toxicology study revealed no evidence of liver toxicity at doses up to 140 mg/kg, and pharmacokinetic studies in non-human primates suggested a plasma half-life in humans of up to 2 weeks. NM21-1480 has the potential to overcome checkpoint resistance by co-activating tumor-infiltrating lymphocytes without liver toxicity.
Collapse
Affiliation(s)
| | - Tea Gunde
- Numab Therapeutics AG, Waedenswil, Switzerland
| | | | | | | | | | | | - Julia Tietz
- Numab Therapeutics AG, Waedenswil, Switzerland
| | | | | | - Robin Heiz
- Numab Therapeutics AG, Waedenswil, Switzerland
| | | | | | | | - Dania Diem
- Numab Therapeutics AG, Waedenswil, Switzerland
| | - Dana Mahler
- Numab Therapeutics AG, Waedenswil, Switzerland
| | | | | | | | | | | | | | | | - David Urech
- Numab Therapeutics AG, Waedenswil, Switzerland
| |
Collapse
|
123
|
Orr CM, Fisher H, Yu X, Chan CHT, Gao Y, Duriez PJ, Booth SG, Elliott I, Inzhelevskaya T, Mockridge I, Penfold CA, Wagner A, Glennie MJ, White AL, Essex JW, Pearson AR, Cragg MS, Tews I. Hinge disulfides in human IgG2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility. Sci Immunol 2022; 7:eabm3723. [PMID: 35857577 DOI: 10.1126/sciimmunol.abm3723] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Antibodies protect from infection, underpin successful vaccines and elicit therapeutic responses in otherwise untreatable cancers and autoimmune conditions. The human IgG2 isotype displays a unique capacity to undergo disulfide shuffling in the hinge region, leading to modulation of its ability to drive target receptor signaling (agonism) in a variety of important immune receptors, through hitherto unexplained molecular mechanisms. To address the underlying process and reveal how hinge disulfide orientation affects agonistic activity, we generated a series of cysteine to serine exchange variants in the hinge region of the clinically relevant monoclonal antibody ChiLob7/4, directed against the key immune receptor CD40. We report how agonistic activity varies with disulfide pattern and is afforded by the presence of a disulfide crossover between F(ab) arms in the agonistic forms, independently of epitope, as observed in the determined crystallographic structures. This structural "switch" affects directly on antibody conformation and flexibility. Small-angle x-ray scattering and ensemble modeling demonstrated that the least flexible variants adopt the fewest conformations and evoke the highest levels of receptor agonism. This covalent change may be amenable for broad implementation to modulate receptor signaling in an epitope-independent manner in future therapeutics.
Collapse
Affiliation(s)
- Christian M Orr
- University of Southampton, Biological Sciences, Southampton SO17 1BJ, UK
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
- Hamburg Centre for Ultrafast Imaging CFEL, Hamburg 22761, Germany
- Diamond Light Source, Didcot OX11 0FA, UK
| | - Hayden Fisher
- University of Southampton, Biological Sciences, Southampton SO17 1BJ, UK
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Xiaojie Yu
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Claude H-T Chan
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Yunyun Gao
- Hamburg Centre for Ultrafast Imaging CFEL, Hamburg 22761, Germany
- Institute for Nanostructure and Solid State Physics, Hamburg 22761, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - Patrick J Duriez
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
- University of Southampton, CRUK Protein Core Facility, Southampton, SO16 6YD, UK
| | - Steven G Booth
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Isabel Elliott
- University of Southampton, Biological Sciences, Southampton SO17 1BJ, UK
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
- University of Southampton, School of Chemistry, Southampton SO17 1BJ, UK
| | | | - Ian Mockridge
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Christine A Penfold
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | | | - Martin J Glennie
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Ann L White
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
- UCB Pharma, Slough SL1 3WE, UK
| | - Jonathan W Essex
- University of Southampton, School of Chemistry, Southampton SO17 1BJ, UK
- University of Southampton, Institute for Life Sciences, Southampton SO17 1BJ, UK
| | - Arwen R Pearson
- Hamburg Centre for Ultrafast Imaging CFEL, Hamburg 22761, Germany
- Institute for Nanostructure and Solid State Physics, Hamburg 22761, Germany
| | - Mark S Cragg
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
- University of Southampton, Institute for Life Sciences, Southampton SO17 1BJ, UK
| | - Ivo Tews
- University of Southampton, Biological Sciences, Southampton SO17 1BJ, UK
- University of Southampton, Institute for Life Sciences, Southampton SO17 1BJ, UK
| |
Collapse
|
124
|
Upadhyaya P, Kristensson J, Lahdenranta J, Repash E, Ma J, Kublin J, Mudd GE, Luus L, Jeffrey P, Hurov K, McDonnell K, Keen N. Discovery and Optimization of a Synthetic Class of Nectin-4-Targeted CD137 Agonists for Immuno-oncology. J Med Chem 2022; 65:9858-9872. [PMID: 35819182 PMCID: PMC9340768 DOI: 10.1021/acs.jmedchem.2c00505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
CD137 (4-1BB) is a co-stimulatory receptor on immune
cells and
Nectin-4 is a cell adhesion molecule that is overexpressed in multiple
tumor types. Using a series of poly(ethylene glycol) (PEG)-based linkers,
synthetic bicyclic peptides targeting CD137 were conjugated to Bicycles targeting Nectin-4. The resulting bispecific molecules
were potent CD137 agonists that require the presence of both Nectin-4-expressing
tumor cells and CD137-expressing immune cells for activity. A multipronged
approach was taken to optimize these Bicycle tumor-targeted
immune cell agonists by exploring the impact of chemical configuration,
binding affinity, and pharmacokinetics on CD137 agonism and antitumor
activity. This effort resulted in the discovery of BT7480, which elicited
robust CD137 agonism and maximum antitumor activity in syngeneic mouse
models. A tumor-targeted approach to CD137 agonism using low-molecular-weight,
short-acting molecules with high tumor penetration is a yet unexplored
path in the clinic, where emerging data suggest that persistent target
engagement, characteristic of biologics, may lead to suboptimal immune
response.
Collapse
Affiliation(s)
- Punit Upadhyaya
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Julia Kristensson
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Johanna Lahdenranta
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Elizabeth Repash
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Jun Ma
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Jessica Kublin
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Gemma E Mudd
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Lia Luus
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Phil Jeffrey
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Kristen Hurov
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Kevin McDonnell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Nicholas Keen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| |
Collapse
|
125
|
Liu L, Wu Y, Ye K, Cai M, Zhuang G, Wang J. Antibody-Targeted TNFRSF Activation for Cancer Immunotherapy: The Role of FcγRIIB Cross-Linking. Front Pharmacol 2022; 13:924197. [PMID: 35865955 PMCID: PMC9295861 DOI: 10.3389/fphar.2022.924197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Co-stimulation signaling in various types of immune cells modulates immune responses in physiology and disease. Tumor necrosis factor receptor superfamily (TNFRSF) members such as CD40, OX40 and CD137/4-1BB are expressed on myeloid cells and/or lymphocytes, and they regulate antigen presentation and adaptive immune activities. TNFRSF agonistic antibodies have been evaluated extensively in preclinical models, and the robust antitumor immune responses and efficacy have encouraged continued clinical investigations for the last two decades. However, balancing the toxicities and efficacy of TNFRSF agonistic antibodies remains a major challenge in the clinical development. Insights into the co-stimulation signaling biology, antibody structural roles and their functionality in immuno-oncology are guiding new advancement of this field. Leveraging the interactions between antibodies and the inhibitory Fc receptor FcγRIIB to optimize co-stimulation agonistic activities dependent on FcγRIIB cross-linking selectively in tumor microenvironment represents the current frontier, which also includes cross-linking through tumor antigen binding with bispecific antibodies. In this review, we will summarize the immunological roles of TNFRSF members and current clinical studies of TNFRSF agonistic antibodies. We will also cover the contribution of different IgG structure domains to these agonistic activities, with a focus on the role of FcγRIIB in TNFRSF cross-linking and clustering bridged by agonistic antibodies. We will review and discuss several Fc-engineering approaches to optimize Fc binding ability to FcγRIIB in the context of proper Fab and the epitope, including a cross-linking antibody (xLinkAb) model and its application in developing TNFRSF agonistic antibodies with improved efficacy and safety for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yi Wu
- Lyvgen Biopharma, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meichun Cai
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
126
|
Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities. Nat Rev Drug Discov 2022; 21:529-540. [PMID: 35701637 DOI: 10.1038/s41573-022-00493-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
Abstract
Tumours employ various tactics to adapt and eventually resist immune attack. These mechanisms are collectively called adaptive immune resistance (AIR). The first defined and therapeutically validated AIR mechanism is the selective induction of programmed cell death 1 ligand 1 (PDL1) by interferon-γ in the tumour. Blockade of PDL1 binding to its receptor PD1 by antibodies (anti-PD therapy) has resulted in remission of a fraction of patients with advanced-stage cancer, especially in solid tumours. However, many clinical trials combining anti-PD therapy with other antitumour drugs conducted without a strong mechanistic rationale have failed to identify a synergistic or additive effect. In this Perspective article, we discuss why defining AIR mechanisms at the tumour site should be a key focus to direct future drug development as well as practical approaches to improve current cancer therapy.
Collapse
|
127
|
Sanborn RE, Schneiders FL, Senan S, Gadgeel SM. Beyond Checkpoint Inhibitors: Enhancing Antitumor Immune Response in Lung Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-14. [PMID: 35671433 DOI: 10.1200/edbk_350967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The introduction of immune checkpoint inhibitors has dramatically changed the treatment landscape and improved survival for many patients with thoracic malignancies. Although some patients may experience prolonged survival benefit with immune checkpoint inhibitors, a majority do not experience disease control or benefit, supporting the need for research and development of improved approaches for facilitating immune recognition. Additionally, many patients will experience toxicity with the current approaches to immunotherapy, supporting the need for developing treatment strategies with less risk of adverse events. An extensive array of different strategies are currently under investigation, including novel combinations of checkpoint inhibitors or immunotherapies; novel agents beyond checkpoint inhibitors (e.g., bispecific antibodies, vaccine strategies, cytokine therapies); and different approaches for use of radiation to augment systemic immunotherapy agents. With each strategy, researchers are evaluating the potential for augmenting antitumor responses and ensuring more sustained antitumor effects. This article highlights areas of active research, reviewing the rationale for different investigative strategies, as well as currently available clinical data.
Collapse
Affiliation(s)
- Rachel E Sanborn
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR
| | | | - Suresh Senan
- Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | |
Collapse
|
128
|
Ascierto PA, Avallone A, Bhardwaj N, Bifulco C, Bracarda S, Brody JD, Buonaguro L, Demaria S, Emens LA, Ferris RL, Galon J, Khleif SN, Klebanoff CA, Laskowski T, Melero I, Paulos CM, Pignata S, Ruella M, Svane IM, Taube JM, Fox BA, Hwu P, Puzanov I. Perspectives in Immunotherapy: meeting report from the Immunotherapy Bridge, December 1st-2nd, 2021. J Transl Med 2022; 20:257. [PMID: 35672823 PMCID: PMC9172186 DOI: 10.1186/s12967-022-03471-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023] Open
Abstract
Over the past decade, immunotherapy has become an increasingly fundamental modality in the treatment of cancer. The positive impact of immune checkpoint inhibition, especially anti-programmed death (PD)-1/PD-ligand (L)1 blockade, in patients with different cancers has focused attention on the potential for other immunotherapeutic approaches. These include inhibitors of additional immune checkpoints, adoptive cell transfer (ACT), and therapeutic vaccines. Patients with advanced cancers who previously had limited treatment options available may now benefit from immunotherapies that can offer durable responses and improved survival outcomes. However, despite this, a significant proportion of patients fail to respond to immunotherapy, especially those with less immunoresponsive cancer types, and there remains a need for new treatment strategies.The virtual Immunotherapy Bridge (December 1st-2nd, 2021), organized by the Fondazione Melanoma Onlus, Naples, Italy in collaboration with the Society for Immunotherapy of Cancer addressed several areas of current research in immunotherapy, including lessons learned from cell therapies, drivers of immune response, and trends in immunotherapy across different cancers, and these are summarised here.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlo Bifulco
- Providence Genomics and Earle A. Chiles Research Institute, Portland, OR, USA
| | - Sergio Bracarda
- Medical and Translational Oncology Unit, Department of Oncology, Azienda Ospedaliera Santa Maria, Terni, Italy
| | - Joshua D Brody
- Department of Medicine, Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luigi Buonaguro
- Department of Experimental Oncology, Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College; Sandra and Edward Meyer Cancer Center; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Leisha A Emens
- Magee Women's Hospital/UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology/Equipe Labellisée Ligue Contre Le Cancer/Centre de Recherche Des Cordeliers, Sorbonne Université, Université Paris Cité, Marseille, France
| | - Samir N Khleif
- The Loop Immuno Oncology Laboratory, Georgetown University Medical School, Washington, DC, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center (MSKCC)/Center for Cell Engineering, MSKCC/Parker Institute for Cancer Immunotherapy/Weill Cornell Medical College, New York, NY, USA
| | - Tamara Laskowski
- Head of New Therapeutic Products - Personalized Medicine, Lonza Global, Houston, TX, USA
| | - Ignacio Melero
- Department of Immunology and Immunotherapy, Clinica Universidad de Navarra and CIBERONC, Pamplona, Spain
| | | | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Marco Ruella
- Center for Cellular Immunotherapies and Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Janis M Taube
- Department of Dermatology, Johns Hopkins University SOM, Baltimore, MD, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Institute, Portland, OR, USA
| | | | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
129
|
Sanmamed MF, Berraondo P, Rodriguez-Ruiz ME, Melero I. Charting roadmaps towards novel and safe synergistic immunotherapy combinations. NATURE CANCER 2022; 3:665-680. [PMID: 35764745 DOI: 10.1038/s43018-022-00401-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Checkpoint inhibitor-based cancer immunotherapy is often combined in the clinic with other immunotherapy strategies, targeted therapies, chemotherapy or standard-of-care treatments to achieve superior therapeutic efficacy. The large number of immunotherapy combinations that are currently undergoing clinical testing necessitate the establishment of faithful criteria to prioritize optimal combinations with evidence of synergy, to determine their safety and optimal sequence of administration and to identify biomarkers of therapy resistance and response. In this review, we focus on recent developments in immunotherapy combinations and reflect on how combinations should be optimized to maximize the impact of immunotherapy in clinical oncology.
Collapse
Affiliation(s)
- Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.
| |
Collapse
|
130
|
Marconcini R, Pezzicoli G, Stucci LS, Sergi MC, Lospalluti L, Porta C, Tucci M. Combination of immunotherapy and other targeted therapies in advanced cutaneous melanoma. Hum Vaccin Immunother 2022; 18:1980315. [PMID: 34613889 PMCID: PMC9302493 DOI: 10.1080/21645515.2021.1980315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous Melanoma (CM) is an aggressive cancer whose incidence is increasing worldwide. However, the knowledge of its biology and genes driving cell growth and survival allowed to develop new drugs that have improved PFS and OS of advanced disease. Both BRAF targeting agents and immune checkpoint inhibitors (ICIs) have been adopted for the treatment of metastatic disease and the adjuvant setting. Several melanoma patients show innate or acquired drug-resistance and thus new strategies are required for overcoming this complication. New ICIs have been developed, and strategies of combination or sequencing are under investigation in ongoing clinical trials. In addition, pre-clinical data have demonstrated that many strategies induce the release of neoantigens within the tumor microenvironment, thus suggesting the combination of new agents with ICIs. Here, we review the ongoing strategies in advanced CM including a dedicated section on treatment of brain metastases.
Collapse
Affiliation(s)
- Riccardo Marconcini
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gaetano Pezzicoli
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
- Dermatology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
| | - Luigia Stefania Stucci
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
| | - Maria Chiara Sergi
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
| | - Lucia Lospalluti
- Dermatology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
| | - Camillo Porta
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncolog, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Marco Tucci
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncolog, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
131
|
Morales-Kastresana A, Siegemund M, Haak S, Peper-Gabriel J, Neiens V, Rothe C. Anticalin®-based therapeutics: Expanding new frontiers in drug development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:89-106. [PMID: 35777866 DOI: 10.1016/bs.ircmb.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anticalin proteins are a novel class of clinical-stage biopharmaceuticals with high potential in various disease areas. Anticalin proteins, derived from extracellular human lipocalins are single-chain proteins, with a highly stable structure that can be engineered to bind with high specificity and potency to targets of therapeutic relevance. The small size and stable structure support their development as inhalable biologics in the field of respiratory diseases as already demonstrated for PRS-060/AZD1402, an Anticalin protein currently undergoing clinical development for the treatment of asthma. Anticalin proteins provide formatting flexibility which allows fusion with the same or other Anticalin proteins, or with other biologics to generate multivalent, multiparatopic or multispecific fusion proteins. The fusion of Anticalin proteins to antibodies allows the generation of potent therapeutic proteins with new modes of action, such as antibody-Anticalin bispecific proteins with tumor-localized activity. Cinrebafusp alfa and PRS-344/S095012 antibody-Anticalin bispecific proteins were designed to reduce potential systemic toxicity by localizing the activity to the tumor, and are currently in clinical development in immuno-oncology. Furthermore, the ease in generating bi- and multispecifics as well as the small and stable structure prompted the investigation of Anticalin proteins for the CAR T space, opening additional potential treatment options based on Anticalin protein therapies.
Collapse
Affiliation(s)
| | | | - Stefan Haak
- Pieris Pharmaceuticals GmbH, Hallbergmoos, Germany
| | | | | | | |
Collapse
|
132
|
Tao R, Liu Q, Huang R, Wang K, Sun Z, Yang P, Wang J. A Novel TNFSF-Based Signature Predicts the Prognosis and Immunosuppressive Status of Lower-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3194996. [PMID: 35592520 PMCID: PMC9112166 DOI: 10.1155/2022/3194996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
Abstract
Purpose Tumour necrosis factor (TNF) superfamilies play important roles in cell proliferation, migration, differentiation, and apoptosis. We believe that TNF has a huge potential and might cast new insight into antitumour therapies. Therefore, we established this signature based on TNF superfamilies. Results A six-gene signature derived from the TNF superfamilies was established. The Riskscore correlated significantly with the expression of immune checkpoint genes and infiltrating M2 macrophages in the tumour specimen. This signature was also associated with mutations in genes that regulate tumour cell proliferation. Univariate and multivariate regression analyses further confirmed the Riskscore, TNFRSF11b, and TNFRSF12a as independent risk factors in The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets. Conclusion Our signature could accurately predict the prognosis of lower-grade gliomas (LGG). In addition, this six-gene signature could predict the immunosuppressive status of LGG and provide evidence that TNF superfamilies had correlations with some critical mutations that could be effectively targeted now.
Collapse
Affiliation(s)
- Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kuanyu Wang
- Gamma Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyan Sun
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
133
|
Muik A, Garralda E, Altintas I, Gieseke F, Geva R, Ben-Ami E, Maurice-Dror C, Calvo E, LoRusso PM, Alonso G, Rodriguez-Ruiz ME, Schoedel KB, Blum JM, Sänger B, Salcedo TW, Burm SM, Stanganello E, Verzijl D, Vascotto F, Sette A, Quinkhardt J, Plantinga TS, Toker A, van den Brink EN, Fereshteh M, Diken M, Satijn D, Kreiter S, Breij EC, Bajaj G, Lagkadinou E, Sasser K, Türeci Ö, Forssmann U, Ahmadi T, Şahin U, Jure-Kunkel M, Melero I. Preclinical Characterization and Phase I Trial Results of a Bispecific Antibody Targeting PD-L1 and 4-1BB (GEN1046) in Patients with Advanced Refractory Solid Tumors. Cancer Discov 2022; 12:1248-1265. [PMID: 35176764 PMCID: PMC9662884 DOI: 10.1158/2159-8290.cd-21-1345] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 02/11/2022] [Indexed: 01/07/2023]
Abstract
Checkpoint inhibitors (CPI) have revolutionized the treatment paradigm for advanced solid tumors; however, there remains an opportunity to improve response rates and outcomes. In preclinical models, 4-1BB costimulation synergizes with CPIs targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis by activating cytotoxic T-cell-mediated antitumor immunity. DuoBody-PD-L1×4-1BB (GEN1046) is an investigational, first-in-class bispecific immunotherapy agent designed to act on both pathways by combining simultaneous and complementary PD-L1 blockade and conditional 4-1BB stimulation in one molecule. GEN1046 induced T-cell proliferation, cytokine production, and antigen-specific T-cell-mediated cytotoxicity superior to clinically approved PD-(L)1 antibodies in human T-cell cultures and exerted potent antitumor activity in transplantable mouse tumor models. In dose escalation of the ongoing first-in-human study in heavily pretreated patients with advanced refractory solid tumors (NCT03917381), GEN1046 demonstrated pharmacodynamic immune effects in peripheral blood consistent with its mechanism of action, manageable safety, and early clinical activity [disease control rate: 65.6% (40/61)], including patients resistant to prior PD-(L)1 immunotherapy. SIGNIFICANCE DuoBody-PD-L1×4-1BB (GEN1046) is a first-in-class bispecific immunotherapy with a manageable safety profile and encouraging preclinical and early clinical activity. With its ability to confer clinical benefit in tumors typically less sensitive to CPIs, GEN1046 may fill a clinical gap in CPI-relapsed or refractory disease or as a combination therapy with CPIs. See related commentary by Li et al., p. 1184. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
Affiliation(s)
| | - Elena Garralda
- Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Barcelona, Spain
| | | | | | - Ravit Geva
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eytan Ben-Ami
- Department of Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | | | - Emiliano Calvo
- START Madrid-CIOCC, Clara Campal Comprehensive Cancer Center, Madrid, Spain
| | | | - Guzman Alonso
- Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Barcelona, Spain
| | | | | | | | | | | | | | - Eliana Stanganello
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Fulvia Vascotto
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | - Mark Fereshteh
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ignacio Melero
- Department of Immunology, Clínica Universidad de Navarra and CIBERONC, Pamplona, Spain.,Corresponding Author: Ignacio Melero, Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Av. Pio XII, 55, Pamplona, Navarra 31008, Spain. Phone: 346-5357-4014; E-mail:
| |
Collapse
|
134
|
Gudd CLC, Possamai LA. The Role of Myeloid Cells in Hepatotoxicity Related to Cancer Immunotherapy. Cancers (Basel) 2022; 14:1913. [PMID: 35454819 PMCID: PMC9027811 DOI: 10.3390/cancers14081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Drug-related hepatotoxicity is an emerging clinical challenge with the widening use of immunotherapeutic agents in the field of oncology. This is an important complication to consider as more immune oncological targets are being identified to show promising results in clinical trials. The application of these therapeutics may be complicated by the development of immune-related adverse events (irAEs), a serious limitation often requiring high-dose immunosuppression and discontinuation of cancer therapy. Hepatoxicity presents one of the most frequently encountered irAEs and a better understanding of the underlying mechanism is crucial for the development of alternative therapeutic interventions. As a novel drug side effect, the immunopathogenesis of the condition is not completely understood. In the liver, myeloid cells play a central role in the maintenance of homeostasis and promotion of inflammation. Recent research has identified myeloid cells to be associated with hepatic adverse events of various immune modulatory monoclonal antibodies. In this review article, we provide an overview of the role of myeloid cells in the immune pathogenesis during hepatoxicity related to cancer immunotherapies and highlight potential treatment options.
Collapse
Affiliation(s)
- Cathrin L. C. Gudd
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Lucia A. Possamai
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
135
|
LaFleur MW, Sharpe AH. CRISPR Screens to Identify Regulators of Tumor Immunity. ANNUAL REVIEW OF CANCER BIOLOGY 2022; 6:103-122. [PMID: 35989706 PMCID: PMC9389862 DOI: 10.1146/annurev-cancerbio-070120-094725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer immunotherapies, such as immune checkpoint blockade (ICB), have been used in a wide range of tumor types with immense clinical benefit. However, ICB does not work in all patients, and attempts to combine ICB with other immune-based therapies have not lived up to their initial promise. Thus, there is a significant unmet need to discover new targets and combination therapies to extend the benefits of immunotherapy to more patients. Systems biology approaches are well suited for addressing this problem because these approaches enable evaluation of many gene targets simultaneously and ranking their relative importance for a phenotype of interest. As such, loss-of-function CRISPR screens are an emerging set of tools being used to prioritize gene targets for modulating pathways of interest in tumor and immune cells. This review describes the first screens performed to discover cancer immunotherapy targets and the technological advances that will enable next-generation screens.
Collapse
Affiliation(s)
- Martin W LaFleur
- Department of Immunology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Arlene H Sharpe
- Department of Immunology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
136
|
Kaneko C, Tsutsui H, Ozeki K, Honda M, Haraya K, Narita Y, Kamata-Sakurai M, Kikuta J, Tabo M, Ishii M. In vivo imaging with two-photon microscopy to assess the tumor-selective binding of an anti-CD137 switch antibody. Sci Rep 2022; 12:4907. [PMID: 35318394 PMCID: PMC8941111 DOI: 10.1038/s41598-022-08951-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 01/01/2023] Open
Abstract
STA551, a novel anti-CD137 switch antibody, binds to CD137 in an extracellular ATP concentration-dependent manner. Although STA551 is assumed to show higher target binding in tumor tissues than in normal tissues, quantitative detection of the target binding of the switch antibody in vivo is technically challenging. In this study, we investigated the target binding of STA551 in vivo using intravital imaging with two-photon microscopy. Tumor-bearing human CD137 knock-in mice were intravenously administered fluorescently labeled antibodies. Flow cytometry analysis of antibody-binding cells and intravital imaging using two-photon microscopy were conducted. Higher CD137 expression in tumor than in spleen tissues was detected by flow cytometry analysis, and T cells and NK cells were the major CD137-expressing cells. In the intravital imaging experiment, conventional and switch anti-CD137 antibodies showed binding in tumors. However, in the spleen, the fluorescence of the switch antibody was much weaker than that of the conventional anti-CD137 antibody and comparable with that of the isotype control. In conclusion, we were able to assess switch antibody biodistribution in vivo through intravital imaging with two-photon microscopy. These results suggest that the tumor-selective binding of STA551 leads to a wide therapeutic window and potent antitumor efficacy without systemic immune activation.
Collapse
Affiliation(s)
- Chisato Kaneko
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Haruka Tsutsui
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kazuhisa Ozeki
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Masaki Honda
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Kenta Haraya
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Yoshinori Narita
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07-11 to 16, Synapse, Singapore, 138623, Singapore
| | - Mika Kamata-Sakurai
- Research Division, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-0570, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mitsuyasu Tabo
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| |
Collapse
|
137
|
Krzyżanowska N, Wojas-Krawczyk K, Milanowski J, Krawczyk P. Future Prospects of Immunotherapy in Non-Small-Cell Lung Cancer Patients: Is There Hope in Other Immune Checkpoints Targeting Molecules? Int J Mol Sci 2022; 23:3087. [PMID: 35328510 PMCID: PMC8950480 DOI: 10.3390/ijms23063087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Currently, one of the leading treatments for non-small-cell lung cancer is immunotherapy involving immune checkpoint inhibitors. These monoclonal antibodies restore the anti-tumour immune response altered by negative immune checkpoint interactions. The most commonly used immunotherapeutics in monotherapy are anti-PD-1 and anti-PD-L1 antibodies. The effectiveness of both groups of antibodies has been proven in many clinical trials, which have translated into positive immunotherapeutic registrations for cancer patients worldwide. These antibodies are generally well tolerated, and certain patients achieve durable responses. However, given the resistance of some patients to this form of therapy, along with its other drawbacks, such as adverse events, alternatives are constantly being sought. Specifically, new drugs targeting already known molecules are being tested, and new potential targets are being explored. The aim of this paper is to provide an overview of the latest developments in this area.
Collapse
Affiliation(s)
- Natalia Krzyżanowska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland; (K.W.-K.); (J.M.); (P.K.)
| | | | | | | |
Collapse
|
138
|
Glez-Vaz J, Azpilikueta A, Olivera I, Cirella A, Teijeira A, Ochoa MC, Alvarez M, Eguren-Santamaria I, Luri-Rey C, Rodriguez-Ruiz ME, Nie X, Chen L, Guedan S, Sanamed MF, Luis Perez Gracia J, Melero I. Soluble CD137 as a dynamic biomarker to monitor agonist CD137 immunotherapies. J Immunother Cancer 2022; 10:jitc-2021-003532. [PMID: 35236742 PMCID: PMC8896037 DOI: 10.1136/jitc-2021-003532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic. Methods We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression. Results CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137. Conclusion sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents.
Collapse
Affiliation(s)
- Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Xinxin Nie
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miguel F Sanamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose Luis Perez Gracia
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
139
|
Balakrishnan PB, Ledezma DK, Cano-Mejia J, Andricovich J, Palmer E, Patel VA, Latham PS, Yvon ES, Villagra A, Fernandes R, Sweeney EE. CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma. NANO RESEARCH 2022; 15:2300-2314. [PMID: 36089987 PMCID: PMC9455608 DOI: 10.1007/s12274-021-3813-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite the promise of immunotherapy such as the immune checkpoint inhibitors (ICIs) anti-PD-1 and anti-CTLA-4 for advanced melanoma, only 26%-52% of patients respond, and many experience grade III/IV immune-related adverse events. Motivated by the need for an effective therapy for patients non-responsive to clinically approved ICIs, we have developed a novel nanoimmunotherapy that combines locally administered Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) with systemically administered agonistic anti-CD137 monoclonal antibody therapy (aCD137). PBNP-PTT was administered at various thermal doses to melanoma cells in vitro, and was combined with aCD137 in vivo to test treatment effects on melanoma tumor progression, animal survival, immunological protection against tumor rechallenge, and hepatotoxicity. When administered at a melanoma-specific thermal dose, PBNP-PTT elicits immunogenic cell death (ICD) in melanoma cells and upregulates markers associated with antigen presentation and immune cell co-stimulation in vitro. Consequently, PBNP-PTT eliminates primary melanoma tumors in vivo, yielding long-term tumor-free survival. However, the antitumor immune effects generated by PBNP-PTT cannot eliminate secondary tumors, despite significantly slowing their growth. The addition of aCD137 enables significant abscopal efficacy and improvement of survival, functioning through activated dendritic cells and tumor-infiltrating CD8+ T cells, and generates CD4+ and CD8+ T cell memory that manifests in the rejection of tumor rechallenge, with no long-term hepatotoxicity. This study describes for the first time a novel and effective nanoimmunotherapy combination of PBNP-PTT with aCD137 mAb therapy for melanoma.
Collapse
Affiliation(s)
- Preethi Bala Balakrishnan
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Debbie K. Ledezma
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Juliana Cano-Mejia
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Jaclyn Andricovich
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Erica Palmer
- GW Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Vishal A. Patel
- Department of Dermatology & Oncology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Patricia S. Latham
- Department of Pathology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Eric S. Yvon
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Alejandro Villagra
- GW Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Rohan Fernandes
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- ImmunoBlue, Bethesda, MD 20817, USA
| | - Elizabeth E. Sweeney
- GW Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- ImmunoBlue, Bethesda, MD 20817, USA
| |
Collapse
|
140
|
Kortekaas Krohn I, Aerts JL, Breckpot K, Goyvaerts C, Knol E, Van Wijk F, Gutermuth J. T-cell subsets in the skin and their role in inflammatory skin disorders. Allergy 2022; 77:827-842. [PMID: 34559894 DOI: 10.1111/all.15104] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022]
Abstract
T lymphocytes (T cells) are major players of the adaptive immune response. Naive T cells are primed in the presence of cytokines, leading to polarization into distinct T-cell subsets with specific functions. These subsets are classified based on their T-cell receptor profile, expression of transcription factors, surface cytokine and chemokine receptors, and their cytokine production, which together determine their specific function. This review provides an overview of the various T-cell subsets and their function in several inflammatory skin disorders ranging from allergic inflammation to skin tumors. Moreover, we highlight similarities of T-cell responses across different skin disorders, demonstrating the presence of similar and opposing functions for the different T-cell subsets. Finally, we discuss the effects of currently available and promising therapeutic approaches to harness T cells in inflammatory skin diseases for which efficacy next to unwanted side effects provide new insights into the pathophysiology of skin disorders.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB)Skin Immunology & Immune Tolerance (SKIN) Research Group Brussels Belgium
- Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel)Department of DermatologyUniversitair Ziekenhuis Brussel Brussels Belgium
| | - Joeri L. Aerts
- Vrije Universiteit Brussel (VUB)Neuro‐Aging and Viro‐Immunotherapy (NAVI) Research Group Brussels Belgium
| | - Karine Breckpot
- Vrije Universiteit Brussel (VUB)Laboratory for Molecular and Cellular Therapy (LMCT)Department of Biomedical Sciences Brussels Belgium
| | - Cleo Goyvaerts
- Vrije Universiteit Brussel (VUB)Laboratory for Molecular and Cellular Therapy (LMCT)Department of Biomedical Sciences Brussels Belgium
| | - Edward Knol
- Center for Translational Immunology University Medical Center Utrecht Utrecht The Netherlands
- Department Dermatology/Allergology University Medical Center Utrecht Utrecht The Netherlands
| | - Femke Van Wijk
- Center for Translational Immunology University Medical Center Utrecht Utrecht The Netherlands
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB)Skin Immunology & Immune Tolerance (SKIN) Research Group Brussels Belgium
- Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel)Department of DermatologyUniversitair Ziekenhuis Brussel Brussels Belgium
| |
Collapse
|
141
|
Muik A, Altintas I, Gieseke F, Schoedel KB, Burm SM, Toker A, Salcedo TW, Verzijl D, Eisel D, Grunwitz C, Kranz LM, Vormehr M, Satijn DP, Diken M, Kreiter S, Sasser K, Ahmadi T, Türeci Ö, Breij EC, Jure-Kunkel M, Sahin U. An Fc-inert PD-L1×4-1BB bispecific antibody mediates potent anti-tumor immunity in mice by combining checkpoint inhibition and conditional 4-1BB co-stimulation. Oncoimmunology 2022; 11:2030135. [PMID: 35186440 PMCID: PMC8855865 DOI: 10.1080/2162402x.2022.2030135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis have changed the treatment paradigm for advanced solid tumors; however, many patients experience treatment resistance. In preclinical models 4-1BB co-stimulation synergizes with ICI by activating cytotoxic T- and NK-cell-mediated anti-tumor immunity. Here we characterize the mechanism of action of a mouse-reactive Fc-inert PD-L1×4-1BB bispecific antibody (mbsAb-PD-L1×4-1BB) and provide proof-of-concept for enhanced anti-tumor activity. In reporter assays mbsAb-PD-L1×4-1BB exhibited conditional 4-1BB agonist activity that was dependent on simultaneous binding to PD-L1. mbsAb-PD-L1×4-1BB further blocked the PD-L1/PD-1 interaction independently of 4-1BB binding. By combining both mechanisms, mbsAb-PD-L1×4-1BB strongly enhanced T-cell proliferation, cytokine production and antigen-specific cytotoxicity using primary mouse cells in vitro. Furthermore, mbsAb-PD-L1×4-1BB exhibited potent anti-tumor activity in the CT26 and MC38 models in vivo, leading to the rejection of CT26 tumors that were unresponsive to PD-L1 blockade alone. Anti-tumor activity was associated with increased tumor-specific CD8+ T cells and reduced regulatory T cells within the tumor microenvironment and tumor-draining lymph nodes. In immunocompetent tumor-free mice, mbsAb-PD-L1×4-1BB treatment neither induced T-cell infiltration into the liver nor elevated liver enzymes in the blood. Dual targeting of PD-L1 and 4-1BB with a bispecific antibody may therefore address key limitations of first generation 4-1BB-agonistic antibodies, and may provide a novel approach to improve PD-1/PD-L1 checkpoint blockade.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ugur Sahin
- BioNTech SE, Mainz, Germany
- TRON – Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| |
Collapse
|
142
|
Thoreau F, Chudasama V. Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chem Biol 2022; 3:140-169. [PMID: 35360884 PMCID: PMC8826860 DOI: 10.1039/d1cb00082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
In the past two decades, immunotherapy has established itself as one of the leading strategies for cancer treatment, as illustrated by the exponentially growing number of related clinical trials. This trend was, in part, prompted by the clinical success of both immune checkpoint modulation and immune cell engagement, to restore and/or stimulate the patient's immune system's ability to fight the disease. These strategies were sustained by progress in bispecific antibody production. However, despite the decisive progress made in the treatment of cancer, toxicity and resistance are still observed in some cases. In this review, we initially provide an overview of the monoclonal and bispecific antibodies developed with the objective of restoring immune system functions to treat cancer (cancer immunotherapy), through immune checkpoint modulation, immune cell engagement or a combination of both. Their production, design strategy and impact on the clinical trial landscape are also addressed. In the second part, the concept of multispecific antibody formats, notably MuTICEMs (Multispecific Targeted Immune Cell Engagers & Modulators), as a possible answer to current immunotherapy limitations is investigated. We believe it could be the next step to take for cancer immunotherapy research and expose why bioconjugation chemistry might play a key role in these future developments.
Collapse
Affiliation(s)
- Fabien Thoreau
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
143
|
Aschmoneit N, Kocher K, Siegemund M, Lutz MS, Kühl L, Seifert O, Kontermann RE. Fc-based Duokines: dual-acting costimulatory molecules comprising TNFSF ligands in the single-chain format fused to a heterodimerizing Fc (scDk-Fc). Oncoimmunology 2022; 11:2028961. [PMID: 35083097 PMCID: PMC8786347 DOI: 10.1080/2162402x.2022.2028961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Targeting costimulatory receptors of the tumor necrosis factor superfamily (TNFSF) to activate T-cells and promote anti-tumor T-cell function have emerged as a promising strategy in cancer immunotherapy. Previous studies have shown that combining two different members of the TNFSF resulted in dual-acting costimulatory molecules with the ability to activate two different receptors either on the same cell or on different cell types. To achieve prolonged plasma half-life and extended drug disposition, we have developed novel dual-acting molecules by fusing single-chain ligands of the TNFSF to heterodimerizing Fc chains (scDuokine-Fc, scDk-Fc). Incorporating costimulatory ligands of the TNF superfamily into a scDk-Fc molecule resulted in enhanced T-cell proliferation translating in an increased anti-tumor activity in combination with a primary T-cell-activating bispecific antibody. Our data show that the scDk-Fc molecules are potent immune-stimulatory molecules that are able to enhance T-cell mediated anti-tumor responses.
Collapse
Affiliation(s)
- Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Katharina Kocher
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martin Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martina S. Lutz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
144
|
James BH, Papakyriacou P, Gardener MJ, Gliddon L, Weston CJ, Lalor PF. The Contribution of Liver Sinusoidal Endothelial Cells to Clearance of Therapeutic Antibody. Front Physiol 2022; 12:753833. [PMID: 35095549 PMCID: PMC8795706 DOI: 10.3389/fphys.2021.753833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Many chronic inflammatory diseases are treated by administration of “biological” therapies in terms of fully human and humanized monoclonal antibodies or Fc fusion proteins. These tools have widespread efficacy and are favored because they generally exhibit high specificity for target with a low toxicity. However, the design of clinically applicable humanized antibodies is complicated by the need to circumvent normal antibody clearance mechanisms to maintain therapeutic dosing, whilst avoiding development of off target antibody dependent cellular toxicity. Classically, professional phagocytic immune cells are responsible for scavenging and clearance of antibody via interactions with the Fc portion. Immune cells such as macrophages, monocytes, and neutrophils express Fc receptor subsets, such as the FcγR that can then clear immune complexes. Another, the neonatal Fc receptor (FcRn) is key to clearance of IgG in vivo and serum half-life of antibody is explicitly linked to function of this receptor. The liver is a site of significant expression of FcRn and indeed several hepatic cell populations including Kupffer cells and liver sinusoidal endothelial cells (LSEC), play key roles in antibody clearance. This combined with the fact that the liver is a highly perfused organ with a relatively permissive microcirculation means that hepatic binding of antibody has a significant effect on pharmacokinetics of clearance. Liver disease can alter systemic distribution or pharmacokinetics of antibody-based therapies and impact on clinical effectiveness, however, few studies document the changes in key membrane receptors involved in antibody clearance across the spectrum of liver disease. Similarly, the individual contribution of LSEC scavenger receptors to antibody clearance in a healthy or chronically diseased organ is not well characterized. This is an important omission since pharmacokinetic studies of antibody distribution are often based on studies in healthy individuals and thus may not reflect the picture in an aging or chronically diseased population. Therefore, in this review we consider the expression and function of key antibody-binding receptors on LSEC, and the features of therapeutic antibodies which may accentuate clearance by the liver. We then discuss the implications of this for the design and utility of monoclonal antibody-based therapies.
Collapse
Affiliation(s)
- Bethany H. James
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Pantelitsa Papakyriacou
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Matthew J. Gardener
- Antibody Pharmacology, Biopharm Discovery, Glaxo Smith Kline Research and Development, Stevenage, United Kingdom
| | - Louise Gliddon
- Antibody Pharmacology, Biopharm Discovery, Glaxo Smith Kline Research and Development, Stevenage, United Kingdom
| | - Christopher J. Weston
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Patricia F. Lalor
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Patricia F. Lalor,
| |
Collapse
|
145
|
Chen BJ, Zhao JW, Zhang DH, Zheng AH, Wu GQ. Immunotherapy of Cancer by Targeting Regulatory T cells. Int Immunopharmacol 2022; 104:108469. [PMID: 35008005 DOI: 10.1016/j.intimp.2021.108469] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023]
Abstract
Regulatory T (Treg) cells maintain immune homeostasis by inhibiting abnormal/overactive immune responses to both autogenic and nonautogenic antigens. Treg cells play an important role in immune tolerance, autoimmune diseases, infectious diseases, organ transplantation, and tumor diseases. Treg cells have two functional characteristics: T cell anergy and immunosuppression. Treg cells remain immune unresponsive to high concentrations of interleukin-2 and anti-CD3 monoclonal antibodies. In addition, the activation of Treg cells after TCR-mediated signal stimulation inhibits the activation and proliferation of effector T cells. In the process of tumor development, Treg cells accumulate locally in the tumor and lead to tumor escape by inducing anergy and immunosuppression. It is believed that targeted elimination of Treg cells can activate tumor-specific effector T cells and improve the efficiency of cancer immunotherapy. Therefore, inhibition/clearance of Treg cells is a promising strategy for enhancing antitumor immunity. Here, we review studies of cancer immunotherapies targeting Treg cells.
Collapse
Affiliation(s)
- Bo-Jin Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing-Wen Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Da-Hong Zhang
- Department of Urology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ai-Hong Zheng
- Department of Oncology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Guo-Qing Wu
- Department of Oncology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
146
|
Moyers JT, Glitza Oliva IC. Immunotherapy for Melanoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:81-111. [PMID: 34972963 DOI: 10.1007/978-3-030-79308-1_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanoma is the leading cause of death from skin cancer and is responsible for over 7000 deaths in the USA each year alone. For many decades, limited treatment options were available for patients with metastatic melanoma; however, over the last decade, a new era in treatment dawned for oncologists and their patients. Targeted therapy with BRAF and MEK inhibitors represents an important cornerstone in the treatment of metastatic melanoma; however, this chapter carefully reviews the past and current therapy options available, with a significant focus on immunotherapy-based approaches. In addition, we provide an overview of the results of recent advances in the adjuvant setting for patients with resected stage III and stage IV melanoma, as well as in patients with melanoma brain metastases. Finally, we provide a brief overview of the current research efforts in the field of immuno-oncology for melanoma.
Collapse
Affiliation(s)
- Justin T Moyers
- Department of Investigational Cancer Therapeutics, UT MD Anderson Cancer Center, Houston, TX, USA.,Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| | | |
Collapse
|
147
|
Ju SA, Park SM, Joe Y, Chung HT, An WG, Kim BS. Anti-4-1BB antibody-based combination therapy augments antitumor immunity by enhancing CD11c +CD8 + T cells in renal cell carcinoma. Oncol Lett 2022; 23:43. [PMID: 34976155 PMCID: PMC8674882 DOI: 10.3892/ol.2021.13161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
To improve the potential treatment strategies of incurable renal cell carcinoma (RCC), which is highly resistant to chemotherapy and radiotherapy, the present study established a combination therapy with immunostimulatory factor (ISTF) and anti-4-1BB monoclonal antibodies (mAbs) to augment the antitumor response in a murine RCC model. ISTF isolated from Actinobacillus actinomycetemcomitans stimulates macrophages, dendritic cells and B cells to produce IL-6, TNF-α, nitric oxide and major histocompatibility complex class II expression. 4-1BB (CD137) is expressed in activated immune cells, including activated T cells, and is a promising target for cancer immunotherapy. The administration of anti-4-1BB mAbs promoted antitumor immunity via enhancing CD11c+CD8+ T cells. The CD11c+CD8+ T cells were characterized by high killing activity and IFN-γ-producing ability, representing a phenotype of active effector cytotoxic T lymphocytes. The present study showed that combination therapy with ISTF and anti-4-1BB mAbs promoted partial tumor regression with established RCC, but monotherapy with ISTF or anti-4-1BB mAbs did not. These effects were speculated to be caused by the increase in CD11c+CD8+ T cells in the spleen and tumor, and IFN-γ production. These insights into the effector mechanisms of the combination of ISTF and anti-4-1BB mAbs may be useful for targeting incurable RCC.
Collapse
Affiliation(s)
- Seong-A Ju
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | | | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Won G An
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Byung-Sam Kim
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
148
|
Stephen B, Hajjar J. Immune System in Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:1-43. [PMID: 34972961 DOI: 10.1007/978-3-030-79308-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells is found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and the crosstalk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.
Collapse
Affiliation(s)
- Bettzy Stephen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Joud Hajjar
- Assistant Professor, Service Chief of Adult Allergy & Immunology, Division of Immunology, Allergy & Retrovirology, Baylor College of Medicine and Texas Children' Hospital, Houston, TX, USA
| |
Collapse
|
149
|
Qualls D, Salles G. Prospects in the management of patients with follicular lymphoma beyond first-line therapy. Haematologica 2022; 107:19-34. [PMID: 34985231 PMCID: PMC8719064 DOI: 10.3324/haematol.2021.278717] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
The management of patients with relapsed or refractory follicular lymphoma has evolved markedly in the last decade, with the availability of new classes of agents (phosphoinositide 3-kinase inhibitors, immunomodulators, epigenetic therapies, and chimeric antigen receptor T cells) supplementing the multiple approaches already available (cytotoxic agents, anti-CD20 antibodies, radiation therapy, radioimmunotherapy, and autologous and allogeneic transplants). The diversity of clinical scenarios, the flood of data derived from phase II studies, and the lack of randomized studies comparing treatment strategies preclude firm recommendations and require personalized decisions. Patients with early progression require specific attention given the risk of histological transformation and their lower response to standard therapies. In sequencing therapies, one must consider prior treatment regimens and the potential need for future lines of therapy. Careful evaluation of risks and expected benefits of available options, which vary depending on location and socioeconomics, should be undertaken, and should incorporate the patient's goals. Preserving quality of life for these patients is essential, given the likelihood of years to decades of survival and the possibility of multiple lines of therapy. The current landscape is likely to continue evolving rapidly with other effective agents emerging (notably bispecific antibodies and other targeted therapies), and multiple combinations being evaluated. It is hoped that new treatments under development will achieve longer progression-free intervals and minimize toxicity. A better understanding of disease biology and the mechanisms of these different agents should provide further insights to select the optimal therapy at each stage of disease.
Collapse
Affiliation(s)
- David Qualls
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center
| | - Gilles Salles
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center; Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
150
|
Eiva MA, Omran DK, Chacon JA, Powell DJ. Systematic analysis of CD39, CD103, CD137, and PD-1 as biomarkers for naturally occurring tumor antigen-specific TILs. Eur J Immunol 2022; 52:96-108. [PMID: 34505280 PMCID: PMC8755575 DOI: 10.1002/eji.202149329] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023]
Abstract
The detection of tumor-specific T cells in solid tumors is integral to interrogate endogenous antitumor responses and to advance downstream therapeutic applications. Multiple biomarkers are reported to identify endogenous tumor-specific tumor-infiltrating lymphocytes (TILs), namely CD137, PD-1, CD103, and CD39; however, a direct comparison of these molecules has yet to be performed. We evaluated these biomarkers in primary human ovarian tumor samples using single-cell mass cytometry to compare their relative phenotypic profiles, and examined their response to autologous tumor cells ex vivo. PD-1+ , CD103+ , and CD39+ TILs all contain a CD137+ cell subset, while CD137+ TILs highly co-express the aforementioned markers. CD137+ TILs exhibit the highest expression of cytotoxic effector molecules compared to PD-1+ , CD103+ , or CD39+ TILs. Removal of CD137+ cells from PD-1+ , CD103+ , or CD39+ TILs diminish their IFN-γ secretion in response to autologous tumor cell stimulation, while CD137+ TILs maintain high HLA-dependent IFN-γ secretion. CD137+ TILs exhibited an exhausted phenotype but with CD28 co-expression, suggesting possible receptiveness to reinvigoration via immune checkpoint blockade. Together, our findings demonstrate that the antitumor abilities of PD-1+ , CD103+ , and CD39+ TILs are mainly derived from a subset of CD137-expressing TILs, implicating CD137 as a more selective biomarker for naturally occurring tumor-specific TILs.
Collapse
Affiliation(s)
- Monika A. Eiva
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Center for Cellular Immunotherapies, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dalia K. Omran
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica A. Chacon
- Paul L Foster School of Medicine and Woody L. Hunt School of Dental Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Daniel J. Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Center for Cellular Immunotherapies, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|