101
|
Sun X, Ma Z, Zhao X, Jin W, Zhang C, Ma J, Qiang L, Wang W, Deng Q, Yang H, Zhao J, Liang Q, Zhou X, Li T, Wang J. Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus. Bioact Mater 2020; 6:757-769. [PMID: 33024897 PMCID: PMC7522044 DOI: 10.1016/j.bioactmat.2020.08.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022] Open
Abstract
Critical-sized bone defect repair in patients with diabetes mellitus remains a challenge in clinical treatment because of dysfunction of macrophage polarization and the inflammatory microenvironment in the bone defect region. Three-dimensional (3D) bioprinted scaffolds loaded with live cells and bioactive factors can improve cell viability and the inflammatory microenvironment and further accelerating bone repair. Here, we used modified bioinks comprising gelatin, gelatin methacryloyl (GelMA), and 4-arm poly (ethylene glycol) acrylate (PEG) to fabricate 3D bioprinted scaffolds containing BMSCs, RAW264.7 macrophages, and BMP-4-loaded mesoporous silica nanoparticles (MSNs). Addition of MSNs effectively improved the mechanical strength of GelMA/gelatin/PEG scaffolds. Moreover, MSNs sustainably released BMP-4 for long-term effectiveness. In 3D bioprinted scaffolds, BMP-4 promoted the polarization of RAW264.7 to M2 macrophages, which secrete anti-inflammatory factors and thereby reduce the levels of pro-inflammatory factors. BMP-4 released from MSNs and BMP-2 secreted from M2 macrophages collectively stimulated the osteogenic differentiation of BMSCs in the 3D bioprinted scaffolds. Furthermore, in calvarial critical-size defect models of diabetic rats, 3D bioprinted scaffolds loaded with MSNs/BMP-4 induced M2 macrophage polarization and improved the inflammatory microenvironment. And 3D bioprinted scaffolds with MSNs/BMP-4, BMSCs, and RAW264.7 cells significantly accelerated bone repair. In conclusion, our results indicated that implanting 3D bioprinted scaffolds containing MSNs/BMP-4, BMSCs, and RAW264.7 cells in bone defects may be an effective method for improving diabetic bone repair, owing to the direct effects of BMP-4 on promoting osteogenesis of BMSCs and regulating M2 type macrophage polarization to improve the inflammatory microenvironment and secrete BMP-2. The GelMA/gelatin/PEG/MSN composite bioinks showed satisfactory printability, mechanical stability, and biocompatibility. The sustained release of BMP-4 from MSNs induced M2 macrophage polarization and thereby inhibited inflammatory reactions. Loading of BMP-4 and secretion of BMP-2 by M2 type macrophages accelerated bone repair in DM bone defects.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xue Zhao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.,Department of Radiology, Minhang Hospital of Fudan University, Minhang Central Hospital, No. 170 Xinsong Road, Shanghai 201100, China
| | - Wenjie Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chenyu Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jie Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lei Qiang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.,Southwest JiaoTong University College of Medicine, No. 111 North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Wenhao Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.,Southwest JiaoTong University College of Medicine, No. 111 North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Qian Deng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.,Southwest JiaoTong University College of Medicine, No. 111 North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Han Yang
- School of Biomedical Engineering, Shanghai JiaoTong University, No. 1956 Huashan Road, Shanghai, 200030, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai 200233, China
| | - Qianqian Liang
- Spine Institute, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 200032, China
| | - Xiaojun Zhou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999, North Renmin Road, Shanghai 201620, China
| | - Tao Li
- Department of Orthopaedics, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
102
|
Tao S, Chen Q, Lin C, Dong H. Linc00514 promotes breast cancer metastasis and M2 polarization of tumor-associated macrophages via Jagged1-mediated notch signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:191. [PMID: 32943090 PMCID: PMC7500027 DOI: 10.1186/s13046-020-01676-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) and tumor cells are important components of the tumor microenvironment. M2 polarization of TAMs, which is a major actor in breast cancer malignancy and metastasis, can be induced by breast cancer cells. However, the potential mechanisms of the interaction between breast cancer cells and TAMs remain unclear. METHODS The candidate breast cancer-associated long non-coding RNAs (lncRNAs) were analyzed using the GEO database. Functional assays, including MTT assay, Transwell assay, and EdU labeling detection, were performed to investigate the oncogenic role of linc00514 in breast cancer progression. The co-culture and ELISA assays were used to assess the role of linc00514 in macrophage recruitment and M2 polarization. RNA immunoprecipitation, RNA pull-down, and luciferase reporter assays were applied to determine the mechanism of linc00514 in breast cancer metastasis. Mouse xenograft models, mouse pulmonary metastatic models, and mouse primary tumor models were used to assess the role of linc00514 in M2 macrophage polarization and breast cancer tumorigenicity. RESULTS Linc00514 was highly expressed in clinical breast cancer tissues and breast cancer cell lines. Overexpression of linc00514 promoted the proliferation and invasion of breast cancer cells and increased xenograft tumor volumes and pulmonary metastatic nodules. Overexpression of linc00514 also increased the percentage of macrophages expressing M2 markers CD206 and CD163. Mechanistically, linc00514 promoted Jagged1 expression in a transcriptional manner by increasing the phosphorylation of a transcription factor STAT3. Subsequently, Jagged1-mediated Notch signaling pathway promoted IL-4 and IL-6 secretions in breast cancer cells and ultimately inducing M2 polarization of macrophages. CONCLUSION Linc00514 plays an important role in regulating breast cancer tumorigenicity and M2 macrophage polarization via Jagged1-mediated Notch signaling pathway.
Collapse
Affiliation(s)
- Sifeng Tao
- Department of Breast Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, People's Republic of China.
| | - Qiang Chen
- Department of Breast Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, People's Republic of China
| | - Chen Lin
- Department of Breast Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, People's Republic of China
| | - Haiying Dong
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310009, China
| |
Collapse
|
103
|
Wu Y, Liu Y, He A, Guan B, He S, Zhang C, Kang Z, Gong Y, Li X, Zhou L. Identification of the Six-RNA-Binding Protein Signature for Prognosis Prediction in Bladder Cancer. Front Genet 2020; 11:992. [PMID: 32983230 PMCID: PMC7493641 DOI: 10.3389/fgene.2020.00992] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
RNA-binding proteins (RBPs) are a kind of gene regulatory factor that presents a significant biological effect in the initiation and development of various tumors, including bladder cancer (BLCA). However, the RBP-based prognosis signature for BLCA has not been investigated. In this study, we attempted to develop an RBP-based classifier to predict overall survival (OS) for BLCA based on transcriptome analysis. We extracted data of BLCA patients from The Cancer Genome Atlas database (TCGA) and UCSC Xena. Finally, a total of 398 cases without missing clinical data were enrolled and six RBPs (FLNA, HSPG2, AHNAK, FASTKD3, POU5F1, and PCSK9) associated with OS of BLCA were identified through univariate and multivariate Cox regression analysis. Online analyses and immunohistochemistry validated the prognostic value and expression of six RBPs. Risk scores were calculated to divide patients into high-risk and low-risk level, and patients in the high-risk group tended to have a poor prognosis. In addition, the receiver operating characteristic (ROC) curve analysis was performed to assess the prognostic value of RBPs, and the area under the curve (AUC) values were 0.711 and 0.706, respectively, in the training set and validating set. The findings were further validated in an external validation set. Subsequently, the 6-RBP-based signature and pathological stage were used to construct the nomogram to predict the 3- and 5-years OS of BLCA patients. Also, this 6-RBP-based signature was highly related to recurrence-free survival of BLCA. Weighted co-expression network analysis (WGCNA) combined with functional enrichment analysis contributed to study the potential pathways of six RBPs, including keratinocyte differentiation, RHO GTPases activate PNKs, epithelial tube morphogenesis, establishment or maintenance of cell polarity, and so on. In summary, the 6-RBP-based signature holds the potentiality to serve as a novel prognostic predictor of OS for BLCA.
Collapse
Affiliation(s)
- Yucai Wu
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Yi Liu
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Anbang He
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Bao Guan
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Cuijian Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Zhengjun Kang
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| |
Collapse
|
104
|
A 12-immune cell signature to predict relapse and guide chemotherapy for stage II colorectal cancer. Aging (Albany NY) 2020; 12:18363-18383. [PMID: 32855365 PMCID: PMC7585080 DOI: 10.18632/aging.103707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
The management of stage II colorectal cancer is still difficult. We aimed to construct a new immune cell-associated signature for prognostic evaluation and guiding chemotherapy in stage II colorectal cancer. We used the "Cell Type Identification by Estimating Relative Subsets of RNA Transcripts" (CIBERSORT) method to estimate the fraction of 22 immune cells by analyzing bulk tumor transcriptomes and a LASSO Cox regression model to select the prognostic immune cells. A 12-immune cell prognostic classifier, ISCRC, was built, which could successfully discriminate the high-risk patients in the training cohort (GSE39582: HR = 3.16, 95% CI: 1.85-5.40, P < 0.0001) and another independent cohorts (GSE14333: HR = 3.47, 95% CI: 1.18-10.15, P =0.0167). The receiver operating characteristic analysis revealed that the AUC of the ISCRC model was significantly greater than that of oncotypeDX model (0.7111 versus 0.5647, p=0.0152). We introduced the propensity score matching analysis to eliminate the selection bias; survival analysis showed relatively poor prognosis after chemotherapy in stage II CRC patients. Furthermore, a nomogram was built for clinicians and did well in the calibration plots. In conclusion, this immune cell-based signature could improve prognostic prediction and may help guide chemotherapy in stage II colorectal cancer patients.
Collapse
|
105
|
Leblond MM, Tillé L, Nassiri S, Gilfillan CB, Imbratta C, Schmittnaegel M, Ries CH, Speiser DE, Verdeil G. CD40 Agonist Restores the Antitumor Efficacy of Anti-PD1 Therapy in Muscle-Invasive Bladder Cancer in an IFN I/II-Mediated Manner. Cancer Immunol Res 2020; 8:1180-1192. [DOI: 10.1158/2326-6066.cir-19-0826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/24/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
|
106
|
Bai Y, Yin K, Su T, Ji F, Zhang S. CTHRC1 in Ovarian Cancer Promotes M2-Like Polarization of Tumor-Associated Macrophages via Regulation of the STAT6 Signaling Pathway. Onco Targets Ther 2020; 13:5743-5753. [PMID: 32606786 PMCID: PMC7306458 DOI: 10.2147/ott.s250520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The infiltration of tumor-associated macrophages (TAMs) facilitates the progression of epithelial ovarian cancer (EOC). TAMs are mainly M2-like due to exposure to various factors in the tumor microenvironment. In our previous study, we reported that collagen triple helix repeat containing 1(CTHRC1), a secreted protein, is associated with ovarian cancer progression and metastasis. However, the correlation between CTHRC1 and the immunological microenvironment in EOC remains unknown. Methods The association with the expression of CTHRC1 and CD68+CD163+ TAMs infiltration density and phosphorylation of STAT6 was analyzed in tumor tissues of ovarian cancer patients by immunohistochemistry. Western blot and flow cytometry analysis were used to analyze M2-like macrophage polarization induced by CTHRC1. Cell Counting Kit-8 and adhesion assays were used to detect cell proliferation and adhesion, respectively. Cell migration and invasion were detected using transwell assays. Results In the present study, we observed that the overexpression of CTHRC1 and increased TAMs infiltration density are closely correlated to an advanced stage of EOC. Meanwhile, CTHRC1 expression was positively associated with the infiltration density of M2-like CD68+CD163+TAMs and phosphorylation of STAT6 in EOC. In human PBMC-derived monocytes, recombinant CTHRC1 protein (rCTHRC1) induces an M2-like macrophage phenotype, in a dose-dependent manner, characterized by activating the STAT6 signaling pathway. The conditioned culture medium of Lenti-CTHRC1 EOC cells promoted M2 polarization of macrophages, and by contrast, CTHRC1 knockdown abolished STAT6-mediated M2 polarization of macrophages. Moreover, the culture supernatants of rCTHRC1-treated macrophages efficiently increased the migration and invasion abilities of ovarian cancer cells. Conclusion Our data indicate that CTHRC1 might play an important role in regulating M2 polarization of macrophages in the ovarian tumor microenvironment and suggest that it is a potential therapeutic target for antitumor immunity.
Collapse
Affiliation(s)
- Yihan Bai
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kemin Yin
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tong Su
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fang Ji
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shu Zhang
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
107
|
Deng G, Chen Y, Guo C, Yin L, Han Y, Li Y, Fu Y, Cai C, Shen H, Zeng S. BMP4 promotes the metastasis of gastric cancer by inducing epithelial-mesenchymal transition via ID1. J Cell Sci 2020; 133:jcs237222. [PMID: 32376787 DOI: 10.1242/jcs.237222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial process for cancer cells to acquire metastatic potential, which primarily causes death in gastric cancer (GC) patients. Bone morphogenetic protein 4 (BMP4) is a member of the TGF-β family that plays an indispensable role in human cancers. However, little is known about its roles in GC metastasis. In this study, BMP4 was found to be frequently overexpressed in GC tissues and was correlated with poor patient's prognosis. BMP4 was upregulated in GC cell lines and promoted EMT and metastasis of GC cells both in vitro and in vivo, whereas knockdown of BMP4 significantly inhibited EMT and metastasis of GC cells. Furthermore, the inhibitor of DNA binding 1 (also known as DNA-binding protein inhibitor ID1) was identified as a downstream target of BMP4 using PCR arrays and was upregulated via SMAD1/5/8 phosphorylation. ID1 knockdown attenuated BMP4-induced EMT and invasion in GC cells. Moreover, ID1 overexpression in BMP4 knockdown cells restored the promotion of EMT and cell invasion. In summary, BMP4 induced EMT and promoted GC metastasis by upregulating ID1 expression. Antagonizing BMP4 could be a potential therapeutic strategy for GC metastasis.
Collapse
Affiliation(s)
- Ganlu Deng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022 Guangxi, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Ling Yin
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yiyi Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
108
|
Petráčková D, Farman MR, Amman F, Linhartová I, Dienstbier A, Kumar D, Držmíšek J, Hofacker I, Rodriguez ME, Večerek B. Transcriptional profiling of human macrophages during infection with Bordetella pertussis. RNA Biol 2020; 17:731-742. [PMID: 32070192 PMCID: PMC7237194 DOI: 10.1080/15476286.2020.1727694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/01/2020] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Bordetella pertussis, a strictly human re-emerging pathogen and the causative agent of whooping cough, exploits a broad variety of virulence factors to establish efficient infection. Here, we used RNA sequencing to analyse the changes in gene expression profiles of human THP-1 macrophages resulting from B. pertussis infection. In parallel, we attempted to determine the changes in intracellular B. pertussis-specific transcriptomic profiles resulting from interaction with macrophages. Our analysis revealed that global gene expression profiles in THP-1 macrophages are extensively rewired 6 h post-infection. Among the highly expressed genes, we identified those encoding cytokines, chemokines, and transcription regulators involved in the induction of the M1 and M2 macrophage polarization programmes. Notably, several host genes involved in the control of apoptosis and inflammation which are known to be hijacked by intracellular bacterial pathogens were overexpressed upon infection. Furthermore, in silico analyses identified large temporal changes in expression of specific gene subsets involved in signalling and metabolic pathways. Despite limited numbers of the bacterial reads, we observed reduced expression of majority of virulence factors and upregulation of several transcriptional regulators during infection suggesting that intracellular B. pertussis cells switch from virulent to avirulent phase and actively adapt to intracellular environment, respectively.
Collapse
Affiliation(s)
- Denisa Petráčková
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Mariam R. Farman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Irena Linhartová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Molecular Biology of Bacterial Pathogens, Prague, Czech Republic
| | - Ana Dienstbier
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Dilip Kumar
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Jakub Držmíšek
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Ivo Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, University of Vienna, Vienna, Austria
| | - Maria Eugenia Rodriguez
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CINDEFI (UNLP CONICET La Plata), La Plata, Argentina
| | - Branislav Večerek
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| |
Collapse
|
109
|
Ihle CL, Straign DM, Provera MD, Novitskiy SV, Owens P. Loss of Myeloid BMPR1a Alters Differentiation and Reduces Mouse Prostate Cancer Growth. Front Oncol 2020; 10:357. [PMID: 32318332 PMCID: PMC7154049 DOI: 10.3389/fonc.2020.00357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
The Bone Morphogenetic Protein (BMP) pathway is a member of the TGFβ signaling family and has complex roles in cancer. BMP signaling is rarely mutated and can be frequently overexpressed in many human cancers. The dichotomous role of BMPs as both tumor promoters and suppressors appears to be largely context based in both the cancer cell and the surrounding microenvironment. Myeloid cells including macrophages and neutrophils have been shown to be tumor promoting when stimulated from BMPs. We found that conditional deletion of BMPR1a in myeloid cells (LysMCre) restricts tumor progression in a syngeneic mouse prostate cancer model. Specific changes occurred in myeloid cells both in tumor bearing mice and tumor naïve mice throughout multiple tissues. We profiled myeloid subsets in the bone marrow, spleen and primary tumor and found myeloid BMPR1a loss altered the differentiation and lineage capability of distinct populations by histologic, flow cytometry and high dimensional mass cytometry analysis. We further confirmed the requirement for BMP signaling with pharmacologic inhibition of THP-1 and Raw264.7 activated into M2 macrophages with the BMP inhibitor DMH1. M2 polarized primary bone marrow derived cells from LysMCre BMPR1a knockout mice indicated a distinct requirement for BMP signaling in myeloid cells during M2 activation. These results indicate a unique necessity for BMP signaling in myeloid cells during tumor progression.
Collapse
Affiliation(s)
- Claire L. Ihle
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Desiree M. Straign
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Meredith D. Provera
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sergey V. Novitskiy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, CO, United States
| |
Collapse
|
110
|
Qi L, Ahmadi AR, Huang J, Chen M, Pan B, Kuwabara H, Iwasaki K, Wang W, Wesson R, Cameron AM, Cui S, Burdick J, Sun Z. Major Improvement in Wound Healing Through Pharmacologic Mobilization of Stem Cells in Severely Diabetic Rats. Diabetes 2020; 69:699-712. [PMID: 31974141 DOI: 10.2337/db19-0907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/11/2020] [Indexed: 11/13/2022]
Abstract
Current therapeutic strategies for diabetic foot ulcer (DFU) have focused on developing topical healing agents, but few agents have controlled prospective data to support their effectiveness in promoting wound healing. We tested a stem cell mobilizing therapy for DFU using a combination of AMD3100 and low-dose FK506 (tacrolimus) (AF) in streptozocin-induced type 1 diabetic (T1DM) rats and type 2 diabetic Goto-Kakizaki (GK) rats that had developed peripheral artery disease and neuropathy. Here, we show that the time for healing back wounds in T1DM rats was reduced from 27 to 19 days, and the foot wound healing time was reduced from 25 to 20 days by treatment with AF (subcutaneously, every other day). Similarly, in GK rats treated with AF, the healing time on back wounds was reduced from 26 to 21 days. Further, this shortened healing time was accompanied by reduced scar and by regeneration of hair follicles. We found that AF therapy mobilized and recruited bone marrow-derived CD133+ and CD34+ endothelial progenitor cells and Ym1/2+ M2 macrophages into the wound sites, associated with enhanced capillary and hair follicle neogenesis. Moreover, AF therapy improved microcirculation in diabetic and neuropathic feet in GK rats. This study provides a novel systemic therapy for healing DFU.
Collapse
Affiliation(s)
- Le Qi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ali Reza Ahmadi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jinny Huang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Melissa Chen
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Baohan Pan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hiroshi Kuwabara
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kenichi Iwasaki
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wei Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Russell Wesson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shusen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - James Burdick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
111
|
Biology and Therapeutic Targets of Colorectal Serrated Adenocarcinoma; Clues for a Histologically Based Treatment against an Aggressive Tumor. Int J Mol Sci 2020; 21:ijms21061991. [PMID: 32183342 PMCID: PMC7139914 DOI: 10.3390/ijms21061991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Serrated adenocarcinoma (SAC) is a tumor recognized by the WHO as a histological subtype accounting for around 9% of colorectal carcinomas. Compared to conventional carcinomas, SACs are characterized by a worse prognosis, weak development of the immune response, an active invasive front and a frequent resistance to targeted therapy due to a high occurrence of KRAS or BRAF mutation. Nonetheless, several high-throughput studies have recently been carried out unveiling the biology of this cancer and identifying potential molecular targets, favoring a future histologically based treatment. This review revises the current evidence, aiming to propose potential molecular targets and specific treatments for this aggressive tumor.
Collapse
|
112
|
Bone Morphogenetic Protein 4 Targeting Glioma Stem-Like Cells for Malignant Glioma Treatment: Latest Advances and Implications for Clinical Application. Cancers (Basel) 2020; 12:cancers12020516. [PMID: 32102285 PMCID: PMC7072475 DOI: 10.3390/cancers12020516] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Malignant gliomas are heterogeneous neoplasms. Glioma stem-like cells (GSCs) are undifferentiated and self-renewing cells that develop and maintain these tumors. These cells are the main population that resist current therapies. Genomic and epigenomic analyses has identified various molecular subtypes. Bone morphogenetic protein 4 (BMP4) reduces the number of GSCs through differentiation and induction of apoptosis, thus increasing therapeutic sensitivity. However, the short half-life of BMP4 impedes its clinical application. We previously reviewed BMP4 signaling in central nervous system development and glioma tumorigenesis and its potential as a treatment target in human gliomas. Recent advances in understanding both adult and pediatric malignant gliomas highlight critical roles of BMP4 signaling pathways in the regulation of tumor biology, and indicates its potential as a therapeutic molecule. Furthermore, significant progress has been made on synthesizing BMP4 biocompatible delivery materials, which can bind to and markedly extend BMP4 half-life. Here, we review current research associated with BMP4 in brain tumors, with an emphasis on pediatric malignant gliomas. We also summarize BMP4 delivery strategies, highlighting biocompatible BMP4 binding peptide amphiphile nanostructures as promising novel delivery platforms for treatment of these devastating tumors.
Collapse
|
113
|
Annels NE, Simpson GR, Pandha H. Modifying the Non-muscle Invasive Bladder Cancer Immune Microenvironment for Optimal Therapeutic Response. Front Oncol 2020; 10:175. [PMID: 32133299 PMCID: PMC7040074 DOI: 10.3389/fonc.2020.00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/31/2020] [Indexed: 12/31/2022] Open
Abstract
It is now well-recognized that the tumor microenvironment (TME) is not only a key regulator of cancer progression but also plays a crucial role in cancer treatment responses. Recently, several high-profile publications have demonstrated the importance of particular immune parameters and cell types that dictate responsiveness to immunotherapies. With this increased understanding of TME-mediated therapy, approaches that increase therapeutic efficacy by remodeling the TME are actively being pursued. A classic example of this, in practice by urologists for over 40 years, is the manipulation of the bladder microenvironment for the treatment of non-muscle invasive bladder cancer (NMIBC) by instillation of intravesical bacillus Calmette-Guerin (BCG). The success of BCG treatment is thought to be due to its ability to induce a massive influx of Th1-polarized inflammatory cells, production of Th1 inflammatory cytokines and the generation of tumor-targeted Th1-mediated cytotoxic responses. Whilst BCG immunotherapy is currently the best treatment for NMIBC, ~30% of patients show no response to this treatment. Here we present a review highlighting a variety of promising alternative immunotherapies being developed that remodel the bladder tumor microenvironment. These include (1) the use of oncolytic viruses which selectively replicate within cancer cells whilst also modifying the immunological components of the TME, (2) manipulation of the bladder microbiome to augment the response to BCG or other immunotherapies (3) utilizing Toll-like Receptor agonists as anti-tumor agents due to their potent stimulation of innate and adaptive immunity and (4) the growing recognition that immunotherapeutic strategies that will have the largest impact on patients may require multiple therapeutic approaches combined together. The accumulating knowledge on TME remodeling holds promise for providing an alternative therapy for patients with BCG-unresponsive NMIBC.
Collapse
Affiliation(s)
- Nicola E Annels
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Guy R Simpson
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
114
|
Li X, Sun B, Zhao X, An J, Zhang Y, Gu Q, Zhao N, Wang Y, Liu F. Function of BMP4 in the Formation of Vasculogenic Mimicry in Hepatocellular Carcinoma. J Cancer 2020; 11:2560-2571. [PMID: 32201526 PMCID: PMC7066000 DOI: 10.7150/jca.40558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 01/18/2023] Open
Abstract
Vasculogenic mimicry (VM) is linked to vascular invasion of human hepatocellular carcinoma (HCC). BMP4, one BMP family member, is upregulated in several cancers. The purpose of this report is to identify the function of BMP4 in the formation of VM in HCC and the mechanism underling this regulation. In our report, BMP4 up-regulation resulted in an increase in migration, invasion and channel-like structure formation as well as induced epithelial-mesenchymal transition (EMT) process and stem cell-associated proteins OCT4 and SOX2 expression in HCC cells. In addition, The VM-associated proteins, including EphA2, VE-cadherin and MMP2, also could be effectively enhanced by the overexpression of BMP4. Furthermore, according to the TCGA database, higher expression of BMP4 is seen in HCC in contrast to normal liver samples. Immunohistochemistry revealed that BMP4 was positively associated with VM formation, age, histological differentiation, HCC stage, and shorter survival duration. These data demonstrated that BMP4 could promote VM network formation in HCC through induction of stemness in EMT and modulating the EphA2/VE-cadherin/MMP2 signaling pathway.
Collapse
Affiliation(s)
- Xiao Li
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Baocun Sun
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiulan Zhao
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Jindan An
- Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Qiang Gu
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Nan Zhao
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Yong Wang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Fang Liu
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
115
|
Hudolin T, Kastelan Z, El-Saleh A, Bakula M, Coric M, Kes P, Tomas D, Basic-Jukic N. Bone morphogenic proteins-2, -4, -6 and 7 in non-muscle invasive bladder cancer. Oncol Lett 2020; 19:1291-1297. [PMID: 31966059 PMCID: PMC6956307 DOI: 10.3892/ol.2019.11218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β (TGF-β) family and may play an important role in the regulation of malignant cells in bladder cancer. The aim of the present study was to investigate BMP expression in non-muscle invasive bladder cancer. Tumor tissue samples from 71 patients treated with transurethral resection and 10 samples of normal bladder tissue were stained using immunohistochemistry for BMP-2, -4, -6 and -7. The levels of BMP were correlated with the number and size of tumors in the bladder, the pathohistological findings as well as with tumor recurrence and progression. The results of the present study demonstrated that BMP-2 and -7 are highly expressed in normal bladder tissue, but significantly downregulated in cancer samples. This reduction correlates with a faster rate of tumor recurrence as well as with an increase in the number of recurrent tumors. There was no evident interrelation between BMP-2 and -7 reduction and changes in tumor grade and stage. In conclusion, BMP-2 and -7 are potential prognostic factors for tumor recurrence and further studies on BMP and bladder cancer are needed to confirm these results.
Collapse
Affiliation(s)
- Tvrtko Hudolin
- Department of Urology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Zeljko Kastelan
- Department of Urology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Ahmad El-Saleh
- Department of Urology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Mirko Bakula
- Department of Urology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Marijana Coric
- Department of Pathology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Petar Kes
- Department of Dialysis, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Davor Tomas
- Department of Pathology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Nikolina Basic-Jukic
- Department of Dialysis, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
116
|
Regulation of bone morphogenetic protein 4 on epithelial tissue. J Cell Commun Signal 2020; 14:283-292. [PMID: 31912367 DOI: 10.1007/s12079-019-00537-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023] Open
Abstract
Epithelial tissues provide tissue barriers and specialize in organs and glands. When epithelial homeostasis is physiologically or pathologically stimulated, epithelial cells produce mesenchymal cells through the epithelial-mesenchymal transition, forming new tissues, promoting the cure of diseases or leading to illness. A variety of cytokines are involved in the regulation of epithelial cell differentiation. Bone morphogenetic proteins (BMPs), especially the bone morphogenetic protein 4 (BMP4) has a variety of biological functions and plays a prominent role in the regulation of epithelial cell differentiation. BMP4 is an important regulatory factor of a series of life activities in vertebrates, which is also related to cell proliferation, differentiation and mobility, it also has relation with tumor development. This paper mainly reviews the mechanism of BMP4's regulation on epithelial tissues, as well as its effect on the growth, differentiation, benign lesions and malignant lesions of epithelial tissues, and expounds the function of BMP4 in epithelial tissues, to provide theoretical support for the research on reducing epithelial diseases.
Collapse
|
117
|
Joseph M, Enting D. Immune Responses in Bladder Cancer-Role of Immune Cell Populations, Prognostic Factors and Therapeutic Implications. Front Oncol 2019; 9:1270. [PMID: 31824850 PMCID: PMC6879653 DOI: 10.3389/fonc.2019.01270] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Immunosurveillance, which describes the immunologically mediated elimination of transformed cells, has been widely accepted in the context of bladder cancer for many decades with the successful use of Bacillus-Calmette Guerin for superficial bladder cancer since the 1970s. With the emergence of checkpoint inhibitor blockade in the treatment of urothelial cancers, there has been a resurgent interest in the immunology of bladder cancer. The theory of cancer immunoediting proposes that the immune system has both pro-tumorigenic and anti-tumor effects, the balance between the two determining the progression of an individual tumor. However, whilst there is evidence for the action of various immune cell populations in bladder cancer, a cohesive picture of the immune response to bladder cancer and its driving forces are still lacking. Additionally, little is still known about the normal immune landscape of the bladder. Future progress in bladder cancer therapeutic approaches will require a strong foundation in understanding the immunology of this disease. This review considers the evidence for the role of the main immune cell populations, both innate and adaptive, in the immune response to bladder cancer. Recent research and overarching themes in the immune response to bladder cancer are explored. The minimal evidence regarding the normal immune landscape of the human bladder is also summarized to contextualize downstream immune responses. Of specific interest are the innate and myeloid populations, some of which are resident in the human bladder and which have significant effects on downstream adaptive tumor immunity. We discuss factors which restrain the efficacy of populations known to have anti-tumor activity such as cytotoxic T cells, including the constraints on checkpoint blockade. Additionally, the effects on the immune response of tumor intrinsic factors such as the genomic subtype of bladder cancer and the effect of common therapies such as chemotherapy and intravesical Bacillus Calmette-Guerin are considered. A significant theme is the polarization of immune responses within the tumor by a heavily immunosuppressive tumor microenvironment which affects the phenotype of multiple innate and adaptive populations. Throughout, clinical implications are discussed with suggestions for future research directions and therapeutic targeting.
Collapse
Affiliation(s)
- Magdalene Joseph
- Hayday Laboratory, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Deborah Enting
- Department of Uro-Oncology, Guy's Hospital, Guy's St Thomas NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
118
|
Nevi L, Costantini D, Safarikia S, Di Matteo S, Melandro F, Berloco PB, Cardinale V. Cholest-4,6-Dien-3-One Promote Epithelial-To-Mesenchymal Transition (EMT) in Biliary Tree Stem/Progenitor Cell Cultures In Vitro. Cells 2019; 8:cells8111443. [PMID: 31731674 PMCID: PMC6912632 DOI: 10.3390/cells8111443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Human biliary tree stem/progenitor cells (hBTSCs), reside in peribiliary glands, are mainly stimulated by primary sclerosing cholangitis (PSC) and cholangiocarcinoma. In these pathologies, hBTSCs displayed epithelial-to-mesenchymal transition (EMT), senescence characteristics, and impaired differentiation. Here, we investigated the effects of cholest-4,6-dien-3-one, an oxysterol involved in cholangiopathies, on hBTSCs biology. hBTSCs were isolated from donor organs, cultured in self-renewal control conditions, differentiated in mature cholangiocytes by specifically tailored medium, or exposed for 10 days to concentration of cholest-4,6-dien-3-one (0.14 mM). Viability, proliferation, senescence, EMT genes expression, telomerase activity, interleukin 6 (IL6) secretion, differentiation capacity, and HDAC6 gene expression were analyzed. Although the effect of cholest-4,6-dien-3-one was not detected on hBTSCs viability, we found a significant increase in cell proliferation, senescence, and IL6 secretion. Interestingly, cholest-4.6-dien-3-one impaired differentiation in mature cholangiocytes and, simultaneously, induced the EMT markers, significantly reduced the telomerase activity, and induced HDAC6 gene expression. Moreover, cholest-4,6-dien-3-one enhanced bone morphogenic protein 4 (Bmp-4) and sonic hedgehog (Shh) pathways in hBTSCs. The same pathways activated by human recombinant proteins induced the expression of EMT markers in hBTSCs. In conclusion, we demonstrated that chronic exposition of cholest-4,6-dien-3-one induced cell proliferation, EMT markers, and senescence in hBTSC, and also impaired the differentiation in mature cholangiocytes.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
- Correspondence: (L.N.); (V.C.); Tel.: +39-3392335294 (L.N.); +39-3495601492 (V.C.)
| | - Daniele Costantini
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Samira Safarikia
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Sabina Di Matteo
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Fabio Melandro
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, 0016 Rome, Italy; (F.M.); (P.B.B.)
| | - Pasquale Bartolomeo Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, 0016 Rome, Italy; (F.M.); (P.B.B.)
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, “Sapienza” University of Rome, 04100 Latina, Italy
- Correspondence: (L.N.); (V.C.); Tel.: +39-3392335294 (L.N.); +39-3495601492 (V.C.)
| |
Collapse
|
119
|
Zhang J, Luo A, Huang F, Gong T, Liu Z. SERPINE2 promotes esophageal squamous cell carcinoma metastasis by activating BMP4. Cancer Lett 2019; 469:390-398. [PMID: 31730904 DOI: 10.1016/j.canlet.2019.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
Metastasis is a major lethal cause of esophageal squamous cell carcinoma (ESCC) and confers a poor prognosis. Previous studies demonstrated that serpin family E member 2 (SERPINE2) is involved in tumor metastasis. However, the function and mechanism of SERPINE2 in ESCC metastasis remains unclear. In this study, we found that SERPINE2 was increased in ESCC and associated with tumor metastasis. SERPINE2 knockdown inhibited tumor cell invasion and lymph node and lung metastasis by inducing epithelial-mesenchymal transition (EMT). We identified a total of 410 differentially expressed genes in SERPINE2-knockdown cells by RNA-Seq analysis. Among them, bone morphogenetic protein 4 (BMP4) was significantly downregulated. Conversely, BMP4 was increased in SERPINE2-overexpressing cells. Inhibiting BMP4 could attenuate SERPINE2-induced migration and invasion. Moreover, SERPINE2 was positively correlated with clinical stage, tumor invasion depth and lymph node metastasis in ESCC patients. These findings suggest that SERPINE2 promotes tumor metastasis by activating BMP4 and could serve as a potential therapeutic target for clinical intervention in ESCC.
Collapse
Affiliation(s)
- Jianglan Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Furong Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tongyang Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
120
|
Neckmann U, Wolowczyk C, Hall M, Almaas E, Ren J, Zhao S, Johannessen B, Skotheim RI, Bjørkøy G, Ten Dijke P, Holien T. GREM1 is associated with metastasis and predicts poor prognosis in ER-negative breast cancer patients. Cell Commun Signal 2019; 17:140. [PMID: 31694641 PMCID: PMC6836336 DOI: 10.1186/s12964-019-0467-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
Background In breast cancer, activation of bone morphogenetic protein (BMP) signaling and elevated levels of BMP-antagonists have been linked to tumor progression and metastasis. However, the simultaneous upregulation of BMPs and their antagonist, and the fact that both promote tumor aggressiveness seems contradictory and is not fully understood. Methods We analyzed the transcriptomes of the metastatic 66cl4 and the non-metastatic 67NR cell lines of the 4T1 mouse mammary tumor model to search for factors that promote metastasis. CRISPR/Cas9 gene editing was used for mechanistic studies in the same cell lines. Furthermore, we analyzed gene expression patterns in human breast cancer biopsies obtained from public datasets to evaluate co-expression and possible relations to clinical outcome. Results We found that mRNA levels of the BMP-antagonist Grem1, encoding gremlin1, and the ligand Bmp4 were both significantly upregulated in cells and primary tumors of 66cl4 compared to 67NR. Depletion of gremlin1 in 66cl4 could impair metastasis to the lungs in this model. Furthermore, we found that expression of Grem1 correlated with upregulation of several stem cell markers in 66cl4 cells compared to 67NR cells. Both in the mouse model and in patients, expression of GREM1 associated with extracellular matrix organization, and formation, biosynthesis and modification of collagen. Importantly, high expression of GREM1 predicted poor prognosis in estrogen receptor negative breast cancer patients. Analyses of large patient cohorts revealed that amplification of genes encoding BMP-antagonists and elevation of the corresponding transcripts is evident in biopsies from more than half of the patients and much more frequent for the secreted BMP-antagonists than the intracellular inhibitors of SMAD signaling. Conclusion In conclusion, our results show that GREM1 is associated with metastasis and predicts poor prognosis in ER-negative breast cancer patients. Gremlin1 could represent a novel target for therapy.
Collapse
Affiliation(s)
- Ulrike Neckmann
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Biomedical Laboratory Science, Faculty of Natural Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, St Olavs Hospital, Trondheim, Norway
| | - Camilla Wolowczyk
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Biomedical Laboratory Science, Faculty of Natural Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, St Olavs Hospital, Trondheim, Norway
| | - Martina Hall
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Jiang Ren
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sen Zhao
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Geir Bjørkøy
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Biomedical Laboratory Science, Faculty of Natural Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Toril Holien
- Department of Clinical and Molecular Medicine (IKOM), NTNU, Gastro Center, Prinsesse Kristinas gt 1, 7030, Trondheim, Norway. .,Department of Hematology, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
121
|
CCL2 promotes macrophages-associated chemoresistance via MCPIP1 dual catalytic activities in multiple myeloma. Cell Death Dis 2019; 10:781. [PMID: 31611552 PMCID: PMC6791869 DOI: 10.1038/s41419-019-2012-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/27/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
We previously showed that the chemokine CCL2 can recruit macrophages (Mφs) to the bone marrow (BM) in multiple myeloma (MM) and that myeloma-associated Mφs are important in drug resistance. Here, we explore the role of increased CCL2 expression in the BM microenvironment of MM and elucidate the underlying mechanism. Our results show that CCL2 expression is associated with the treatment status of MM patients. Mφs interact with MM cells and further upregulate their expression of CCL2. These increased level of CCL2 polarizes Mφs toward the M2-like phenotype and promotes Mφs to protect MM cells from drug-induced apoptosis. Mechanistically, CCL2 upregulated the expression of the immunosuppressive molecular MCP-1-induced protein (MCPIP1) in Mφs. MCPIP1 mediates Mφs’ polarization and protection via dual catalytic activities. Additionally, we found that CCL2 induces MCPIP1 expression via the JAK2-STAT3 signaling pathway. Taken together, our results indicate that increased CCL2 expression in MM patients’ BM polarizes Mφs toward the M2-like phenotype and promotes the protective effect of Mφs through MCPIP1, providing novel insight into the mechanism of Mφs-mediated drug resistance in MM.
Collapse
|
122
|
Sharifi L, Nowroozi MR, Amini E, Arami MK, Ayati M, Mohsenzadegan M. A review on the role of M2 macrophages in bladder cancer; pathophysiology and targeting. Int Immunopharmacol 2019; 76:105880. [PMID: 31522016 DOI: 10.1016/j.intimp.2019.105880] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Tumor-associated macrophages (TAMs) which are often referred to as immunosuppressive cells (M2 macrophage), constitute a subset of tumor microenvironment cells and affect tumor progression in solid tumors. Recently, these cells have gained remarkable importance as therapeutic candidates for solid tumors. In bladder cancer, major studies have focused on evaluating TAMs in response to Bacillus Calmette-Guerin (BCG) therapy. M2 macrophages may directly impact the BCG-induced immune responses against tumor in bladder cancer. They are the main inhibitors of the tumor microenvironment that promotes growth and metastasis of the tumor. However, the clinical significance of M2 macrophages in bladder cancer is controversial. In this review, we will discuss the clinical significance of M2 macrophages in prognosis of bladder cancer as well as worth of their potential targeting in bladder cancer treatment. In the following, we will introduce important factors resulting in M2 macrophage promotion and also experimental therapeutic agents that may cause the inhibition of bladder cancer tumor growth.
Collapse
Affiliation(s)
- Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Erfan Amini
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh Arami
- Department of Basic Sciences, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ayati
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
123
|
Li Q, Liu B, Breitkopf-Heinlein K, Weng H, Jiang Q, Dong P, Dooley S, Xu K, Ding H. Adenovirus‑mediated overexpression of bone morphogenetic protein‑9 promotes methionine choline deficiency‑induced non‑alcoholic steatohepatitis in non‑obese mice. Mol Med Rep 2019; 20:2743-2753. [PMID: 31322255 PMCID: PMC6691271 DOI: 10.3892/mmr.2019.10508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
Liver inflammation and macrophage infiltration are critical steps in the progression of non‑alcoholic fatty liver to the development of non‑alcoholic steatohepatitis. Bone morphogenetic protein‑9 is a cytokine involved in the regulation of chemokines and lipogenesis. However, the function of bone morphogenetic protein‑9 in non‑alcoholic steatohepatitis is still unknown. The present study hypothesized that bone morphogenetic protein‑9 may contribute to steatohepatitis in mice fed a methionine choline deficiency diet (MCD). C57BL/6 mice overexpressing bone morphogenetic protein‑9 and control mice were fed the MCD diet for 4 weeks. Liver tissue and serum samples were obtained for subsequent measurements. Bone morphogenetic protein‑9 overexpression exacerbated steatohepatitis in mice on the MCD diet, as indicated by liver histopathology, increased serum alanine aminotransferase activity, aspartate transaminase activity, hepatic inflammatory gene expression and M1 macrophage recruitment. Although bone morphogenetic protein‑9 overexpression did not affect the expression of pro‑fibrogenic genes, including Collagen I (α)1 or matrix metalloproteinase (MMP) 9, it did upregulate the expression of transforming growth factor‑β and plasminogen activator inhibitor 1, and downregulated the expression of MMP2. The above results indicate that bone morphogenetic protein‑9 exerts a pro‑inflammatory role in MCD diet‑induced non‑alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Qi Li
- Department of Hepatology and Gastroenterology, Beijing You An Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Beibei Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, D‑68167 Mannheim, Germany
| | - Honglei Weng
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, D‑68167 Mannheim, Germany
| | - Qianqian Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peiling Dong
- Department of Hepatology and Gastroenterology, Beijing You An Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, D‑68167 Mannheim, Germany
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Huiguo Ding
- Department of Hepatology and Gastroenterology, Beijing You An Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
124
|
Acute Lymphoblastic Leukaemia Cells Impair Dendritic Cell and Macrophage Differentiation: Role of BMP4. Cells 2019; 8:cells8070722. [PMID: 31337120 PMCID: PMC6679123 DOI: 10.3390/cells8070722] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/06/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells and macrophages are common components of the tumour immune microenvironment and can contribute to immune suppression in both solid and haematological cancers. The Bone Morphogenetic Protein (BMP) pathway has been reported to be involved in cancer, and more recently in leukaemia development and progression. In the present study, we analyse whether acute lymphoblastic leukaemia (ALL) cells can affect the differentiation of dendritic cells and macrophages and the involvement of BMP pathway in the process. We show that ALL cells produce BMP4 and that conditioned media from ALL cells promote the generation of dendritic cells with immunosuppressive features and skew M1-like macrophage polarization towards a less pro-inflammatory phenotype. Likewise, BMP4 overexpression in ALL cells potentiates their ability to induce immunosuppressive dendritic cells and favours the generation of M2-like macrophages with pro-tumoral features. These results suggest that BMP4 is in part responsible for the alterations in dendritic cell and macrophage differentiation produced by ALL cells.
Collapse
|
125
|
The Vicious Cross-Talk between Tumor Cells with an EMT Phenotype and Cells of the Immune System. Cells 2019; 8:cells8050460. [PMID: 31096701 PMCID: PMC6562673 DOI: 10.3390/cells8050460] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
Carcinoma cells that undergo an epithelial-mesenchymal transition (EMT) and display a predominantly mesenchymal phenotype (hereafter EMT tumor cells) are associated with immune exclusion and immune deviation in the tumor microenvironment (TME). A large body of evidence has shown that EMT tumor cells and immune cells can reciprocally influence each other, with EMT cells promoting immune exclusion and deviation and immune cells promoting, under certain circumstances, the induction of EMT in tumor cells. This cross-talk between EMT tumor cells and immune cells can occur both between EMT tumor cells and cells of either the native or adaptive immune system. In this article, we review this evidence and the functional consequences of it. We also discuss some recent evidence showing that tumor cells and cells of the immune system respond to similar stimuli, activate the expression of partially overlapping gene sets, and acquire, at least in part, identical functionalities such as migration and invasion. The possible significance of these symmetrical changes in the cross-talk between EMT tumor cells and immune cells is addressed. Eventually, we also discuss possible therapeutic opportunities that may derive from disrupting this cross-talk.
Collapse
|
126
|
Pharmacological Mobilization and Recruitment of Stem Cells in Rats Stops Abdominal Adhesions After Laparotomy. Sci Rep 2019; 9:7149. [PMID: 31073167 PMCID: PMC6509124 DOI: 10.1038/s41598-019-43734-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
Adhesions are a very common complication in the abdominal surgery. Animal studies and human trials have evaluated strategies designed to reduce and prevent postsurgical adhesions but few have an evidence base that justifies routine use. A strategy to prevent adhesions effectively remains an urgent need. We studied a reproducible model of intra-peritoneal adhesion formation in rats using laparotomy with several peritoneal sutures to produce the adhesions. Here we show that entraining endogenous stem cells into injury sites using the combined effect of AMD3100 and low-dose FK-506 (AF) can reduce the adhesion score significantly and abolish peritoneal adhesions in 45% of animals in a rat model of severe postsurgical intra-abdominal adhesions, compared with saline controls. Searching for mechanisms, we found AF treatment dramatically increased SDF-1 expressing cells, HGF expressing Ym1+ M2 macrophages and CD133+ stem cells in the injury sites of peritoneal surface at day 5 post-operation. Our results demonstrate that medically induced recruitment of autologous stem cells using AF significantly reduced postsurgical intra-abdominal adhesions. These findings suggest a novel effective therapeutic approach to preventing adhesions in patients.
Collapse
|
127
|
Yang Z, Li H, Wang W, Zhang J, Jia S, Wang J, Wei J, Lei D, Hu K, Yang X. CCL2/CCR2 Axis Promotes the Progression of Salivary Adenoid Cystic Carcinoma via Recruiting and Reprogramming the Tumor-Associated Macrophages. Front Oncol 2019; 9:231. [PMID: 31024838 PMCID: PMC6465613 DOI: 10.3389/fonc.2019.00231] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: The present study investigated the roles and underlying mechanism of CCL2/CCR2 axis in the interactions between tumor cells and tumor-associated macrophages (TAMs) during the progression of salivary adenoid cystic carcinoma (SACC). Methods: Immunohistochemical staining and survival analysis were performed to study the correlation and clinical value of CD68, CD163, CCL2, and CCR2 expression in SACC cases. CCL2 silencing by RNA interference and CCR2 blocking by CCR2 specific antagonist (RS504393) were performed. ELISA, qRT-PCR, western blot, immunofluorescence, flow cytometry, CCK8, scratch wound healing, and transwell assays were used to explore the functional roles and possible mechanism of CCL2/CCR2 axis in the interactions between SACC cells and TAMs. The effects of targeting TAMs by blocking the CCL2/CCR2 axis were investigated in a xenograft mice model with SACC cells. Results: The high infiltration of TAMs marked by CD68 and high infiltration of M2 TAMs marked by CD163 were significantly correlated with the expression of CCL2 and CCR2 in SACC tissues. Notably, the high infiltration of TAMs and the overexpression of CCL2 were obviously associated with the clinical progression and poor prognosis of SACC. SACC cells derived CCL2 could activate its receptor CCR2 expression in TAMs in vitro. The in vitro results further indicated that the SACC cells derived CCL2 was involved in the recruitment, M2 polarization, and GDNF expression of TAMs through the CCL2/CCR2 axis. Meanwhile, TAMs derived GDNF promoted the proliferation, migration, and invasion of SACC cells through the GDNF/p-RET pathway. Treating immunodeficient mice with the CCR2 antagonist (RS504393) greatly inhibited the infiltration of TAMs and the tumorigenicity of SACC cells. Conclusion: These new findings indicated that the CCL2/CCR2 axis promoted the progression of SACC cells via recruiting and reprogramming TAMs. Targeting TAMs by blocking the CCL2/CCR2 axis might be a prospective strategy for SACC therapy.
Collapse
Affiliation(s)
- Zihui Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Huan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Weiqi Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jianying Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Sen Jia
- Department of Oral and Maxillofacial Surgery, Xi'an Medical University, Xi'an, China
| | - Jun Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jianhua Wei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Delin Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kaijin Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
128
|
Abstract
Breast cancer is the most prevalent type of cancer amongst women worldwide. The mortality rate for patients with early-stage breast cancer has been decreasing, however, the 5-year survival rate for patients with metastatic disease remains poor, currently at 27%. Here, we have reviewed the current understanding of the role of bone morphogenetic protein (BMP) signaling in breast cancer progression, and have highlighted the discordant results that are reported in different studies. We propose that some of these contradictory outcomes may result from signaling through either the canonical or non-canonical pathways in different cell lines and tumors, or from different tumor-stromal interactions that occur in vivo.
Collapse
Affiliation(s)
- Lap Hing Chi
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Allan D Burrows
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Robin L Anderson
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
- c Department of Clinical Pathology, The University of Melbourne , Parkville , VIC , Australia
- d Sir Peter MacCallum Department of Oncology, The University of Melbourne , Parkville , Australia
| |
Collapse
|
129
|
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Liu Q, Dou R, Xiong B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer 2019; 18:64. [PMID: 30927925 PMCID: PMC6441214 DOI: 10.1186/s12943-019-0976-4] [Citation(s) in RCA: 490] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/22/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tumor-associated macrophages (TAMs) are major components of tumor microenvironment that frequently associated with tumor metastasis in human cancers. Circulating tumor cell (CTC), originating from primary tumor sites, is considered to be the precursors of tumor metastasis. However, the regulatory mechanism of TAMs in CTC-mediated tumor metastasis still remains unclear. Methods Immunohistochemical staining was used to detect the macrophages infiltration (CD68 and CD163), epithelial–mesenchymal transition (EMT) markers (E-cadherin and Vimentin) expression in serial sections of human colorectal cancer (CRC) specimens. Then, the correlations between macrophages infiltration and clinicopathologic features, mesenchymal CTC ratio, and patients’ prognosis were analyzed. A co-culture assay in vitro was used to evaluate the role of TAMs on CRC EMT, migration and invasion, and ELISA, luciferase reporter assay and CHIP were performed to uncover the underlying mechanism. Furthermore, an in vivo model was carried out to confirm the effect of TAMs on mesenchymal CTC-mediated metastasis. Results Clinically, CD163+ TAMs infiltrated in invasive front was associated with EMT, mesenchymal CTC ratio, and poor prognosis in patients with CRC. CRC–conditioned macrophages regulated EMT program to enhance CRC cells migration and invasion by secreting IL6. TAMs-derived IL6 activated the JAK2/STAT3 pathway, and activated STAT3 transcriptionally inhibited the tumor suppressor miR-506-3p in CRC cells. miR-506-3p, a key miRNA regulating FoxQ1, was downregulated in CRC cells, resulting in increased FoxQ1 expression, which in turn led to the production of CCL2 that promoted macrophage recruitment. Inhibition of CCL2 or IL6 broke this loop and reduced macrophage migration and mesenchymal CTC-mediated metastasis, respectively. Conclusions Our data indicates that TAMs induce EMT program to enhance CRC migration, invasion, and CTC-mediated metastasis by regulating the JAK2/STAT3/miR-506-3p/FoxQ1 axis, which in turn leads to the production of CCL2 that promote macrophage recruitment, revealing a new cross-talk between immune cells and tumor cells in CRC microenvironment. Electronic supplementary material The online version of this article (10.1186/s12943-019-0976-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Wei
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Dongdong Shi
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Chunxiao Zhang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Xiaobin Lin
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Qing Liu
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China. .,Hubei Cancer Clinical Study Center, Wuhan, China.
| |
Collapse
|
130
|
Yang C, Wei C, Wang S, Shi D, Zhang C, Lin X, Dou R, Xiong B. Elevated CD163 +/CD68 + Ratio at Tumor Invasive Front is Closely Associated with Aggressive Phenotype and Poor Prognosis in Colorectal Cancer. Int J Biol Sci 2019; 15:984-998. [PMID: 31182919 PMCID: PMC6535793 DOI: 10.7150/ijbs.29836] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/18/2019] [Indexed: 12/27/2022] Open
Abstract
Background: The interaction and crosstalk between tumor-associated macrophages (TAMs) and epithelial-mesenchymal transition (EMT) has been demonstrated to play a critical role in the progression and metastasis of multiple cancers. However, the roles of the M2-polarized TAMs in different tumor location in EMT and prognosis of colorectal cancer (CRC) have not been elucidated. Therefore, the present study was designed to set up a reliable ratio of CD163+/CD68+ to assess M2-polarized TAMs infiltration in the tumor center (TC) and tumor invasive front (TF) and to further evaluate their prognostic value and biological effects on tumor cells in CRC. Methods: TAMs markers (CD68 and CD163) and EMT markers (E-cadherin and Vimentin) expression were evaluated by immunohistochemistry in 81 patients with CRC. Circulating tumor cells (CTCs) of peripheral blood from above patients was also isolated. The correlation of CD163+/CD68+ ratio in different locations, EMT and CTCs counts were further analyses. Kaplan-Meier and the model analyses of univariate Cox proportional hazards were utilized to compare the survival of patients with high CD163+/CD68+ ratio with those with low CD163+/CD68+ ratio. Furthermore, the effects of the M2-polarized TAMs on growth, migration and invasion of CRC cells were explored in vivo and in vitro co-culture system. Results: The results showed that the level of CD163+/CD68+ ratio in TF was significant higher than that in TC, and higher CD163+/CD68+TF ratio were closely correlated with enhanced lymphovascular invasion, tumor invasion and TNM stage. Interestingly, higher CD163+/CD68+TF ratio were also significantly associated with EMT program and CTCs counts. Meanwhile, Kaplan-Meier analysis showed that CD163+/CD68+TF was associated with both recurrence-free survival (RFS) and overall survival (OS) of patients with CRC. Multivariate Cox regression analyses demonstrated that CD163+/CD68+TF remained an independent prognostic factor for RFS and OS. Further receiver operating characteristic (ROC) curve analysis found that CD163+/CD68+TF was a better prognosticator compared with CD68+TF and CD163+TF for CRC patients. What's more, M2-polarized TAMs secreted TGF-β to facilitate the EMT, growth, proliferation and invasion of CRC cells by in vivo and in vitro experiments. Conclusions: Our studies preliminarily elucidated the prognostic value of CD163+/CD68+ ratio in different tumor locations and the biological functions of M2-polarized TAMs in CRC progression via TGF-β.
Collapse
Affiliation(s)
- Chaogang Yang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Chen Wei
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Dongdong Shi
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Chunxiao Zhang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Xiaobin Lin
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
| |
Collapse
|
131
|
Lin X, Wang S, Sun M, Zhang C, Wei C, Yang C, Dou R, Liu Q, Xiong B. miR-195-5p/NOTCH2-mediated EMT modulates IL-4 secretion in colorectal cancer to affect M2-like TAM polarization. J Hematol Oncol 2019; 12:20. [PMID: 30808369 PMCID: PMC6390326 DOI: 10.1186/s13045-019-0708-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tumor microenvironment (TME) is a complex environment containing tumor cells, tumor-associated macrophages (TAMs), interstitial cells, and non-cellular components. Epithelial–mesenchymal transition (EMT), as a major actor in cancer tumorigenicity and metastasis, was involved in the interaction between TAMs and tumor cells. However, the potential mechanisms of EMT and how EMT-programmed tumor cells affect M2-like TAMs still need further exploration. Methods An integrated analysis of nine CRC miRNA expression datasets was performed. Functional assays, including the EdU, clone formation, wound healing, and transwell assays, were used to determine the anticancer role of miR-195-5p in human CRC progression. Furthermore, RNA immunoprecipitation, RNA decay, and dual-luciferase reporter assays were used to determine the mechanism of miR-195-p CRC progression. Then co-culture, migration, and ELISA assays were applied to determine the role of miR-195-5p in macrophage recruitment and alternative polarization. Xenograft mouse models were used to determine the role of miR-195-5p in CRC tumorigenicity and TAM polarization in vivo. Results An integrated analysis confirmed that miR-195-5p was significantly downregulated in CRC tissues, and patients with a low level of miR-195-5p had significantly shortened overall survival as revealed by the TCGA-COAD dataset. Altered miR-195-5p in colon cancer cells led to distinct changes of proliferation, migration, invasion, and EMT. Mechanistically, miR-195-5p regulated NOTCH2 expression in a post-transcriptional manner by directly binding to 3′-UTR of the Notch2 mRNA. Subsequently, miR-195-5p/NOTCH2 suppressed GATA3-mediated IL-4 secretion in CRC cells and ultimately inhibited M2-like TAM polarization. Conclusions miR-195-5p may play a vital role in regulating NOTCH2-mediated tumor cell EMT, thereby affecting IL-4-related M2-like TAM polarization in CRC. Electronic supplementary material The online version of this article (10.1186/s13045-019-0708-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaobin Lin
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Min Sun
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Chunxiao Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Chen Wei
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Qing Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
132
|
Ning J, Zhao Y, Ye Y, Yu J. Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression. EBioMedicine 2019; 41:702-710. [PMID: 30808576 PMCID: PMC6442991 DOI: 10.1016/j.ebiom.2019.02.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023] Open
Abstract
The transforming growth factor β (TGF-β) superfamily participates in tumour proliferation, apoptosis, differentiation, migration, invasion, immune evasion and extracellular matrix remodelling. Genetic deficiency in distinct components of TGF-β and BMP-induced signalling pathways or their excessive activation has been reported to regulate the development and progression of some cancers. As more in-depth studies about this superfamily have been conducted, more evidence suggests that the TGF-β and BMP pathways play an opposing role. The cross-talk of these 2 pathways has been widely studied in kidney disease and bone formation, and the opposing effects have also been observed in some cancers. However, the antagonistic mechanisms are still insufficiently investigated in cancer. In this review, we aim to display more evidences and possible mechanisms accounting for the antagonism between these 2 pathways, which might provide some clues for further study in cancer. Describe the basics of TGF-β and BMP signalling Summarize the potential mechanisms accounting for the antagonism between TGF-β and BMP pathways Provide some evidence about the antagonistic effects between pathways observed in some cancers
Collapse
Affiliation(s)
- Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| |
Collapse
|
133
|
Ingersoll MA, Li X, Inman BA, Greiner JW, Black PC, Adam RM. Immunology, Immunotherapy, and Translating Basic Science into the Clinic for Bladder Cancer. Bladder Cancer 2018; 4:429-440. [PMID: 30417054 PMCID: PMC6218105 DOI: 10.3233/blc-180175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Fourth Annual Albert Institute Bladder Cancer Care and Research Symposium was held from September 14th–16th in Houston, Texas. The symposium covered a range of topics relevant to bladder cancer, including basic science aspects of immunology and immunotherapy that inform clinical management; intravesical therapy for non-muscle invasive disease; understanding the nuances of carcinoma in situ; and optimizing patient care and outcomes following therapy. The moving landscape of bladder cancer from an industry perspective was also discussed. In the following sections we discuss intrinsic and extrinsic factors, including the immune microenvironment and sex bias, in the context of bladder cancer; how these influence tumor development, progression, and treatment strategies; and how the interpretation of immune features in relation to molecular subtypes informs both treatment decisions and response. We conclude with a summary of key points that will need to be addressed to ensure best use of new knowledge in this area for improved clinical management of patients with bladder cancer.
Collapse
Affiliation(s)
- Molly A Ingersoll
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm U1223, Paris, France
| | - Xue Li
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Brant A Inman
- Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
134
|
Rubio C, Munera-Maravilla E, Lodewijk I, Suarez-Cabrera C, Karaivanova V, Ruiz-Palomares R, Paramio JM, Dueñas M. Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: can we turn demons into gods? Clin Transl Oncol 2018; 21:391-403. [PMID: 30291519 DOI: 10.1007/s12094-018-1952-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Macrophages are major components of the immune infiltration in cancer where they can affect tumor behavior. In the bladder, they play important roles during the resolution of infectious processes and they have been associated with a worse clinical prognosis in bladder cancer. The present review focused on the characteristics of these important immune cells, not only eliciting an innate immune surveillance, but also on their importance during the cancer immunoediting process. We further discuss the potential of targeting macrophages for anticancer therapy, the current strategies and the state of the art as well as the foreseen role on combined therapies on the near future. This review shows how a comprehensive understanding of macrophages within the tumor should translate to better clinical outcome and new therapeutic strategies focusing especially on bladder cancer.
Collapse
Affiliation(s)
- C Rubio
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - E Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - I Lodewijk
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - C Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - V Karaivanova
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - R Ruiz-Palomares
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - J M Paramio
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain. .,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| | - M Dueñas
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain. .,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
135
|
Voeltzel T, Flores-Violante M, Zylbersztejn F, Lefort S, Billandon M, Jeanpierre S, Joly S, Fossard G, Milenkov M, Mazurier F, Nehme A, Belhabri A, Paubelle E, Thomas X, Michallet M, Louache F, Nicolini FE, Caron de Fromentel C, Maguer-Satta V. A new signaling cascade linking BMP4, BMPR1A, ΔNp73 and NANOG impacts on stem-like human cell properties and patient outcome. Cell Death Dis 2018; 9:1011. [PMID: 30262802 PMCID: PMC6160490 DOI: 10.1038/s41419-018-1042-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/20/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Abstract
In a significant number of cases cancer therapy is followed by a resurgence of more aggressive tumors derived from immature cells. One example is acute myeloid leukemia (AML), where an accumulation of immature cells is responsible for relapse following treatment. We previously demonstrated in chronic myeloid leukemia that the bone morphogenetic proteins (BMP) pathway is involved in stem cell fate and contributes to transformation, expansion, and persistence of leukemic stem cells. Here, we have identified intrinsic and extrinsic dysregulations of the BMP pathway in AML patients at diagnosis. BMP2 and BMP4 protein concentrations are elevated within patients’ bone marrow with a BMP4-dominant availability. This overproduction likely depends on the bone marrow microenvironment, since MNCs do not overexpress BMP4 transcripts. Intrinsically, the receptor BMPR1A transcript is increased in leukemic samples with more cells presenting this receptor at the membrane. This high expression of BMPR1A is further increased upon BMP4 exposure, specifically in AML cells. Downstream analysis demonstrated that BMP4 controls the expression of the survival factor ΔNp73 through its binding to BMPR1A. At the functional level, this results in the direct induction of NANOG expression and an increase of stem-like features in leukemic cells, as shown by ALDH and functional assays. In addition, we identified for the first time a strong correlation between ΔNp73, BMPR1A and NANOG expression with patient outcome. These results highlight a new signaling cascade initiated by tumor environment alterations leading to stem-cell features and poor patients’ outcome.
Collapse
Affiliation(s)
- Thibault Voeltzel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France. .,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France. .,Université de Lyon, 69000, Lyon, France. .,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France. .,Université de Lyon 1, 69000, Lyon, France.
| | - Mario Flores-Violante
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Florence Zylbersztejn
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Marion Billandon
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Sandrine Jeanpierre
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,Centre Léon Bérard, 69000, Lyon, France
| | - Stéphane Joly
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Gaelle Fossard
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Milen Milenkov
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Frédéric Mazurier
- CNRS ERL 7001, 37032, Tours, France.,CNRS GDR 3697 MicroNiT, Tours, France
| | | | - Amine Belhabri
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,Centre Léon Bérard, 69000, Lyon, France
| | - Etienne Paubelle
- Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Xavier Thomas
- Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Mauricette Michallet
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,Centre Léon Bérard, 69000, Lyon, France
| | - Fawzia Louache
- CNRS GDR 3697 MicroNiT, Tours, France.,Inserm, UMR1170, 94000, Villejuif, France
| | - Franck-Emmanuel Nicolini
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,Centre Léon Bérard, 69000, Lyon, France
| | - Claude Caron de Fromentel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France. .,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France. .,Université de Lyon, 69000, Lyon, France. .,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France. .,Université de Lyon 1, 69000, Lyon, France. .,CNRS GDR 3697 MicroNiT, Tours, France.
| |
Collapse
|