101
|
Piñeiro-Yáñez E, Reboiro-Jato M, Gómez-López G, Perales-Patón J, Troulé K, Rodríguez JM, Tejero H, Shimamura T, López-Casas PP, Carretero J, Valencia A, Hidalgo M, Glez-Peña D, Al-Shahrour F. PanDrugs: a novel method to prioritize anticancer drug treatments according to individual genomic data. Genome Med 2018; 10:41. [PMID: 29848362 PMCID: PMC5977747 DOI: 10.1186/s13073-018-0546-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Large-sequencing cancer genome projects have shown that tumors have thousands of molecular alterations and their frequency is highly heterogeneous. In such scenarios, physicians and oncologists routinely face lists of cancer genomic alterations where only a minority of them are relevant biomarkers to drive clinical decision-making. For this reason, the medical community agrees on the urgent need of methodologies to establish the relevance of tumor alterations, assisting in genomic profile interpretation, and, more importantly, to prioritize those that could be clinically actionable for cancer therapy. RESULTS We present PanDrugs, a new computational methodology to guide the selection of personalized treatments in cancer patients using the variant lists provided by genome-wide sequencing analyses. PanDrugs offers the largest database of drug-target associations available from well-known targeted therapies to preclinical drugs. Scoring data-driven gene cancer relevance and drug feasibility PanDrugs interprets genomic alterations and provides a prioritized evidence-based list of anticancer therapies. Our tool represents the first drug prescription strategy applying a rational based on pathway context, multi-gene markers impact and information provided by functional experiments. Our approach has been systematically applied to TCGA patients and successfully validated in a cancer case study with a xenograft mouse model demonstrating its utility. CONCLUSIONS PanDrugs is a feasible method to identify potentially druggable molecular alterations and prioritize drugs to facilitate the interpretation of genomic landscape and clinical decision-making in cancer patients. Our approach expands the search of druggable genomic alterations from the concept of cancer driver genes to the druggable pathway context extending anticancer therapeutic options beyond already known cancer genes. The methodology is public and easily integratable with custom pipelines through its programmatic API or its docker image. The PanDrugs webtool is freely accessible at http://www.pandrugs.org .
Collapse
Affiliation(s)
- Elena Piñeiro-Yáñez
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Miguel Reboiro-Jato
- Computer Science Department - University of Vigo, Vigo, Spain
- Biomedical Research Centre (CINBIO), Vigo, Spain
| | - Gonzalo Gómez-López
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Javier Perales-Patón
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Kevin Troulé
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | | | - Héctor Tejero
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Takeshi Shimamura
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Pedro Pablo López-Casas
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Julián Carretero
- Department of Physiology - University of Valencia, Valencia, Spain
| | - Alfonso Valencia
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Manuel Hidalgo
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
- Beth Israel Deaconess Medical Center, Boston, USA
| | - Daniel Glez-Peña
- Computer Science Department - University of Vigo, Vigo, Spain
- Biomedical Research Centre (CINBIO), Vigo, Spain
| | - Fátima Al-Shahrour
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain.
| |
Collapse
|
102
|
Plasma inflammatory cytokines and survival of pancreatic cancer patients. Clin Transl Gastroenterol 2018; 9:145. [PMID: 29691365 PMCID: PMC5915593 DOI: 10.1038/s41424-018-0008-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/26/2017] [Accepted: 01/21/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Inflammation and inflammatory conditions have been associated with pancreatic cancer risk and progression in a number of clinical, epidemiological, and animal model studies. The goal of the present study is to identify plasma markers of inflammation associated with survival of pancreatic cancer patients, and assess their joint contribution to patient outcome. METHODS We measured circulating levels of four established markers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), soluble tumor necrosis factor receptor type II (sTNF-RII), and macrophage inhibitory cytokine-1 (MIC-1)) in 446 patients enrolled in an ongoing prospective clinic-based study. Hazard ratios (HRs) and 95% confidence intervals (CI) for death were estimated using multivariate Cox proportional hazards models. RESULTS Overall mortality was significantly increased in patients in the top quartile of CRP (HR = 2.52, 95% CI: 1.82-3.49), IL-6 (HR = 2.78, 95% CI: 2.03-3.81), sTNF-RII (HR = 2.00, 95% CI: 1.46-2.72), and MIC-1 (HR = 2.53, 95% CI: 1.83-3.50), compared to those in the bottom quartile (P-trend <0.0001 for all four comparisons). Furthermore, patients with higher circulating concentrations of all four cytokines had a median survival of 3.7 months; whereas, those with lower levels had a median survival of 19.2 months (HR = 4.55, 95% CI: 2.87-7.20, P-trend <0.0001). CONCLUSION Individual elevated plasma inflammatory cytokines are associated with significant and dramatic reductions in pancreatic cancer patient survival. Furthermore, we observed an independent combined effect of those cytokines on patient survival, suggesting that multiple inflammatory pathways are likely involved in PDAC progression. Future research efforts to target the inflammatory state using combination strategies in pancreatic cancer patients are warranted.
Collapse
|
103
|
Lork M, Kreike M, Staal J, Beyaert R. Importance of Validating Antibodies and Small Compound Inhibitors Using Genetic Knockout Studies-T Cell Receptor-Induced CYLD Phosphorylation by IKKε/TBK1 as a Case Study. Front Cell Dev Biol 2018; 6:40. [PMID: 29755980 PMCID: PMC5932415 DOI: 10.3389/fcell.2018.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
CYLD is a deubiquitinating enzyme that plays a crucial role in immunity and inflammation as a negative regulator of NF-κB transcription factor and JNK kinase signaling. Defects in either of these pathways contribute to the progression of numerous inflammatory and autoimmune disorders. Therefore, we set out to unravel molecular mechanisms that control CYLD activity in the context of T cell receptor (TCR) signaling. More specifically, we focused on CYLD phosphorylation at Ser418, which can be detected upon immunoblotting of cell extracts with phospho(Ser418)-CYLD specific antibodies. Jurkat T cells stimulated with either anti-CD3/anti-CD28 or PMA/Ionomycin (to mimic TCR signaling) were used as a model system. The role of specific kinases was analyzed using pharmacological as well as genetic approaches. Our initial data indicated that CYLD is directly phosphorylated by the noncanonical IκB kinases (IKKs) IKKε and TANK Binding Kinase 1 (TBK1) at Ser418 upon TCR stimulation. Treatment with MRT67307, a small compound inhibitor for IKKε and TBK1, inhibited TCR-induced CYLD phosphorylation. However, the phospho(Ser418)-CYLD immunoreactive band was still present in CRISPR/Cas9 generated IKKε/TBK1 double knockout cell lines, where it could still be prevented by MRT67307, indicating that the initially observed inhibitory effect of MRT67307 on TCR-induced CYLD phosphorylation is IKKε/TBK1-independent. Most surprisingly, the phospho(Ser418)-CYLD immunoreactive band was still detectable upon immunoblotting of cell extracts obtained from CYLD deficient cells. These data demonstrate the non-specificity of MRT67307 and phospho(Ser418)-CYLD specific antibodies, implying that previously published results based on these tools may also have led to wrong conclusions. We therefore advise to use genetic knockout studies or alternative approaches for a better validation of antibodies and small compound inhibitors. Interestingly, immunoprecipitation with the phospho(Ser418)-CYLD antibody, followed by immunoblotting with anti-CYLD, revealed that CYLD is phosphorylated by IKKε/TBK1 at Ser418 upon T cell stimulation, but that its direct detection with the phospho(Ser418)-CYLD-specific antibody in a western blot is masked by another inducible protein of the same size that is recognized by the same antibody.
Collapse
Affiliation(s)
- Marie Lork
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Marja Kreike
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| |
Collapse
|
104
|
Ccl5 establishes an autocrine high-grade glioma growth regulatory circuit critical for mesenchymal glioblastoma survival. Oncotarget 2018; 8:32977-32989. [PMID: 28380429 PMCID: PMC5464843 DOI: 10.18632/oncotarget.16516] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/13/2017] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults, with a median survival of 15 months. These poor clinical outcomes have prompted the development of drugs that block neoplastic cancer cell growth; however, non-neoplastic cell-derived signals (chemokines and cytokines) in the tumor microenvironment may also represent viable treatment targets. One such chemokine, Ccl5, produced by low-grade tumor-associated microglia, is responsible for maintaining neurofibromatosis type 1 (NF1) mouse optic glioma growth in vivo. Since malignant gliomas may achieve partial independence from growth regulatory factors produced by non-neoplastic cells in the tumor microenvironment by producing the same cytokines secreted by the stromal cells in their low-grade counterparts, we tested the hypothesis that CCL5/CCL5-receptor signaling in glioblastoma creates an autocrine circuit important for high-grade glioma growth. Herein, we demonstrate that increased CCL5 expression was restricted to both human and mouse mesenchymal GBM (M-GBM), a molecular subtype characterized by NF1 loss. We further show that the NF1 protein, neurofibromin, negatively regulates Ccl5 expression through suppression of AKT/mTOR signaling. Consistent with its role as a glioblastoma growth regulator, Ccl5 knockdown in M-GBM cells reduces M-GBM cell survival in vitro, and increases mouse glioblastoma survival in vivo. Finally, we demonstrate that Ccl5 operates through an unconventional CCL5 receptor, CD44, to inhibit M-GBM apoptosis. Collectively, these findings reveal an NF1-dependent CCL5-mediated pathway that regulates M-GBM cell survival, and support the concept that paracrine factors important for low-grade glioma growth can be usurped by high-grade tumors to create autocrine regulatory circuits that maintain malignant glioma survival.
Collapse
|
105
|
Targeting IκappaB kinases for cancer therapy. Semin Cancer Biol 2018; 56:12-24. [PMID: 29486318 DOI: 10.1016/j.semcancer.2018.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The inhibitory kappa B kinases (IKKs) and IKK related kinases are crucial regulators of the pro-inflammatory transcription factor, nuclear factor kappa B (NF-κB). The dysregulation in the activities of these kinases has been reported in several cancer types. These kinases are known to regulate survival, proliferation, invasion, angiogenesis, and metastasis of cancer cells. Thus, IKK and IKK related kinases have emerged as an attractive target for the development of cancer therapeutics. Several IKK inhibitors have been developed, few of which have advanced to the clinic. These inhibitors target IKK either directly or indirectly by modulating the activities of other signaling molecules. Some inhibitors suppress IKK activity by disrupting the protein-protein interaction in the IKK complex. The inhibition of IKK has also been shown to enhance the efficacy of conventional chemotherapeutic agents. Because IKK and NF-κB are the key components of innate immunity, suppressing IKK is associated with the risk of immune suppression. Furthermore, IKK inhibitors may hit other signaling molecules and thus may produce off-target effects. Recent studies suggest that multiple cytoplasmic and nuclear proteins distinct from NF-κB and inhibitory κB are also substrates of IKK. In this review, we discuss the utility of IKK inhibitors for cancer therapy. The limitations associated with the intervention of IKK are also discussed.
Collapse
|
106
|
A module of inflammatory cytokines defines resistance of colorectal cancer to EGFR inhibitors. Oncotarget 2018; 7:72167-72183. [PMID: 27708224 PMCID: PMC5342152 DOI: 10.18632/oncotarget.12354] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/21/2016] [Indexed: 12/13/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) activates a robust signalling network to which colon cancer tumours often become addicted. Cetuximab, one of the monoclonal antibodies targeting this pathway, is employed to treat patients with colorectal cancer. However, many patients are intrinsically refractory to this treatment, and those who respond develop secondary resistance along time. Mechanisms of cancer cell resistance include either acquisition of new mutations or non genomic activation of alternative signalling routes. In this study, we employed a colon cancer model to assess potential mechanisms driving resistance to cetuximab. Resistant cells displayed increased ability to grow in suspension as colonspheres and this phenotype was associated with poorly organized structures. Factors secreted from resistant cells were causally involved in sustaining resistance, indeed administration to parental cells of conditioned medium collected from resistant cells was sufficient to reduce cetuximab efficacy. Among secreted factors, we report herein that a signature of inflammatory cytokines, including IL1A, IL1B and IL8, which are produced following EGFR pathway activation, was associated with the acquisition of an unresponsive phenotype to cetuximab in vitro. This signature correlated with lack of response to EGFR targeting also in patient-derived tumour xenografts. Collectively, these results highlight the contribution of inflammatory cytokines to reduced sensitivity to EGFR blockade and suggest that inhibition of this panel of cytokines in combination with cetuximab might yield an effective treatment strategy for CRC patients refractory to anti-EGFR targeting.
Collapse
|
107
|
Ambrogio C, Köhler J, Zhou ZW, Wang H, Paranal R, Li J, Capelletti M, Caffarra C, Li S, Lv Q, Gondi S, Hunter JC, Lu J, Chiarle R, Santamaría D, Westover KD, Jänne PA. KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS. Cell 2018; 172:857-868.e15. [DOI: 10.1016/j.cell.2017.12.020] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/19/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023]
|
108
|
Kikuchi D, Saito M, Saito K, Watanabe Y, Matsumoto Y, Kanke Y, Onozawa H, Hayase S, Sakamoto W, Ishigame T, Momma T, Ohki S, Takenoshita S. Upregulated solute carrier family 37 member 1 in colorectal cancer is associated with poor patient outcome and metastasis. Oncol Lett 2017; 15:2065-2072. [PMID: 29434906 PMCID: PMC5776953 DOI: 10.3892/ol.2017.7559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/03/2017] [Indexed: 02/07/2023] Open
Abstract
Solute carrier (SLC) drug transporters exchange various molecules without energy from adenosine triphosphate hydrolysis, indicating an association with anticancer drug resistance. However, the expression and role of SLC transporters in malignant tumors has not yet been fully elucidated. Therefore, in the current study, the expression of SLC37A family genes was evaluated in patients with colorectal cancer (CRC), and it was revealed that SLC family 37 member 1 (SLC37A1) expression was significantly increased in tumorous tissues compared with that in non-tumorous tissues. The cases with upregulated expression of SLC37A1 by immunohistochemical staining were significantly associated with positive venous invasion and liver metastasis. Furthermore, upregulated SLC37A1 expression was associated with poor overall survival time in the present cohort. These results indicated that SLC37A1 is involved in the hematogenous metastasis of CRC. To investigate whether SLC37A1 is associated with hematogenous metastasis and glycolipid metabolism, SLC37A1 was knocked down in colon cancer cells, and the expression of sialyl Lewis A and sialyl Lewis X was observed to be decreased. In summary, upregulation of SLC37A1 was observed in patients with CRC, and was associated with poor patient outcomes and survival. To the best of our knowledge, the present study is the first to propose a key role of SLC37A1 in CRC, and additional studies are warranted to reveal the functional role of SLC37A1 in CRC development.
Collapse
Affiliation(s)
- Daiki Kikuchi
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Motonobu Saito
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yohei Watanabe
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yoshiko Matsumoto
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yasuyuki Kanke
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hisashi Onozawa
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Suguru Hayase
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wataru Sakamoto
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Teruhide Ishigame
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Momma
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shinji Ohki
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Seiichi Takenoshita
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
109
|
Assessment of TANK-binding kinase 1 as a therapeutic target in cancer. J Cell Commun Signal 2017; 12:83-90. [PMID: 29218456 DOI: 10.1007/s12079-017-0438-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/24/2017] [Indexed: 01/10/2023] Open
Abstract
TANK-binding kinase 1 (TBK1) is central to multiple biological processes that promote tumorigenesis including cell division, autophagy, innate immune response and AKT-pro survival signaling. TBK1 is well studied and most known for its function in innate immunity. However, the serine threonine protein kinase received significant attention as a synthetic lethal partner and effector of the major oncogene, RAS. This review summarizes newly identified cancer promoting functions of TBK1 and evaluates the therapeutic potential of targeting TBK1 in cancer.
Collapse
|
110
|
Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, Bowden M, Deng J, Liu H, Miao D, He MX, Walker W, Zhang G, Tian T, Cheng C, Wei Z, Palakurthi S, Bittinger M, Vitzthum H, Kim JW, Merlino A, Quinn M, Venkataramani C, Kaplan JA, Portell A, Gokhale PC, Phillips B, Smart A, Rotem A, Jones RE, Keogh L, Anguiano M, Stapleton L, Jia Z, Barzily-Rokni M, Cañadas I, Thai TC, Hammond MR, Vlahos R, Wang ES, Zhang H, Li S, Hanna GJ, Huang W, Hoang MP, Piris A, Eliane JP, Stemmer-Rachamimov AO, Cameron L, Su MJ, Shah P, Izar B, Thakuria M, LeBoeuf NR, Rabinowits G, Gunda V, Parangi S, Cleary JM, Miller BC, Kitajima S, Thummalapalli R, Miao B, Barbie TU, Sivathanu V, Wong J, Richards WG, Bueno R, Yoon CH, Miret J, Herlyn M, Garraway LA, Van Allen EM, Freeman GJ, Kirschmeier PT, Lorch JH, Ott PA, Hodi FS, Flaherty KT, Kamm RD, Boland GM, Wong KK, Dornan D, Paweletz CP, Barbie DA. Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov 2017; 8:196-215. [PMID: 29101162 DOI: 10.1158/2159-8290.cd-17-0833] [Citation(s) in RCA: 405] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/23/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022]
Abstract
Ex vivo systems that incorporate features of the tumor microenvironment and model the dynamic response to immune checkpoint blockade (ICB) may facilitate efforts in precision immuno-oncology and the development of effective combination therapies. Here, we demonstrate the ability to interrogate ex vivo response to ICB using murine- and patient-derived organotypic tumor spheroids (MDOTS/PDOTS). MDOTS/PDOTS isolated from mouse and human tumors retain autologous lymphoid and myeloid cell populations and respond to ICB in short-term three-dimensional microfluidic culture. Response and resistance to ICB was recapitulated using MDOTS derived from established immunocompetent mouse tumor models. MDOTS profiling demonstrated that TBK1/IKKε inhibition enhanced response to PD-1 blockade, which effectively predicted tumor response in vivo Systematic profiling of secreted cytokines in PDOTS captured key features associated with response and resistance to PD-1 blockade. Thus, MDOTS/PDOTS profiling represents a novel platform to evaluate ICB using established murine models as well as clinically relevant patient specimens.Significance: Resistance to PD-1 blockade remains a challenge for many patients, and biomarkers to guide treatment are lacking. Here, we demonstrate feasibility of ex vivo profiling of PD-1 blockade to interrogate the tumor immune microenvironment, develop therapeutic combinations, and facilitate precision immuno-oncology efforts. Cancer Discov; 8(2); 196-215. ©2017 AACR.See related commentary by Balko and Sosman, p. 143See related article by Deng et al., p. 216This article is highlighted in the In This Issue feature, p. 127.
Collapse
Affiliation(s)
- Russell W Jenkins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Amir R Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick H Lizotte
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elena Ivanova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Chensheng W Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michaela Bowden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jiehui Deng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hongye Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Diana Miao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Meng Xiao He
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Harvard Graduate Program in Biophysics, Boston, Massachusetts
| | - William Walker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gao Zhang
- Melanoma Research Center and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Tian Tian
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Chaoran Cheng
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Sangeetha Palakurthi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark Bittinger
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hans Vitzthum
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Ashley Merlino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Max Quinn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | - Andrew Portell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Prafulla C Gokhale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Alicia Smart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Asaf Rotem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Robert E Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lauren Keogh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Maria Anguiano
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | - Michal Barzily-Rokni
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Israel Cañadas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marc R Hammond
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Raven Vlahos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eric S Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hua Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shuai Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Glenn J Hanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wei Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mai P Hoang
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Adriano Piris
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jean-Pierre Eliane
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anat O Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lisa Cameron
- Confocal and Light Microscopy Core Facility, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mei-Ju Su
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Parin Shah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Benjamin Izar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Manisha Thakuria
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicole R LeBoeuf
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Guilherme Rabinowits
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Viswanath Gunda
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brian C Miller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rohit Thummalapalli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Benchun Miao
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Thanh U Barbie
- Department of Surgical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vivek Sivathanu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Joshua Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William G Richards
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles H Yoon
- Department of Surgical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Juan Miret
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Meenhard Herlyn
- Melanoma Research Center and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paul T Kirschmeier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jochen H Lorch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keith T Flaherty
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Cloud Peter Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
111
|
CCR5+ Myeloid-Derived Suppressor Cells Are Enriched and Activated in Melanoma Lesions. Cancer Res 2017; 78:157-167. [DOI: 10.1158/0008-5472.can-17-0348] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/15/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022]
|
112
|
Workshop on challenges, insights, and future directions for mouse and humanized models in cancer immunology and immunotherapy: a report from the associated programs of the 2016 annual meeting for the Society for Immunotherapy of cancer. J Immunother Cancer 2017; 5:77. [PMID: 28923102 PMCID: PMC5604351 DOI: 10.1186/s40425-017-0278-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding how murine models can elucidate the mechanisms underlying antitumor immune responses and advance immune-based drug development is essential to advancing the field of cancer immunotherapy. The Society for Immunotherapy of Cancer (SITC) convened a workshop titled, “Challenges, Insights, and Future Directions for Mouse and Humanized Models in Cancer Immunology and Immunotherapy” as part of the SITC 31st Annual Meeting and Associated Programs on November 10, 2016 in National Harbor, MD. The workshop focused on key issues in optimizing models for cancer immunotherapy research, with discussions on the strengths and weaknesses of current models, approaches to improve the predictive value of mouse models, and advances in cancer modeling that are anticipated in the near future. This full-day program provided an introduction to the most common immunocompetent and humanized models used in cancer immunology and immunotherapy research, and addressed the use of models to evaluate immune-targeting therapies. Here, we summarize the workshop presentations and subsequent panel discussion.
Collapse
|
113
|
JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia. Oncotarget 2017; 8:89923-89938. [PMID: 29163799 PMCID: PMC5685720 DOI: 10.18632/oncotarget.21027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL.
Collapse
|
114
|
Cooper JM, Ou YH, McMillan EA, Vaden RM, Zaman A, Bodemann BO, Makkar G, Posner BA, White MA. TBK1 Provides Context-Selective Support of the Activated AKT/mTOR Pathway in Lung Cancer. Cancer Res 2017; 77:5077-5094. [PMID: 28716898 PMCID: PMC5833933 DOI: 10.1158/0008-5472.can-17-0829] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022]
Abstract
Emerging observations link dysregulation of TANK-binding kinase 1 (TBK1) to developmental disorders, inflammatory disease, and cancer. Biochemical mechanisms accounting for direct participation of TBK1 in host defense signaling have been well described. However, the molecular underpinnings of the selective participation of TBK1 in a myriad of additional cell biological systems in normal and pathophysiologic contexts remain poorly understood. To elucidate the context-selective role of TBK1 in cancer cell survival, we employed a combination of broad-scale chemogenomic and interactome discovery strategies to generate data-driven mechanism-of-action hypotheses. This approach uncovered evidence that TBK1 supports AKT/mTORC1 pathway activation and function through direct modulation of multiple pathway components acting both upstream and downstream of the mTOR kinase itself. Furthermore, we identified distinct molecular features in which mesenchymal, Ras-mutant lung cancer is acutely dependent on TBK1-mediated support of AKT/mTORC1 pathway activation for survival. Cancer Res; 77(18); 5077-94. ©2017 AACR.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesoderm/drug effects
- Mesoderm/metabolism
- Mesoderm/pathology
- Phosphorylation/drug effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Regulatory Elements, Transcriptional/drug effects
- Signal Transduction/drug effects
- Small Molecule Libraries/pharmacology
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jonathan M Cooper
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Yi-Hung Ou
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | | | - Rachel M Vaden
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Aubhishek Zaman
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Brian O Bodemann
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Gurbani Makkar
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Bruce A Posner
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Michael A White
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
115
|
Umansky V, Blattner C, Gebhardt C, Utikal J. CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma. Cancer Immunol Immunother 2017; 66:1015-1023. [PMID: 28382399 PMCID: PMC11029643 DOI: 10.1007/s00262-017-1988-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Malignant melanoma is characterized by the development of chronic inflammation in the tumor microenvironment, leading to the accumulation of myeloid-derived suppressor cells (MDSCs). Using ret transgenic mouse melanoma model, we found a significant migration of MDSCs expressing C-C chemokine receptor (CCR)5 into primary tumors and metastatic lymph nodes, which was correlated with tumor progression. An increased CCR5 expression on MDSCs was associated with elevated concentrations of CCR5 ligands in melanoma microenvironment. In vitro experiments showed that the upregulation of CCR5 expression on CD11b+Gr1+ immature myeloid cells was induced by CCR5 ligands, IL-6, GM-CSF, and other inflammatory factors. Furthermore, CCR5+ MDSCs infiltrating melanoma lesions displayed a stronger immunosuppressive pattern than their CCR5- counterparts. Targeting CCR5/CCR5 ligand signaling via a fusion protein mCCR5-Ig, which selectively binds and neutralizes all three CCR5 ligands, increased the survival of tumor-bearing mice. This was associated with a reduced migration and immunosuppressive potential of tumor MDSCs. In melanoma patients, circulating CCR5+ MDSCs were increased as compared to healthy donors. Like in melanoma-bearing mice, we observed an enrichment of these cells and CCR5 ligands in tumors as compared to the peripheral blood. Our findings define a critical role for CCR5 not only in the recruitment but also in the activation of MDSCs in tumor lesions, suggesting that novel strategies of melanoma treatment could be based on blocking CCR5/CCR5 ligand interactions.
Collapse
Affiliation(s)
- Viktor Umansky
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.
| | - Carolin Blattner
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Christoffer Gebhardt
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
116
|
Kitajima S, Takahashi C. Intersection of retinoblastoma tumor suppressor function, stem cells, metabolism, and inflammation. Cancer Sci 2017; 108:1726-1731. [PMID: 28865172 PMCID: PMC5581511 DOI: 10.1111/cas.13312] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/27/2022] Open
Abstract
The Retinoblastoma (RB) tumor suppressor regulates G1/S transition during cell cycle progression by modulating the activity of E2F transcription factors. The RB pathway plays a central role in the suppression of most cancers, and RB mutation was initially discovered by virtue of its role in tumor initiation. However, as cancer genome sequencing has evolved to profile more advanced and treatment‐resistant cancers, it has become increasingly clear that, in the majority of cancers, somatic RB inactivation occurs during tumor progression. Furthermore, despite the presence of deregulation of cell cycle control due to an INK4A deletion, additional CCND amplification and/or other mutations in the RB pathway, mutation or deletion of the RB gene is often observed during cancer progression. Of note, RB inactivation during cancer progression not only facilitates G1/S transition but also enhances some characteristics of malignancy, including altered drug sensitivity and a return to the undifferentiated state. Recently, we reported that RB inactivation enhances pro‐inflammatory signaling through stimulation of the interleukin‐6/STAT3 pathway, which directly promotes various malignant features of cancer cells. In this review, we highlight the consequences of RB inactivation during cancer progression, and discuss the biological and pathological significance of the interaction between RB and pro‐inflammatory signaling.
Collapse
Affiliation(s)
- Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
117
|
Yin N, Lepp A, Ji Y, Mortensen M, Hou S, Qi XM, Myers CR, Chen G. The K-Ras effector p38γ MAPK confers intrinsic resistance to tyrosine kinase inhibitors by stimulating EGFR transcription and EGFR dephosphorylation. J Biol Chem 2017; 292:15070-15079. [PMID: 28739874 DOI: 10.1074/jbc.m117.779488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/21/2017] [Indexed: 01/01/2023] Open
Abstract
Mutations in K-Ras and epidermal growth factor receptor (EGFR) are mutually exclusive, but it is not known how K-Ras activation inactivates EGFR, leading to resistance of cancer cells to anti-EGFR therapy. Here, we report that the K-Ras effector p38γ MAPK confers intrinsic resistance to small molecular tyrosine kinase inhibitors (TKIs) by concurrently stimulating EGFR gene transcription and protein dephosphorylation. We found that p38γ increases EGFR transcription by c-Jun-mediated promoter binding and stimulates EGFR dephosphorylation via activation of protein-tyrosine phosphatase H1 (PTPH1). Silencing the p38γ/c-Jun/PTPH1 signaling network increased sensitivities to TKIs in K-Ras mutant cells in which EGFR knockdown inhibited growth. Similar results were obtained with the p38γ-specific pharmacological inhibitor pirfenidone. These results indicate that in K-Ras mutant cancers, EGFR activity is regulated by the p38γ/c-Jun/PTPH1 signaling network, whose disruption may be a novel strategy to restore the sensitivity to TKIs.
Collapse
Affiliation(s)
- Ning Yin
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Adrienne Lepp
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Yongsheng Ji
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Matthew Mortensen
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Songwang Hou
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Xiao-Mei Qi
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Charles R Myers
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Guan Chen
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and .,the Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| |
Collapse
|
118
|
Shien K, Papadimitrakopoulou VA, Ruder D, Behrens C, Shen L, Kalhor N, Song J, Lee JJ, Wang J, Tang X, Herbst RS, Toyooka S, Girard L, Minna JD, Kurie JM, Wistuba II, Izzo JG. JAK1/STAT3 Activation through a Proinflammatory Cytokine Pathway Leads to Resistance to Molecularly Targeted Therapy in Non-Small Cell Lung Cancer. Mol Cancer Ther 2017; 16:2234-2245. [PMID: 28729401 DOI: 10.1158/1535-7163.mct-17-0148] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/24/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022]
Abstract
Molecularly targeted drugs have yielded significant therapeutic advances in oncogene-driven non-small cell lung cancer (NSCLC), but a majority of patients eventually develop acquired resistance. Recently, the relation between proinflammatory cytokine IL6 and resistance to targeted drugs has been reported. We investigated the functional contribution of IL6 and the other members of IL6 family proinflammatory cytokine pathway to resistance to targeted drugs in NSCLC cells. In addition, we examined the production of these cytokines by cancer cells and cancer-associated fibroblasts (CAF). We also analyzed the prognostic significance of these molecule expressions in clinical NSCLC samples. In NSCLC cells with acquired resistance to targeted drugs, we observed activation of the IL6-cytokine pathway and STAT3 along with epithelial-to-mesenchymal transition (EMT) features. In particular, IL6 family cytokine oncostatin-M (OSM) induced a switch to the EMT phenotype and protected cells from targeted drug-induced apoptosis in OSM receptors (OSMRs)/JAK1/STAT3-dependent manner. The cross-talk between NSCLC cells and CAFs also preferentially activated the OSM/STAT3 pathway via a paracrine mechanism and decreased sensitivity to targeted drugs. The selective JAK1 inhibitor filgotinib effectively suppressed STAT3 activation and OSMR expression, and cotargeting inhibition of the oncogenic pathway and JAK1 reversed resistance to targeted drugs. In the analysis of clinical samples, OSMR gene expression appeared to be associated with worse prognosis in patients with surgically resected lung adenocarcinoma. Our data suggest that the OSMRs/JAK1/STAT3 axis contributes to resistance to targeted drugs in oncogene-driven NSCLC cells, implying that this pathway could be a therapeutic target. Mol Cancer Ther; 16(10); 2234-45. ©2017 AACR.
Collapse
Affiliation(s)
- Kazuhiko Shien
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dennis Ruder
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neda Kalhor
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juhee Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roy S Herbst
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Shinichi Toyooka
- Department of General Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Julie G Izzo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
119
|
Park SJ, More S, Murtuza A, Woodward BD, Husain H. New Targets in Non-Small Cell Lung Cancer. Hematol Oncol Clin North Am 2017; 31:113-129. [PMID: 27912827 DOI: 10.1016/j.hoc.2016.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With the implementation of genomic technologies into clinical practice, we have examples of the predictive benefit of targeted therapy for oncogene-addicted cancer and identified molecular dependencies in non-small cell lung cancer. The clinical success of tyrosine kinase inhibitors against epidermal growth factor receptor and anaplastic lymphoma kinase activation has shifted treatment emphasize the separation of subsets of lung cancer and genotype-directed therapy. Advances have validated oncogenic driver genes and led to the development of targeted agents. This review highlights treatment options, including clinical trials for ROS1 rearrangement, RET fusions, NTRK1 fusions, MET exon skipping, BRAF mutations, and KRAS mutations.
Collapse
Affiliation(s)
- Soo J Park
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Soham More
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ayesha Murtuza
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian D Woodward
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hatim Husain
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
120
|
Li X, Li B, Ni Z, Zhou P, Wang B, He J, Xiong H, Yang F, Wu Y, Lyu X, Zhang Y, Zeng Y, Lian J, He F. Metformin Synergizes with BCL-XL/BCL-2 Inhibitor ABT-263 to Induce Apoptosis Specifically in p53-Defective Cancer Cells. Mol Cancer Ther 2017; 16:1806-1818. [DOI: 10.1158/1535-7163.mct-16-0763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/30/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
|
121
|
Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017. [PMID: 28481359 DOI: 10.1038/nm.4333] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor molecular profiling is a fundamental component of precision oncology, enabling the identification of genomic alterations in genes and pathways that can be targeted therapeutically. The existence of recurrent targetable alterations across distinct histologically defined tumor types, coupled with an expanding portfolio of molecularly targeted therapies, demands flexible and comprehensive approaches to profile clinically relevant genes across the full spectrum of cancers. We established a large-scale, prospective clinical sequencing initiative using a comprehensive assay, MSK-IMPACT, through which we have compiled tumor and matched normal sequence data from a unique cohort of more than 10,000 patients with advanced cancer and available pathological and clinical annotations. Using these data, we identified clinically relevant somatic mutations, novel noncoding alterations, and mutational signatures that were shared by common and rare tumor types. Patients were enrolled on genomically matched clinical trials at a rate of 11%. To enable discovery of novel biomarkers and deeper investigation into rare alterations and tumor types, all results are publicly accessible.
Collapse
|
122
|
Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, Hellmann MD, Barron DA, Schram AM, Hameed M, Dogan S, Ross DS, Hechtman JF, DeLair DF, Yao J, Mandelker DL, Cheng DT, Chandramohan R, Mohanty AS, Ptashkin RN, Jayakumaran G, Prasad M, Syed MH, Rema AB, Liu ZY, Nafa K, Borsu L, Sadowska J, Casanova J, Bacares R, Kiecka IJ, Razumova A, Son JB, Stewart L, Baldi T, Mullaney KA, Al-Ahmadie H, Vakiani E, Abeshouse AA, Penson AV, Jonsson P, Camacho N, Chang MT, Won HH, Gross BE, Kundra R, Heins ZJ, Chen HW, Phillips S, Zhang H, Wang J, Ochoa A, Wills J, Eubank M, Thomas SB, Gardos SM, Reales DN, Galle J, Durany R, Cambria R, Abida W, Cercek A, Feldman DR, Gounder MM, Hakimi AA, Harding JJ, Iyer G, Janjigian YY, Jordan EJ, Kelly CM, Lowery MA, Morris LGT, Omuro AM, Raj N, Razavi P, Shoushtari AN, Shukla N, Soumerai TE, Varghese AM, Yaeger R, Coleman J, Bochner B, Riely GJ, Saltz LB, Scher HI, Sabbatini PJ, Robson ME, Klimstra DS, Taylor BS, Baselga J, Schultz N, Hyman DM, Arcila ME, Solit DB, Ladanyi M, Berger MF. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017; 23:703-713. [PMID: 28481359 PMCID: PMC5461196 DOI: 10.1038/nm.4333] [Citation(s) in RCA: 2435] [Impact Index Per Article: 304.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
Tumor molecular profiling is a fundamental component of precision oncology, enabling the identification of genomic alterations in genes and pathways that can be targeted therapeutically. The existence of recurrent targetable alterations across distinct histologically defined tumor types, coupled with an expanding portfolio of molecularly targeted therapies, demands flexible and comprehensive approaches to profile clinically relevant genes across the full spectrum of cancers. We established a large-scale, prospective clinical sequencing initiative using a comprehensive assay, MSK-IMPACT, through which we have compiled tumor and matched normal sequence data from a unique cohort of more than 10,000 patients with advanced cancer and available pathological and clinical annotations. Using these data, we identified clinically relevant somatic mutations, novel noncoding alterations, and mutational signatures that were shared by common and rare tumor types. Patients were enrolled on genomically matched clinical trials at a rate of 11%. To enable discovery of novel biomarkers and deeper investigation into rare alterations and tumor types, all results are publicly accessible.
Collapse
Affiliation(s)
- Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ronak H Shah
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Aijazuddin Syed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sumit Middha
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hyunjae R Kim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Preethi Srinivasan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jianjiong Gao
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Debyani Chakravarty
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sean M Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David A Barron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alison M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dara S Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jaclyn F Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Deborah F DeLair
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - JinJuan Yao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Diana L Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Donavan T Cheng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Raghu Chandramohan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Abhinita S Mohanty
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ryan N Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gowtham Jayakumaran
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Meera Prasad
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mustafa H Syed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Zhen Y Liu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Khedoudja Nafa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Laetitia Borsu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Justyna Sadowska
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jacklyn Casanova
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ruben Bacares
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Iwona J Kiecka
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Anna Razumova
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Julie B Son
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lisa Stewart
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tessara Baldi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kerry A Mullaney
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Adam A Abeshouse
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alexander V Penson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Philip Jonsson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Niedzica Camacho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew T Chang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Helen H Won
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Benjamin E Gross
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ritika Kundra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zachary J Heins
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hsiao-Wei Chen
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sarah Phillips
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hongxin Zhang
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jiaojiao Wang
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Angelica Ochoa
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jonathan Wills
- Information Systems, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael Eubank
- Information Systems, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stacy B Thomas
- Information Systems, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stuart M Gardos
- Information Systems, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dalicia N Reales
- Clinical Research Administration, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jesse Galle
- Clinical Research Administration, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Durany
- Clinical Research Administration, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roy Cambria
- Clinical Research Administration, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Darren R Feldman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mrinal M Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - A Ari Hakimi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Emmet J Jordan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ciara M Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maeve A Lowery
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Luc G T Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Antonio M Omuro
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nitya Raj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tara E Soumerai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Anna M Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jonathan Coleman
- Clinical Research Administration, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Bernard Bochner
- Clinical Research Administration, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Leonard B Saltz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Paul J Sabbatini
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David S Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Barry S Taylor
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jose Baselga
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David B Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
123
|
The RB–IL-6 axis controls self-renewal and endocrine therapy resistance by fine-tuning mitochondrial activity. Oncogene 2017; 36:5145-5157. [DOI: 10.1038/onc.2017.124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
|
124
|
Abstract
The study of oncogenic RAS mutations has led to crucial discoveries regarding cancer molecular biology and behavior and has been integral in shaping the era of targeted cancer therapy. RAS mutations are one of the most common oncogenic drivers in human cancer, and intense efforts to find a clinically effective inhibitor are ongoing. Despite these efforts, targeting RAS mutations has remained elusive, so much so that some have termed oncogenic RAS mutations as "undruggable." In this review, we will summarize current understanding of RAS biology, explore strategies to inhibit RAS oncoproteins and its downstream effectors, and discuss recently described complexities that have shed new light on this pursuit.
Collapse
|
125
|
Durand JK, Baldwin AS. Targeting IKK and NF-κB for Therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 107:77-115. [PMID: 28215229 DOI: 10.1016/bs.apcsb.2016.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to regulating immune responses, the NF-κB family of transcription factors also promotes cellular proliferation and survival. NF-κB and its activating kinase, IKK, have become appealing therapeutic targets because of their critical roles in the progression of many diseases including chronic inflammation and cancer. Here, we discuss the conditions that lead to pathway activation, the effects of constitutive activation, and some of the strategies used to inhibit NF-κB signaling.
Collapse
Affiliation(s)
- J K Durand
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
126
|
Rajurkar M, Dang K, Fernandez-Barrena MG, Liu X, Fernandez-Zapico ME, Lewis BC, Mao J. IKBKE Is Required during KRAS-Induced Pancreatic Tumorigenesis. Cancer Res 2017; 77:320-329. [PMID: 28069799 DOI: 10.1158/0008-5472.can-15-1684] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/21/2016] [Accepted: 10/16/2016] [Indexed: 01/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies lacking effective therapeutic strategies. Here, we show that the noncanonical IκB-related kinase, IKBKE, is a critical oncogenic effector during KRAS-induced pancreatic transformation. Loss of IKBKE inhibits the initiation and progression of pancreatic tumors in mice carrying pancreatic-specific KRAS activation. Mechanistically, we demonstrate that this protumoral effect of IKBKE involves the activation of GLI1 and AKT signaling and is independent of the levels of activity of the NF-κB pathway. Further analysis reveals that IKBKE regulates GLI1 nuclear translocation and promotes the reactivation of AKT post-inhibition of mTOR in PDAC cells. Interestingly, combined inhibition of IKBKE and mTOR synergistically blocks pancreatic tumor growth. Together, our findings highlight the functional importance of IKBKE in pancreatic cancer, support the evaluation of IKBKE as a therapeutic target in PDAC, and suggest IKBKE inhibition as a strategy to improve efficacy of mTOR inhibitors in the clinic. Cancer Res; 77(2); 320-9. ©2017 AACR.
Collapse
Affiliation(s)
- Mihir Rajurkar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kyvan Dang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Xiangfan Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Brian C Lewis
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
127
|
Ricker CA, Pan Y, Gutmann DH, Keller C. Challenges in Drug Discovery for Neurofibromatosis Type 1-Associated Low-Grade Glioma. Front Oncol 2016; 6:259. [PMID: 28066715 PMCID: PMC5167692 DOI: 10.3389/fonc.2016.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder that results from germline mutations of the NF1 gene, creating a predisposition to low-grade gliomas (LGGs; pilocytic astrocytoma) in young children. Insufficient data and resources represent major challenges to identifying the best possible drug therapies for children with this tumor. Herein, we summarize the currently available cell lines, genetically engineered mouse models, and therapeutic targets for these LGGs. Conspicuously absent are human tumor-derived cell lines or patient-derived xenograft models for NF1-LGG. New collaborative initiatives between patients and their families, research groups, and pharmaceutical companies are needed to create transformative resources and broaden the knowledge base relevant to identifying cooperating genetic drivers and possible drug therapeutics for this common pediatric brain tumor.
Collapse
Affiliation(s)
- Cora A Ricker
- Children's Cancer Therapy Development Institute , Beaverton, OR , USA
| | - Yuan Pan
- Washington University School of Medicine , St. Louis, MO , USA
| | - David H Gutmann
- Washington University School of Medicine , St. Louis, MO , USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute , Beaverton, OR , USA
| |
Collapse
|
128
|
Pomeroy EJ, Lee LA, Lee RDW, Schirm DK, Temiz NA, Ma J, Gruber TA, Diaz-Flores E, Moriarity BS, Downing JR, Shannon KM, Largaespada DA, Eckfeldt CE. Ras oncogene-independent activation of RALB signaling is a targetable mechanism of escape from NRAS(V12) oncogene addiction in acute myeloid leukemia. Oncogene 2016; 36:3263-3273. [PMID: 27991934 PMCID: PMC5464975 DOI: 10.1038/onc.2016.471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/17/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
Abstract
Somatic mutations that lead to constitutive activation of NRAS and KRAS proto-oncogenes are among the most common in human cancer and frequently occur in acute myeloid leukemia (AML). An inducible NRAS(V12)-driven AML mouse model has established a critical role for continued NRAS(V12) expression in leukemia maintenance. In this model genetic suppression of NRAS(V12) expression results in rapid leukemia remission, but some mice undergo spontaneous relapse with NRAS(V12)-independent (NRI) AMLs providing an opportunity to identify mechanisms that bypass the requirement for Ras oncogene activity and drive leukemia relapse. We found that relapsed NRI AMLs are devoid of NRAS(V12) expression and signaling through the major oncogenic Ras effector pathways, phosphatidylinositol-3-kinase and mitogen-activated protein kinase, but express higher levels of an alternate Ras effector, Ralb, and exhibit NRI phosphorylation of the RALB effector TBK1, implicating RALB signaling in AML relapse. Functional studies confirmed that inhibiting CDK5-mediated RALB activation with a clinically relevant experimental drug, dinaciclib, led to potent RALB-dependent antileukemic effects in human AML cell lines, induced apoptosis in patient-derived AML samples in vitro and led to a 2-log reduction in the leukemic burden in patient-derived xenograft mice. Furthermore, dinaciclib potently suppressed the clonogenic potential of relapsed NRI AMLs in vitro and prevented the development of relapsed AML in vivo. Our findings demonstrate that Ras oncogene-independent activation of RALB signaling is a therapeutically targetable mechanism of escape from NRAS oncogene addiction in AML.
Collapse
Affiliation(s)
- E J Pomeroy
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - L A Lee
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - R D W Lee
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - D K Schirm
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - N A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - J Ma
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - T A Gruber
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - E Diaz-Flores
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - B S Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, Division of Hematology and Oncology, Minneapolis, MN, USA
| | - J R Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - K M Shannon
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - D A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, Division of Hematology and Oncology, Minneapolis, MN, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - C E Eckfeldt
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
129
|
Csermely P, Korcsmáros T, Nussinov R. Intracellular and intercellular signaling networks in cancer initiation, development and precision anti-cancer therapy: RAS acts as contextual signaling hub. Semin Cell Dev Biol 2016; 58:55-9. [PMID: 27395026 PMCID: PMC5028272 DOI: 10.1016/j.semcdb.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/31/2022]
Abstract
Cancer initiation and development are increasingly perceived as systems-level phenomena, where intra- and inter-cellular signaling networks of the ecosystem of cancer and stromal cells offer efficient methodologies for outcome prediction and intervention design. Within this framework, RAS emerges as a 'contextual signaling hub', i.e. the final result of RAS activation or inhibition is determined by the signaling network context. Current therapies often 'train' cancer cells shifting them to a novel attractor, which has increased metastatic potential and drug resistance. The few therapy-surviving cancer cells are surrounded by massive cell death triggering a primordial adaptive and reparative general wound healing response. Overall, dynamic analysis of patient- and disease-stage specific intracellular and intercellular signaling networks may open new areas of anticancer therapy using multitarget drugs, drugs combinations, edgetic drugs, as well as help design 'gentler', differentiation and maintenance therapies.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary.
| | - Tamás Korcsmáros
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK; Earlham Institute/TGAC, The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
130
|
McNew KL, Whipple WJ, Mehta AK, Grant TJ, Ray L, Kenny C, Singh A. MEK and TAK1 Regulate Apoptosis in Colon Cancer Cells with KRAS-Dependent Activation of Proinflammatory Signaling. Mol Cancer Res 2016; 14:1204-1216. [PMID: 27655129 DOI: 10.1158/1541-7786.mcr-16-0173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022]
Abstract
MEK inhibitors have limited efficacy in treating RAS-RAF-MEK pathway-dependent cancers due to feedback pathway compensation and dose-limiting toxicities. Combining MEK inhibitors with other targeted agents may enhance efficacy. Here, codependencies of MEK, TAK1, and KRAS in colon cancer were investigated. Combined inhibition of MEK and TAK1 potentiates apoptosis in KRAS-dependent cells. Pharmacologic studies and cell-cycle analyses on a large panel of colon cancer cell lines demonstrate that MEK/TAK1 inhibition induces cell death, as assessed by sub-G1 accumulation, in a distinct subset of cell lines. Furthermore, TAK1 inhibition causes G2-M cell-cycle blockade and polyploidy in many of the cell lines. MEK plus TAK1 inhibition causes reduced G2-M/polyploid cell numbers and additive cytotoxic effects in KRAS/TAK1-dependent cell lines as well as a subset of BRAF-mutant cells. Mechanistically, sensitivity to MEK/TAK1 inhibition can be conferred by KRAS and BMP receptor activation, which promote expression of NF-κB-dependent proinflammatory cytokines, driving tumor cell survival and proliferation. MEK/TAK1 inhibition causes reduced mTOR, Wnt, and NF-κB signaling in TAK1/MEK-dependent cell lines concomitant with apoptosis. A Wnt/NF-κB transcriptional signature was derived that stratifies primary tumors into three major subtypes: Wnt-high/NF-κB-low, Wnt-low/NF-κB-high and Wnt-high/NF-κB-high, designated W, N, and WN, respectively. These subtypes have distinct characteristics, including enrichment for BRAF mutations with serrated carcinoma histology in the N subtype. Both N and WN subtypes bear molecular hallmarks of MEK and TAK1 dependency seen in cell lines. Therefore, N and WN subtype signatures could be utilized to identify tumors that are most sensitive to anti-MEK/TAK1 therapeutics. IMPLICATIONS This study describes a potential therapeutic strategy for a subset of colon cancers that are dependent on oncogenic KRAS signaling pathways, which are currently difficult to block with selective agents. Mol Cancer Res; 14(12); 1204-16. ©2016 AACR.
Collapse
Affiliation(s)
- Kelsey L McNew
- Department of Pharmacology and Experimental Therapeutics, Center for Cancer Research, Boston University School of Medicine, Boston Massachusetts
| | - William J Whipple
- Department of Pharmacology and Experimental Therapeutics, Center for Cancer Research, Boston University School of Medicine, Boston Massachusetts
| | - Anita K Mehta
- Department of Pharmacology and Experimental Therapeutics, Center for Cancer Research, Boston University School of Medicine, Boston Massachusetts
| | - Trevor J Grant
- Department of Pharmacology and Experimental Therapeutics, Center for Cancer Research, Boston University School of Medicine, Boston Massachusetts
| | - Leah Ray
- Department of Pharmacology and Experimental Therapeutics, Center for Cancer Research, Boston University School of Medicine, Boston Massachusetts
| | - Connor Kenny
- Department of Pharmacology and Experimental Therapeutics, Center for Cancer Research, Boston University School of Medicine, Boston Massachusetts
| | - Anurag Singh
- Department of Pharmacology and Experimental Therapeutics, Center for Cancer Research, Boston University School of Medicine, Boston Massachusetts. .,
| |
Collapse
|
131
|
Transforming Big Data into Cancer-Relevant Insight: An Initial, Multi-Tier Approach to Assess Reproducibility and Relevance. Mol Cancer Res 2016; 14:675-82. [PMID: 27401613 DOI: 10.1158/1541-7786.mcr-16-0090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/02/2016] [Indexed: 11/16/2022]
Abstract
The Cancer Target Discovery and Development (CTD(2)) Network was established to accelerate the transformation of "Big Data" into novel pharmacologic targets, lead compounds, and biomarkers for rapid translation into improved patient outcomes. It rapidly became clear in this collaborative network that a key central issue was to define what constitutes sufficient computational or experimental evidence to support a biologically or clinically relevant finding. This article represents a first attempt to delineate the challenges of supporting and confirming discoveries arising from the systematic analysis of large-scale data resources in a collaborative work environment and to provide a framework that would begin a community discussion to resolve these challenges. The Network implemented a multi-tier framework designed to substantiate the biological and biomedical relevance as well as the reproducibility of data and insights resulting from its collaborative activities. The same approach can be used by the broad scientific community to drive development of novel therapeutic and biomarker strategies for cancer. Mol Cancer Res; 14(8); 675-82. ©2016 AACR.
Collapse
|
132
|
Li J, Sordella R, Powers S. Effectors and potential targets selectively upregulated in human KRAS-mutant lung adenocarcinomas. Sci Rep 2016; 6:27891. [PMID: 27301828 PMCID: PMC4908391 DOI: 10.1038/srep27891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022] Open
Abstract
Genetic and proteomic analysis of human tumor samples can provide an important compliment to information obtained from model systems. Here we examined protein and gene expression from the Cancer Genome and Proteome Atlases (TCGA and TCPA) to characterize proteins and protein-coding genes that are selectively upregulated in KRAS-mutant lung adenocarcinomas. Phosphoprotein activation of several MAPK signaling components was considerably stronger in KRAS-mutants than any other group of tumors, even those with activating mutations in receptor tyrosine kinases (RTKs) and BRAF. Co-occurring mutations in KRAS-mutants were associated with differential activation of PDK1 and PKC-alpha. Genes showing strong activation in RNA-seq data included negative regulators of RTK/RAF/MAPK signaling along with potential oncogenic effectors including activators of Rac and Rho proteins and the receptor protein-tyrosine phosphatase genes PTPRM and PTPRE. These results corroborate RAF/MAPK signaling as an important therapeutic target in KRAS-mutant lung adenocarcinomas and pinpoint new potential targets.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
133
|
Kitajima S, Thummalapalli R, Barbie DA. Inflammation as a driver and vulnerability of KRAS mediated oncogenesis. Semin Cell Dev Biol 2016; 58:127-35. [PMID: 27297136 DOI: 10.1016/j.semcdb.2016.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/06/2023]
Abstract
While important strides have been made in cancer therapy by targeting certain oncogenes, KRAS, the most common among them, remains refractory to this approach. In recent years, a deeper understanding of the critical importance of inflammation in promoting KRAS-driven oncogenesis has emerged, and applies across the different contexts of lung, pancreatic, and colorectal tumorigenesis. Here we review why these tissue types are particularly prone to developing KRAS mutations, and how inflammation conspires with KRAS signaling to fuel carcinogenesis. We discuss multiple lines of evidence that have established NF-κB, STAT3, and certain cytokines as key transducers of these signals, and data to suggest that targeting these pathways has significant clinical potential. Furthermore, recent work has begun to uncover how inflammatory signaling interacts with other KRAS regulated survival pathways such as autophagy and MAPK signaling, and that co-targeting these multiple nodes may be required to achieve real benefit. In addition, the impact of KRAS associated inflammatory signaling on the greater tumor microenvironment has also become apparent, and taking advantage of this inflammation by incorporating approaches that harness T cell anti-tumor responses represents another promising therapeutic strategy. Finally, we highlight the likelihood that the genomic complexity of KRAS mutant tumors will ultimately require tailored application of these therapeutic approaches, and that targeting inflammation early in the course of tumor development could have the greatest impact on eradicating this deadly disease.
Collapse
Affiliation(s)
- Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215, USA.
| | - Rohit Thummalapalli
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215, USA; Division of Health Sciences and Technology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA.
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215, USA.
| |
Collapse
|
134
|
Challa S, Guo JP, Ding X, Xu CX, Li Y, Kim D, Smith MA, Cress DW, Coppola D, Haura EB, Cheng JQ. IKBKE Is a Substrate of EGFR and a Therapeutic Target in Non-Small Cell Lung Cancer with Activating Mutations of EGFR. Cancer Res 2016; 76:4418-29. [PMID: 27287717 DOI: 10.1158/0008-5472.can-16-0069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023]
Abstract
Non-small cell lung cancers (NSCLC) marked by EGFR mutations tend to develop resistance to therapeutic EGFR inhibitors, often due to secondary mutation EGFR(T790M) but also other mechanisms. Here we report support for a rationale to target IKBKE, an IκB kinase family member that activates the AKT and NF-κB pathways, as one strategy to address NSCLC resistant to EGFR inhibitors. While wild-type and mutant EGFR directly interacted with IKBKE, only mutant EGFR phosphorylated IKBKE on residues Y153 and Y179. The unphosphorylatable mutant IKBKE-Y153F/Y179-F that lost kinase activity failed to activate AKT and inhibited EGFR signaling. In clinical specimens of NSCLC with activating mutations of EGFR, we observed elevated levels of phospho-Y153 IKBKE. IKBKE ablation with shRNA or small-molecule inhibitor amlexanox selectively inhibited the viability of NSCLC cells with EGFR mutations in vitro In parallel, we found that these treatments activated the MAPK pathway due to attenuation of an IKBKE feedback mechanism. In vivo studies revealed that combining amlexanox with MEK inhibitor AZD6244 significantly inhibited the xenograft tumor growth of NSCLC cells harboring activating EGFR mutations, including EGFR(T790M) Overall, our findings define IKBKE as a direct effector target of EGFR and provide a therapeutic rationale to target IKBKE as a strategy to eradicate EGFR-TKI-resistant NSCLC cells. Cancer Res; 76(15); 4418-29. ©2016 AACR.
Collapse
Affiliation(s)
- Sridevi Challa
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jian-Ping Guo
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xiaowen Ding
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Cheng-Xiong Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yajuan Li
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Donghwa Kim
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Matthew A Smith
- Thoracic Oncology and Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Douglas W Cress
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Domenico Coppola
- Department of Anatomic Pathology and Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric B Haura
- Thoracic Oncology and Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jin Q Cheng
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
135
|
Brady JJ, Chuang CH, Greenside PG, Rogers ZN, Murray CW, Caswell DR, Hartmann U, Connolly AJ, Sweet-Cordero EA, Kundaje A, Winslow MM. An Arntl2-Driven Secretome Enables Lung Adenocarcinoma Metastatic Self-Sufficiency. Cancer Cell 2016; 29:697-710. [PMID: 27150038 PMCID: PMC4864124 DOI: 10.1016/j.ccell.2016.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/23/2016] [Accepted: 03/05/2016] [Indexed: 02/06/2023]
Abstract
The ability of cancer cells to establish lethal metastatic lesions requires the survival and expansion of single cancer cells at distant sites. The factors controlling the clonal growth ability of individual cancer cells remain poorly understood. Here, we show that high expression of the transcription factor ARNTL2 predicts poor lung adenocarcinoma patient outcome. Arntl2 is required for metastatic ability in vivo and clonal growth in cell culture. Arntl2 drives metastatic self-sufficiency by orchestrating the expression of a complex pro-metastatic secretome. We identify Clock as an Arntl2 partner and functionally validate the matricellular protein Smoc2 as a pro-metastatic secreted factor. These findings shed light on the molecular mechanisms that enable single cancer cells to form allochthonous tumors in foreign tissue environments.
Collapse
Affiliation(s)
- Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peyton G Greenside
- Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zoë N Rogers
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher W Murray
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deborah R Caswell
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ursula Hartmann
- Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Andrew J Connolly
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - E Alejandro Sweet-Cordero
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
136
|
Yang S, Imamura Y, Jenkins RW, Cañadas I, Kitajima S, Aref A, Brannon A, Oki E, Castoreno A, Zhu Z, Thai T, Reibel J, Qian Z, Ogino S, Wong KK, Baba H, Kimmelman AC, Pasca Di Magliano M, Barbie DA. Autophagy Inhibition Dysregulates TBK1 Signaling and Promotes Pancreatic Inflammation. Cancer Immunol Res 2016; 4:520-30. [PMID: 27068336 DOI: 10.1158/2326-6066.cir-15-0235] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
Autophagy promotes tumor progression downstream of oncogenic KRAS, yet also restrains inflammation and dysplasia through mechanisms that remain incompletely characterized. Understanding the basis of this paradox has important implications for the optimal targeting of autophagy in cancer. Using a mouse model of cerulein-induced pancreatitis, we found that loss of autophagy by deletion of Atg5 enhanced activation of the IκB kinase (IKK)-related kinase TBK1 in vivo, associated with increased neutrophil and T-cell infiltration and PD-L1 upregulation. Consistent with this observation, pharmacologic or genetic inhibition of autophagy in pancreatic ductal adenocarcinoma cells, including suppression of the autophagy receptors NDP52 or p62, prolonged TBK1 activation and increased expression of CCL5, IL6, and several other T-cell and neutrophil chemotactic cytokines in vitro Defective autophagy also promoted PD-L1 upregulation, which is particularly pronounced downstream of IFNγ signaling and involves JAK pathway activation. Treatment with the TBK1/IKKε/JAK inhibitor CYT387 (also known as momelotinib) not only inhibits autophagy, but also suppresses this feedback inflammation and reduces PD-L1 expression, limiting KRAS-driven pancreatic dysplasia. These findings could contribute to the dual role of autophagy in oncogenesis and have important consequences for its therapeutic targeting. Cancer Immunol Res; 4(6); 520-30. ©2016 AACR.
Collapse
Affiliation(s)
- Shenghong Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Yu Imamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan. Department of Gastroenterological Surgery, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan. Department of Surgery and Science, Graduate of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Russell W Jenkins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Israel Cañadas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Amir Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Arthur Brannon
- Department of Surgery, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan. Cell and Developmental Biology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Eiji Oki
- Department of Surgery and Science, Graduate of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Adam Castoreno
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Zehua Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Jacob Reibel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zhirong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Kwok K Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Alec C Kimmelman
- Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marina Pasca Di Magliano
- Department of Surgery, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan. Cell and Developmental Biology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts.
| |
Collapse
|
137
|
NF2 blocks Snail-mediated p53 suppression in mesothelioma. Oncotarget 2016; 6:10073-85. [PMID: 25823924 PMCID: PMC4496341 DOI: 10.18632/oncotarget.3543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/13/2015] [Indexed: 12/15/2022] Open
Abstract
Although asbestos causes malignant pleural mesothelioma (MPM), rising from lung mesothelium, the molecular mechanism has not been suggested until now. Extremely low mutation rate in classical tumor suppressor genes (such as p53 and pRb) and oncogenes (including Ras or myc) indicates that there would be MPM-specific carcinogenesis pathway. To address this, we treated silica to mimic mesothelioma carcinogenesis in mesothelioma and non-small cell lung cancer cell lines (NSCLC). Treatment of silica induced p-Erk and Snail through RKIP reduction. In addition, p53 and E-cadherin were decreased by silica-treatment. Elimination of Snail restored p53 expression. We found that NF2 (frequently deleted in MPM) inhibited Snail-mediated p53 suppression and was stabilized by RKIP. Importantly, GN25, an inhibitor of p53-Snail interaction, induced p53 and apoptosis. These results indicate that MPM can be induced by reduction of RKIP/NF2, which suppresses p53 through Snail. Thus, the p53-Snail binding inhibitor such as GN25 is a drug candidate for MPM.
Collapse
|
138
|
Caetano MS, Zhang H, Cumpian AM, Gong L, Unver N, Ostrin EJ, Daliri S, Chang SH, Ochoa CE, Hanash S, Behrens C, Wistuba II, Sternberg C, Kadara H, Ferreira CG, Watowich SS, Moghaddam SJ. IL6 Blockade Reprograms the Lung Tumor Microenvironment to Limit the Development and Progression of K-ras-Mutant Lung Cancer. Cancer Res 2016; 76:3189-99. [PMID: 27197187 DOI: 10.1158/0008-5472.can-15-2840] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
Abstract
Activating mutations of K-ras are the most common oncogenic alterations found in lung cancer. Unfortunately, attempts to target K-ras-mutant lung tumors have thus far failed, clearly indicating the need for new approaches in patients with this molecular profile. We have previously shown NF-κB activation, release of IL6, and activation of its responsive transcription factor STAT3 in K-ras-mutant lung tumors, which was further amplified by the tumor-enhancing effect of chronic obstructive pulmonary disease (COPD)-type airway inflammation. These findings suggest an essential role for this inflammatory pathway in K-ras-mutant lung tumorigenesis and its enhancement by COPD. Therefore, here we blocked IL6 using a monoclonal anti-IL6 antibody in a K-ras-mutant mouse model of lung cancer in the absence or presence of COPD-type airway inflammation. IL6 blockade significantly inhibited lung cancer promotion, tumor cell-intrinsic STAT3 activation, tumor cell proliferation, and angiogenesis markers. Moreover, IL6 inhibition reduced expression of protumor type 2 molecules (arginase 1, Fizz 1, Mgl, and IDO), number of M2-type macrophages and granulocytic myeloid-derived suppressor cells, and protumor T-regulatory/Th17 cell responses. This was accompanied by increased expression of antitumor type 1 molecule (Nos2), and antitumor Th1/CD8 T-cell responses. Our study demonstrates that IL6 blockade not only has direct intrinsic inhibitory effect on tumor cells, but also reeducates the lung microenvironment toward an antitumor phenotype by altering the relative proportion between protumor and antitumor immune cells. This information introduces IL6 as a potential druggable target for prevention and treatment of K-ras-mutant lung tumors. Cancer Res; 76(11); 3189-99. ©2016 AACR.
Collapse
Affiliation(s)
- Mauricio S Caetano
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huiyuan Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amber M Cumpian
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lei Gong
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nese Unver
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin J Ostrin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Soudabeh Daliri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seon Hee Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cesar E Ochoa
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cinthya Sternberg
- Clinical Research Department, Brazilian Clinical Research Network (RNPCC), Rio de Janeiro, Brazil
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Gil Ferreira
- Clinical Research Department, Brazilian Clinical Research Network (RNPCC), Rio de Janeiro, Brazil
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
139
|
Brooks GD, McLeod L, Alhayyani S, Miller A, Russell PA, Ferlin W, Rose-John S, Ruwanpura S, Jenkins BJ. IL6 Trans-signaling Promotes KRAS-Driven Lung Carcinogenesis. Cancer Res 2016; 76:866-76. [PMID: 26744530 DOI: 10.1158/0008-5472.can-15-2388] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/06/2015] [Indexed: 11/16/2022]
Abstract
Oncogenic KRAS mutations occur frequently in lung adenocarcinoma. The signaling pathways activated by IL6 promote Kras-driven lung tumorigenesis, but the basis for this cooperation is uncertain. In this study, we used the gp130(F/F) (Il6st) knock-in mouse model to examine the pathogenic contribution of hyperactivation of the STAT3 arm of IL6 signaling on KRAS-driven lung tumorigenesis. Malignant growths in the gp130(F/F):Kras(G12D) model displayed features of atypical adenomatous hyperplasia, adenocarcinoma in situ, and invasive adenocarcinoma throughout the lung, as compared with parental Kras(G12D) mice, where STAT3 was not hyperactivated. Among IL6 family cytokines, only IL6 was upregulated in the lung. Accordingly, normalization of pulmonary STAT3 activity, by genetic ablation of either Il6 or Stat3, suppressed the extent of lung cancer in the model. Mechanistic investigations revealed elevation in the lung of soluble IL6 receptor (sIL6R), the key driver of IL6 trans-signaling, and blocking this mechanism via interventions with an anti-IL6R antibody or the inhibitor sgp130Fc ameliorated lung cancer pathogenesis. Clinically, expression of IL6 and sIL6R was increased significantly in human specimens of lung adenocarcinoma or patient serum. Our results offer a preclinical rationale to clinically evaluate IL6 trans-signaling as a therapeutic target for the treatment of KRAS-driven lung adenocarcinoma.
Collapse
Affiliation(s)
- Gavin D Brooks
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Sultan Alhayyani
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Alistair Miller
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Prudence A Russell
- St Vincent's Hospital, Fitzroy, Victoria, Australia. Department of Pathology, Melbourne Medical School, Melbourne University, Parkville, Victoria, Australia
| | | | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Saleela Ruwanpura
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
140
|
Koyama S, Akbay EA, Li YY, Aref AR, Skoulidis F, Herter-Sprie GS, Buczkowski KA, Liu Y, Awad MM, Denning WL, Diao L, Wang J, Parra-Cuentas ER, Wistuba II, Soucheray M, Thai T, Asahina H, Kitajima S, Altabef A, Cavanaugh JD, Rhee K, Gao P, Zhang H, Fecci PE, Shimamura T, Hellmann MD, Heymach JV, Hodi FS, Freeman GJ, Barbie DA, Dranoff G, Hammerman PS, Wong KK. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment. Cancer Res 2016; 76:999-1008. [PMID: 26833127 DOI: 10.1158/0008-5472.can-15-1439] [Citation(s) in RCA: 465] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/06/2015] [Indexed: 01/05/2023]
Abstract
STK11/LKB1 is among the most commonly inactivated tumor suppressors in non-small cell lung cancer (NSCLC), especially in tumors harboring KRAS mutations. Many oncogenes promote immune escape, undermining the effectiveness of immunotherapies, but it is unclear whether the inactivation of tumor suppressor genes, such as STK11/LKB1, exerts similar effects. In this study, we investigated the consequences of STK11/LKB1 loss on the immune microenvironment in a mouse model of KRAS-driven NSCLC. Genetic ablation of STK11/LKB1 resulted in accumulation of neutrophils with T-cell-suppressive effects, along with a corresponding increase in the expression of T-cell exhaustion markers and tumor-promoting cytokines. The number of tumor-infiltrating lymphocytes was also reduced in LKB1-deficient mouse and human tumors. Furthermore, STK11/LKB1-inactivating mutations were associated with reduced expression of PD-1 ligand PD-L1 in mouse and patient tumors as well as in tumor-derived cell lines. Consistent with these results, PD-1-targeting antibodies were ineffective against Lkb1-deficient tumors. In contrast, treating Lkb1-deficient mice with an IL6-neutralizing antibody or a neutrophil-depleting antibody yielded therapeutic benefits associated with reduced neutrophil accumulation and proinflammatory cytokine expression. Our findings illustrate how tumor suppressor mutations can modulate the immune milieu of the tumor microenvironment, and they offer specific implications for addressing STK11/LKB1-mutated tumors with PD-1-targeting antibody therapies.
Collapse
Affiliation(s)
- Shohei Koyama
- Department of Medical Oncology and Cancer Vaccine Center, Dana Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Esra A Akbay
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Yvonne Y Li
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Amir R Aref
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Ferdinandos Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Grit S Herter-Sprie
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Kevin A Buczkowski
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Yan Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Mark M Awad
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Warren L Denning
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin R Parra-Cuentas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Tran Thai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Hajime Asahina
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Abigail Altabef
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Jillian D Cavanaugh
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Kevin Rhee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Peng Gao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Haikuo Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Peter E Fecci
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Takeshi Shimamura
- Department of Molecular Pharmacology and Therapeutics, Oncology Research Institute, Loyola University Chicago, Illinois
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - F Stephen Hodi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology and Cancer Vaccine Center, Dana Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David A Barbie
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts.
| | - Peter S Hammerman
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.
| | - Kwok-Kin Wong
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts. Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
141
|
Baumgart S, Chen NM, Zhang JS, Billadeau DD, Gaisina IN, Kozikowski AP, Singh SK, Fink D, Ströbel P, Klindt C, Zhang L, Bamlet WR, Koenig A, Hessmann E, Gress TM, Ellenrieder V, Neesse A. GSK-3β Governs Inflammation-Induced NFATc2 Signaling Hubs to Promote Pancreatic Cancer Progression. Mol Cancer Ther 2016; 15:491-502. [PMID: 26823495 DOI: 10.1158/1535-7163.mct-15-0309] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/28/2015] [Indexed: 12/13/2022]
Abstract
We aimed to investigate the mechanistic, functional, and therapeutic role of glycogen synthase kinase 3β (GSK-3β) in the regulation and activation of the proinflammatory oncogenic transcription factor nuclear factor of activated T cells (NFATc2) in pancreatic cancer. IHC, qPCR, immunoblotting, immunofluorescence microscopy, and proliferation assays were used to analyze mouse and human tissues and cell lines. Protein-protein interactions and promoter regulation were analyzed by coimmunoprecipitation, DNA pulldown, reporter, and ChIP assays. Preclinical assays were performed using a variety of pancreatic cancer cells lines, xenografts, and a genetically engineered mouse model (GEMM). GSK-3β-dependent SP2 phosphorylation mediates NFATc2 protein stability in the nucleus of pancreatic cancer cells stimulating pancreatic cancer growth. In addition to protein stabilization, GSK-3β also maintains NFATc2 activation through a distinct mechanism involving stabilization of NFATc2-STAT3 complexes independent of SP2 phosphorylation. For NFATc2-STAT3 complex formation, GSK-3β-mediated phosphorylation of STAT3 at Y705 is required to stimulate euchromatin formation of NFAT target promoters, such as cyclin-dependent kinase-6, which promotes tumor growth. Finally, preclinical experiments suggest that targeting the NFATc2-STAT3-GSK-3β module inhibits proliferation and tumor growth and interferes with inflammation-induced pancreatic cancer progression in Kras(G12D) mice. In conclusion, we describe a novel mechanism by which GSK-3β fine-tunes NFATc2 and STAT3 transcriptional networks to integrate upstream signaling events that govern pancreatic cancer progression and growth. Furthermore, the therapeutic potential of GSK-3β is demonstrated for the first time in a relevant Kras and inflammation-induced GEMM for pancreatic cancer.
Collapse
Affiliation(s)
- Sandra Baumgart
- Department of Gastroenterology, Endocrinology, Infectiology and Metabolism, University of Marburg, Marburg, Germany
| | - Nai-Ming Chen
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Jin-San Zhang
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Daniel D Billadeau
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Irina N Gaisina
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Alan P Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Shiv K Singh
- Barrow Brain Tumor Research Center, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Daniel Fink
- Department of Gastroenterology, Endocrinology, Infectiology and Metabolism, University of Marburg, Marburg, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Caroline Klindt
- Department of Gastroenterology, Endocrinology, Infectiology and Metabolism, University of Marburg, Marburg, Germany
| | - Lizhi Zhang
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - William R Bamlet
- Division of Biostatistics, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alexander Koenig
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Infectiology and Metabolism, University of Marburg, Marburg, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
142
|
Javle M, Golan T, Maitra A. Changing the course of pancreatic cancer--Focus on recent translational advances. Cancer Treat Rev 2016; 44:17-25. [PMID: 26924195 DOI: 10.1016/j.ctrv.2016.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/08/2023]
Abstract
In the past decade, insightful preclinical research has led to important breakthroughs in our understanding of pancreatic cancer. Even though the vast majority of pancreatic cancers are KRAS mutated, not all pancreatic cancer tumors are "KRAS equal"; there seems to be varying dependencies on the KRAS pathway. While KRAS-targeting therapies have been disappointing in the clinic, 'synthetic lethal' approaches hold promise in this setting. The pancreatic cancer stromal microenvironment appears to have contradictory roles. While there is evidence to suggest that stromal barrier prevents drug delivery, in other circumstances, stroma can play a protective role and its disruption enhances tumor dissemination. Clinical trials aimed at manipulating the various stromal components are in progress. BRCA mutation-related pancreatic tumors illustrate a unique subtype with enhanced susceptibility to DNA damaging agents and PARP-inhibition. DNA repair defects in cancer extend beyond germ line BRCA mutation and may extend the indications for DNA repair-targeting agents. Immune strategies are an area of active investigation in pancreatic cancer. Although the initial trials of single-agent checkpoint inhibitors have been negative, combinational approaches using immune-modifying agents and vaccines appear promising and goal is to identify an 'immune-therapy responsive' profile in pancreatic cancer.
Collapse
Affiliation(s)
- Milind Javle
- MD Anderson Cancer Center, 1515, Holcombe Blvd, Unit 426, Houston, TX 77030, USA
| | - Talia Golan
- Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Anirban Maitra
- MD Anderson Cancer Center, 1515, Holcombe Blvd, Unit 426, Houston, TX 77030, USA
| |
Collapse
|
143
|
Munoz L, Yeung YT, Grewal T. Oncogenic Ras modulates p38 MAPK-mediated inflammatory cytokine production in glioblastoma cells. Cancer Biol Ther 2016; 17:355-63. [PMID: 26794430 DOI: 10.1080/15384047.2016.1139249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Inflammation is an important factor promoting the progression of glioblastoma. In the present study we examined the contribution of Ras signaling and TNFα/IL-1β cytokines to the development of the glioblastoma inflammatory microenvironment. Enhanced activation of Ras through de-regulated activation of receptor tyrosine kinases, such as EGFR, PDGFR and cMet, is a hallmark of the majority of glioblastomas. Glioblastoma microenvironment contains high levels of TNFα and IL-1β, which mediate inflammation through induction of a local network of cytokines and chemokines. While many studies have focused on Ras- and TNFα/IL-1β-driven inflammation in isolation, little is known about the co-operation between these oncogenic and microenvironment-derived stimuli. Using constitutively active HRasG12V that mimics enhanced Ras activation, we demonstrate that elevated Ras activity in glioblastoma cells leads to up-regulation of IL-6 and IL-8. Furthermore, Ras synergizes with the microenvironment-derived TNFα and IL-1β resulting in amplified IL-6/IL-8 secretion. IL-8 secretion induced by Ras and TNFα/IL-1β is attenuated by inhibitors targeting Erk, JNK and p38 MAPK pathways. IL-6 secretion significantly decreased upon inhibition of JNK and p38 MAPK pathways. Interestingly, although constitutively active HRasG12V does not increase basal or TNFα/IL-1β stimulated p38 MAPK activity, HRasG12V increased the efficacy of the p38 MAPK inhibitor SB203580 to inhibit IL-1β-induced IL-6 secretion. In summary, oncogenic Ras co-operates with the microenvironment-derived TNFα/IL-1β to sustain inflammatory microenvironment, which was effectively attenuated via inhibition of p38 MAPK signaling.
Collapse
Affiliation(s)
- Lenka Munoz
- a School of Medical Sciences, Discipline of Pathology, The University of Sydney , Australia
| | - Yiu To Yeung
- b Faculty of Pharmacy, The University of Sydney , Australia
| | - Thomas Grewal
- b Faculty of Pharmacy, The University of Sydney , Australia
| |
Collapse
|
144
|
Fang B. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies. Acta Biochim Biophys Sin (Shanghai) 2016; 48:27-38. [PMID: 26350096 DOI: 10.1093/abbs/gmv090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022] Open
Abstract
Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine.
Collapse
Affiliation(s)
- Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
145
|
Modeling K-Ras-driven lung adenocarcinoma in mice: preclinical validation of therapeutic targets. J Mol Med (Berl) 2015; 94:121-35. [DOI: 10.1007/s00109-015-1360-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023]
|
146
|
Zhu Z, Golay HG, Barbie DA. Targeting pathways downstream of KRAS in lung adenocarcinoma. Pharmacogenomics 2015; 15:1507-18. [PMID: 25303301 DOI: 10.2217/pgs.14.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncogenic KRAS activation is responsible for the most common genetic subtype of lung cancer. Although many of the major downstream signaling pathways that KRAS engages have been defined, these discoveries have yet to translate into effective targeted therapy. Much of the current focus has been directed at inhibiting the activation of RAF/MAPK and PI3K/AKT signaling, but clinical trials combining multiple different agents that target these pathways have failed to show significant activity. In this article, we will discuss the evidence for RAF and PI3K as key downstream RAS effectors, as well as the RAL guanine exchange factor, which is equally essential for transformation. Furthermore, we will delineate alternative pathways, including cytokine activation and autophagy, which are co-opted by oncogenic RAS signaling and also represent attractive targets for therapy. Finally, we will present strategies for combining inhibitors of these downstream KRAS signaling pathways in a rational fashion, as multitargeted therapy will be required to achieve a cure.
Collapse
Affiliation(s)
- Zehua Zhu
- Department of Medical Oncology & Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | | | | |
Collapse
|
147
|
Abstract
RAS mutations are among the most common oncogenic drivers in human cancers, affecting nearly a third of all solid tumors and around a fifth of common myeloid malignancies, but they have evaded therapeutic interventions, despite being the focus of intense research over the last three decades. Recent discoveries lend new understanding about the structure, function, and signaling of RAS and have opened new avenues for development of much needed new therapies. We discuss the various approaches under investigation to target mutant RAS proteins. The recent development of direct RAS inhibitors specific to KRAS G12C mutations represents a landmark discovery that promises to change the perception about RAS's druggability. Multiple clinical trials targeting synthetically lethal partners and/or downstream signaling partners of RAS are underway. Novel inhibitors targeting various arms of RAS processing and signaling have yielded encouraging results in the laboratory, but refinement of the drug-like properties of these molecules is required before they will be ready for the clinic.
Collapse
Affiliation(s)
- Harshabad Singh
- Harshabad Singh and Bruce A. Chabner, Massachusetts General Hospital Cancer Center; Harshabad Singh, Dana-Farber Cancer Institute; and Dan L. Longo, Brigham and Women's Hospital, Boston, MA
| | - Dan L Longo
- Harshabad Singh and Bruce A. Chabner, Massachusetts General Hospital Cancer Center; Harshabad Singh, Dana-Farber Cancer Institute; and Dan L. Longo, Brigham and Women's Hospital, Boston, MA
| | - Bruce A Chabner
- Harshabad Singh and Bruce A. Chabner, Massachusetts General Hospital Cancer Center; Harshabad Singh, Dana-Farber Cancer Institute; and Dan L. Longo, Brigham and Women's Hospital, Boston, MA.
| |
Collapse
|
148
|
Sheridan C, Downward J. Overview of KRAS-Driven Genetically Engineered Mouse Models of Non-Small Cell Lung Cancer. CURRENT PROTOCOLS IN PHARMACOLOGY 2015; 70:14.35.1-14.35.16. [PMID: 26331885 DOI: 10.1002/0471141755.ph1435s70] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
KRAS, the most frequently mutated oncogene in non-small cell lung cancer, has been utilized extensively to model human lung adenocarcinomas. The results from such studies have enhanced considerably an understanding of the relationship between KRAS and the development of lung cancer. Detailed in this overview are the features of various KRAS-driven genetically engineered mouse models (GEMMs) of non-small cell lung cancer, their utilization, and the potential of these models for the study of lung cancer biology.
Collapse
Affiliation(s)
- Clare Sheridan
- Signal Transduction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Julian Downward
- Signal Transduction Laboratory, The Francis Crick Institute, London, United Kingdom
- Lung Cancer Group, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
149
|
Yu T, Yang Y, Yin DQ, Hong S, Son YJ, Kim JH, Cho JY. TBK1 inhibitors: a review of patent literature (2011 - 2014). Expert Opin Ther Pat 2015; 25:1385-96. [PMID: 26293650 DOI: 10.1517/13543776.2015.1081168] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION TANK-binding kinase 1 (TBK1) is a noncanonical IκB kinase family member that regulates the innate immune response. Misregulation of TBK1 activity can promote inflammatory disorders and oncogenesis; therefore, TBK1 inhibitors are considered a promising therapy for inflammation and cancer. AREAS COVERED In this review, the authors provide information on the role of TBK1 in human health and on recently developed inhibitors from patents granted from 2011 to 2014. The reader will gain an understanding of the mechanisms of TBK1 function as well as the structure and biological activity of recently developed TBK1 inhibitors. Google and NCBI search engines were used to find relevant patents and clinical information using "TBK1 inhibitor" as the search term. EXPERT OPINION The role of TBK1 in various diseases has prompted the further investigation of significant targets. Although research on TBK1 inhibitors has increased over the last few years, only a few inhibitors of this kinase have been identified. In addition, almost all of the chemical inhibitors are modified from different scaffolds and/or chemotypes of pyrimidine. Specifically, compound BX795 is the representative one, which was first patented as a potent TBK1 inhibitor. Even though some compounds have displayed interesting potential inhibition and selectivity of TBK1 in vitro and in in vivo trials, the development of more efficient and selective TBK1 inhibitors is still required.
Collapse
Affiliation(s)
- Tao Yu
- a 1 Qingdao University, Medical College , Qingdao 266071, China
| | - Yanyan Yang
- a 1 Qingdao University, Medical College , Qingdao 266071, China
| | - De Qing Yin
- b 2 Linyi Center for Disease Control and Prevention , Linyi 276000, China
| | - Sungyoul Hong
- c 3 Sungkyunkwan University, Department of Genetic Engineering , 300 Chuncheon-Dong, Suwon 440-746, Korea +82 312 907 868 ; +82 312 907 870 ;
| | - Young-Jin Son
- d 4 Sunchon National University, Department of Pharmacy , Suncheon 540-742, Republic of Korea +82 617 503 755 ; +82 617 503 708 ;
| | - Jong-Hoon Kim
- e 5 Chonbuk National University, College of Veterinary Medicine, Biosafety Research Institute, Department of Veterinary Physiology , Jeonju 561-756, Republic of Korea +82 632 702 563 ; +82 632 703 780 ;
| | - Jae Youl Cho
- c 3 Sungkyunkwan University, Department of Genetic Engineering , 300 Chuncheon-Dong, Suwon 440-746, Korea +82 312 907 868 ; +82 312 907 870 ;
| |
Collapse
|
150
|
Van Allen EM, Golay HG, Liu Y, Koyama S, Wong K, Taylor-Weiner A, Giannakis M, Harden M, Rojas-Rudilla V, Chevalier A, Thai T, Lydon C, Mach S, Avila AG, Wong JA, Rabin AR, Helmkamp J, Sholl L, Carter SL, Oxnard G, Janne P, Getz G, Lindeman N, Hammerman PS, Garraway LA, Hodi FS, Rodig SJ, Dranoff G, Wong KK, Barbie DA. Long-term Benefit of PD-L1 Blockade in Lung Cancer Associated with JAK3 Activation. Cancer Immunol Res 2015; 3:855-63. [PMID: 26014096 PMCID: PMC4527885 DOI: 10.1158/2326-6066.cir-15-0024] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
Abstract
PD-1 immune checkpoint blockade occasionally results in durable clinical responses in advanced metastatic cancers. However, mechanism-based predictors of response to this immunotherapy remain incompletely characterized. We performed comprehensive genomic profiling on a tumor and germline sample from a patient with refractory lung adenocarcinoma who achieved marked long-term clinical benefit from anti-PD-L1 therapy. We discovered activating somatic and germline amino acid variants in JAK3 that promoted PD-L1 induction in lung cancer cells and in the tumor immune microenvironment. These findings suggest that genomic alterations that deregulate cytokine receptor signal transduction could contribute to PD-L1 activation and engagement of the PD-1 immune checkpoint in lung cancer.
Collapse
Affiliation(s)
- Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Hadrien G Golay
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Shohei Koyama
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Karrie Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Maegan Harden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Vanesa Rojas-Rudilla
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron Chevalier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Christine Lydon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Stacy Mach
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ada G Avila
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Joshua A Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alexandra R Rabin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Joshua Helmkamp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lynette Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Scott L Carter
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Geoffrey Oxnard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Pasi Janne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Neal Lindeman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| |
Collapse
|