101
|
Gomez-Sanchez EP. Brain mineralocorticoid receptors in cognition and cardiovascular homeostasis. Steroids 2014; 91:20-31. [PMID: 25173821 PMCID: PMC4302001 DOI: 10.1016/j.steroids.2014.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/10/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022]
Abstract
Mineralocorticoid receptors (MR) mediate diverse functions supporting osmotic and hemodynamic homeostasis, response to injury and inflammation, and neuronal changes required for learning and memory. Inappropriate MR activation in kidneys, heart, vessels, and brain hemodynamic control centers results in cardiovascular and renal pathology and hypertension. MR binds aldosterone, cortisol and corticosterone with similar affinity, while the glucocorticoid receptor (GR) has less affinity for cortisol and corticosterone. As glucocorticoids are more abundant than aldosterone, aldosterone activates MR in cells co-expressing enzymes with 11β-hydroxydehydrogenase activity to inactivate them. MR and GR co-expressed in the same cell interact at the molecular and functional level and these functions may be complementary or opposing depending on the cell type. Thus the balance between MR and GR expression and activation is crucial for normal function. Where 11β-hydroxydehydrogenase 2 (11β-HSD2) that inactivates cortisol and corticosterone in aldosterone target cells of the kidney and nucleus tractus solitarius (NTS) is not expressed, as in most neurons, MR are activated at basal glucocorticoid concentrations, GR at stress concentrations. An exception may be pre-autonomic neurons of the PVN which express MR and 11β-HSD1 in the absence of hexose-6-phosphate dehydrogenase required to generate the requisite cofactor for reductase activity, thus it acts as a dehydrogenase. MR antagonists, valuable adjuncts to the treatment of cardiovascular disease, also inhibit MR in the brain that are crucial for memory formation and exacerbate detrimental effects of excessive GR activation on cognition and mood. 11β-HSD1 inhibitors combat metabolic and cognitive diseases related to glucocorticoid excess, but may exacerbate MR action where 11β-HSD1 acts as a dehydrogenase, while non-selective 11β-HSD1&2 inhibitors cause injurious disruption of MR hemodynamic control. MR functions in the brain are multifaceted and optimal MR:GR activity is crucial. Therefore selectively targeting down-stream effectors of MR specific actions may be a better therapeutic goal.
Collapse
Affiliation(s)
- Elise P Gomez-Sanchez
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
102
|
Artunc F, Lang F. Mineralocorticoid and SGK1-sensitive inflammation and tissue fibrosis. Nephron Clin Pract 2014; 128:35-9. [PMID: 25377230 DOI: 10.1159/000368267] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Effects of mineralocorticoids are not restricted to regulation of epithelial salt transport, extracellular volume and blood pressure; mineralocorticoids also influence a wide variety of seemingly unrelated functions such as inflammation and fibrosis. The present brief review addresses the role of mineralocorticoids in the orchestration of these latter processes. Mineralocorticoids foster inflammation as well as vascular, cardiac, renal and peritoneal fibrosis. Mechanisms involved in mineralocorticoid-sensitive inflammation and fibrosis include the serum- and glucocorticoid-inducible kinase 1 (SGK1), which is genomically upregulated by mineralocorticoids and transforming growth factor β (TGF-β), and stimulated by mineralocorticoid-sensitive phosphatidylinositide 3-kinase. SGK1 upregulates the inflammatory transcription factor nuclear factor-κB, which in turn stimulates the expression of diverse inflammatory mediators including connective tissue growth factor. Moreover, SGK1 inhibits the degradation of the TGF-β-dependent transcription factors Smad2/3. Mineralocorticoids foster the development of TH17 cells, which is compromised following SGK1 deletion. Excessive SGK1 expression is observed in a wide variety of fibrosing diseases including lung fibrosis, diabetic nephropathy, glomerulonephritis, obstructive kidney disease, experimental nephrotic syndrome, obstructive nephropathy, liver cirrhosis, fibrosing pancreatitis, peritoneal fibrosis, Crohn's disease and celiac disease. The untoward inflammatory and fibrosing effects of mineralocorticoids could be blunted or even reversed by mineralocorticoid receptor blockers, which may thus be considered in the treatment of inflammatory and/or fibrosing disease.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
103
|
Abstract
Classical effects of mineralocorticoids include stimulation of Na(+) reabsorption and K(+) secretion in the kidney and other epithelia including colon and several glands. Moreover, mineralocorticoids enhance the excretion of Mg(2+) and renal tubular H(+) secretion. The renal salt retention following mineralocorticoid excess leads to extracellular volume expansion and hypertension. The increase of blood pressure following mineralocorticoid excess is, however, not only the result of volume expansion but may result from stiff endothelial cell syndrome impairing the release of vasodilating nitric oxide. Beyond that, mineralocorticoids are involved in the regulation of a wide variety of further functions, including cardiac fibrosis, platelet activation, neuronal function and survival, inflammation as well as vascular and tissue fibrosis and calcification. Those functions are briefly discussed in this short introduction to the special issue. Beyond that, further contributions of this special issue amplify on mineralocorticoid-induced sodium appetite and renal salt retention, the role of mineralocorticoids in the regulation of acid-base balance, the involvement of aldosterone and its receptors in major depression, the mineralocorticoid stimulation of inflammation and tissue fibrosis and the effect of aldosterone on osteoinductive signaling and vascular calcification. Clearly, still much is to be learned about the various ramifications of mineralocorticoid-sensitive physiology and pathophysiology.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
104
|
Vemulapalli S, Tyson CC, Svetkey LP. Apparent treatment-resistant hypertension and chronic kidney disease: another cardiovascular-renal syndrome? Adv Chronic Kidney Dis 2014; 21:489-99. [PMID: 25443574 DOI: 10.1053/j.ackd.2014.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 12/21/2022]
Abstract
To identify patients at increased risk of cardiovascular (CV) outcomes, apparent treatment-resistant hypertension (aTRH) is defined as having a blood pressure above goal despite the use of 3 or more antihypertensive therapies of different classes at maximally tolerated doses, ideally including a diuretic. Recent epidemiologic studies in selected populations estimated the prevalence of aTRH as 10% to 15% among patients with hypertension and that aTRH is associated with elevated risk of CV and renal outcomes. Additionally, aTRH and CKD are associated. Although the pathogenesis of aTRH is multifactorial, the kidney is believed to play a significant role. Increased volume expansion, aldosterone concentration, mineralocorticoid receptor activity, arterial stiffness, and sympathetic nervous system activity are central to the pathogenesis of aTRH and are targets of therapies. Although diuretics form the basis of therapy in aTRH, pathophysiologic and clinical data suggest an important role for aldosterone antagonism. Interventional techniques, such as renal denervation and carotid baroreceptor activation, modulate the sympathetic nervous system and are currently in phase III trials for the treatment of aTRH. These technologies are as yet unproven and have not been investigated in relationship to CV outcomes or in patients with CKD.
Collapse
|
105
|
Mineralocorticoid receptor: a critical player in vascular remodeling. SCIENCE CHINA-LIFE SCIENCES 2014; 57:809-17. [PMID: 25104454 DOI: 10.1007/s11427-014-4691-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/06/2014] [Indexed: 01/10/2023]
Abstract
Vascular remodeling is a pathological condition with structural changes of blood vessels. Both inside-out and outside-in hypothesis have been put forward to describe mechanisms of vascular remodeling. An integrated model of these two hypotheses emphasizes the importance of immune cells such as monocytes/macrophages, T cells, and dendritic cells. These immune cells are at the center stage to orchestrate cellular proliferation, migration, and interactions of themselves and other vascular cells including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and fibroblasts. These changes on vascular wall lead to inflammation and oxidative stress that are largely responsible for vascular remodeling. Mineralocorticoid receptor (MR) is a classic nuclear receptor. MR agonist promotes inflammation and oxidative stress and therefore exacerbates vascular remodeling. Conversely, MR antagonists have the opposite effects. MR has direct roles on vascular cells through non-genomic or genomic actions to modulate inflammation and oxidative stress. Recent studies using genetic mouse models have revealed that MR in myeloid cells, VSMCs and ECs all contribute to vascular remodeling. In conclusion, data in the past years have demonstrated that MR is a critical control point in modulating vascular remodeling. Studies will continue to provide evidence with more detailed mechanisms to support this notion.
Collapse
|
106
|
Barbaro NR, Fontana V, Modolo R, De Faria AP, Sabbatini AR, Fonseca FH, Anhê GF, Moreno H. Increased arterial stiffness in resistant hypertension is associated with inflammatory biomarkers. Blood Press 2014; 24:7-13. [PMID: 25061978 DOI: 10.3109/08037051.2014.940710] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Increased levels of inflammatory biomarkers such as interleukin-6 (IL-6), 10 (IL-10), 1β (IL-1β), tumor necrosis factor-α (TNF-α) high-sensitivity C-reactive protein (hs-CRP) are associated with arterial stiffness in hypertension. Indeed, resistant hypertension (RHTN) leads to unfavorable prognosis attributed to poor blood pressure (BP) control and target organ damage. This study evaluated the potential impact of inflammatory biomarkers on arterial stiffness in RHTN. METHODS In this cross-sectional study, 32 RHTN, 20 mild hypertensive (HTN) and 20 normotensive (NT) patients were subjected to office BP and arterial stiffness measurements assessed by pulse wave velocity (PWV). Inflammatory biomarkers were measured in plasma samples. RESULTS PWV was increased in RHTN compared with HTN and NT (p < 0.05). TNF-α levels were significantly higher in RHTN and HTN than NT patients. No differences in IL-6 levels were observed. RHTN patients had a higher frequency of subjects with increased levels of IL-10 and IL-1β compared with HTN and NT patients. Finally, IL-1β was independently associated with PWV (p < 0.001; R(2) = 0.5; β = 0.077). CONCLUSION RHTN subjects have higher levels of inflammatory cytokines (TNF-α, IL-1β and IL-10) as well as increased arterial stiffness, and detectable IL-1β levels are associated arterial stiffness. These findings suggest that inflammation plays a possible role in the pathophysiology of RHTN.
Collapse
Affiliation(s)
- Natália Ruggeri Barbaro
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences, University of Campinas (Unicamp) , Campinas , Brazil
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Pires PW, Girgla SS, Moreno G, McClain JL, Dorrance AM. Tumor necrosis factor-α inhibition attenuates middle cerebral artery remodeling but increases cerebral ischemic damage in hypertensive rats. Am J Physiol Heart Circ Physiol 2014; 307:H658-69. [PMID: 25015967 DOI: 10.1152/ajpheart.00018.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension causes vascular inflammation evidenced by an increase in perivascular macrophages and proinflammatory cytokines in the arterial wall. Perivascular macrophage depletion reduced tumor necrosis factor (TNF)-α expression in cerebral arteries of hypertensive rats and attenuated inward remodeling, suggesting that TNF-α might play a role in the remodeling process. We hypothesized that TNF-α inhibition would improve middle cerebral artery (MCA) structure and reduce damage after cerebral ischemia in hypertensive rats. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with the TNF-α inhibitor etanercept (ETN; 1.25 mg·kg(-1)·day(-1) ip daily) or PBS (equivolume) for 6 wk. The myogenic tone generation, postischemic dilation, and passive structure of MCAs were assessed by pressure myography. Cerebral ischemia was induced by MCA occlusion (MCAO). Myogenic tone was unchanged, but MCAs from SHRSP + ETN had larger passive lumen diameter and reduced wall thickness and wall-to-lumen ratio. Cerebral infarct size was increased in SHRSP + ETN after transient MCAO, despite an improvement in dilation of nonischemic MCA. The increase in infarct size was linked to a reduction in the number of microglia in the infarct core and upregulation of markers of classical macrophage/microglia polarization. There was no difference in infarct size after permanent MCAO or when untreated SHRSP subjected to transient MCAO were given ETN at reperfusion. Our data suggests that TNF-α inhibition attenuates hypertensive MCA remodeling but exacerbates cerebral damage following ischemia/reperfusion injury likely due to inhibition of the innate immune response of the brain.
Collapse
Affiliation(s)
- Paulo W Pires
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Saavia S Girgla
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Guillermo Moreno
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Jonathon L McClain
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
108
|
Maron BA, Leopold JA. The role of the renin-angiotensin-aldosterone system in the pathobiology of pulmonary arterial hypertension (2013 Grover Conference series). Pulm Circ 2014; 4:200-10. [PMID: 25006439 PMCID: PMC4070776 DOI: 10.1086/675984] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with aberrant pulmonary vascular remodeling that leads to increased pulmonary artery pressure, pulmonary vascular resistance, and right ventricular dysfunction. There is now accumulating evidence that the renin-angiotensin-aldosterone system is activated and contributes to cardiopulmonary remodeling that occurs in PAH. Increased plasma and lung tissue levels of angiotensin and aldosterone have been detected in experimental models of PAH and shown to correlate with cardiopulmonary hemodynamics and pulmonary vascular remodeling. These processes are abrogated by treatment with angiotensin receptor or mineralocorticoid receptor antagonists. At a cellular level, angiotensin and aldosterone activate oxidant stress signaling pathways that decrease levels of bioavailable nitric oxide, increase inflammation, and promote cell proliferation, migration, extracellular matrix remodeling, and fibrosis. Clinically, enhanced renin-angiotensin activity and elevated levels of aldosterone have been detected in patients with PAH, which suggests a role for angiotensin and mineralocorticoid receptor antagonists in the treatment of PAH. This review will examine the current evidence linking renin-angiotensin-aldosterone system activation to PAH with an emphasis on the cellular and molecular mechanisms that are modulated by aldosterone and may be of importance for the pathobiology of PAH.
Collapse
Affiliation(s)
- Bradley A. Maron
- Brigham and Women’s Hospital, Division of Cardiovascular Medicine, Boston, Massachusetts, USA
- Veterans Affairs Boston Healthcare System, Department of Cardiology, 1400 VFW Parkway, Boston, Massachusetts, USA
| | - Jane A. Leopold
- Brigham and Women’s Hospital, Division of Cardiovascular Medicine, Boston, Massachusetts, USA
| |
Collapse
|
109
|
Carbone F, Mach F, Vuilleumier N, Montecucco F. Potential pathophysiological role for the vitamin D deficiency in essential hypertension. World J Cardiol 2014; 6:260-276. [PMID: 24944756 PMCID: PMC4062123 DOI: 10.4330/wjc.v6.i5.260] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/24/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Vitamin D deficiency has been indicated as a pandemic emerging public health problem. In addition to the well-known role on calcium-phosphorus homeostasis in the bone, vitamin D-mediated processes have been recently investigated on other diseases, such as infections, cancer and cardiovascular diseases. Recently, both the discovery of paracrine actions of vitamin D (recognized as “local vitamin D system”) and the link of vitamin D with renin-angiotensin-aldosterone system and the fibroblast growth factor 23/klotho pathways highlighted its active cardiovascular activity. Focusing on hypertension, this review summarizes the more recent experimental evidence involving the vitamin D system and deficiency in the cardiovascular pathophysiology. In particular, we updated the vascular synthesis/catabolism of vitamin D and its complex interactions between the various endocrine networks involved in the regulation of blood pressure in humans. On the other hand, the conflicting results emerged from the comparison between observational and interventional studies emphasize the fragmentary nature of our knowledge in the field of vitamin D and hypertension, strongly suggesting the need of further researches in this field.
Collapse
|
110
|
Oxlund CS, Cangemi C, Henriksen JE, Jacobsen IA, Gram J, Schousboe K, Tarnow L, Argraves WS, Rasmussen LM. Low-dose spironolactone reduces plasma fibulin-1 levels in patients with type 2 diabetes and resistant hypertension. J Hum Hypertens 2014; 29:28-32. [PMID: 24739800 DOI: 10.1038/jhh.2014.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/03/2014] [Accepted: 02/21/2014] [Indexed: 12/20/2022]
Abstract
Diabetic patients with hypertension are at particularly high risk of vascular damage and consequently cardiovascular and renal disease. Fibulin-1, an extracellular matrix glycoprotein, is increased in arterial tissue and plasma from individuals with type 2 diabetes. This study aimed to evaluate whether antihypertensive treatment with spironolactone changes plasma fibulin-1 levels. In a multicenter, double-blind, randomized, placebo-controlled study, 119 patients with type 2 diabetes and resistant hypertension were included. A dose of spironolactone 25 mg or matching placebo was added to previous treatment at randomization. Blood pressure (BP) and plasma fibulin-1 were measured at baseline and at 16 weeks follow-up. Overall, 112 patients completed the study. All measures of BP were reduced in the spironolactone group at follow-up. Plasma fibulin-1 was significantly reduced after spironolactone treatment (P=0.009), but increased after placebo (P=0.017). Baseline plasma fibulin-1 correlated with BP and estimated glomerular filtration rate. Increased levels of plasma fibulin-1 (P=0.004) were observed in diabetic participants reporting erectile dysfunction as compared with participants who did not. Treatment with low-dose spironolactone reduced plasma fibulin-1 levels in patients with type 2 diabetes and resistant hypertension. This supports the hypothesis that the antihypertensive effect of the mineralocorticoid receptor blocker in part may be due to regression of vascular remodeling.
Collapse
Affiliation(s)
- C S Oxlund
- 1] Research Unit for Cardiovascular and Metabolic Prevention, Department of Endocrinology, Odense University Hospital, Odense C, Denmark [2] Centre for individualized Medicine in Arterial Diseases, Odense University Hospital, Odense C, Denmark
| | - C Cangemi
- 1] Centre for individualized Medicine in Arterial Diseases, Odense University Hospital, Odense C, Denmark [2] Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - J E Henriksen
- Research Unit for Cardiovascular and Metabolic Prevention, Department of Endocrinology, Odense University Hospital, Odense C, Denmark
| | - I A Jacobsen
- Research Unit for Cardiovascular and Metabolic Prevention, Department of Endocrinology, Odense University Hospital, Odense C, Denmark
| | - J Gram
- Department of Endocrinology, Esbjerg, Denmark
| | | | - L Tarnow
- Steno Diabetes Centre, Gentofte, Denmark
| | - W S Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - L M Rasmussen
- 1] Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark [2] Department of Endocrinology, Esbjerg, Denmark
| |
Collapse
|
111
|
Abstract
The prevalence of both obesity and hypertension are increasing worldwide. Hypertension is a common consequence of obesity. Increased central adiposity is associated with increased aldosterone levels and blood pressure in human beings. A number of small studies have shown an association between obesity-mediated hypertension and mechanisms directly linked to increased levels of aldosterone. These studies have shown a trend toward relatively greater blood pressure reduction using aldosterone-receptor blockers compared with other classes of antihypertensive agents. Other than treatment for weight loss, treatment of hypertension with specific antihypertensive medications that block or reduce aldosterone action are appropriate in obese patients. Further research is needed to understand the exact role of the adipocyte in obesity-mediated hypertension.
Collapse
|
112
|
Salt, the renin-angiotensin-aldosterone system and resistant hypertension. Hypertens Res 2014; 36:657-60. [PMID: 23912973 DOI: 10.1038/hr.2013.69] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/08/2013] [Accepted: 04/10/2013] [Indexed: 01/22/2023]
Abstract
High salt intake is a risk for developing resistant hypertension, and even under triple therapy with diuretics, an angiotensin-converting enzyme inhibitor/angiotensin receptor blocker and a calcium channel blocker, the volume is occasionally not controlled. In such cases, a mineralocorticoid receptor (MR) antagonist additively lowers the circulating blood volume and blood pressure despite the lower circulating aldosterone level. This mechanism may be explained by the increase in the number of MR under some conditions or the activation of these receptors independent of aldosterone. Future diagnostic tools to evaluate receptor activity may be valuable for the proper diagnosis and choice of therapy. Additionally, basic research has suggested that oxidative stress and the renin-angiotensin-aldosterone system in the brain represent new targets for the treatment of resistant hypertension.
Collapse
|
113
|
Liu G, Liu G, Alzoubi K, Umbach AT, Pelzl L, Borst O, Gawaz M, Lang F. Upregulation of store operated Ca channel Orai1, stimulation of Ca(2+) entry and triggering of cell membrane scrambling in platelets by mineralocorticoid DOCA. Kidney Blood Press Res 2014; 38:21-30. [PMID: 24525794 DOI: 10.1159/000355750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Mineralocorticoid excess leads to vascular injury, which is partially due to hypertension but in addition involves increased concentration of cytosolic Ca(2+) concentration in platelets, key players in the pathophysiology of occlusive vascular disease. Mineralocorticoids are in part effective by rapid nongenomic mechanisms including phosphatidylinositide-3-kinase (PI3K) signaling, which involves activation of the serum & glucocorticoid inducible kinase (SGK) isoforms. SGK1 has in turn been shown to participate in the regulation of the pore forming Ca(2+) channel protein Orai1 in platelets. Orai1 accomplishes entry of Ca(2+), which is in turn known to trigger cell membrane scrambling. Platelets lack nuclei but are able to express protein by translation, which is stimulated by PI3K signaling. The present study explored whether the mineralocorticoid desoxycorticosterone acetate (DOCA) influences platelet Orai1 protein abundance, cytosolic Ca(2+)-activity ([Ca(2+)]i), phosphatidylserine abundance at the cell surface and/or cell volume. METHODS Orai1 protein abundance was estimated utilizing CF™488A conjugated antibodies, [Ca(2+)]i utilizing Fluo3-fluorescence, phosphatidylserine abundance utilizing FITC-labelled annexin V, and cell volume utilizing forward scatter in flow cytometry. RESULTS DOCA (10 µg/ml) treatment of murine platelets was followed by a significant increase of Orai1 protein abundance, [Ca(2+)]i, percentage of phosphatidylserine exposing platelets and platelet swelling. The effect on [Ca(2+)]i, phosphatidylserine abundance and cell volume were completely abrogated by addition of the specific SGK inhibitor EMD638683 (50 µM) CONCLUSIONS: The mineralocorticoid DOCA upregulates Orai1 protein abundance in the cell membrane, thus increasing [Ca(2+)]i and triggering phosphatidylserine abundance, effects paralleled by platelet swelling.
Collapse
Affiliation(s)
- Guoxing Liu
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Vasopressor meets vasodepressor: The AT1-B2 receptor heterodimer. Biochem Pharmacol 2014; 88:284-90. [PMID: 24462918 DOI: 10.1016/j.bcp.2014.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/08/2023]
Abstract
The AT1 receptor for the vasopressor angiotensin II is one of the most important drug targets for the treatment of cardiovascular diseases. Sensitization of the AT1 receptor system is a common feature contributing to the pathogenesis of many cardiovascular disorders but underlying mechanisms are not fully understood. More than a decade ago, evidence was provided for control of AT1R activation by heterodimerization with the B2 receptor for the vasodepressor peptide, bradykinin, a physiological counterpart of the vasoconstrictor angiotensin II. AT1-B2 receptor heterodimerization was shown to enhance AT1R-stimulated signaling under pathophysiological conditions such as experimental and human pregnancy hypertension. Notably, AT1R signal sensitization of patients with preeclampsia hypertension was attributed to AT1R-B2R heterodimerization. Vice versa, transgenic mice lacking the AT1-B2 receptor heterodimer due to targeted deletion of the B2R gene showed a significantly reduced AT1R-stimulated vasopressor response compared to transgenic mice with abundant AT1R-B2R heterodimerization. Biophysical methods such as BRET and FRET confirmed those data by demonstrating efficient AT1-B2 receptor heterodimerization in transfected cells and transgenic mice. Recently, a study on AT1R-specific biased agonism directed the focus to the AT1-B2 receptor heterodimer again. The β-arrestin-biased [Sar1,Ile4,Ile8]-angiotensin II promoted not only the recruitment of β-arrestin to the AT1R but also stimulated the down-regulation of the AT1R-associated B2 receptor by co-internalization. Thereby specific targeting of the AT1R-B2R heterodimer became feasible and could open the way to a new class of drugs, which specifically interfere with pathological angiotensin II-AT1 receptor system activation.
Collapse
|
115
|
Matsumoto T, Lopes RAM, Taguchi K, Kobayashi T, Tostes RC. Linking the beneficial effects of current therapeutic approaches in diabetes to the vascular endothelin system. Life Sci 2014; 118:129-35. [PMID: 24418002 DOI: 10.1016/j.lfs.2013.12.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/04/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
The rising epidemic of diabetes worldwide is of significant concern. Although the ultimate objective is to prevent the development and find a cure for the disease, prevention and treatment of diabetic complications is very important. Vascular complications in diabetes, or diabetic vasculopathy, include macro- and microvascular dysfunction and represent the principal cause of morbidity and mortality in diabetic patients. Endothelial dysfunction plays a pivotal role in the development and progression of diabetic vasculopathy. Endothelin-1 (ET-1), an endothelial cell-derived peptide, is a potent vasoconstrictor with mitogenic, pro-oxidative and pro-inflammatory properties that are particularly relevant to the pathophysiology of diabetic vasculopathy. Overproduction of ET-1 is reported in patients and animal models of diabetes and the functional effects of ET-1 and its receptors are also greatly altered in diabetic conditions. The current therapeutic approaches in diabetes include glucose lowering, sensitization to insulin, reduction of fatty acids and vasculoprotective therapies. However, whether and how these therapeutic approaches affect the ET-1 system remain poorly understood. Accordingly, in the present review, we will focus on experimental and clinical evidence that indicates a role for ET-1 in diabetic vasculopathy and on the effects of current therapeutic approaches in diabetes on the vascular ET-1 system.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Rheure A M Lopes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Rita C Tostes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| |
Collapse
|
116
|
Matsuzawa Y, Suematsu S, Saito J, Omura M, Nishikawa T. Vascular aldosterone production at the pre-diabetic stage of young Otsuka Long-Evans Tokushima Fatty (OLETF) rats, compared with Long-Evans Tokushima Otsuka (LETO) rats. Molecules 2013; 18:15636-47. [PMID: 24352019 PMCID: PMC6270161 DOI: 10.3390/molecules181215636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 11/16/2022] Open
Abstract
We examined the ability of aortic smooth muscle cells (AoSMC) prepared from spontaneously diabetic rats to produce aldosterone (Aldo) and the regulatory mechanism that controls their Aldo production. AoSMC of 6 week-old Long-Evans Tokushima Otsuka (LETO: the control group) and 6 week-old Otsuka Long-Evans Tokushima Fatty (OLETF: the type 2 diabetes group) rats were used in the present experiments. CYP11B2 (Aldo synthetase) mRNA expression was detected in both the LETO and OLETF AoSMC. Basal Aldo production was significantly greater (4-5 fold higher) in the OLETF AoSMC culture medium than in the LETO AoSMC culture medium. When AoSMC were co-incubated with high-density lipoproteins (HDL), supplying cholesterol as a substrate for steroidogenesis in rats, angiotensin II (AII) significantly increased greater Aldo production in the OLETF AoSMC than in the LETO AoSMC. The present data suggested that future onset of diabetic vascular dysfunction is partly caused by excess Aldo production by AoSMC in young OLETF rats. Concomitant stimulation by HDL and AII resulted in elevated Aldo production in the OLETF and the LETO AoSMC, and also demonstrated that AII-induced Aldo production is greatly enhanced by HDL in OLETF, rather than in LETO. In conclusion, our data clearly demonstrated that Aldo production in the OLETF AoSMC was significantly higher than in the LETO AoSMC, suggesting possible future onset of vascular dysfunction in diabetes, induced by local Aldo production in the AoSMC.
Collapse
Affiliation(s)
| | | | | | | | - Tetsuo Nishikawa
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kohoku-ku, Yokohama 222-0036, Japan.
| |
Collapse
|
117
|
Abstract
Aldosterone, the key hormone in the mineralocorticoid pathway, plays a fundamental role in salt and water homeostasis, blood pressure regulation, and cardiovascular remodeling. Both genomic and nongenomic mechanisms influence aldosterone-induced renal sodium reabsorption. Furthermore, the mineralocorticoid receptors in nonepithelial tissues, including the heart and vascular smooth muscle cells, have recently been discovered. Thus, aldosterone likely has pleiotropic effects that contribute to the modulation of blood pressure. Among patients with hypertension in general, and among those with more severe or resistant hypertension in particular, a higher-than-expected prevalence of primary hyperaldosteronism is noted. Among individuals with resistant hypertension, aldosterone antagonists have also been shown to be effective in lowering blood pressure. Most significantly, recent community-based studies among non-hypertensive individuals in the general population have demonstrated that both higher serum aldosterone concentrations and a higher aldosterone to renin ratio portend a greater risk of developing hypertension. The combination of the aforementioned observations underscores the importance of the mineralocorticoid pathway in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Vanessa Xanthakis
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, 801 Massachusetts Avenue, Suite 470, Boston, MA 02118, USA.
| | | |
Collapse
|
118
|
Abstract
PURPOSE OF REVIEW Aldosterone is now recognized as an increasingly important contributor to cardiometabolic pathology via inflammatory and fibrosis-related pathways in addition to its classically described role in sodium and volume regulation. Consequently, much effort has been directed towards characterizing the molecular pathways involved in aldosterone-mediated fibrosis and inflammation. What was once viewed as straightforward steroid hormone biology is now appreciated as a highly complex and tightly regulated series of pathways and interactions. These recognitions have fuelled a multidisciplinary effort to identify precisely how aldosterone mediates intracellular activation of both genomic (latent) and nongenomic (rapid) mechanisms of influence. This review will explore recent novel pathways regulating aldosterone action, focusing on the nongenomic pathways. RECENT FINDINGS Several recent discoveries have redefined our understanding of aldosterone interactions at the cellular level. This includes activation of the mineralocorticoid receptor at the plasma membrane instead of via classical nuclear hormone receptor interaction, and identification of novel cofactor scaffolding proteins that modify aldosterone influence at the cellular level. In addition, aldosterone activation of secondary messenger system cascades can occur directly and independent of mineralocorticoid receptor interaction. SUMMARY Substantial progress in detailing the molecular biology of aldosterone regulation and action should facilitate study of how it exerts detrimental effects in cardiometabolic diseases. However, to date, the clinical impact of these discoveries has not been validated. Translational efforts are now required to determine if novel therapeutic targets can be developed.
Collapse
Affiliation(s)
- Jonathan S Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
119
|
Drüppel V, Kusche-Vihrog K, Grossmann C, Gekle M, Kasprzak B, Brand E, Pavenstädt H, Oberleithner H, Kliche K. Long-term application of the aldosterone antagonist spironolactone prevents stiff endothelial cell syndrome. FASEB J 2013; 27:3652-9. [PMID: 23729588 DOI: 10.1096/fj.13-228312] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aldosterone triggers the stiff endothelial cell syndrome (SECS), characterized by an up-regulation of epithelial sodium channels (ENaCs) and mechanical stiffening of the endothelial cell cortex accompanied by endothelial dysfunction. In vivo, aldosterone antagonism exerts sustained protection on the cardiovascular system. To illuminate the molecular mechanisms of this time-dependent effect, a study on endothelial cells in vitro and ex vivo was designed to investigate SECS over time. Endothelia (from human umbilical veins, bovine aortae, and explants of human arteries) were cultured in aldosterone-supplemented medium with or without the mineralocorticoid receptor (MR) antagonist spironolactone. MR expression, ENaC expression, cortical stiffness, and shear-mediated nitric oxide (NO) release were determined after 3 d (short term) and up to 24 d (long term). Over time, MR expression increased by 129%. ENaC expression and surface abundance increased by 32% and 42% (13.8 to 19.6 molecules per cell surface), paralleled by a 49% rise in stiffness. Spironolactone prevented this development and, after 3 wk of treatment, increased NO release by 50%. Thus, spironolactone improves endothelial function long-lastingly by preventing a time-dependent manifestation of SECS. This emphasizes the key role of vascular endothelium as a therapeutical target in cardiovascular disorders and might explain blood pressure independent actions of MR antagonism.
Collapse
Affiliation(s)
- Verena Drüppel
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Pojoga LH, Baudrand R, Adler GK. Mineralocorticoid receptor throughout the vessel: a key to vascular dysfunction in obesity. Eur Heart J 2013; 34:3475-7. [PMID: 23666249 DOI: 10.1093/eurheartj/eht158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|