101
|
Sleep-disordered breathing is associated with depletion of circulating endothelial progenitor cells and elevation in pulmonary arterial pressure in patients with decompensated systolic heart failure. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2015; 12:424-30. [PMID: 26346897 PMCID: PMC4554780 DOI: 10.11909/j.issn.1671-5411.2015.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/13/2015] [Accepted: 04/03/2015] [Indexed: 11/25/2022]
Abstract
Background Sleep-disordered breathing (SDB) is known to occur frequently in and may predict worsening progression of patients with congestive heart failure (CHF). SDB is also known to play an important role in the development of idiopathic pulmonary arterial hypertension (PAH) via inducing endothelial dysfunction and vascular remodeling, a pathological process that can be significantly influenced by factors such as osteoprotegerin (OPG) and endothelial progenitor cells (EPCs). The objective of this study is to determine if CHF with SDB is associated with changes in OPG, EPCs, and PAH. Methods EPCs were isolated, cultured, and quantified from CHF patients with SDB (n = 52), or without SDB (n = 68). OPG and N-terminal pro-brain natriuretic peptide (NT-proBNP) from each group was analyzed and correlated with EPCs and the mean pulmonary artery pressure (mPAP) measured by right heart catheterization. Results A significant decrease in circulating EPCs (29.30 ± 9.01 vs. 45.17 ± 10.51 EPCs/× 200 field; P < 0.05) was found in CHF patients with SDB compared to those without SDB. Both OPG (789.83 ± 89.38 vs. 551.29 ± 42.12 pg/mL; P < 0.05) and NT-proBNP (5946.50 ± 1434.50 vs. 3028.60 ± 811.90 ng/mL; P < 0.05) were also significantly elevated in SDB CHF patients who also had significantly elevated mPAP (50.2 ± 9.5 vs. 36.4 ± 4.1 mm Hg; P < 0.05). EPC numbers correlated inversely with the episodes of apnea and hypopnea per hour (RDI, r = –0.45, P = 0.037) and blood level of OPG (r = –0.53, P = 0.011). Although NT-proBNP was also increased significantly in patients with SDB, it had no correlation with either EPCs or RDI. Conclusions SDB due to hypoxemia from decompensated CHF is associated with (1) OPG elevation, (2) EPC depletion, and (3) mPAP elevation. The inverse relationship of circulating OPG with EPCs suggests a likely mechanism for hypoxemia and OPG in the development of pulmonary vascular dysfunction via depleting EPCs, thus worsening prognosis of CHF.
Collapse
|
102
|
Shimizu Y, Sato S, Koyamatsu J, Yamanashi H, Nagayoshi M, Kadota K, Maeda T. Circulating CD34-positive cells, glomerular filtration rate and triglycerides in relation to hypertension. Atherosclerosis 2015; 243:71-6. [PMID: 26363435 DOI: 10.1016/j.atherosclerosis.2015.08.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Serum triglycerides have been reported to be independently associated with the development of chronic kidney disease (CKD), which is known to play a role in vascular disturbance. On the other hand, circulating CD34-positve cells, including endothelial progenitor cells, are reported to contribute to vascular repair. However, no studies have reported on the correlation between triglycerides and the number of CD34-positive cells. Since hypertension is well known factor for vascular impairment, the degree of correlation between serum triglycerides and circulating CD34-positve cells should account for hypertension status. METHODS We conducted a cross-sectional study of 274 elderly Japanese men aged ≥ 60 years (range 60-79 years) undergoing general health checkups. RESULTS Multiple linear regression analysis of non-hypertensive subjects adjusting for classical cardiovascular risk factors showed that although triglyceride levels (1SD increments; 64 mg/dL) did not significantly correlate with glomerular filtration rate (GFR) (β = -2.06, p = 0.163), a significant positive correlation was seen between triglycerides and the number of circulating CD34-positive cells (β = 0.50, p = 0.004). In hypertensive subjects, a significant inverse correlation between triglycerides and GFR was observed (β = -2.66, p = 0.035), whereas no significant correlation between triglycerides and the number of circulating CD34-positive cells was noted (β = -0.004, p = 0.974). CONCLUSION Since endothelial progenitor cells (CD34-positive cells) have been reported to contribute to vascular repair, our results indicate that in non-hypertensive subjects, triglycerides may stimulate an increase in circulating CD34-positive cells (vascular repair) by inducing vascular disturbance.
Collapse
Affiliation(s)
- Yuji Shimizu
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan.
| | - Shimpei Sato
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Jun Koyamatsu
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Hirotomo Yamanashi
- Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Mako Nagayoshi
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Koichiro Kadota
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Takahiro Maeda
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan; Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| |
Collapse
|
103
|
Lupieri A, Smirnova N, Malet N, Gayral S, Laffargue M. PI3K signaling in arterial diseases: Non redundant functions of the PI3K isoforms. Adv Biol Regul 2015; 59:4-18. [PMID: 26238239 DOI: 10.1016/j.jbior.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Cardiovascular diseases are the most common cause of death around the world. This includes atherosclerosis and the adverse effects of its treatment, such as restenosis and thrombotic complications. The development of these arterial pathologies requires a series of highly-intertwined interactions between immune and arterial cells, leading to specific inflammatory and fibroproliferative cellular responses. In the last few years, the study of phosphoinositide 3-kinase (PI3K) functions has become an attractive area of investigation in the field of arterial diseases, especially since inhibitors of specific PI3K isoforms have been developed. The PI3K family includes 8 members divided into classes I, II or III depending on their substrate specificity. Although some of the different isoforms are responsible for the production of the same 3-phosphoinositides, they each have specific, non-redundant functions as a result of differences in expression levels in different cell types, activation mechanisms and specific subcellular locations. This review will focus on the functions of the different PI3K isoforms that are suspected as having protective or deleterious effects in both the various immune cells and types of cell found in the arterial wall. It will also discuss our current understanding in the context of which PI3K isoform(s) should be targeted for future therapeutic interventions to prevent or treat arterial diseases.
Collapse
Affiliation(s)
- Adrien Lupieri
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Natalia Smirnova
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Nicole Malet
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Stéphanie Gayral
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Muriel Laffargue
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France.
| |
Collapse
|
104
|
Cellular and molecular mechanisms of statins: an update on pleiotropic effects. Clin Sci (Lond) 2015; 129:93-105. [PMID: 25927679 DOI: 10.1042/cs20150027] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. The efficacy and safety of statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) in primary and secondary prevention of CAD are confirmed in several large studies. It is well known that statins have some pleiotropic, anti-atherosclerotic effects. We review the molecular mechanisms underlying the beneficial effects of statins revealed in recently published studies. Endothelial cell injury is regarded as the classic stimulus for the development of atherosclerotic lesions. In addition, the inflammatory process plays an important role in the aetiology of atherosclerosis. In particular, chronic inflammation plays a key role in coronary artery plaque instability and subsequent occlusive thrombosis. Our previous reports and others have demonstrated beneficial effects of statins on endothelial dysfunction and chronic inflammation in CAD. A better understanding of the molecular mechanism underlying the effectiveness of statins against atherosclerosis may provide a novel therapeutic agent for the treatment of coronary atherosclerosis. The present review summarizes the cellular and molecular mechanism of statins against coronary atherosclerosis.
Collapse
|
105
|
The Role of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers in Postangioplasty Restenosis. Am J Ther 2015; 22:e107-14. [PMID: 23782765 DOI: 10.1097/mjt.0b013e3182979b59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
106
|
Lan H, Wang Y, Yin T, Wang Y, Liu W, Zhang X, Yu Q, Wang Z, Wang G. Progress and prospects of endothelial progenitor cell therapy in coronary stent implantation. J Biomed Mater Res B Appl Biomater 2015; 104:1237-47. [PMID: 26059710 DOI: 10.1002/jbm.b.33398] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/20/2014] [Accepted: 02/16/2015] [Indexed: 01/04/2023]
Abstract
Drug-eluting stents (DES) have been widely used to treat coronary artery disease (CAD) since their clinical use has significantly reduced the occurrence of in-stent restenosis (ISR) as compared with the initially applied bare-metal stents (BMS). However, analyses of long-term clinical outcome have raised concerns about the serious safety problem of DES, such as ISR caused by late or very late thrombosis. Various studies showed that those complications were associated with vascular endothelial injury/dysfunction or endothelialization delaying. Recently, through biological characterization of endothelial progenitor cells (EPCs), mechanistic understanding of rapid re-endothelialization of the vascular injury sites after coronary stenting has become possible and is a new research hotspot in the prevention of ISR and late/very late stent thrombosis. It has been well recognized that the formation of a functional endothelial layer from EPCs requires a coordinated sequence of multistep and signaling events, which includes cell mobilization, adhesion, migration and finally the differentiation to vascular endothelial cells (VECs). In this review, we summarize and discuss the currently relevant information about EPCs, the mechanism of DES interfering with the natural vascular healing process in preventing or delaying the formation of a functional endothelial layer, and EPCs-mediated acceleration of re-endothelialization at vascular injury sites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1237-1247, 2016.
Collapse
Affiliation(s)
- Hualin Lan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yi Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Tieyin Yin
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yazhou Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Xiaojuan Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Qinsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri
| | - Zhaoxu Wang
- Laboratory of Biomaterials and Tissue Engineering, National Institutes for Food and Drug Control, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| |
Collapse
|
107
|
Shen X, Zhou Y, Bi X, Zhang J, Fu G, Zheng H. Stromal cell-derived factor-1α prevents endothelial progenitor cells senescence and enhances re-endothelialization of injured arteries via human telomerase reverse transcriptase. Cell Biol Int 2015; 39:962-71. [PMID: 25820929 DOI: 10.1002/cbin.10471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/18/2015] [Indexed: 11/10/2022]
Abstract
Recent studies have suggested that endothelial progenitor subpopulation (EPCs) number and activity were associated with EPCs senescence. Our previous study had shown that stromal cell-derived factor-1alpha (SDF-1α) could prevent EPCs senescence, which may be via telomerase. In this study, we further investigated the role of human telomerase reverse transcriptase (h-TERT) on the protective effect of SDF-1α against senescence. Knockdown h-TERT abrogated the protective effect of SDF-1α and abolished the effects of SDF-1α on migration and proliferation. Moreover, it inhibited EPCs recruitment. In conclusion, h-TERT served a critical role in the progress that SDF-1α prevented EPCs senescence and enhanced re-endothelialization of the injured arteries.
Collapse
Affiliation(s)
- Xiaohua Shen
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China, 310058
| | - Yucheng Zhou
- Department of General Surgery, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China, 310058
| | - Xukun Bi
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China, 310058
| | - Jiefang Zhang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China, 310058
| | - Guosheng Fu
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China, 310058
| | - Hao Zheng
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Cardiology, Hangzhou Xiasha Hospital, Hangzhou, Zhejiang Province, P. R. China, 310058
| |
Collapse
|
108
|
Nelson J, Wu Y, Jiang X, Berretta R, Houser S, Choi E, Wang J, Huang J, Yang X, Wang H. Hyperhomocysteinemia suppresses bone marrow CD34+/VEGF receptor 2+ cells and inhibits progenitor cell mobilization and homing to injured vasculature-a role of β1-integrin in progenitor cell migration and adhesion. FASEB J 2015; 29:3085-99. [PMID: 25854700 DOI: 10.1096/fj.14-267989] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/16/2015] [Indexed: 01/18/2023]
Abstract
Hyperhomocysteinemia (HHcy) impairs re-endothelialization and accelerates vascular remodeling. The role of CD34(+)/VEGF receptor (VEGFR) 2(+) progenitor cells (PCs) in vascular repair in HHcy is unknown. We studied the effect of HHcy on PCs and its role in vascular repair in severe HHcy (∼150 μM), which was induced in cystathionine-β synthase heterozygous mice fed a high-methionine diet for 8 weeks. Vascular injury was introduced by carotid air-dry endothelium denudation. CD34(+)/VEGFR2(+) cells were examined by flow cytometry. HHcy reduced bone marrow (BM) CD34(+)/VEGFR2(+) cells and suppressed replenishment of postinjury CD34(+)/VEGFR2(+) cells in peripheral blood (PB). Donor green fluorescent protein-positive PC homing to the injured vessel was reduced in HHcy after CD34(+) PCs from enhanced green fluorescent protein mice were adoptively transferred following carotid injury. CD34(+) PC transfusion partially reversed HHcy-suppressed re-endothelialization and HHcy-induced neointimal formation. Furthermore, homocysteine (Hcy) inhibited proliferation, adhesion, and migration and suppressed β1-integrin expression and activity in human CD34(+) endothelial colony-forming cells (ECFCs) isolated from PBs in a dose-dependent manner. A functional-activating β1-integrin antibody rescued Hcy-suppressed adhesion and migration in CD34(+) ECFCs. In conclusion, HHcy reduces BM CD34(+)/VEGFR2(+) generation and suppresses CD34(+)/VEGFR2(+) cell mobilization and homing to the injured vessel via β1-integrin inhibition, which partially contributes to impaired re-endothelialization and vascular remodeling.
Collapse
Affiliation(s)
- Jun Nelson
- *Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center, Cardiovascular Research Center, Department of Physiology, and Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China; and **Department of Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yi Wu
- *Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center, Cardiovascular Research Center, Department of Physiology, and Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China; and **Department of Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xiaohua Jiang
- *Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center, Cardiovascular Research Center, Department of Physiology, and Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China; and **Department of Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Remus Berretta
- *Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center, Cardiovascular Research Center, Department of Physiology, and Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China; and **Department of Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Steven Houser
- *Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center, Cardiovascular Research Center, Department of Physiology, and Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China; and **Department of Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric Choi
- *Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center, Cardiovascular Research Center, Department of Physiology, and Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China; and **Department of Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jingfeng Wang
- *Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center, Cardiovascular Research Center, Department of Physiology, and Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China; and **Department of Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jian Huang
- *Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center, Cardiovascular Research Center, Department of Physiology, and Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China; and **Department of Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- *Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center, Cardiovascular Research Center, Department of Physiology, and Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China; and **Department of Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- *Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center, Cardiovascular Research Center, Department of Physiology, and Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; Department of Cardiology, Sun Yixian Memorial Hospital, Zhongshan University School of Medicine, Guangzhou, China; and **Department of Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
109
|
Bonello L, Frere C, Cointe S, Laine M, Mancini J, Thuny F, Kerbaul F, Lemesle G, Paganelli F, Guieu R, Arnaud L, Dignat-George F, Sabatier F. Ticagrelor increases endothelial progenitor cell level compared to clopidogrel in acute coronary syndromes: A prospective randomized study. Int J Cardiol 2015; 187:502-7. [PMID: 25846661 DOI: 10.1016/j.ijcard.2015.03.414] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND The clinical benefit of ticagrelor compared to clopidogrel in ACS patients suggested off-target property. Such pleiotropic effect could be mediated by circulating endothelial progenitor cells (EPC) which are critical for vascular healing. We aimed to investigate the impact of ticagrelor on EPC in acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI). METHODS We prospectively randomized 106 ACS patients to ticagrelor or clopidogrel. Sub-populations of CD34+ circulating progenitor cells (PC) were analyzed by flow cytometry allowing one to determine the levels of CD34+ PC, CD34+CD45+ Hematopoietic PC, CD34+133+ immature PC and CD34+KDR+ EPC on admission and at 1 month. Changes in PC level were calculated as the difference between 1 month and baseline value. RESULTS The 2 groups were similar regarding baseline characteristics including PC numbers on admission. The 2 groups had similar change in overall CD34+ PC and hematopoietic CD34+45+ PC level (p=0.2). On the contrary, when considering CD34+133+ PC and CD34+KDR+ EPC, we observed that patients treated by ticagrelor had a significantly higher increase in levels of these PC subtypes compared to those treated by clopidogrel (0.23 (-0.33; 0.79) vs 0.00 (-0.5; 0.34); p=0.04 and 0.01 (-0.04; 0.05) vs -0.01 (-0.06; 0.03); p=0.02). Changes in the level of CD34+CD133+ PC correlated with platelet activity measured by the VASP index (r=-0.30; p=0.008). By contrast the increase in the level of CD34+KDR+ EPC in the ticagrelor group was independent of platelet activity. CONCLUSIONS Ticagrelor increases the number of EPC in ACS patients suggesting a benefit on endothelial regeneration that may participate in the pleiotropic property of the drug.
Collapse
Affiliation(s)
- Laurent Bonello
- Service de Cardiologie, Centre Hospitalier Universitaire de Marseille, Hôpital NORD, Aix-Marseille Université, France; Vascular Research Center of Marseille, INSERM UMR-S 1076, Aix-Marseille Université, Marseille, France.
| | - Corinne Frere
- Vascular Research Center of Marseille, INSERM UMR-S 1076, Aix-Marseille Université, Marseille, France
| | - Sylvie Cointe
- Vascular Research Center of Marseille, INSERM UMR-S 1076, Aix-Marseille Université, Marseille, France
| | - Marc Laine
- Service de Cardiologie, Centre Hospitalier Universitaire de Marseille, Hôpital NORD, Aix-Marseille Université, France
| | - Julien Mancini
- Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, BiosTIC, France; Aix-Marseille Université, Inserm, IRD, UMR_S912, SESSTIM, Faculté de Médecine de Marseille, France
| | - Franck Thuny
- Service de Cardiologie, Centre Hospitalier Universitaire de Marseille, Hôpital NORD, Aix-Marseille Université, France
| | - François Kerbaul
- Research Unit of Physiology and Pathophysiology in Extreme Oxygenation Conditions (UMR MD2), Faculty of Medicine, Aix-Marseille University, Marseille, France; Pole RUSH, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | | | - Franck Paganelli
- Service de Cardiologie, Centre Hospitalier Universitaire de Marseille, Hôpital NORD, Aix-Marseille Université, France
| | - Regis Guieu
- Research Unit of Physiology and Pathophysiology in Extreme Oxygenation Conditions (UMR MD2), Faculty of Medicine, Aix-Marseille University, Marseille, France
| | - Laurent Arnaud
- Vascular Research Center of Marseille, INSERM UMR-S 1076, Aix-Marseille Université, Marseille, France; Laboratoire d'Hématologie et de Biologie Vasculaire, Assistance-Publique Hôpitaux de Marseille, Centre hospitalo-universitaire de la Conception, Marseille, France
| | - Françoise Dignat-George
- Vascular Research Center of Marseille, INSERM UMR-S 1076, Aix-Marseille Université, Marseille, France; Laboratoire d'Hématologie et de Biologie Vasculaire, Assistance-Publique Hôpitaux de Marseille, Centre hospitalo-universitaire de la Conception, Marseille, France
| | - Florence Sabatier
- Vascular Research Center of Marseille, INSERM UMR-S 1076, Aix-Marseille Université, Marseille, France; Laboratoire d'Hématologie et de Biologie Vasculaire, Assistance-Publique Hôpitaux de Marseille, Centre hospitalo-universitaire de la Conception, Marseille, France
| |
Collapse
|
110
|
Thitiwuthikiat P, Ii M, Saito T, Asahi M, Kanokpanont S, Tabata Y. A vascular patch prepared from Thai silk fibroin and gelatin hydrogel incorporating simvastatin-micelles to recruit endothelial progenitor cells. Tissue Eng Part A 2015; 21:1309-19. [PMID: 25517108 DOI: 10.1089/ten.tea.2014.0237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Delayed re-endothelialization is one of the major disadvantages in synthetic vascular grafts, especially in small-diameter grafts (inner diameter <6 mm), leading to thrombosis and stenosis of the grafts. Simvastatin, a serum cholesterol-lowering drug, has promotional effects on endothelial progenitor cell (EPC) mobilization from bone marrow and recruitment to sites of vascular injury exhibiting acceleration of re-endothelialization. In this study, we prepared double-layer vascular patches from Thai silk fibroin/gelatin with gelatin hydrogel incorporating simvastatin-micelles (SM) for sustained release of simvastatin to recruit circulation EPCs. To enhance simvastatin solubility, simvastatin was entrapped in micelles of l-lactic acid oligomer-grafted gelatin. The drug loading efficiency was at 4.1 ± 0.5 μg/mg micelles. SM had a chemoattractive effect on EPCs comparable to nonmodified simvastatin. Gelatin hydrogel incorporating SM at 100 μM of simvastatin (GSM100) could enhance in vitro EPC activities of adhesion and proliferation. In vitro results showed the initial cell adhesion of 86%, specific growth rate of 15.33×10(-3) h(-1), and population doubling time of 46.21 h. In vivo implantation of the patches incorporating SM significantly increased the recruitment of circulating EPCs. From the results of immunofluorescence staining, they demonstrated the complete re-endothelialization on the implanted patches containing SM at 2 weeks after implantation in rat carotid arteries. The gelatin hydrogel incorporating SM could be an effective inner layer of multifunctional vascular grafts to accelerate re-endothelialization in vascular tissue engineering.
Collapse
Affiliation(s)
- Piyanuch Thitiwuthikiat
- 1 Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University , Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
111
|
Endothelial Progenitor Cells and Percutaneous Coronary Artery Intervention : Editorial to: "Effect of High Dose Statin Pretreatment on Endothelial Progenitor Cells after Percutaneous Coronary Intervention (HIPOCRATES Study)" by A. Eisen et al. Cardiovasc Drugs Ther 2015; 29:105-6. [PMID: 25712417 DOI: 10.1007/s10557-015-6577-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
112
|
Zhang P, Han G, Gao P, Qiao K, Ren Y, Liang C, Leng B, Wu Z. Protective Effect of Silymarin against Rapamycin-induced Apoptosis and Proliferation Inhibition in Endothelial Progenitor Cells. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
For this study, peripheral blood samples were collected from human volunteers. Mononuclear cells (MNC) were separated by density centrifugation and were induced to differentiate into endothelial progenitor cells (EPCs) in vitro. Different concentrations of rapamycin and silymarin were introduced to the EPCs over 24 hours and then EPCs were analyzed for proliferation, migration, apoptosis and angiogenesis. Compared with the control group, rapamycin (1, 10, 100 ng/mL) inhibited the proliferation and migration of EPCs in a concentration dependent manner ( P<0.05). Silymarin (50, 100 μg/mL) enhanced the proliferation and migration of EPCs and inhibited apoptosis in a concentration dependent manner ( P<0.05). By adding rapamycin (1 ng/mL) and silymarin (25, 50, 100 μg/mL) over 24 hours, silymarin inhibited the pro-apoptotic effect of rapamycin on EPCs, and reversed the inhibition of proliferation, migration and angiogenesis of EPCs by rapamycin ( P<0.05).
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiology, People's Liberation Army 273 Hospital, Korla 841000, China
| | - Guohua Han
- Department of Cardiology, People's Liberation Army 273 Hospital, Korla 841000, China
| | - Pei Gao
- Drug and Equipment Section, People's Liberation Army 273 Hospital, Korla 841000, China
| | - Kun Qiao
- Department of Psychological, Lanzhou University, Lanzhou 730000, China
| | - Yusheng Ren
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Bing Leng
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Zonggui Wu
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
113
|
Liang M, Wang Y, Liang A, Dong JF, Du J, Cheng J. Impaired integrin β3 delays endothelial cell regeneration and contributes to arteriovenous graft failure in mice. Arterioscler Thromb Vasc Biol 2015; 35:607-15. [PMID: 25614287 DOI: 10.1161/atvbaha.114.305089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Neointima formation is associated with stenosis and subsequent thrombosis in arteriovenous grafts (AVGs). A role of integrin β3 in the neointima formation of AVGs remains poorly understood. APPROACH AND RESULTS In integrin β3(-/-) mice, we found significantly accelerated occlusion of AVGs compared with the wild-type mice. This is caused by the development of neointima and lack of endothelial regeneration. The latter is a direct consequence of impaired functions of circulating angiogenic cells (CACs) and platelets in integrin β3(-/-) mice. Evidence suggests the involvement of platelet regulating CAC homing to and differentiation at graft sites via transforming growth factor-β1 and Notch signaling pathway. First, CACs deficient of integrin β3 impaired adhesion activity toward exposed subendothelium. Second, platelets from integrin β3(-/-) mice failed to sufficiently stimulate CACs to differentiate into mature endothelial cells. Finally, we found that transforming growth factor-β1 level was increased in platelets from integrin β3(-/-) mice and resulted in enhanced Notch1 activation in CACs in AVGs. These results demonstrate that integrin β3 is critical for endothelial cell homing and differentiation. The increased transforming growth factor-β1 and Notch1 signaling mediates integrin β3(-/-)-induced AVG occlusion. This accelerated occlusion of AVGs was reversed in integrin β3(-/-) mice transplanted with the bone marrow from wild-type mice. CONCLUSIONS Our results suggest that boosting integrin β3 function in the endothelial cells and platelets could prevent neointima and thrombosis in AVGs.
Collapse
Affiliation(s)
- Ming Liang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Yun Wang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Anlin Liang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jin-Fei Dong
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jie Du
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jizhong Cheng
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.).
| |
Collapse
|
114
|
Van Linthout S, Frias M, Singh N, De Geest B. Therapeutic potential of HDL in cardioprotection and tissue repair. Handb Exp Pharmacol 2015; 224:527-565. [PMID: 25523001 DOI: 10.1007/978-3-319-09665-0_17] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Epidemiological studies support a strong association between high-density lipoprotein (HDL) cholesterol levels and heart failure incidence. Experimental evidence from different angles supports the view that low HDL is unlikely an innocent bystander in the development of heart failure. HDL exerts direct cardioprotective effects, which are mediated via its interactions with the myocardium and more specifically with cardiomyocytes. HDL may improve cardiac function in several ways. Firstly, HDL may protect the heart against ischaemia/reperfusion injury resulting in a reduction of infarct size and thus in myocardial salvage. Secondly, HDL can improve cardiac function in the absence of ischaemic heart disease as illustrated by beneficial effects conferred by these lipoproteins in diabetic cardiomyopathy. Thirdly, HDL may improve cardiac function by reducing infarct expansion and by attenuating ventricular remodelling post-myocardial infarction. These different mechanisms are substantiated by in vitro, ex vivo, and in vivo intervention studies that applied treatment with native HDL, treatment with reconstituted HDL, or human apo A-I gene transfer. The effect of human apo A-I gene transfer on infarct expansion and ventricular remodelling post-myocardial infarction illustrates the beneficial effects of HDL on tissue repair. The role of HDL in tissue repair is further underpinned by the potent effects of these lipoproteins on endothelial progenitor cell number, function, and incorporation, which may in particular be relevant under conditions of high endothelial cell turnover. Furthermore, topical HDL therapy enhances cutaneous wound healing in different models. In conclusion, the development of HDL-targeted interventions in these strategically chosen therapeutic areas is supported by a strong clinical rationale and significant preclinical data.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Charité-University-Medicine Berlin, Campus Virchow, Berlin-Brandenburg Center for Regenerative Therapy (BCRT), Berlin, Germany
| | | | | | | |
Collapse
|
115
|
Goh ET, Wong E, Farhatnia Y, Tan A, Seifalian AM. Accelerating in situ endothelialisation of cardiovascular bypass grafts. Int J Mol Sci 2014; 16:597-627. [PMID: 25551605 PMCID: PMC4307264 DOI: 10.3390/ijms16010597] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022] Open
Abstract
The patency of synthetic cardiovascular grafts in the long run is synonymous with their ability to inhibit the processes of intimal hyperplasia, thrombosis and calcification. In the human body, the endothelium of blood vessels exhibits characteristics that inhibit such processes. As such it is not surprising that research in tissue engineering is directed towards replicating the functionality of the natural endothelium in cardiovascular grafts. This can be done either by seeding the endothelium within the lumen of the grafts prior to implantation or by designing the graft such that in situ endothelialisation takes place after implantation. Due to certain difficulties identified with in vitro endothelialisation, in situ endothelialisation, which will be the focus of this article, has garnered interest in the last years. To promote in situ endothelialisation, the following aspects can be taken into account: (1) Endothelial progenital cell mobilization, adhesion and proliferation; (2) Regulating differentiation of progenitor cells to mature endothelium; (3) Preventing thrombogenesis and inflammation during endothelialisation. This article aims to review and compile recent developments to promote the in situ endothelialisation of cardiovascular grafts and subsequently improve their patency, which can also have widespread implications in the field of tissue engineering.
Collapse
Affiliation(s)
- Ee Teng Goh
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London NW3 2QG, UK.
| | - Eleanor Wong
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London NW3 2QG, UK.
| | - Yasmin Farhatnia
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London NW3 2QG, UK.
| | - Aaron Tan
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London NW3 2QG, UK.
| | - Alexander M Seifalian
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London NW3 2QG, UK.
| |
Collapse
|
116
|
Werner CM, Schirmer SH, Gensch C, Pavlickova V, Pöss J, Wright MB, Böhm M, Laufs U. The dual PPARα/γ agonist aleglitazar increases the number and function of endothelial progenitor cells: implications for vascular function and atherogenesis. Br J Pharmacol 2014; 171:2685-703. [PMID: 24467636 DOI: 10.1111/bph.12608] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/30/2013] [Accepted: 01/16/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Aleglitazar is a dual PPARα/γ agonist but little is known about its effects on vascular function and atherogenesis. Hence, we characterized its effects on circulating angiogenic cells (CAC), neoangiogenesis, endothelial function, arteriogenesis and atherosclerosis in mice. EXPERIMENTAL APPROACH C57Bl/6 wild-type (WT, normal chow), endothelial NOS (eNOS)(-/-) (normal chow) and ApoE(-/-) (Western-type diet) mice were treated with aleglitazar (10 mg·kg(-1) ·day(-1) , i.p.) or vehicle. KEY RESULTS Aleglitazar enhanced expression of PPARα and PPARγ target genes, normalized glucose tolerance and potently reduced hepatic fat in ApoE(-/-) mice. In WT mice, but not in eNOS(-/-) , aleglitazar up-regulated Sca-1/VEGFR2-positive CAC in the blood and bone marrow and up-regulated diLDL/lectin-positive CAC. Aleglitazar augmented CAC migration and enhanced neoangiogenesis. In ApoE(-/-) mice, aleglitazar up-regulated CAC number and function, reduced markers of vascular inflammation and potently improved perfusion restoration after hindlimb ischaemia and aortic endothelium-dependent vasodilatation. This was associated with markedly reduced formation of atherosclerotic plaques. In human cultured CAC from healthy donors and patients with coronary artery disease with or without diabetes mellitus, aleglitazar increased migration and colony-forming units in a concentration-dependent manner. Furthermore, oxidative stress-induced CAC apoptosis and expression of p53 were reduced, while telomerase activity and expression of phospho-eNOS and phospho-Akt were elevated. Comparative agonist and inhibitor experiments revealed that aleglitazar's effects on CAC migration and colony-forming units were mediated by both PPARα and PPARγ signalling and required Akt. CONCLUSIONS AND IMPLICATIONS Aleglitazar augments the number, function and survival of CAC, which correlates with improved vascular function, enhanced arteriogenesis and prevention of atherosclerosis in mice.
Collapse
Affiliation(s)
- C M Werner
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Oikonomou E, Siasos G, Zaromitidou M, Hatzis G, Mourouzis K, Chrysohoou C, Zisimos K, Mazaris S, Tourikis P, Athanasiou D, Stefanadis C, Papavassiliou AG, Tousoulis D. Atorvastatin treatment improves endothelial function through endothelial progenitor cells mobilization in ischemic heart failure patients. Atherosclerosis 2014; 238:159-64. [PMID: 25525743 DOI: 10.1016/j.atherosclerosis.2014.12.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/19/2014] [Accepted: 12/01/2014] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Endothelial function is an independent predictor of prognosis in heart failure (HF) subjects. Statins, beyond their lipid lowering role, exert beneficial effect in patients with atherosclerosis. In the present study we examined the impact of low and intermediate dose atorvastatin treatment on endothelial function, bone marrow-derived endothelial progenitor cells (EPC) mobilization and inflammatory status according to HF patient status. METHODS We studied the effect of 4 weeks administration of atorvastatin in 26 patients with ischemic HF. The study was carried out on two separate arms, one with atorvastatin 40 mg/d and one with atorvastatin 10 mg/d (randomized, double-blind, cross-over design). The number of circulating CD34(+)/CD133(+)/KDR(+) EPCs was evaluated by flow cytometry. Endothelial function was evaluated by flow mediated dilation (FMD) in the brachial artery. Serum levels of tumor necrosis factor alpha (TNF-α) were measured by ELISA. RESULTS Treatment with atorvastatin 40 mg/d significantly increased circulating EPC (p = 0.002), FMD (p = 0.001) and reduced TNF-α (p = 0.01) compared to baseline. Similarly, treatment with atorvastatin 10 mg/day increased circulating EPC (p = 0.01), FMD (p = 0.08) and reduced TNF-α (p = 0.01) compared to baseline. Interestingly, with 40 mg/day atorvastatin treatment the increase in EPC was higher in subjects categorized as NYHA class II compared to subjects categorized as NYHA class III (p = 0.03). CONCLUSIONS Our results confirmed the distinct impact of atorvastatin treatment on the restoration of endothelial function due to EPC mobilization in ischemic HF subjects. Moreover, these findings provide the potential clinical significance of EPC status monitoring to individualize treatment in HF subjects.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Cardiology Department, University of Athens Medical School, "Hippokration" Hospital, Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, University of Athens Medical School, "Hippokration" Hospital, Athens, Greece; Department of Biological Chemistry, University of Athens Medical School, Athens, Greece.
| | - Marina Zaromitidou
- 1st Cardiology Department, University of Athens Medical School, "Hippokration" Hospital, Athens, Greece
| | - George Hatzis
- 1st Cardiology Department, University of Athens Medical School, "Hippokration" Hospital, Athens, Greece
| | - Konstantinos Mourouzis
- 1st Cardiology Department, University of Athens Medical School, "Hippokration" Hospital, Athens, Greece
| | - Christine Chrysohoou
- 1st Cardiology Department, University of Athens Medical School, "Hippokration" Hospital, Athens, Greece
| | - Konstantinos Zisimos
- 1st Cardiology Department, University of Athens Medical School, "Hippokration" Hospital, Athens, Greece
| | - Savvas Mazaris
- 1st Cardiology Department, University of Athens Medical School, "Hippokration" Hospital, Athens, Greece
| | - Panagiotis Tourikis
- 1st Cardiology Department, University of Athens Medical School, "Hippokration" Hospital, Athens, Greece
| | - Dimitris Athanasiou
- 1st Cardiology Department, University of Athens Medical School, "Hippokration" Hospital, Athens, Greece
| | - Christodoulos Stefanadis
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Dimitris Tousoulis
- 1st Cardiology Department, University of Athens Medical School, "Hippokration" Hospital, Athens, Greece
| |
Collapse
|
118
|
Piatkowski A, Grieb G, Simons D, Bernhagen J, van der Hulst RR. Endothelial progenitor cells--potential new avenues to improve neoangiogenesis and reendothelialization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 306:43-81. [PMID: 24016523 DOI: 10.1016/b978-0-12-407694-5.00002-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The term endothelial progenitor cell (EPC) was established more than 10 years ago and is used to refer to a group of circulating cells that display endothelial lineage qualities and are able to home to areas of ischemia or vascular injury and to facilitate the repair of damaged blood vessels or develop new vessels as needed. This chapter reviews the current lineage relationships among all the cells called EPC and will clear the terminology used in EPC research. Furthermore, an overview of the clinical and in vitro research, as well as cytokine and drug interactions and potential EPC applications, is given.
Collapse
Affiliation(s)
- Andrzej Piatkowski
- Department of Plastic Surgery, academisch ziekenhuis Maastricht, MUMC+, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
119
|
Efficacy of Simvastatin in Bone Regeneration After Surgical Removal of Mandibular Third Molars: A Clinical Pilot Study. J Maxillofac Oral Surg 2014. [PMID: 26225047 DOI: 10.1007/s12663-014-0697-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Simvastatin, a common cholesterol-lowering drug that inhibits hepatic hydroxymethylglutaryl coenzyme A reductase, the rate-limiting enzyme in the mevalonate pathway, increases expression of the BMP-2 gene and thus promotes bone regeneration. MATERIALS AND METHODS A study was conducted in mandibular third molar sockets to study the efficacy of the drug by implanting it into sockets (experimental group) and observations were made over 3 months to compare the healing with the (control group). CONCLUSION The results showed faster regeneration of the bone in the simvastatin site using the gray level histogram values.
Collapse
|
120
|
King A, Balaji S, Keswani SG, Crombleholme TM. The Role of Stem Cells in Wound Angiogenesis. Adv Wound Care (New Rochelle) 2014; 3:614-625. [PMID: 25300298 DOI: 10.1089/wound.2013.0497] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 03/19/2014] [Indexed: 12/18/2022] Open
Abstract
Significance: Revascularization plays a critical role in wound healing and is regulated by a complex milieu of growth factors and cytokines. Deficiencies in revascularization contribute to the development of chronic nonhealing wounds. Recent Advances: Stem-cell-based therapy provides a novel strategy to enhance angiogenesis and improve wound healing. With bioethical concerns associated with embryonic stem cells, focus has shifted to different populations of vascular precursors, isolated from adult somatic tissue. Three main populations have been identified: endothelial progenitor cells, mesenchymal stem cells, and induced-pluripotent stem cells. These populations demonstrate great promise to positively influence neovascularization and wound repair. Critical Issues: Further studies to more definitively define each population are necessary to efficiently translate stem-cell-based therapeutic angiogenesis to the bedside. Better understanding of the physiologic pathways of how stem cells contribute to angiogenesis in normal tissue repair will help identify targets for successful therapeutic angiogenesis. Future Directions: Active studies in both animal models and clinical trials are being conducted to develop effective delivery routes, including dosing, route, and timing. Stem-cell-based therapy holds significant potential as a strategy for therapeutic angiogenesis in the care of patients with chronic nonhealing wounds.
Collapse
Affiliation(s)
- Alice King
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Swathi Balaji
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Sundeep G. Keswani
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Timothy M. Crombleholme
- Center for Children's Surgery, Division of Pediatric General, Thoracic and Fetal Surgery, Children's Hospital Colorado, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
121
|
Harris E, Rakobowchuk M, Birch KM. Sprint interval and sprint continuous training increases circulating CD34+ cells and cardio-respiratory fitness in young healthy women. PLoS One 2014; 9:e108720. [PMID: 25265043 PMCID: PMC4181657 DOI: 10.1371/journal.pone.0108720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/02/2014] [Indexed: 01/22/2023] Open
Abstract
Introduction The improvement of vascular health in the exercising limb can be attained by sprint interval training (SIT). However, the effects on systemic vascular function and on circulating angiogenic cells (CACs) which may contribute to endothelial repair have not been investigated. Additionally, a comparison between SIT and sprint continuous training (SCT) which is less time committing has not been made. Methods 12 women (22±2 yrs) completed 12 sessions of either SIT (n = 6) or work-matched SCT (n = 6) on 3 days/week. Pre and post-training assessments included brachial artery endothelial function and peripheral blood analysis for CAC number (CD34+/CD34+CD45dim). CAC function was measured by migration and adhesion assays. Cardio-respiratory fitness, carotid arterial stiffness and carotid-radial and brachial-foot pulse wave velocity (PWV) were also evaluated. Results CD34+ CACs increased following training in both groups but CD34+CD45dim did not (Pre CD34+: 40±21/105 leukocytes, Post CD34+: 56±24/105 leukocytes, main time effect p<0.05). Brachial artery flow-mediated dilation (FMD) increased following SIT but SCT had no effect (Pre SIT: 5.0±3.4%, Post SIT: 5.9±3.0%, Pre SCT: 7.2±2.7%, Post SCT: 6.5±2.9%; group x time interaction p = 0.08). increased in both training groups (Pre: 34.6±4.6 ml•kg•ml−1, Post: 36.9±5.4 ml•kg•ml−1, main time effect p<0.05). CAC function, carotid arterial stiffness and PWV did not change after training (p>0.05). Discussion SCT involving little time commitment is comparable to SIT in increasing CD34+ cell number and . An increased mobilisation of CD34+ CACs suggests that sprint training may be an effective method to enhance vascular repair.
Collapse
Affiliation(s)
- Emma Harris
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Mark Rakobowchuk
- School of Sport and Education, Brunel University, Middlesex, United Kingdom
| | - Karen M. Birch
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
122
|
Gao L, Li P, Zhang J, Hagiwara M, Shen B, Bledsoe G, Chang E, Chao L, Chao J. Novel role of kallistatin in vascular repair by promoting mobility, viability, and function of endothelial progenitor cells. J Am Heart Assoc 2014; 3:e001194. [PMID: 25237049 PMCID: PMC4323828 DOI: 10.1161/jaha.114.001194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Kallistatin exerts pleiotropic activities in inhibiting inflammation, apoptosis, and oxidative stress in endothelial cells. Because endothelial progenitor cells (EPCs) play a significant role in vascular repair, we investigated whether kallistatin contributes to vascular regeneration by enhancing EPC migration and function. Methods and Results We examined the effect of endogenous kallistatin on circulating EPCs in a rat model of vascular injury and the mechanisms of kallistatin on EPC mobility and function in vitro. In deoxycorticosterone acetate–salt hypertensive rats, we found that kallistatin depletion augmented glomerular endothelial cell loss and diminished circulating EPC number, whereas kallistatin gene delivery increased EPC levels. In cultured EPCs, kallistatin significantly reduced tumor necrosis factor‐α–induced apoptosis and caspase‐3 activity, but kallistatin's effects were blocked by phosphoinositide 3‐kinase inhibitor (LY294002) and nitric oxide (NO) synthase inhibitor (l‐NAME). Kallistatin stimulated the proliferation, migration, adhesion and tube formation of EPCs; however, kallistatin's actions were abolished by LY294002, l‐NAME, endothelial NO synthase–small interfering RNA, constitutively active glycogen synthase kinase‐3β, or vascular endothelial growth factor antibody. Kallistatin also increased Akt, glycogen synthase kinase‐3β, and endothelial NO synthase phosphorylation; endothelial NO synthase, vascular endothelial growth factor, and matrix metalloproteinase‐2 synthesis and activity; and NO and vascular endothelial growth factor levels. Kallistatin's actions on phosphoinositide 3‐kinase–Akt signaling were blocked by LY294002, l‐NAME, and anti–vascular endothelial growth factor antibody. Conclusions Endogenous kallistatin plays a novel role in protection against vascular injury in hypertensive rats by promoting the mobility, viability, and vasculogenic capacity of EPCs via enhancing NO and vascular endothelial growth factor levels through activation of phosphoinositide 3‐kinase–Akt signaling. Kallistatin therapy may be a promising approach in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Lin Gao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Jingmei Zhang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Makoto Hagiwara
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Bo Shen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Grant Bledsoe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Eugene Chang
- Department of Obstetrics and Gynecology, College of Medicine, Medical University of South Carolina, Charleston, SC (E.C.)
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| |
Collapse
|
123
|
Pizarro S, García-Lucio J, Peinado VI, Tura-Ceide O, Díez M, Blanco I, Sitges M, Petriz J, Torralba Y, Marín P, Roca J, Barberà JA. Circulating progenitor cells and vascular dysfunction in chronic obstructive pulmonary disease. PLoS One 2014; 9:e106163. [PMID: 25171153 PMCID: PMC4149524 DOI: 10.1371/journal.pone.0106163] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD), decreased progenitor cells and impairment of systemic vascular function have been suggested to confer higher cardiovascular risk. The origin of these changes and their relationship with alterations in the pulmonary circulation are unknown. Objectives To investigate whether changes in the number of circulating hematopoietic progenitor cells are associated with pulmonary hypertension or changes in endothelial function. Methods 62 COPD patients and 35 controls (18 non-smokers and 17 smokers) without cardiovascular risk factors other than cigarette smoking were studied. The number of circulating progenitors was measured as CD45+CD34+CD133+ labeled cells by flow cytometry. Endothelial function was assessed by flow-mediated dilation. Markers of inflammation and angiogenesis were also measured in all subjects. Results Compared with controls, the number of circulating progenitor cells was reduced in COPD patients. Progenitor cells did not differ between control smokers and non-smokers. COPD patients with pulmonary hypertension showed greater number of progenitor cells than those without pulmonary hypertension. Systemic endothelial function was worse in both control smokers and COPD patients. Interleukin-6, fibrinogen, high sensitivity C-reactive protein, vascular endothelial growth factor and tumor necrosis factor were increased in COPD. In COPD patients, the number of circulating progenitor cells was inversely related to the flow-mediated dilation of systemic arteries. Conclusions Pulmonary and systemic vascular impairment in COPD is associated with cigarette smoking but not with the reduced number of circulating hematopoietic progenitors. The latter appears to be a consequence of the disease itself not related to smoking habit.
Collapse
MESH Headings
- AC133 Antigen
- Aged
- Antigens, CD/metabolism
- Antigens, CD34/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Glycoproteins/metabolism
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Leukocyte Common Antigens/metabolism
- Male
- Middle Aged
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Peptides/metabolism
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Smoking
Collapse
Affiliation(s)
- Sandra Pizarro
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jéssica García-Lucio
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Víctor I. Peinado
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Díez
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Sitges
- Department of Cardiology, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jordi Petriz
- Department of Cytometry, Institut de Recerca, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Yolanda Torralba
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pedro Marín
- Department of Cryopreservervation, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Josep Roca
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- * E-mail:
| |
Collapse
|
124
|
Tian XL, Li Y. Endothelial cell senescence and age-related vascular diseases. J Genet Genomics 2014; 41:485-95. [PMID: 25269674 DOI: 10.1016/j.jgg.2014.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Advanced age is an independent risk factor for ageing-related complex diseases, such as coronary artery disease, stroke, and hypertension, which are common but life threatening and related to the ageing-associated vascular dysfunction. On the other hand, patients with progeria syndromes suffer from serious atherosclerosis, suggesting that the impaired vascular functions may be critical to organismal ageing, or vice versa. However, it remains largely unknown how vascular cells, particularly endothelial cell, become senescent and how the senescence impairs the vascular functions and contributes to the age-related vascular diseases over time. Here, we review the recent progress on the characteristics of vascular ageing and endothelial cell senescence in vitro and in vivo, evaluate how genetic and environmental factors as well as autophagy and stem cell influence endothelial cell senescence and how the senescence contributes to the age-related vascular phenotypes, such as atherosclerosis and increased vascular stiffness, and explore the possibility whether we can delay the age-related vascular diseases through the control of vascular ageing.
Collapse
Affiliation(s)
- Xiao-Li Tian
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China.
| | - Yang Li
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China
| |
Collapse
|
125
|
António N, Soares A, Fernandes R, Soares F, Lopes A, Carvalheiro T, Paiva A, Providência LA, Gonçalves L, Fontes Ribeiro C. Endothelial progenitor cells in diabetic patients with myocardial infarction - can statins improve their function? Eur J Pharmacol 2014; 741:25-36. [PMID: 25066111 DOI: 10.1016/j.ejphar.2014.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 11/26/2022]
Abstract
The effect of statins on endothelial progenitor cells (EPCs) function derived from diabetic patients (DMpts) with acute myocardial infarction (AMI) is unknown. In this study we assess the response of early and late EPCs from diabetic versus non-diabetic patients (NDMpts) with AMI to statins. EPCs were obtained from 10 diabetic and 10 age-matched non-diabetic male patients with AMI. For each patient, cultures of early and late EPCs were performed under 4 different conditions: normal glucose concentration (control); high glucose concentration; normal glucose concentration with atorvastatin supplementation and normal glucose concentration with pravastatin supplementation. To compare the effect of these treatments on EPC function in DMpts versus NDMpts, we performed in vitro: EPC colony-forming units (CFU) assay; cell cycle analysis; viability assessment and expression of the surface markers CXCR4, CD133, CD34 and KDR. Under control conditions, CFU numbers were reduced in DMpts-derived EPCs when compared to those of NDMpts (1.4±0.8 vs 2.6±1.2 CFU/well, P=0.021). When early EPCs from DMpts were cultured in the presence of statins, CFU capacity was restored, surmounting that of NDMpts under control conditions. Statins significantly improved viability of early EPCs and delayed the onset of late EPCs senescence, even in cells from DMpts. In addition, statins induced approximately a 2-fold increase in the proportion of late EPCs in S-phase of the cell cycle (P<0.05). Statins have a beneficial effect on both early and late EPCs from DMpts with AMI. Despite the functional impairment of EPCs from DMpts, they exhibit similar responsiveness to statins as equivalent cells from NDMpts.
Collapse
Affiliation(s)
- Natália António
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Portugal; Cardiology Department, University Hospital Center of Coimbra, Portugal.
| | - Ana Soares
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Portugal; Center of Ophthalmology and Vision Sciences, Institute for Biomedical Imaging and Life Science, Faculty of Medicine, University of Coimbra, Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Portugal; Center of Ophthalmology and Vision Sciences, Institute for Biomedical Imaging and Life Science, Faculty of Medicine, University of Coimbra, Portugal
| | - Francisco Soares
- Cardiology Department, University Hospital Center of Coimbra, Portugal
| | - Ana Lopes
- Blood and Transplantation Center of Coimbra, Portuguese Institute of Blood and Transplantation, Coimbra, Portugal
| | - Tiago Carvalheiro
- Blood and Transplantation Center of Coimbra, Portuguese Institute of Blood and Transplantation, Coimbra, Portugal
| | - Artur Paiva
- Blood and Transplantation Center of Coimbra, Portuguese Institute of Blood and Transplantation, Coimbra, Portugal
| | | | - Lino Gonçalves
- Cardiology Department, University Hospital Center of Coimbra, Portugal
| | - Carlos Fontes Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Portugal
| |
Collapse
|
126
|
Ashpole NM, Warrington JP, Mitschelen MC, Yan H, Sosnowska D, Gautam T, Farley JA, Csiszar A, Ungvari Z, Sonntag WE. Systemic influences contribute to prolonged microvascular rarefaction after brain irradiation: a role for endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2014; 307:H858-68. [PMID: 25038144 DOI: 10.1152/ajpheart.00308.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT.
Collapse
Affiliation(s)
- Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Junie P Warrington
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Matthew C Mitschelen
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Han Yan
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Danuta Sosnowska
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Julie A Farley
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| |
Collapse
|
127
|
Leopold JA. Prohealing endothelial progenitor cell capture stents: do the cells captured explain the clinical outcomes? Circ Cardiovasc Interv 2014; 6:494-5. [PMID: 24129931 DOI: 10.1161/circinterventions.113.000812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jane A Leopold
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
128
|
Abstract
Numerous clinical trials have demonstrated early reductions in cardiovascular events occurring independently of the lipid-lowering effects of statins. These pleiotropic effects have been attributed to antiinflammatory properties, to atherosclerotic plaque stabilization, and more recently to mobilization of endothelial progenitor cells (EPCs). Our aim was to evaluate the evidence supporting statin-induced EPC mobilization in humans. We, therefore, performed a computerized literature search and systematic review of randomized trials to determine the effect of statin therapy and statin dosing on circulating EPC numbers. Our literature search identified 10 studies including 479 patients which met inclusion criteria with publication dates ranging from 2005 to 2011. Seven studies compared statin to nonstatin regimens whereas 3 studied low versus high-dose statin therapy. Reported increases in EPC number ranged from 25.8% to 223.5% with a median reported increase of 70.2% when compared to nonstatin regimens with 7 of 10 studies reporting significant increases. Considerable heterogeneity exists in regard to patient population, statin regimens, and the definition of an EPC within the identified studies. In conclusion, randomized studies in humans suggest that statin therapy mobilizes EPCs into the circulation. Larger randomized studies using uniform definitions are needed to definitively establish this effect.
Collapse
|
129
|
Niu PP, Cao Y, Gong T, Guo JH, Zhang BK, Jia SJ. Hypermethylation of DDAH2 promoter contributes to the dysfunction of endothelial progenitor cells in coronary artery disease patients. J Transl Med 2014; 12:170. [PMID: 24934151 PMCID: PMC4069084 DOI: 10.1186/1479-5876-12-170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/09/2014] [Indexed: 12/04/2022] Open
Abstract
Background Circulating endothelial progenitor cells (EPCs) may be a biomarker for vascular function and cardiovascular risk in patients with coronary artery disease (CAD). Dimethylarginine dimethylaminohydrolase 2 (DDAH2) regulates the function of EPCs. This study aimed to examine whether hypermethylation of DDAH2 promoter contributes to impaired function of EPCs in CAD patients. Methods Peripheral blood mono-nuclear cells from 25 CAD patients and 15 healthy volunteers were collected and differentiated into EPCs. EPCs were tested for their adhesive capability. DDAH2 mRNA expression was analyzed by real-time PCR, and the methylation of DDAH2 promoter was detected by bisulfite genomic sequencing. Results DDAH2 promoter in EPCs from CAD patients was hypermethylated and the methylation level was negatively correlated to DDAH2 mRNA level and adhesion function of EPCs. Homocysteine impaired the adhesion function of EPCs, accompanied by lower DDAH2 expression and higher methylation level of DDAH2 promoter, compared to controls. These effects of homocysteine were reversed by pretreatment with Aza, an inhibitor of DNA methyltransferase. Conclusion Hypermethylation in DDAH2 promoter is positively correlated to the dysfunction of EPCs in CAD patients. Homocysteine disrupts EPCs function via inducing the hypermethylation of DDAH2 promoter, suggesting a key role of epigenetic mechanism in the progression of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Bi-Kui Zhang
- Department of Pharmaceutics, The Third Xiangya Hospital, Central South University, Tongzipo Road #138, Changsha 410013, China.
| | | |
Collapse
|
130
|
Raz O, Lev DL, Battler A, Lev EI. Pathways mediating the interaction between endothelial progenitor cells (EPCs) and platelets. PLoS One 2014; 9:e95156. [PMID: 24901498 PMCID: PMC4046960 DOI: 10.1371/journal.pone.0095156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
Introduction Endothelial progenitor cells (EPCs) have an important role in the process of vascular injury repair. Platelets have been shown to mediate EPC recruitment, maturation and differentiation. Yet, the mechanism underlying this interaction is unclear. We, therefore, aimed to examine whether direct contact between platelets and EPCs is essential for the positive platelets-EPC effect, and to investigate the main mediators responsible for the improvement in EPCs function. Methods Human EPCs were isolated from donated buffy coats and cultured in either: 1. EPCs co-incubated with platelets placed in a 1 µm-Boyden chamber. 2. EPCs incubated with or without platelets in the presence or absence of bFGF/PDGF Receptor inhibitor (PDGFRI). After 7 days culture, EPCs ability to form colonies, proliferate and differentiate was examined. Culture supernatants were collected and growth factors levels were evaluated using ELISA. Growth factors mRNA levels in EPCs were evaluated using RT-PCR. Results and Conclusions After 7 days culture, EPCs functional properties were higher following co-incubation with platelets (directly or indirectly), implying that direct contact is not essential for the platelet’s positive effect on EPCs. This effect was reduced by PDGFRI inhibition. Additionally, higher levels of PDGFB in EPCs-platelets supernatant and higher levels of PDGFC mRNA in EPCs co-incubated with platelets were found. In contrast, FGF and other potential mediators that were examined and inhibited did not significantly affect the interaction between platelets and EPCs. Thus, we conclude that PDGF has a central role in the interaction between platelets and EPCs. Further study is required to examine additional aspects of EPC-platelets interaction.
Collapse
Affiliation(s)
- Oshrat Raz
- Cardiology Department, Rabin Medical Center, Jabotinsky St, Petah- Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Dorit L. Lev
- The Felsenstein Medical Research Institute, Petah-Tikva, Israel
- Cardiology Department, Rabin Medical Center, Jabotinsky St, Petah- Tikva, Israel
| | | | - Eli I. Lev
- The Felsenstein Medical Research Institute, Petah-Tikva, Israel
- Cardiology Department, Rabin Medical Center, Jabotinsky St, Petah- Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
131
|
The Correlation Between Platelet Activation and Liver Injury by Conditioning and Bone Marrow Transplantation. Transplant Proc 2014; 46:1523-30. [DOI: 10.1016/j.transproceed.2014.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/16/2014] [Accepted: 02/27/2014] [Indexed: 11/22/2022]
|
132
|
Dysregulated miR-361-5p/VEGF axis in the plasma and endothelial progenitor cells of patients with coronary artery disease. PLoS One 2014; 9:e98070. [PMID: 24865854 PMCID: PMC4035317 DOI: 10.1371/journal.pone.0098070] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/24/2014] [Indexed: 02/07/2023] Open
Abstract
Dysfunction and reduction of circulating endothelial progenitor cell (EPC) is correlated with the onset of cardiovascular disorders including coronary artery disease (CAD). VEGF is a known mitogen for EPC to migrate out of bone marrow to possess angiogenic activities, and the plasma levels of VEGF are inversely correlated to the progression of CAD. Circulating microRNAs (miRNAs) in patient body fluids have recently been considered to hold the potential of being novel disease biomarkers and drug targets. However, how miRNAs and VEGF cooperate to regulate CAD progression is still unclear. Through the small RNA sequencing (smRNA-seq), we deciphered the miRNome patterns of EPCs with different angiogenic activities, hypothesizing that miRNAs targeting VEGF must be more abundant in EPCs with lower angiogenic activities. Candidates of anti-VEGF miRNAs, including miR-361-5p and miR-484, were enriched in not only diseased EPCs but also the plasma of CAD patients. However, we found out only miR-361-5p, but not miR-484, was able to suppress VEGF expression and EPC activities. Reporter assays confirmed the direct binding and repression of miR-361-5p to the 3′-UTR of VEGF mRNA. Knock down of miR-361-5p not only restored VEGF levels and angiogenic activities of diseased EPCs in vitro, but further promoted blood flow recovery in ischemic limbs of mice. Collectively, we discovered a miR-361-5p/VEGF-dependent regulation that could help to develop new therapeutic modalities not only for ischemia-related diseases but also for tumor angiogenesis.
Collapse
|
133
|
Zhang N, Xie X, Chen H, Chen H, Yu H, Wang JA. Stem cell-based therapies for atherosclerosis: perspectives and ongoing controversies. Stem Cells Dev 2014; 23:1731-40. [PMID: 24702267 DOI: 10.1089/scd.2014.0078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a major contributor to life-threatening cardiovascular events, the leading cause of death worldwide. Since the mechanisms of atherosclerosis have not been fully understood, currently, there are no effective approaches to regressing atherosclerosis. Therefore, there is a dire need to explore the mechanisms and potential therapeutic strategies to prevent or reverse the progression of atherosclerosis. In recent years, stem cell-based therapies have held promises to various diseases, including atherosclerosis. Unfortunately, the efficacy of stem cell-based therapies for atherosclerosis as reported in the literature has been inconsistent or even conflicting. In this review, we summarize the current literature of stem cell-based therapies for atherosclerosis and discuss possible mechanisms and future directions of these potential therapies.
Collapse
Affiliation(s)
- Na Zhang
- 1 Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | | | | | | | | | | |
Collapse
|
134
|
Eicosapentaenoic acid induces neovasculogenesis in human endothelial progenitor cells by modulating c-kit protein and PI3-K/Akt/eNOS signaling pathways. J Nutr Biochem 2014; 25:934-45. [PMID: 24927915 DOI: 10.1016/j.jnutbio.2014.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 04/02/2014] [Accepted: 04/10/2014] [Indexed: 01/19/2023]
Abstract
Human endothelial progenitor cells (hEPCs) derived from bone marrow play a crucial in the prevention of ischemic injuries in the course of postnatal neovasculogenesis. Frequent fish oil (FO) consumption is reportedly associated with a significantly lower incidence of cardiovascular disease. However, the molecular mechanisms of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) are not well elucidated, and the beneficial effect of FO consumption on neovasculogenesis has not been demonstrated yet. In the current study, we investigated the effects of EPA/DHA and FO consumption on neovasculogenesis by using vascular tube formation assay, Western blotting, real-time polymerase chain reaction, immunohistochemical staining and Doppler imaging in both in vitro and in vivo models. The results demonstrate that EPA and DHA dose-dependently enhance the neovasculogenesis and cell migration of hEPCs in vitro. The mechanisms of action included up-regulation of the c-kit protein as well as the phosphorylation of the ERK1/2, Akt and endothelial nitric oxide synthase signaling molecules in hEPCs. Furthermore, EPA significantly suppressed the expression of microRNA 221 in vitro. In experimental animal models, FO consumption significantly induced the formation of new blood vessels (neovasculogenesis) and prevented ischemia. Taken together, it is suggested that FO consumption enhances neovasculogenesis mainly through the effects of EPA in hEPCs, thereby exerting a preventive effect against ischemic injury.
Collapse
|
135
|
Wang X, Zachman AL, Haglund NA, Maltais S, Sung HJ. Combined Usage of Stem Cells in End-Stage Heart Failure Therapies. J Cell Biochem 2014; 115:1217-24. [DOI: 10.1002/jcb.24782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/03/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Xintong Wang
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| | - Angela L. Zachman
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| | | | - Simon Maltais
- Division of Cardiovascular Surgery; Vanderbilt University; Nashville Tennessee
| | - Hak-Joon Sung
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| |
Collapse
|
136
|
A novel stent coated with antibodies to endoglin inhibits neointimal formation of porcine coronary arteries. BIOMED RESEARCH INTERNATIONAL 2014; 2014:428619. [PMID: 24883312 PMCID: PMC4026940 DOI: 10.1155/2014/428619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/05/2014] [Indexed: 11/18/2022]
Abstract
Endoglin/CD105 is an accessory protein of the transforming growth factor-β receptor system that plays a critical role in proliferation of endothelial cells and neovasculature. Here, we aimed to assess the effect of novel stents coated with antibodies to endoglin (ENDs) on coronary neointima formation. Thirty ENDs, thirty sirolimus-eluting stents (SESs), and thirty bare metal stents (BMSs) were randomly assigned and placed in the coronary arteries in 30 juvenile pigs. Histomorphometric analysis and scanning electron microscopy were performed after stent implantation. Our results showed that after 7 days, there was no difference in the neointimal area and percent area stenosis in ENDs compared with SMSs or BMSs. After 14 days, the neointima area and percent area stenosis in ENDs were markedly decreased than those in BMSs or SESs (P < 0.05). Moreover, the percentage of reendothelialization was significantly higher in ENDs than that in SESs or BMSs (P < 0.01) at 7 and 14 days. The artery injury and the inflammation scores were similar in all groups at 7 and 14 days. In conclusion, our results demonstrated for the first time to our knowledge that endoglin antibody-coated stents can markedly reduce restenosis by enhancing reendothelialization in the porcine model and potentially offer a new approach to prevent restenosis.
Collapse
|
137
|
Blum A. HMG-CoA reductase inhibitors (statins), inflammation, and endothelial progenitor cells-New mechanistic insights of atherosclerosis. Biofactors 2014; 40:295-302. [PMID: 25077301 DOI: 10.1002/biof.1157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Statins have been shown to favorably affect the prognosis of patients with risk factors to atherosclerosis-both as a primary and a secondary prevention. The beneficial effects observed with statin therapy are not merely related to changes in lipid profile but also are due to a positive effect on vascular inflammation and on immune-modulation of T lymphocytes and endothelial progenitor stem cells (EPCs). This dual effect has been demonstrated mainly in clinical trials where a change in endothelial function was observed within hours, much earlier than the effects of statins on the lipid profile (weeks). Based on all the knowledge that we have today questions were raised as to the mechanistic pathways that may explain the process of atherosclerosis and through this pathway to find better solutions and therapies to prevent and fight atherosclerosis. Our review will focus on the new updates in the field of inflammation and stem cells in vascular biology-in relation with atherosclerosis.
Collapse
|
138
|
Aoki J, Kozuma K, Tanabe K, Tanimoto S, Nakajima Y, Yahagi K, Hashimoto T, Isshiki T, Hara K. Effect of olmesartan on the levels of circulating endothelial progenitor cell after drug-eluting stent implantation in patients receiving statin therapy. J Cardiol 2014; 64:435-40. [PMID: 24768407 DOI: 10.1016/j.jjcc.2014.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/03/2014] [Accepted: 02/28/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND The endothelial progenitor cell (EPC) plays an important role in repairing vascular injury. Statins and angiotensin II receptor blockers increase the level of circulating EPCs. However, it is unknown whether the angiotensin II receptor blocker olmesartan synergistically acts with statins to increase the levels of circulating EPCs. Moreover, the association between the levels of circulating EPCs and endothelial dysfunction after implantation of drug-eluting stents (DESs) has not been evaluated. METHODS Nine patients with stable coronary artery disease underwent percutaneous coronary intervention (PCI) and received DES implantation. All patients received olmesartan in addition to statin therapy after PCI. The dose of olmesartan was based on the physician's discretion as per the patients' blood pressure. The levels of circulating EPCs were analyzed at baseline, post-PCI, and 1, 2, 3, and 8 months after PCI. Coronary angiography and the acetylcholine provocation test were performed on all patients at 8 months. RESULTS Although the angiotensin II level significantly changed, the levels of circulating EPCs did not change during 8 months of olmesartan treatment (3.1±0.6cells/ml, 2.5±0.8cells/ml, 2.0±0.6cells/ml, 2.9±0.9cells/ml, 3.0±0.4cells/ml, 3.4±0.8cells/ml, p=0.64). The patients were subsequently divided into two groups based on whether the level of circulating EPCs was less or greater than 4cells/ml at 8 months. There were no significant differences in the mean vessel diameter of each segment (proximal, proximal edge, distal edge, and distal) after the acetylcholine provocation test between the two groups. CONCLUSIONS Low-to-moderate doses of olmesartan might not increase the level of circulating EPCs in patients receiving statin therapy. There might be no association between the levels of circulating EPCs and the degree of coronary vasospasm in the acetylcholine provocation test 8 months after DES implantation.
Collapse
Affiliation(s)
- Jiro Aoki
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan.
| | - Ken Kozuma
- Division of Cardiology, Teikyo University Hospital, Tokyo, Japan
| | - Kengo Tanabe
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan
| | - Shuzou Tanimoto
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan
| | | | - Kazuyuki Yahagi
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan
| | | | - Takaaki Isshiki
- Division of Cardiology, Teikyo University Hospital, Tokyo, Japan
| | - Kazuhiro Hara
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan
| |
Collapse
|
139
|
A novel oxygen carrier "YQ23" suppresses the liver tumor metastasis by decreasing circulating endothelial progenitor cells and regulatory T cells. BMC Cancer 2014; 14:293. [PMID: 24766798 PMCID: PMC4006450 DOI: 10.1186/1471-2407-14-293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background Surgical therapies are the first-line treatments for hepatocellular carcinoma (HCC) patients. However, the high incidence of tumor metastasis after liver surgery remains a severe problem. We aim to investigate the roles and the underlying mechanism of YQ23, stabilized non-polymeric diaspirin cross-linked tetrameric hemoglobin, in liver tumor metastasis after major hepatectomy and partial hepatic ischemia reperfusion (I/R) injury. Methods An orthotopic liver tumor model in Buffalo rat was established using the hepatocellular carcinoma cell line McA-RH7777. Major hepatectomy for tumor-bearing lobe and partial hepatic I/R injury were performed at two weeks after orthotopic liver tumor implantation. YQ23 (0.2 g/kg) was administered at 1 hour before ischemia and immediately after reperfusion. Blood samples were collected at day 0, 1, 7, 14, 21 and 28 for detection of circulating endothelial progenitor cells (EPCs) and regulatory T cells (Tregs). Results Our results showed that YQ23 treatment effectively inhibited intrahepatic and lung metastases together with less tumor angiogenesis at 4 weeks after major hepatectomy and partial hepatic I/R injury. The levels of circulating EPCs and Tregs were significantly decreased in YQ23 treatment group. Furthermore, YQ23 treatment also increased liver tissue oxygenation during hepatic I/R injury. Up-regulation of HO1 and down-regulation of CXCR3, TNF-α and IL6 were detected after YQ23 treatment. Conclusions YQ23 treatment suppressed liver tumor metastasis after major hepatectomy and partial hepatic I/R injury in a rat liver tumor model through increasing liver oxygen and reducing the populations of circulating EPCs and Tregs.
Collapse
|
140
|
Chen W, Sharma R, Rizzo AN, Siegler JH, Garcia JGN, Jacobson JR. Role of claudin-5 in the attenuation of murine acute lung injury by simvastatin. Am J Respir Cell Mol Biol 2014; 50:328-36. [PMID: 24028293 DOI: 10.1165/rcmb.2013-0058oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The statins are now recognized to have pleiotropic properties, including augmentation of endothelial barrier function. To explore the mechanisms involved, we investigated the effect of simvastatin on endothelial cell (EC) tight junctions. Western blotting of human pulmonary artery ECs treated with simvastatin (5 μM) confirmed a significant time-dependent increase (16-48 h) in claudin-5 protein expression compared with controls, without detectable alterations in zonula occludens-1 or occludin. These effects were associated with membrane translocation of VE-cadherin, whereas translocation of vascular endothelial cadherin (VE-cadherin; silencing RNA) inhibited simvastatin-induced claudin-5 up-regulation. Moreover, simvastatin treatment of ECs induced increased phosphorylation of both FoxO1 and β-catenin, transcriptional regulators of claudin-5 expression mediated by VE-cadherin. Subsequently, we found no effect of claudin-5 silencing on EC barrier protection by simvastatin in response to thrombin stimulation, as measured by either transendothelial electrical resistance or by EC monolayer flux of FITC-dextran (2,000 kD). However, silencing of claudin-5 did significantly attenuate simvastatin-mediated EC barrier protection in response to thrombin, as measured by monolayer flux of sodium fluorescein (376 Da). Finally, employing a murine model of LPS-induced acute lung injury, there was no effect of claudin-5 silencing in vivo (intratracheal injection) on bronchoalveolar lavage fluid protein or cell counts, but LPS-induced lung tissue extravasation of the small molecular weight markers, sodium fluorescein and Hochst stain (562 Da), were significantly increased in claudin-5-silenced animals compared with simvastatin-treated control animals. These findings implicate a distinct mechanism underlying size-selective endothelial barrier-protective properties of statins, and may ultimately lead to new novel therapeutic targets for patients with acute lung injury.
Collapse
Affiliation(s)
- Weiguo Chen
- Institute for Personalized Respiratory Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
141
|
Zuo PY, Chen XL, Lei YH, Liu CY, Liu YW. Growth arrest-specific gene 6 protein promotes the proliferation and migration of endothelial progenitor cells through the PI3K/AKT signaling pathway. Int J Mol Med 2014; 34:299-306. [PMID: 24789534 DOI: 10.3892/ijmm.2014.1754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/07/2014] [Indexed: 11/05/2022] Open
Abstract
Endothelial progenitor cells (EPCs) play an important role in endothelial repair and vascular regeneration. Growth arrest-specific gene 6 (Gas6) is a novel key regulator of the vascular system, which is linked to a number of cardiovascular diseases. However, the effects of Gas6 on EPCs have not been elucidated to date. The present study was designed to determine the biological function of EPCs treated with Gas6 and to eludicate the underlying mechanisms. EPCs were isolated from umbilical cord blood and treated with various concentrations (25, 50, 100 and 200 ng/ml) of Gas6. The proliferation, migration and angiogenesis of the Gas6-treated EPCs were evaluated by MTT assay, Transwell assay and in vitro tube formation assay, respectively. The phosphorylation status of AKT and ERK was evaluated by western blot analysis. The results demonstrated that treatment with Gas6 enhanced the proliferation and migration of the EPCs in a dose-dependent manner. However, Gas6 did not promote the differentiation of EPCs on Matrigel. Gas6 induced the phosphorylation of AKT, but not that of ERK. The enhanced proliferation and migration induced by Gas6 was markedly suppressed by the inhibitor of PI3K but not by that of ERK. These results suggest that Gas6 activates the AKT signaling pathway, which, in turn, promotes the proliferation and migration of EPCs.
Collapse
Affiliation(s)
- Pei-Yuan Zuo
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xing-Lin Chen
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ying-Hong Lei
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cheng-Yun Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu-Wei Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
142
|
Diesel exhaust particles impair endothelial progenitor cells, compromise endothelial integrity, reduce neoangiogenesis, and increase atherogenesis in mice. Cardiovasc Toxicol 2014; 13:290-300. [PMID: 23584878 DOI: 10.1007/s12012-013-9208-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms of the harmful cardiovascular effects of small particulate matter are incompletely understood. Endothelial progenitor cells (EPCs) predict outcome of patients with vascular disease. The aim of our study was to examine the effects of diesel exhaust particles (DEP) on EPC and on the associated vascular damage in mice. C57Bl/6 mice were exposed to DEP. 2 μg DEP/day was applicated intranasally for 3 weeks. Exposure to DEP reduced DiLDL/lectin positive EPC to 58.4 ± 5.6% (p < 0.005). Migratory capacity was reduced to 65.8 ± 3.9% (p < 0.0001). In ApoE(-/-) mice, DEP application reduced the number of EPC to 75.6 ± 6.4% (p < 0.005) and EPC migration to 58.5 ± 6.8% (p < 0.005). Neoangiogenesis was reduced to 39.5 ± 14.6% (p < 0.005). Atherogenesis was profoundly increased by DEP treatment (157.7 ± 18.1% vs. controls, p < 0.05). In cultured human EPC, DEP (0.1-100 μg/mL) reduced migratory capacity to 25 ± 2.6% (p < 0.001). The number of colony-forming units was reduced to 8.8 ± 0.9% (p < 0.001) and production of reactive oxygen species was elevated by DEP treatment (p < 0.001). Furthermore, DEP treatment increased apoptosis of EPC (to 266 ± 62% of control, p < 0.05). In a blood-brain barrier model, DEP treatment impaired endothelial cell integrity during oxygen-glucose deprivation (p < 0.001). Diesel exhaust particles impair endothelial progenitor cell number and function in vivo and in vitro. The reduction in EPC was associated with impaired neoangiogenesis and a marked increase in atherosclerotic lesion formation.
Collapse
|
143
|
Sun YY, Bai WW, Wang B, Lu XT, Xing YF, Cheng W, Liu XQ, Zhao YX. Period 2 is essential to maintain early endothelial progenitor cell function in vitro and angiogenesis after myocardial infarction in mice. J Cell Mol Med 2014; 18:907-18. [PMID: 24621388 PMCID: PMC4119396 DOI: 10.1111/jcmm.12241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/08/2014] [Indexed: 01/02/2023] Open
Abstract
Cellular therapeutic neovascularization has been successfully performed in clinical trials for patients with ischaemia diseases. Despite the vast knowledge of cardiovascular disease and circadian biology, the role of the circadian clock in regulating angiogenesis in myocardial infarction (MI) remains poorly understood. In this study, we aimed to investigate the role and underlying mechanisms of Period 2 (Per2) in endothelial progenitor cell (EPC) function. Flow cytometry revealed lower circulating EPC proportion in per2−/− than in wild-type (WT) mice. PER2 was abundantly expressed in early EPCs in mice. In vitro, EPCs from per2−/− mice showed impaired proliferation, migration, tube formation and adhesion. Western blot analysis demonstrated inhibited PI3k/Akt/FoxO signalling and reduced C-X-C chemokine receptor type 4 (CXCR4) protein level in EPCs of per2−/− mice. The impaired proliferation was blocked by activated PI3K/Akt/FoxO signalling. Direct interaction of CXCR4 and PER2 was detected in WT EPCs. To further study the effect of per2 on in vivo EPC survival and angiogenesis, we injected saline or DiI-labelled WT or per2−/− EPC intramyocardially into mice with induced MI. Per2−/− reduced the retention of transplanted EPCs in the myocardium, which was associated with significantly reduced DiI expression in the myocardium of MI mice. Decreased angiogenesis in the myocardium of per2−/− EPC-treated mice coincided with decreased LV function and increased infarct size in the myocardium. Per2 may be a key factor in maintaining EPC function in vitro and in therapeutic angiogenesis in vivo.
Collapse
Affiliation(s)
- Yuan-Yuan Sun
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong, China; Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Pinho-Gomes AC, Reilly S, Brandes RP, Casadei B. Targeting inflammation and oxidative stress in atrial fibrillation: role of 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibition with statins. Antioxid Redox Signal 2014; 20:1268-85. [PMID: 23924190 PMCID: PMC3934546 DOI: 10.1089/ars.2013.5542] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Atrial fibrillation (AF) is a burgeoning health-care problem, and the currently available therapeutic armamentarium is barely efficient. Experimental and clinical evidence implicates inflammation and myocardial oxidative stress in the pathogenesis of AF. RECENT ADVANCES Local and systemic inflammation has been found to both precede and follow the new onset of AF, and NOX2-dependent generation of reactive oxygen species in human right atrial samples has been independently associated with the occurrence of AF in the postoperative period in patients undergoing cardiac surgery. Anti-inflammatory and antioxidant agents can prevent atrial electrical remodeling in animal models of atrial tachypacing and the new onset of AF after cardiac surgery, suggesting a causal relationship between inflammation/oxidative stress and the atrial substrate that supports AF. CRITICAL ISSUES Statin therapy, by redressing the myocardial nitroso-redox balance and reducing inflammation, has emerged as a potentially effective strategy for the prevention of AF. Evidence indicates that statins prevent AF-induced electrical remodeling in animal models of atrial tachypacing and may reduce the new onset of AF after cardiac surgery. However, whether statins have antiarrhythmic properties in humans has yet to be conclusively demonstrated, as data from randomized controlled trials specifically addressing the relevance of statin therapy for the primary and secondary prevention of AF remain scanty. FUTURE DIRECTIONS A better understanding of the mechanisms underpinning the putative antiarrhythmic effects of statins may afford tailoring AF treatment to specific clinical settings and patient's subgroups. Large-scale randomized clinical trials are needed to support the indication of statin therapy solely on the basis of AF prevention.
Collapse
Affiliation(s)
- Ana Catarina Pinho-Gomes
- 1 Department of Cardiovascular Medicine, University of Oxford , John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | |
Collapse
|
145
|
Moldovan NI, Anghelina M, Varadharaj S, Butt OI, Wang T, Yang F, Moldovan L, Zweier JL. Reoxygenation-derived toxic reactive oxygen/nitrogen species modulate the contribution of bone marrow progenitor cells to remodeling after myocardial infarction. J Am Heart Assoc 2014; 3:e000471. [PMID: 24419735 PMCID: PMC3959689 DOI: 10.1161/jaha.113.000471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The core region of a myocardial infarction is notoriously unsupportive of cardiomyocyte survival. However, there has been less investigation of the potentially beneficial spontaneous recruitment of endogenous bone marrow progenitor cells (BMPCs) within infarcted areas. In the current study we examined the role of tissue oxygenation and derived toxic species in the control of BMPC engraftment during postinfarction heart remodeling. Methods and Results For assessment of cellular origin, local oxygenation, redox status, and fate of cells in the infarcted region, myocardial infarction in mice with or without LacZ+ bone marrow transplantation was induced by coronary ligation. Sham‐operated mice served as controls. After 1 week, LacZ+ BMPC‐derived cells were found inhomogeneously distributed into the infarct zone, with a lower density at its core. Electron paramagnetic resonance (EPR) oximetry showed that pO2 in the infarct recovered starting on day 2 post–myocardial infarction, concomitant with wall thinning and erythrocytes percolating through muscle microruptures. Paralleling this reoxygenation, increased generation of reactive oxygen/nitrogen species was detected at the infarct core. This process delineated a zone of diminished BMPC engraftment, and at 1 week infiltrating cells displayed immunoreactive 3‐nitrotyrosine and apoptosis. In vivo treatment with a superoxide dismutase mimetic significantly reduced reactive oxygen species formation and amplified BMPC accumulation. This treatment also salvaged wall thickness by 43% and left ventricular ejection fraction by 27%, with significantly increased animal survival. Conclusions BMPC engraftment in the infarct inversely mirrored the distribution of reactive oxygen/nitrogen species. Antioxidant treatment resulted in increased numbers of engrafted BMPCs, provided functional protection to the heart, and decreased the incidence of myocardial rupture and death.
Collapse
Affiliation(s)
- Nicanor I Moldovan
- Department of Internal Medicine/Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Barthelmes D, Zhu L, Shen W, Gillies MC, Irhimeh MR. Differential gene expression in Lin-/VEGF-R2+ bone marrow-derived endothelial progenitor cells isolated from diabetic mice. Cardiovasc Diabetol 2014; 13:42. [PMID: 24521356 PMCID: PMC3926942 DOI: 10.1186/1475-2840-13-42] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/03/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diabetes is known to impair the number and function of endothelial progenitor cells in the circulation, causing structural and functional alterations in the micro- and macro-vasculature. The aim of this study was to identify early diabetes-related changes in the expression of genes that have been reported to be closely involved in endothelial progenitor cell migration and function. METHODS Based on review of current literature, this study examined the expression level of 35 genes that are known to be involved in endothelial progenitor cell migration and function in magnetically sorted Lin-/VEGF-R2+ endothelial progenitor cells obtained from the bone marrow of Akita mice in the early stages of diabetes (18 weeks) using RT-PCR and Western blotting. We used the Shapiro-Wilk and D'Agostino & Pearson Omnibus tests to assess normality. Differences between groups were evaluated by Student's t-test for normally distributed data (including Welch correction in cases of unequal variances) or Mann-Whitney test for not normally distributed data. RESULTS We observed a significant increase in the number of Lin-/VEGF-R2+ endothelial progenitor cells within the bone marrow in diabetic mice compared with non-diabetic mice. Two genes, SDF-1 and SELE, were significantly differentially expressed in diabetic Lin-/VEGF-R2+ endothelial progenitor cells and six other genes, CAV1, eNOS, CLDN5, NANOG, OCLN and BDNF, showed very low levels of expression in diabetic Lin-/VEGF-R2+ progenitor cells. CONCLUSION Low SDF-1 expression may contribute to the dysfunctional mobilization of bone marrow Lin-/VEGF-R2+ endothelial progenitor cells, which may contribute to microvascular injury in early diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Mohammad R Irhimeh
- Save Sight Institute, Level 1, South Block Sydney Hospital and Sydney Eye Hospital, Central Clinical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW 2000, Australia.
| |
Collapse
|
147
|
De Biase C, De Rosa R, Luciano R, De Luca S, Capuano E, Trimarco B, Galasso G. Effects of physical activity on endothelial progenitor cells (EPCs). Front Physiol 2014; 4:414. [PMID: 24550833 PMCID: PMC3909827 DOI: 10.3389/fphys.2013.00414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/29/2013] [Indexed: 12/28/2022] Open
Abstract
Physical activity has a therapeutic role in cardiovascular disease (CVD), through its beneficial effects on endothelial function and cardiovascular system. Circulating endothelial progenitor cells (EPCs) are bone marrow (BM) derived cells that represent a novel therapeutic target in CVD patients, because of their ability to home to sites of ischemic injury and repair the damaged vessels. Several studies show that physical activity results in a significant increase in circulating EPCs, and, in particular, there are some evidence of the beneficial exercise-induced effects on EPCs activity in CVD settings, including coronary artery disease (CAD), heart failure (HF), and peripheral artery disease (PAD). The aim of this paper is to review the current evidence about the beneficial effects of physical exercise on endothelial function and EPCs levels and activity in both healthy subjects and patients with CVD.
Collapse
Affiliation(s)
- Chiara De Biase
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Roberta De Rosa
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Rossella Luciano
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Stefania De Luca
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Ernesto Capuano
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Gennaro Galasso
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| |
Collapse
|
148
|
Woudstra P, de Winter RJ, Beijk MA. Next-generation DES: the COMBO dual therapy stent with Genous endothelial progenitor capturing technology and an abluminal sirolimus matrix. Expert Rev Med Devices 2014; 11:121-35. [DOI: 10.1586/17434440.2014.882046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
149
|
Marsboom G, Janssens S. Endothelial progenitor cells: new perspectives and applications in cardiovascular therapies. Expert Rev Cardiovasc Ther 2014; 6:687-701. [DOI: 10.1586/14779072.6.5.687] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
150
|
Foresta C, De Toni L, Ferlin A, Di Mambro A. Clinical implication of endothelial progenitor cells. Expert Rev Mol Diagn 2014; 10:89-105. [DOI: 10.1586/erm.09.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|