101
|
Sonner PM, Filosa JA, Stern JE. Diminished A-type potassium current and altered firing properties in presympathetic PVN neurones in renovascular hypertensive rats. J Physiol 2008; 586:1605-22. [PMID: 18238809 DOI: 10.1113/jphysiol.2007.147413] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Accumulating evidence supports a contribution of the hypothalamic paraventricular nucleus (PVN) to sympathoexcitation and elevated blood pressure in renovascular hypertension. However, the underlying mechanisms resulting in altered neuronal function in hypertensive rats remain largely unknown. Here, we aimed to address whether the transient outward potassium current (I(A)) in identified rostral ventrolateral medulla (RVLM)-projecting PVN neurones is altered in hypertensive rats, and whether such changes affected single and repetitive action potential properties and associated changes in intracellular Ca(2+) levels. Patch-clamp recordings obtained from PVN-RVLM neurons showed a reduction in I(A) current magnitude and single channel conductance, and an enhanced steady-state current inactivation in hypertensive rats. Morphometric reconstructions of intracellularly labelled PVN-RVLM neurons showed a diminished dendritic surface area in hypertensive rats. Consistent with a diminished I(A) availability, action potentials in PVN-RVLM neurons in hypertensive rats were broader, decayed more slowly, and were less sensitive to the K(+) channel blocker 4-aminopyridine. Simultaneous patch clamp recordings and confocal Ca(2+) imaging demonstrated enhanced action potential-evoked intracellular Ca(2+) transients in hypertensive rats. Finally, spike broadening during repetitive firing discharge was enhanced in PVN-RVLM neurons from hypertensive rats. Altogether, our results indicate that diminished I(A) availability constitutes a contributing mechanism underlying aberrant central neuronal function in renovascular hypertension.
Collapse
Affiliation(s)
- Patrick M Sonner
- Department of Psychiatry, University of Cincinnati, Genome Research Institute, 2170 E. Galbraith Rd, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
102
|
Abstract
PURPOSE OF REVIEW To integrate recent studies showing that abnormal Na transport in the central nervous system plays a pivotal role in genetic models of salt-sensitive hypertension. RECENT FINDINGS Na transport-regulating mechanisms classically considered to reflect renal control of the blood pressure, i.e. aldosterone-mineralocorticoid receptors-epithelial sodium channels-Na/K-ATPase, have now been demonstrated to be present in the central nervous system contributing to regulation of cerebrospinal fluid [Na] by the choroid plexus and to neuronal responsiveness to cerebrospinal fluid/brain [Na]. Dysfunction of either or both can activate central nervous system pathways involving 'ouabain' and angiotensin type 1 receptor stimulation. The latter causes sympathetic hyperactivity and adrenal release of marinobufagenin - a digitalis-like inhibitor of the alpha1 Na/K-ATPase isoform - both contributing to hypertension on high salt intake. Conversely, specific central nervous system blockade of mineralocorticoid receptors or epithelial sodium channels prevents the development of hypertension on high salt intake, irrespective of the presence of a 'salt-sensitive kidney'. Variants in the coding regions of some of the genes involved in Na transport have been identified, but sodium sensitivity may be mainly determined by abnormal regulation of expression, pointing to primary abnormalities in regulation of transcription. SUMMARY Looking beyond the kidney is providing new insights into mechanisms contributing to salt-sensitive hypertension, which will help to dissect the genetic factors involved and to discover novel strategies to prevent and treat salt-sensitive hypertension.
Collapse
Affiliation(s)
- Bing S Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ontario, Canada
| | | | | |
Collapse
|
103
|
Clark MA, Guillaume G, Pierre-Louis HC. Angiotensin II induces proliferation of cultured rat astrocytes through c-Jun N-terminal kinase. Brain Res Bull 2008; 75:101-6. [DOI: 10.1016/j.brainresbull.2007.07.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
|
104
|
Clark MA, Gonzalez N. Angiotensin II stimulates rat astrocyte mitogen-activated protein kinase activity and growth through EGF and PDGF receptor transactivation. ACTA ACUST UNITED AC 2007; 144:115-22. [PMID: 17688958 DOI: 10.1016/j.regpep.2007.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/03/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
We showed that the intracellular tyrosine kinases src and pyk2 mediate angiotensin II (Ang II) stimulation of growth and ERK1/2 mitogen-activated protein (MAP) kinase phosphorylation in astrocytes. In this study, we investigated whether the membrane-bound receptor tyrosine kinases platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors mediate Ang II stimulation of ERK1/2 and astrocyte growth. Ang II significantly stimulated PDGF and EGF receptors in a dose- and time-dependent manner. The PDGF receptor and the EGF receptor were maximally stimulated with 100 nM Ang II (0.98+/-0.18- and 4.4+/-1.4-fold above basal, respectively). This stimulation occurred as early as 5 min, and was sustained for at least 15 min for both receptor tyrosine kinases. Moreover, 1 microM AG1478 and 0.25 microM PDGFRInhib attenuated Ang II stimulation of the EGF and PDGF receptors, respectively. Ang II-induced phosphorylation of ERK1/2 and astrocyte growth was mediated by both PDGF and EGF receptors. This report also provides novel findings that co-inhibiting EGF and PDGF receptors had a greater effect to decrease Ang II-induced ERK1/2 (90% versus 49% and 71% with PDGF receptor and EGF receptor inhibition, respectively), and astrocyte growth (60% versus 10% and 32% with PDGF receptor and EGF receptor inhibition, respectively). In conclusion we showed in astrocytes that the PDGF and the EGF receptors mediate Ang II-induced ERK1/2 phosphorylation and astrocyte growth and that these two receptors may exhibit synergism to regulate effects of the peptide in these cells.
Collapse
Affiliation(s)
- Michelle A Clark
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Cardiovascular and Metabolic Research Unit, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States.
| | | |
Collapse
|
105
|
Clark MA, Gonzalez N. Src and Pyk2 mediate angiotensin II effects in cultured rat astrocytes. ACTA ACUST UNITED AC 2007; 143:47-55. [PMID: 17391778 DOI: 10.1016/j.regpep.2007.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/15/2007] [Accepted: 02/18/2007] [Indexed: 12/01/2022]
Abstract
Angiotensin II (Ang II)-induced proliferation of rat astrocytes is mediated by multiple signaling pathways. In the present study, we investigated the role of non-receptor tyrosine kinases on Ang II-signaling and proliferation of astrocytes cultured from neonatal rat pups. Ang II stimulated astrocyte growth, ERK1/2 phosphorylation and the phosphorylation of Src and proline-rich tyrosine kinase-2 (Pyk2), in astrocytes obtained from brainstem and cerebellum. Pretreatment with 10 microM PP2, a selective Src inhibitor, inhibited Ang II stimulated ERK1/2 phosphorylation by 59% to 91% both in brainstem and cerebellum astrocytes. PP2 also inhibited Ang II induction of brainstem (76% inhibition) and cerebellar (64% inhibition) astrocyte growth. Similarly, pretreatment with 25 microM dantrolene, the Pyk2 inhibitor, attenuated ERK1/2 activity in brainstem (62% inhibition) and in cerebellum astrocytes (44% inhibition). Interestingly, inhibition of Pyk2 inhibited Ang II-induced Src activation suggesting that these two non-receptor tyrosine kinases may be acting in concert to mediate Ang II effects in astrocytes. In summary, we found that Ang II stimulates the non-receptor tyrosine kinases Src and Pyk2 which mediate Ang II-induced ERK1/2 activation leading to stimulation of astrocyte growth. In addition, these two tyrosine kinases may be interacting to regulate effects of the peptide in these cells.
Collapse
Affiliation(s)
- Michelle A Clark
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| | | |
Collapse
|
106
|
Delaney J, Chiarello R, Villar D, Kandalam U, Castejon AM, Clark MA. Regulation of c-fos, c-jun and c-myc Gene Expression by Angiotensin II in Primary Cultured Rat Astrocytes: Role of ERK1/2 MAP Kinases. Neurochem Res 2007; 33:545-50. [PMID: 17763940 DOI: 10.1007/s11064-007-9474-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/14/2007] [Indexed: 11/30/2022]
Abstract
We have previously shown that angiotensin II (Ang II) stimulates astrocyte growth through activation of ERK1/2 mitogen activated protein (MAP) kinases. In the current study, we determined whether Ang II stimulates the expression of c-fos, c-jun and c-myc in brainstem astrocyte cultures. Reverse transcriptase-PCR analysis showed c-fos, c-jun, and c-myc mRNAs were induced by Ang II. The EC50 values for Ang II stimulation of c-fos, c-jun and c-myc were 1.3, 1.68 and 1.4 nM, respectively. Ang II (100 nM) induced peak stimulation for all genes by 45 min followed by a gradual decline. Inhibition of ERK1/2 by PD98059 attenuated Ang II-induced c-fos and c-myc mRNA expression (by 75% and 100%, respectively) but was ineffective in preventing Ang II induction of c-jun. These studies show for the first time in brainstem astrocytes that Ang II induces the expression of c-fos, c-myc and c-jun, and showed that ERK1/2 mediate Ang II stimulation of c-fos and c-myc. These data implicate the ERK1/2 MAP kinase pathway as a divergent point in controlling Ang II stimulation of immediate early response genes in the central nervous system.
Collapse
Affiliation(s)
- Jimmy Delaney
- College of Pharmacy, Department of Pharmaceutical and Administrative Sciences, Cardiovascular and Metabolic Research Unit, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | | | | | | | | | | |
Collapse
|
107
|
Peterson JR, Sharma RV, Davisson RL. Reactive oxygen species in the neuropathogenesis of hypertension. Curr Hypertens Rep 2007; 8:232-41. [PMID: 17147922 DOI: 10.1007/s11906-006-0056-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New evidence that has emerged during the past several years clearly demonstrates that reactive oxygen species (ROS) in the brain play a crucial role in blood pressure regulation by serving as signaling molecules within neurons of cardiovascular control regions. In the forebrain, midbrain, and hindbrain, a key role for oxidant stress in the pathogenesis of angiotensin II-dependent and various other models of neurogenic hypertension has also been uncovered. As in the peripheral vasculature, NAD(P)H oxidase appears to be a major enzymatic source of brain ROS, and various homologues of the catalytic subunit of this enzyme appear to be differentially localized to cardiovascular-regulating nuclei in the brain. Recent studies have begun to elucidate the downstream effects of ROS in neurons, and it is now clear that ROS may interact with a number of well-described intracellular signaling pathways involved in neuronal activation. These exciting new discoveries have furthered our understanding of the pathogenesis of neurogenic hypertension and may ultimately lead to the development of new treatments. In this review, we discuss recent evidence in support of a role for brain ROS in the pathogenesis of hypertension and summarize current studies aimed at uncovering the complex mechanisms by which brain ROS regulate blood pressure in both health and cardiovascular disease.
Collapse
Affiliation(s)
- Jeffrey R Peterson
- Anatomy and Cell Biology, 1-251 Bowen Science Building, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52245, USA
| | | | | |
Collapse
|
108
|
Tolstykh G, de Paula PM, Mifflin S. Voltage-dependent calcium currents are enhanced in nucleus of the solitary tract neurons isolated from renal wrap hypertensive rats. Hypertension 2007; 49:1163-9. [PMID: 17372037 DOI: 10.1161/hypertensionaha.106.084004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nucleus of the solitary tract (NTS) is the central site of termination of baroreceptor afferents. We hypothesize that changes occur in voltage-gated calcium channels (VGCCs) within NTS neurons as a consequence of hypertension. Whole-cell patch-clamp recordings were obtained from adult normotensive (109+/-2 mm Hg; n=6 from 6 sham-operated and 31 nonsurgically treated) and hypertensive (158+/-6 mm Hg; n=24) rats. In some experiments, 4-(4-[dihexadecylamino]styryl)-N-methylpyridinium iodide was applied to the aortic nerve to visualize NTS neurons receiving baroreceptor synaptic contacts. Ba(2+) currents (500 ms; -80 mV prepotential; 500 ms voltage steps in 5-mV increments to +15mV) peaked between -20 and -10 mV and were blocked by 100 mum of Cd(2+). Peak VGCCs were not different comparing non-4-(4-[dihexadecylamino]styryl)-N-methylpyridinium iodide-labeled and 4-(4- [dihexadecylamino]styryl)-N-methylpyridinium iodide-labeled NTS neurons in hypertensive and normotensive rats. The peak VGCC was significantly greater in cells from hypertensive compared with normotensive rats for both non-DiA-labeled (P=0.02) and DiA-labeled (P=0.04) neurons. To separate high-voltage activated (HVA) and low-voltage activated (LVA) components of VGCCs, voltage ramps (-110 mV to +30 mV over 50 ms) were applied from a holding potential of -60 mV (LVA channels inactivated) and a holding potential of -100 mV (both LVA and HVA currents activated). HVA currents were subtracted from HVA+LVA currents to yield the LVA current. Peak LVA currents were not different between hypertensive (8.9+/-0.8 pA/pF) and normotensive (7.8+/-0.6 pA/pF) groups of NTS neurons (P=0.27). These results demonstrate that 4 weeks of renal wrap hypertension induce an increase in Ca(2+) influx through HVA VGCCs in NTS neurons receiving arterial baroreceptor inputs.
Collapse
Affiliation(s)
- Gleb Tolstykh
- University of Texas Health Science Center at San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
109
|
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245-313. [PMID: 17237347 DOI: 10.1152/physrev.00044.2005] [Citation(s) in RCA: 4938] [Impact Index Per Article: 290.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Collapse
Affiliation(s)
- Karen Bedard
- Biology of Ageing Laboratories, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
110
|
Chen Q, Pan HL. Signaling mechanisms of angiotensin II-induced attenuation of GABAergic input to hypothalamic presympathetic neurons. J Neurophysiol 2007; 97:3279-87. [PMID: 17287434 DOI: 10.1152/jn.01329.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is an important site for the regulation of sympathetic outflow. Angiotensin II (Ang II) can activate AT(1) receptors to stimulate PVN presympathetic neurons through inhibition of GABAergic input. However, little is known about the downstream pathway involved in this presynaptic action of Ang II in the PVN. In this study, using whole cell recording from retrogradely labeled PVN neurons in rat brain slices, we determined the signaling mechanisms responsible for the effect of Ang II on synaptic GABA release to spinally projecting PVN neurons. Bath application of Ang II reproducibly decreased the frequency of GABAergic miniature postsynaptic inhibitory currents (mIPSCs) in fluorescence-labeled PVN neurons. Ang II failed to change the frequency of mIPSCs in labeled PVN neurons treated with pertussis toxin. However, Ang II-induced inhibition of mIPSCs persisted in the presence of either CdCl(2), a voltage-gated Ca(2+) channel blocker, or 4-aminopyridine, a blocker of voltage-gated K(+) channels. Interestingly, inhibition of superoxide with superoxide dismutase or Mn(III) tetrakis (4-benzoic acid) prophyrin completely blocked Ang II-induced decrease in mIPSCs. By contrast, inhibition of hydroxyl radical formation with the ion chelator deferoxamine did not significantly alter the effect of Ang II. These findings suggest that the presynaptic action of Ang II on synaptic GABA release in the PVN is mediated by the pertussis toxin-sensitive G(i/o) proteins but not by voltage-gated Ca(2+) and K(+) channels. Ang II attenuates GABAergic input to PVN presympathetic neurons through reactive oxygen species, especially superoxide anions.
Collapse
Affiliation(s)
- Qian Chen
- Department of Anesthesiology and Pain Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
111
|
Wang Z, Armando I, Asico LD, Escano C, Wang X, Lu Q, Felder RA, Schnackenberg CG, Sibley DR, Eisner GM, Jose PA. The elevated blood pressure of human GRK4gamma A142V transgenic mice is not associated with increased ROS production. Am J Physiol Heart Circ Physiol 2007; 292:H2083-92. [PMID: 17259440 DOI: 10.1152/ajpheart.00944.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) regulate the sensitivity of GPCRs, including dopamine receptors. The GRK4 locus is linked to, and some of its polymorphisms are associated with, human essential hypertension. Transgenic mice overexpressing human (h) GRK4gamma A142V on a mixed genetic background (C57BL/6J and SJL/J) have impaired renal D(1)-dopamine receptor (D(1)R) function and increased blood pressure. We now report that hGRK4gamma A142V transgenic mice, in C57BL/6J background, are hypertensive and have higher blood pressures than hGRK4gamma wild-type transgenic and nontransgenic mice. The hypertensive phenotype is stable because blood pressures in transgenic founders and F6 offspring are similarly increased. To determine whether the hypertension is associated with increased production of reactive oxygen species (ROS), we measured renal NADPH oxidase (Nox2 and Nox4) and heme oxygenase (HO-1 and HO-2) protein expressions and urinary excretion of 8-isoprostane and compared the effect of Tempol on blood pressure in hGRK4gamma A142V transgenic mice and D(5)R knockout (D(5)(-/-)) mice in which hypertension is mediated by increased ROS. The expressions of Nox isoforms and HO-2 and the urinary excretion of 8-isoprostane were similar in hGRK4gamma A142V transgenic mice and their controls. HO-1 expression was increased in hGRK4gamma A142V relative to hGRK4gamma wild-type transgenic mice. In contrast with the hypotensive effect of Tempol in D(5)(-/-) mice, it had no effect in hGRK4gamma A142V transgenic mice. We conclude that the elevated blood pressure of hGRK4gamma A142V transgenic mice is due mainly to the effect of hGRK4gamma A142V transgene acting via D(1)R and increased ROS production is not a contributor.
Collapse
Affiliation(s)
- Zheng Wang
- Georgetown University School of Medicine, 4000 Reservoir Road NW, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Glass MJ, Huang J, Oselkin M, Tarsitano MJ, Wang G, Iadecola C, Pickel VM. Subcellular localization of nicotinamide adenine dinucleotide phosphate oxidase subunits in neurons and astroglia of the rat medial nucleus tractus solitarius: relationship with tyrosine hydroxylase immunoreactive neurons. Neuroscience 2006; 143:547-64. [PMID: 17027166 PMCID: PMC1808229 DOI: 10.1016/j.neuroscience.2006.08.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/06/2006] [Accepted: 08/04/2006] [Indexed: 02/07/2023]
Abstract
Superoxide produced by the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mediates crucial intracellular signaling cascades in the medial nucleus of the solitary tract (mNTS), a brain region populated by catecholaminergic neurons, as well as astroglia that play an important role in autonomic function. The mechanisms mediating NADPH oxidase (phagocyte oxidase) activity in the neural regulation of cardiovascular processes are incompletely understood, however the subcellular localization of superoxide produced by the enzyme is likely to be an important regulatory factor. We used immunogold electron microscopy to determine the phenotypic and subcellular localization of the NADPH oxidase subunits p47(phox), gp91(phox,) and p22(phox) in the mNTS in rats. The mNTS contains a large population of neurons that synthesize catecholamines. Significantly, catecholaminergic signaling can be modulated by redox reactions. Therefore, the relationship of NADPH oxidase subunit labeled neurons or glia with respect to catecholaminergic neurons was also determined by dual labeling for the superoxide producing enzyme and tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. In the mNTS, NADPH oxidase subunits were present primarily in somatodendritic processes and astrocytes, some of which also contained TH, or were contacted by TH-labeled axons, respectively. Immunogold quantification of NADPH oxidase subunit localization showed that p47(phox) and gp91(phox) were present on the surface membrane, as well as vesicular organelles characteristic of calcium storing smooth endoplasmic reticula in dendritic and astroglial processes. These results indicate that NADPH oxidase assembly and consequent superoxide formation are likely to occur near the plasmalemma, as well as on vesicular organelles associated with intracellular calcium storage within mNTS neurons and glia. Thus, NADPH oxidase-derived superoxide may participate in intracellular signaling pathways linked to calcium regulation in diverse mNTS cell types. Moreover, NADPH oxidase-derived superoxide in neurons and glia may directly or indirectly modulate catecholaminergic neuron activity in the mNTS.
Collapse
Affiliation(s)
- M J Glass
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
113
|
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| |
Collapse
|
114
|
Abstract
The NADPH oxidase is a multi-subunit enzyme that catalyzes the reduction of molecular oxygen to form superoxide (O(2)(-)). While classically linked to the respiratory burst in neutrophils, recent evidence now shows that O(2)(-) (and associated reactive oxygen species, ROS) generated by NADPH oxidase in nonphagocytic cells serves myriad functions in health and disease. An entire new family of NADPH Oxidase (Nox) homologues has emerged, which vary widely in cell and tissue distribution, as well as in function and regulation. A major concept in redox signaling is that while NADPH oxidase-derived ROS are necessary for normal cellular function, excessive oxidative stress can contribute to pathological disease. This certainly is true in the central nervous system (CNS), where normal NADPH oxidase function appears to be required for processes such as neuronal signaling, memory, and central cardiovascular homeostasis, but overproduction of ROS contributes to neurotoxicity, neurodegeneration, and cardiovascular diseases. Despite implications of NADPH oxidase in normal and pathological CNS processes, still relatively little is known about the mechanisms involved. This paper summarizes the evidence for NADPH oxidase distribution, regulation, and function in the CNS, emphasizing the diversity of Nox isoforms and their new and emerging role in neuro-cardiovascular function. In addition, perspectives for future research and novel therapeutic targets are offered.
Collapse
Affiliation(s)
- David W Infanger
- Department of Anatomy and Cell Biology, Free Radical and Radiation Biology Program, The University of Iowa, Iowa City, 52245, USA
| | | | | |
Collapse
|
115
|
Wang G, Anrather J, Glass MJ, Tarsitano MJ, Zhou P, Frys KA, Pickel VM, Iadecola C. Nox2, Ca2+, and protein kinase C play a role in angiotensin II-induced free radical production in nucleus tractus solitarius. Hypertension 2006; 48:482-9. [PMID: 16894058 DOI: 10.1161/01.hyp.0000236647.55200.07] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The dorsomedial portion of the nucleus tractus solitarius (dmNTS) is the site of termination of baroreceptor and cardiorespiratory vagal afferents and plays a critical role in cardiovascular regulation. Angiotensin II (Ang II) is a powerful signaling molecule in dmNTS neurons and exerts some of its biological effects by modulating Ca(2+) currents via reactive oxygen species (ROS) derived from reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase. We investigated whether a Nox2-containing NADPH oxidase is the source of the Ang II-induced ROS production and whether the signaling mechanisms of its activation require intracellular Ca(2+) or protein kinase C (PKC). Second-order dmNTS neurons were anterogradely labeled with 4-(4-[didecylamino]styryl)-N-methylpyridinium iodide transported from the vagus and isolated from the brain stem. ROS production was assessed in 4-(4-[didecylamino]styryl)-N-methylpyridinium iodide-positive dmNTS neurons using the fluorescent dye 6-carboxy-2',7'-dichlorodihydro-fluorescein di(acetoxymethyl ester). Ang II (3 to 2000 nmol/L) increased ROS production in dmNTS neurons (EC(50)=38.3 nmol/L). The effect was abolished by the ROS scavenger Mn (III) porphyrin 5,10,20-tetrakis (benzoic acid) porphyrin manganese (III), the Ang II type 1 receptor antagonist losartan, or the NADPH oxidase inhibitors apocynin or gp91ds-tat. Ang II failed to increase ROS production or to potentiate L-type Ca(2+) currents in dmNTS neurons of mice lacking Nox2. The PKC inhibitor GF109203X or depletion of intracellular Ca(2+) attenuated Ang II-elicited ROS production. We conclude that the powerful effects of Ang II on Ca(2+) currents in dmNTS neurons are mediated by PKC activation leading to ROS production via Nox2. Thus, a Nox2-containing NADPH oxidase is the critical link between Ang II and the enhancement of Ca(2+) currents that underlie the actions of Ang II on central autonomic regulation.
Collapse
Affiliation(s)
- Gang Wang
- Division of Neurobiology, Weill Medical College of Cornell University, 411 East 69th St, New York, NY 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Lu M, Gong X, Lu Y, Guo J, Wang C, Pan Y. Molecular Cloning and Functional Characterization of a Cell-permeable Superoxide Dismutase Targeted to Lung Adenocarcinoma Cells. J Biol Chem 2006; 281:13620-13627. [PMID: 16551617 DOI: 10.1074/jbc.m600523200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In clinical oncology, many trials with superoxide dismutase (SOD) have failed to demonstrate antitumor ability and in many cases even caused deleterious effects because of low tumor-targeting ability. In the current research, the Nostoc commune Fe-SOD coding sequence was amplified from genomic DNA. In addition, the single chain variable fragment (ScFv) was constructed from the cDNA of an LC-1 hybridoma cell line secreting anti-lung adenocarcinoma monoclonal antibody. After modification, the SOD and ScFv were fused and co-expressed, and the resulting fusion protein produced SOD and LC-1 antibody activity. Tracing SOD-ScFv by fluorescein isothiocyanate and superoxide anions (O2*-) in SPC-A-1 cells showed that the fusion protein could recognize and enter SPC-A-1 cells to eliminate O2*-. The lower oxidative stress resulting from the decrease in cellular O2*- delayed the cell cycle at G1 and significantly slowed SPC-A-1 cell growth in association with the dephosphorylation of the serine-threonine protein kinase Akt and expression of p27kip1. The tumor-targeting fusion protein resulting from this research overcomes two disadvantages of SODs previously used in the clinical setting, the inability to target tumor cells or permeate the cell membrane. These findings lay the groundwork for development of an efficient antitumor drug targeted by the ScFv.
Collapse
Affiliation(s)
- Min Lu
- Institute of Biochemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xingguo Gong
- Institute of Biochemistry, Zhejiang University, Hangzhou, 310027, China.
| | - Yuwen Lu
- Institute of Biochemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jianjun Guo
- Institute of Biochemistry, Zhejiang University, Hangzhou, 310027, China
| | - Chenhui Wang
- Institute of Biochemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjiang Pan
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
117
|
|
118
|
|
119
|
Chan SHH, Hsu KS, Huang CC, Wang LL, Ou CC, Chan JYH. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circ Res 2005; 97:772-80. [PMID: 16151022 DOI: 10.1161/01.res.0000185804.79157.c0] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons are located, is a central site via which angiotensin II (Ang II) elicits its pressor effect. We tested the hypothesis that NADPH oxidase-derived superoxide anion (O2*-) in the RVLM mediates Ang II-induced pressor response via activation of mitogen-activated protein kinase (MAPK) signaling pathways. Bilateral microinjection of Ang II into the RVLM resulted in an angiotensin subtype 1 (AT1) receptor-dependent phosphorylation of p38 MAPK and extracellular signal-regulated protein kinase (ERK)1/2, but not stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK), in the ventrolateral medulla. The Ang II-induced p38 MAPK or ERK1/2 phosphorylation was attenuated by application into the RVLM of a NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI), an antisense oligonucleotide that targets against p22phox or p47phox subunit of NADPH oxidase mRNA, or the superoxide dismutase mimetic tempol. DPI or antisense p22phox or p47phox oligonucleotide treatment also attenuated the AT1 receptor-dependent increase in O2*- production in the ventrolateral medulla elicited by Ang II at the RVLM. Functionally, Ang II-elicited pressor response in the RVLM was attenuated by DPI, tempol, or a p38 MAPK inhibitor, SB203580. The AT1 receptor-mediated enhancement of the frequency of glutamate-sensitive spontaneous excitatory postsynaptic currents induced by Ang II in RVLM neurons was also abolished by SB203580. These results suggest that NADPH oxidase-derived O2*- underlies the activation of p38 MAPK or ERK1/2 by Ang II in the ventrolateral medulla. Furthermore, the p38 MAPK signaling pathway may mediate Ang II-induced pressor response via enhancement of presynaptic release of glutamate to RVLM neurons.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Neuroscience, National Sun Yat-sen University, Tainan, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
120
|
Zimmerman MC, Dunlay RP, Lazartigues E, Zhang Y, Sharma RV, Engelhardt JF, Davisson RL. Requirement for Rac1-dependent NADPH oxidase in the cardiovascular and dipsogenic actions of angiotensin II in the brain. Circ Res 2004; 95:532-9. [PMID: 15271858 DOI: 10.1161/01.res.0000139957.22530.b9] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have shown that intracellular superoxide (O(2)(*-)) production in CNS neurons plays a key role in the pressor, bradycardic, and dipsogenic actions of Ang II in the brain. In this study, we tested the hypothesis that a Rac1-dependent NADPH oxidase is a key source of O(2)(*-) in Ang II-sensitive neurons and is involved in these central Ang II-dependent effects. We performed both in vitro and in vivo studies using adenoviral (Ad)-mediated expression of dominant-negative Rac1 (AdN17Rac1) to inhibit Ang II-stimulated Rac1 activation, an obligatory step in NADPH oxidase activation. Ang II induced a time-dependent increase in Rac1 activation and O(2)(*-) production in Neuro-2A cells, and this was abolished by pretreatment with AdN17Rac1 or the NADPH oxidase inhibitors apocynin or diphenylene iodonium. AdN17Rac1 also inhibited Ang II-induced increases in NADPH oxidase activity in primary neurons cultured from central cardiovascular control regions. In contrast, overexpression of wild-type Rac1 (AdwtRac1) caused more robust NADPH oxidase-dependent O(2)(*-) production to Ang II. To extend the in vitro studies, the pressor, bradycardic, and drinking responses to intracerebroventricularly (ICV) injected Ang II were measured in mice that had undergone gene transfer of AdN17Rac1 or AdwtRac1 to the brain. AdN17Rac1 abolished the increase in blood pressure, decrease in heart rate, and drinking response induced by ICV injection of Ang II, whereas AdwtRac1 enhanced these physiological effects. The exaggerated physiological responses in AdwtRac1-treated mice were abolished by O(2)(*-) scavenging. These results, for the first time, identify a Rac1-dependent NADPH oxidase as the source of central Ang II-induced O(2)(*-) production, and implicate this oxidase in cardiovascular diseases associated with dysregulation of brain Ang II signaling, including hypertension.
Collapse
Affiliation(s)
- Matthew C Zimmerman
- Department of Anatomy and Cell Biology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City 52242, USA
| | | | | | | | | | | | | |
Collapse
|