101
|
Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 2012; 61:599-610. [PMID: 23219298 DOI: 10.1016/j.jacc.2012.08.1021] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/13/2012] [Accepted: 08/21/2012] [Indexed: 01/08/2023]
Abstract
Heart failure is a pressing public health problem with no curative treatment currently available. The existing therapies provide symptomatic relief, but are unable to reverse molecular changes that occur in cardiomyocytes. The mechanisms of heart failure are complex and multiple, but mitochondrial dysfunction appears to be a critical factor in the development of this disease. Thus, it is important to focus research efforts on targeting mitochondrial dysfunction in the failing heart to revive the myocardium and its contractile function. This review highlights the 3 promising areas for the development of heart failure therapies, including mitochondrial biogenesis, mitochondrial oxidative stress, and mitochondrial iron handling. Moreover, the translational potential of compounds targeting these pathways is discussed.
Collapse
|
102
|
Abstract
AMP-activated protein kinase (AMPK) is a stress-activated kinase that functions as a cellular fuel gauge and master metabolic regulator. Recent investigation has elucidated novel molecular mechanisms of AMPK regulation and important biological actions of the AMPK pathway that are highly relevant to cardiovascular disease. Activation of the intrinsic AMPK pathway plays an important role in the myocardial response to ischemia, pressure overload, and heart failure. Pharmacological activation of AMPK shows promise as a therapeutic strategy in the treatment of heart disease. The purpose of this review is to assess how recent discoveries have extended and in some cases challenged existing paradigms, providing new insights into the regulation of AMPK, its diverse biological actions, and therapeutic potential in the heart.
Collapse
Affiliation(s)
- Vlad G Zaha
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
103
|
Rosca MG, Tandler B, Hoppel CL. Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 2012; 55:31-41. [PMID: 22982369 DOI: 10.1016/j.yjmcc.2012.09.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/01/2012] [Accepted: 09/06/2012] [Indexed: 01/19/2023]
Abstract
Heart failure (HF) frequently is the unfavorable outcome of pathological heart hypertrophy. In contrast to physiological cardiac hypertrophy, which occurs in response to exercise and leads to full adaptation of contractility to the increased wall stress, pathological hypertrophy occurs in response to volume or pressure overload, ultimately leading to contractile dysfunction and HF. Because cardiac hypertrophy impairs the relationship between ATP demand and production, mitochondrial bioenergetics must keep up with the cardiac hypertrophic phenotype. We review data regarding the mitochondrial proteomic and energetic remodeling in cardiac hypertrophy, as well as the temporal and causal relationships between mitochondrial failure to match the increased energy demand and progression to cardiac decompensation. We suggest that the maladaptive effect of sustained neuroendocrine signals on mitochondria leads to bioenergetic fading which contributes to the progression from cardiac hypertrophy to failure. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- Mariana G Rosca
- Center for Mitochondrial Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106‐4981, USA
| | | | | |
Collapse
|
104
|
Sun Z, Hamilton KL, Reardon KF. Phosphoproteomics and molecular cardiology: Techniques, applications and challenges. J Mol Cell Cardiol 2012; 53:354-68. [DOI: 10.1016/j.yjmcc.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/26/2012] [Accepted: 06/03/2012] [Indexed: 12/16/2022]
|
105
|
Montessuit C, Lerch R. Regulation and dysregulation of glucose transport in cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:848-56. [PMID: 22967513 DOI: 10.1016/j.bbamcr.2012.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/29/2022]
Abstract
The ability of the heart muscle to derive energy from a wide variety of substrates provides the myocardium with remarkable capacity to adapt to the ever-changing metabolic environment depending on factors including nutritional state and physical activity. There is increasing evidence that loss of metabolic flexibility of the myocardium contributes to cardiac dysfunction in disease conditions such as diabetes, ischemic heart disease and heart failure. At the level of glucose metabolism reduced metabolic adaptation in most cases is characterized by impaired stimulation of transarcolemmal glucose transport in the cardiomyocytes in response to insulin, referred to as insulin resistance, or to other stimuli such as energy deficiency. This review discusses cellular mechanisms involved in the regulation of glucose uptake in cardiomyocytes and their potential implication in impairment of stimulation of glucose transport under disease conditions. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Christophe Montessuit
- Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland.
| | | |
Collapse
|
106
|
Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One 2012; 7:e41574. [PMID: 22844503 PMCID: PMC3402395 DOI: 10.1371/journal.pone.0041574] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/27/2012] [Indexed: 02/07/2023] Open
Abstract
Background Recently, MicroRNAs (miR) and AMP-kinase (AMPK) have emerged as prominent players in the development of cardiac hypertrophy and heart failure. We hypothesized that components of the adenosine monophosphate-activated kinase (AMPK) pathway are targeted by miRs and alter AMPK signaling during pathological cardiac stress. Methodology/Principal Findings Using a mouse model of hypertrophic cardiomyopathy (HCM), we demonstrated early elevation of miR-195 and miR-451 in HCM hearts, which targets MO25, a central component of the MO25/STRAD/LKB1 complex that acts as an upstream kinase for AMPK. We show functional targeting of MO25 by miR-195 and -451. Further in vitro interrogation of MO25 as a functional target validated this hypothesis where over-expression of miR-195 in C2C12 cells knocked down MO25 expression levels and downstream AMPK signaling (phosphorylation of Acetyl CoA carboxylase [ACC] and AMPK activity assay), similar to MO25 knockdown in C2C12 cells by siRNA. Parallel changes were measured in 60 day R403Q HCM male hearts that were rescued by short-term administration of AICAR, an AMPK agonist. Conclusions/Significance Elevated miR-195 targets the LKB1/AMPK signaling axis in HCM progression and implicates a functional role in HCM disease progression. MiR-195 may serve as potential therapeutics or therapeutic targets for heart disease.
Collapse
|
107
|
Srivastava RAK, Pinkosky SL, Filippov S, Hanselman JC, Cramer CT, Newton RS. AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res 2012; 53:2490-514. [PMID: 22798688 DOI: 10.1194/jlr.r025882] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism at the cellular as well as whole-body level. It is activated by low energy status that triggers a switch from ATP-consuming anabolic pathways to ATP-producing catabolic pathways. AMPK is involved in a wide range of biological activities that normalizes lipid, glucose, and energy imbalances. These pathways are dysregulated in patients with metabolic syndrome (MetS), which represents a clustering of major cardiovascular risk factors including diabetes, lipid abnormalities, and energy imbalances. Clearly, there is an unmet medical need to find a molecule to treat alarming number of patients with MetS. AMPK, with multifaceted activities in various tissues, has emerged as an attractive drug target to manage lipid and glucose abnormalities and maintain energy homeostasis. A number of AMPK activators have been tested in preclinical models, but many of them have yet to reach to the clinic. This review focuses on the structure-function and role of AMPK in lipid, carbohydrate, and energy metabolism. The mode of action of AMPK activators, mechanism of anti-inflammatory activities, and preclinical and clinical findings as well as future prospects of AMPK as a drug target in treating cardio-metabolic disease are discussed.
Collapse
|
108
|
Horman S, Beauloye C, Vanoverschelde JL, Bertrand L. AMP-activated Protein Kinase in the Control of Cardiac Metabolism and Remodeling. Curr Heart Fail Rep 2012; 9:164-73. [DOI: 10.1007/s11897-012-0102-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
109
|
Wang Y, Wan B, Li D, Zhou J, Li R, Bai M, Chen F, Yu L. BRSK2 is regulated by ER stress in protein level and involved in ER stress-induced apoptosis. Biochem Biophys Res Commun 2012; 423:813-8. [PMID: 22713462 DOI: 10.1016/j.bbrc.2012.06.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 12/29/2022]
Abstract
The accumulation of unfolded protein in lumen of the endoplasmic reticulum (ER) triggers a cell stress response called ER stress, which induces the transcriptional up-regulation of a number of proteins, including molecular chaperones and folding enzymes, the global inhibition of protein synthesis, and the activation of apoptotic pathways. The molecular mechanism underlying the apoptotic response has remained largely elusive. AMP activated protein kinase (AMPK) has been implicated in ER stress-induced apoptosis through its role in attenuating ER stress. BRSK2 (brain selective kinase 2, also known as SAD-A) is a serine/threonine kinase of the AMPK family. Here, we demonstrate that the BRSK2 protein levels are significantly down-regulated in response to ER stress in PANC-1 and HeLa cells. Furthermore, we also observed that ER stress induces endogenous BRSK2 to localize to the ER. Importantly, knockdown of endogenous BRSK2 expression enhances ER stress-mediated apoptosis in cells while over express BRSK2 in wild type or kinase-dead type both reduce the apoptosis. BRSK2 knockdown increases the transcription of CHOP and the levels of cleaved caspase-3 in cells in response to ER stress while over expression of BRSK2 decrease CHOP mRNA and levels of cleaved caspase-3. Taken together, our findings demonstrate ER stress may reduce BRSK2 protein and change BRSK2 subcellular localization, which in turn alleviate ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Yingli Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Ardehali H, Sabbah HN, Burke MA, Sarma S, Liu PP, Cleland JGF, Maggioni A, Fonarow GC, Abel ED, Campia U, Gheorghiade M. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail 2012; 14:120-9. [PMID: 22253453 DOI: 10.1093/eurjhf/hfr173] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The incidence and prevalence of heart failure have increased significantly over the past few decades. Available data suggest that patients with heart failure independent of the aetiology have viable but dysfunctional myocardium that is potentially salvageable. Although a great deal of research effort has focused on characterizing the molecular basis of heart failure, cardiac metabolism in this disorder remains an understudied discipline. It is known that many aspects of cardiomyocyte energetics are altered in heart failure. These include a shift from fatty acid to glucose as a preferred substrate and a decline in the levels of ATP. Despite these demonstrated changes, there are currently no approved drugs that target metabolic enzymes or proteins in heart failure. This is partly due to our limited knowledge of the mechanisms and pathways that regulate cardiac metabolism. Better characterization of these pathways may potentially lead to new therapies for heart failure. Targeting myocardial energetics in the viable and potentially salvageable tissue may be particularly effective in the treatment of heart failure. Here, we will review metabolic changes that occur in fatty acid and glucose metabolism and AMP-activated kinase in heart failure. We propose that cardiac energetics should be considered as a potential target for therapy in heart failure and more research should be done in this area.
Collapse
Affiliation(s)
- Hossein Ardehali
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Nagoshi T, Yoshimura M, Rosano GMC, Lopaschuk GD, Mochizuki S. Optimization of cardiac metabolism in heart failure. Curr Pharm Des 2012; 17:3846-53. [PMID: 21933140 PMCID: PMC3271354 DOI: 10.2174/138161211798357773] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/05/2011] [Indexed: 02/06/2023]
Abstract
The derangement of the cardiac energy substrate metabolism plays a key role in the pathogenesis of heart failure. The utilization of non-carbohydrate substrates, such as fatty acids, is the predominant metabolic pathway in the normal heart, because this provides the highest energy yield per molecule of substrate metabolized. In contrast, glucose becomes an important preferential substrate for metabolism and ATP generation under specific pathological conditions, because it can provide greater efficiency in producing high energy products per oxygen consumed compared to fatty acids. Manipulations that shift energy substrate utilization away from fatty acids toward glucose can improve the cardiac function and slow the progression of heart failure. However, insulin resistance, which is highly prevalent in the heart failure population, impedes this adaptive metabolic shift. Therefore, the acceleration of the glucose metabolism, along with the restoration of insulin sensitivity, would be the ideal metabolic therapy for heart failure. This review discusses the therapeutic potential of modifying substrate utilization to optimize cardiac metabolism in heart failure.
Collapse
Affiliation(s)
- Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | | | | | | | | |
Collapse
|
112
|
Song P, Zou MH. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radic Biol Med 2012; 52:1607-19. [PMID: 22357101 PMCID: PMC3341493 DOI: 10.1016/j.freeradbiomed.2012.01.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are ubiquitously produced in cardiovascular systems. Under physiological conditions, ROS/RNS function as signaling molecules that are essential in maintaining cardiovascular function. Aberrant concentrations of ROS/RNS have been demonstrated in cardiovascular diseases owing to increased production or decreased scavenging, which have been considered common pathways for the initiation and progression of cardiovascular diseases such as atherosclerosis, hypertension, (re)stenosis, and congestive heart failure. NAD(P)H oxidases are primary sources of ROS and can be induced or activated by all known cardiovascular risk factors. Stresses, hormones, vasoactive agents, and cytokines via different signaling cascades control the expression and activity of these enzymes and of their regulatory subunits. But the molecular mechanisms by which NAD(P)H oxidase is regulated in cardiovascular systems remain poorly characterized. Investigations by us and others suggest that adenosine monophosphate-activated protein kinase (AMPK), as an energy sensor and modulator, is highly sensitive to ROS/RNS. We have also obtained convincing evidence that AMPK is a physiological suppressor of NAD(P)H oxidase in multiple cardiovascular cell systems. In this review, we summarize our current understanding of how AMPK functions as a physiological repressor of NAD(P)H oxidase.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- To whom correspondence should be addressed: Ming-Hui Zou, M.D., Ph.D., Department of Medicine, University of Oklahoma Health Science Center, 941 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA, Phone: 405-271-3974, Fax: 405-271-3973,
| |
Collapse
|
113
|
Ma L, Gul R, Habibi J, Yang M, Pulakat L, Whaley-Connell A, Ferrario CM, Sowers JR. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat. Am J Physiol Heart Circ Physiol 2012; 302:H2341-51. [PMID: 22447938 DOI: 10.1152/ajpheart.01126.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Angiotensin II contributes to myocardial tissue remodeling and interstitial fibrosis through NADPH oxidase-mediated generation of oxidative stress in the progression of heart failure. Recent data have suggested that nebivolol, a third-generation β-blocker, improves diastolic dysfunction by targeting nitric oxide (NO) and metabolic pathways that decrease interstitial fibrosis. We sought to determine if targeting NO would improve diastolic function in a model of tissue renin-angiotensin system overactivation. We used the transgenic (TG) (mRen2)27 rat, which overexpresses the murine renin transgene and manifests insulin resistance and left ventricular dysfunction. We treated 6- to 7-wk-old TG (mRen2)27 rats and age-matched Sprague-Dawley control rats with nebivolol (10 mg·kg(-1)·day(-1)) or placebo via osmotic minipumps for a period of 21 days. Compared with Sprague-Dawley control rats, TG (mRen2)27 rats displayed a prolonged diastolic relaxation time and reduced initial filling rate associated with increased interstitial fibrosis and left ventricular hypertrophy. These findings were temporally related to increased NADPH oxidase activity and subunits p47(phox) and Rac1 and increased total ROS and peroxynitrite formation in parallel with reductions in the antioxidant heme oxygenase as well as the phosphorylation/activation of endothelial NO synthase and PKB/Akt. Treatment with nebivolol restored diastolic function and interstitial fibrosis through increases in the phosphorylation of 5'-AMP-activated protein kinase, Akt, and endothelial NO synthase and reductions in oxidant stress. These results support that targeting NO with nebivolol treatment improves diastolic dysfunction through reducing myocardial oxidative stress by enhancing 5'-AMP-activated protein kinase and Akt activation of NO biosynthesis.
Collapse
Affiliation(s)
- Lixin Ma
- Department of Radiology, University of Missouri School of Medicine, Columbia, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Kim M, Shen M, Ngoy S, Karamanlidis G, Liao R, Tian R. AMPK isoform expression in the normal and failing hearts. J Mol Cell Cardiol 2012; 52:1066-73. [PMID: 22314372 DOI: 10.1016/j.yjmcc.2012.01.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 12/27/2022]
Abstract
AMP-activated protein kinase (AMPK) is a master metabolic switch that plays an important role in energy homeostasis at the cellular and whole body level, hence a promising drug target. AMPK is a heterotrimeric complex composed of catalytic α-subunit and regulatory β- and γ-subunits with multiple isoforms for each subunit. It has been shown that AMPK activity is increased in cardiac hypertrophy and failure but it is unknown whether changes in subunit composition of AMPK contribute to the altered AMPK activity. In this study, we determined the protein expression pattern of AMPK subunit isoforms during cardiac development as well as during cardiac hypertrophy and heart failure in mouse heart. We also compared the findings in failing mouse heart to that of the human failing hearts in order to determine whether the mouse heart is a good model of AMPK in human diseases. In mouse developmental hearts, AMPK was highly expressed in the fetal stages and fell back to the adult level after birth. In the failing mouse heart, there was a significant increase in α2, β2, and γ2 subunits both at the mRNA and protein levels. In contrary, we found significant increases in the protein level of α1, β1 and γ2c subunits in human failing hearts with no change in the mRNA level. We also compared isoform-specific AMPK activity in the mouse and human failing hearts. Consistent with the literature, in the failing mouse heart, the α2 complexes accounted for ~2/3 of total AMPK activity while the α1 complexes accounted for the remaining 30-35%. In the human hearts, however, the contribution of α1-AMPK activity was significantly higher (>40%) in the non-failing hearts, and it further increased to 50% in the failing hearts. Thus, the human hearts have a greater amount of α1-AMPK activity compared to the rodent hearts. In summary, the protein level and the isoform distribution of AMPK in the heart change significantly during normal development as well as in heart failure. These observations provide a basis for future development of therapeutic strategies for targeting AMPK.
Collapse
Affiliation(s)
- Maengjo Kim
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
115
|
Kohsaka A, Waki H, Cui H, Gouraud SS, Maeda M. Integration of metabolic and cardiovascular diurnal rhythms by circadian clock. Endocr J 2012; 59:447-56. [PMID: 22361995 DOI: 10.1507/endocrj.ej12-0057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Understanding how the 24-hour blood-pressure rhythm is programmed has been one of the most challenging questions in cardiovascular research. The 24-hour blood-pressure rhythm is primarily driven by the circadian clock system, in which the master circadian pacemaker within the suprachiasmatic nuclei of the hypothalamus is first entrained to the light/dark cycle and then transmits synchronizing signals to the peripheral clocks common to most tissues, including the heart and blood vessels. However, the circadian system is more complex than this basic hierarchical structure, as indicated by the discovery that peripheral clocks are either influenced to some degree or fully driven by temporal changes in energy homeostasis, independent of the light entrainment pathway. Through various comparative genomic approaches and through studies exploiting mouse genetics and transgenics, we now appreciate that cardiovascular tissues possess a large number of metabolic genes whose expression cycle and reciprocally affect the transcriptional control of major circadian clock genes. These findings indicate that metabolic cycles can directly or indirectly affect the diurnal rhythm of cardiovascular function. Here, we discuss a framework for understanding how the 24-hour blood-pressure rhythm is driven by the circadian system that integrates cardiovascular and metabolic function.
Collapse
Affiliation(s)
- Akira Kohsaka
- Department of Physiology, Wakayama Medical University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
116
|
Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proc Natl Acad Sci U S A 2011; 108:E899-906. [PMID: 21987816 DOI: 10.1073/pnas.1108559108] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Factors secreted by the heart, referred to as "cardiokines," have diverse actions in the maintenance of cardiac homeostasis and remodeling. Follistatin-like 1 (Fstl1) is a secreted glycoprotein expressed in the adult heart and is induced in response to injurious conditions that promote myocardial hypertrophy and heart failure. The aim of this study was to investigate the role of cardiac Fstl1 in the remodeling response to pressure overload. Cardiac myocyte-specific Fstl1-KO mice were constructed and subjected to pressure overload induced by transverse aortic constriction (TAC). Although Fstl1-KO mice displayed no detectable baseline phenotype, TAC led to enhanced cardiac hypertrophic growth and a pronounced loss in ventricular performance by 4 wk compared with control mice. Conversely, mice that acutely or chronically overexpressed Fstl1 were resistant to pressure overload-induced hypertrophy and cardiac failure. Fstl1-deficient mice displayed a reduction in TAC-induced AMP-activated protein kinase (AMPK) activation in heart, whereas Fstl1 overexpression led to increased myocardial AMPK activation under these conditions. In cultured neonatal cardiomyocytes, administration of Fstl1 promoted AMPK activation and antagonized phenylephrine-induced hypertrophy. Inhibition of AMPK attenuated the antihypertrophic effect of Fstl1 treatment. These results document that cardiac Fstl1 functions as an autocrine/paracrine regulatory factor that antagonizes myocyte hypertrophic growth and the loss of ventricular performance in response to pressure overload, possibly through a mechanism involving the activation of the AMPK signaling axis.
Collapse
|
117
|
Kim M, Tian R. Targeting AMPK for cardiac protection: opportunities and challenges. J Mol Cell Cardiol 2011; 51:548-53. [PMID: 21147121 PMCID: PMC3078514 DOI: 10.1016/j.yjmcc.2010.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 01/01/2023]
Abstract
AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis and multiple biological processes in cell growth and survival, hence an attractive drug target. AMPK is a heterotrimeric protein consisting of α catalytic, β and γ regulatory subunits; two isoforms of each subunit are present in the heart. Studies using both genetic and pharmacological approaches have demonstrated important roles of AMPK in protecting the heart during ischemia/reperfusion injury as well as in pathological hypertrophy and failure. There is also emerging evidence suggesting isoform-specific function of AMPK, e.g. mutations of the γ2 subunit cause human cardiomyopathy. Thus, strategies avoiding the undesirable effects of altering γ2-AMPK activity, such as isoform selective activation of AMPK may lead to cardioprotective therapies with greater efficacy and safety. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Maengjo Kim
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
118
|
Hu X, Xu X, Lu Z, Zhang P, Fassett J, Zhang Y, Xin Y, Hall JL, Viollet B, Bache RJ, Huang Y, Chen Y. AMP activated protein kinase-α2 regulates expression of estrogen-related receptor-α, a metabolic transcription factor related to heart failure development. Hypertension 2011; 58:696-703. [PMID: 21825219 PMCID: PMC3182261 DOI: 10.1161/hypertensionaha.111.174128] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The normal expression of myocardial mitochondrial enzymes is essential to maintain the cardiac energy reserve and facilitate responses to stress, but the molecular mechanisms to maintain myocardial mitochondrial enzyme expression have been elusive. Here we report that congestive heart failure is associated with a significant decrease of myocardial estrogen-related receptor-α (ERRα), but not peroxisome proliferator-activated receptor-γ coactivator 1α, in human heart failure samples. In addition, chronic pressure overload in mice caused a decrease of ERRα expression that was significantly correlated to the degree of left ventricular dysfunction, pulmonary congestion, and decreases of a group of myocardial energy metabolism-related genes. We found that the metabolic sensor AMP activated protein kinase (AMPK) regulates ERRα expression in vivo and in vitro. AMPKα2 knockout decreased myocardial ERRα (both mRNA and protein) and its downstream targets under basal conditions, with no change in myocardial peroxisome proliferator-activated receptor-γ coactivator 1α expression. Using cultured rat neonatal cardiac myocytes, we found that overexpression of constitutively active AMPKα significantly induced ERRα mRNA, protein, and promoter activity. Conversely, selective gene silencing of AMPKα2 repressed ERRα and its target gene levels, indicating that AMPKα2 is involved in the regulation of ERRα expression. In addition, overexpression of ERRα in AMPKα2 knockout neonatal cardiac myocytes partially rescued the repressed expression of some energy metabolism-related genes. These data support an important role for AMPKα2 in regulating the expression of myocardial ERRα and its downstream mitochondrial enzymes.
Collapse
Affiliation(s)
- Xinli Hu
- Cardiovascular Division, University of Minnesota, Minneapolis, MN 55455, USA
- Lillehei Heart Institute; University of Minnesota, Minneapolis, MN 55455, USA
| | - Xin Xu
- Cardiovascular Division, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhongbing Lu
- Cardiovascular Division, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ping Zhang
- Cardiovascular Division, University of Minnesota, Minneapolis, MN 55455, USA
- Lillehei Heart Institute; University of Minnesota, Minneapolis, MN 55455, USA
| | - John Fassett
- Cardiovascular Division, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ying Zhang
- Molecular and Cellular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhenli, Chaoyang District, Beijing 100029, China
| | - Yi Xin
- Molecular and Cellular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhenli, Chaoyang District, Beijing 100029, China
| | - Jennifer L. Hall
- Cardiovascular Division, University of Minnesota, Minneapolis, MN 55455, USA
- Lillehei Heart Institute; University of Minnesota, Minneapolis, MN 55455, USA
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin; Cnrs, UMR8104; University Paris Descartes, Paris, France
| | - Robert J. Bache
- Cardiovascular Division, University of Minnesota, Minneapolis, MN 55455, USA
- Lillehei Heart Institute; University of Minnesota, Minneapolis, MN 55455, USA
| | - Yimin Huang
- Molecular and Cellular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhenli, Chaoyang District, Beijing 100029, China
| | - Yingjie Chen
- Cardiovascular Division, University of Minnesota, Minneapolis, MN 55455, USA
- Lillehei Heart Institute; University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
119
|
Abstract
The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, 815 Mercer Street, Seattle, WA 98109, USA
| | | |
Collapse
|
120
|
Pound KM, Arteaga GM, Fasano M, Wilder T, Fischer SK, Warren CM, Wende AR, Farjah M, Abel ED, Solaro RJ, Lewandowski ED. Expression of slow skeletal TnI in adult mouse hearts confers metabolic protection to ischemia. J Mol Cell Cardiol 2011; 51:236-43. [PMID: 21640727 PMCID: PMC3124599 DOI: 10.1016/j.yjmcc.2011.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/26/2011] [Accepted: 05/14/2011] [Indexed: 12/30/2022]
Abstract
Changes in metabolic and myofilament phenotypes coincide in developing hearts. Posttranslational modification of sarcomere proteins influences contractility, affecting the energetic cost of contraction. However, metabolic adaptations to sarcomeric phenotypes are not well understood, particularly during pathophysiological stress. This study explored metabolic adaptations to expression of the fetal, slow skeletal muscle troponin I (ssTnI). Hearts expressing ssTnI exhibited no significant ATP loss during 5 min of global ischemia, while non-transgenic littermates (NTG) showed continual ATP loss. At 7 min ischemia TG-ssTnI hearts retained 80±12% of ATP versus 49±6% in NTG (P<0.05). Hearts expressing ssTnI also had increased AMPK phosphorylation. The mechanism of ATP preservation was augmented glycolysis. Glycolytic end products (lactate and alanine) were 38% higher in TG-ssTnI than NTG at 2 min and 27% higher at 5 min. This additional glycolysis was supported exclusively by exogenous glucose, and not glycogen. Thus, expression of a fetal myofilament protein in adult mouse hearts induced elevated anaerobic ATP production during ischemia via metabolic adaptations consistent with the resistance to hypoxia of fetal hearts. The general findings hold important relevance to both our current understanding of the association between metabolic and contractile phenotypes and the potential for invoking cardioprotective mechanisms against ischemic stress. This article is part of a Special Issue entitled "Possible Editorial".
Collapse
Affiliation(s)
- Kayla M. Pound
- Program in Integrative Cardiac Metabolism, University of Illinois at Chicago, College of Medicine, Chicago IL 60612
| | - Grace M. Arteaga
- Program in Sarcomere Proteomics and Cardiac Dynamics, Center for Cardiovascular Research and Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago IL 60612
| | - Mathew Fasano
- Program in Integrative Cardiac Metabolism, University of Illinois at Chicago, College of Medicine, Chicago IL 60612
| | - Tanganyika Wilder
- Program in Sarcomere Proteomics and Cardiac Dynamics, Center for Cardiovascular Research and Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago IL 60612
| | - Susan K. Fischer
- Program in Integrative Cardiac Metabolism, University of Illinois at Chicago, College of Medicine, Chicago IL 60612
| | - Chad M. Warren
- Program in Sarcomere Proteomics and Cardiac Dynamics, Center for Cardiovascular Research and Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago IL 60612
| | - Adam R. Wende
- Division of Endocrinology Metabolism and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Mariam Farjah
- Program in Integrative Cardiac Metabolism, University of Illinois at Chicago, College of Medicine, Chicago IL 60612
- Program in Sarcomere Proteomics and Cardiac Dynamics, Center for Cardiovascular Research and Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago IL 60612
| | - E. Dale Abel
- Division of Endocrinology Metabolism and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - R. John Solaro
- Program in Sarcomere Proteomics and Cardiac Dynamics, Center for Cardiovascular Research and Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago IL 60612
| | - E. Douglas Lewandowski
- Program in Integrative Cardiac Metabolism, University of Illinois at Chicago, College of Medicine, Chicago IL 60612
| |
Collapse
|
121
|
The PPARalpha-PGC-1alpha Axis Controls Cardiac Energy Metabolism in Healthy and Diseased Myocardium. PPAR Res 2011; 2008:253817. [PMID: 18288281 PMCID: PMC2225461 DOI: 10.1155/2008/253817] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 09/03/2007] [Indexed: 12/30/2022] Open
Abstract
The mammalian myocardium is an omnivorous organ that relies on multiple substrates in order to fulfill its tremendous energy demands. Cardiac energy metabolism preference is regulated at several critical points, including at the level of gene transcription. Emerging evidence indicates that the nuclear receptor PPARα and its cardiac-enriched coactivator protein, PGC-1α, play important roles in the transcriptional control of myocardial energy metabolism. The PPARα-PGC-1α complex controls the expression of genes encoding enzymes involved in cardiac fatty acid and glucose metabolism as well as mitochondrial biogenesis. Also, evidence has emerged that the activity of the PPARα-PGC-1α complex is perturbed in several pathophysiologic conditions and that altered activity of this pathway may play a role in cardiomyopathic remodeling. In this review, we detail the current understanding of the effects of the PPARα-PGC-1α axis in regulating mitochondrial energy metabolism and cardiac function in response to physiologic and pathophysiologic stimuli.
Collapse
|
122
|
Fu YN, Xiao H, Ma XW, Jiang SY, Xu M, Zhang YY. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation. Acta Pharmacol Sin 2011; 32:879-87. [PMID: 21552292 DOI: 10.1038/aps.2010.229] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM To identify the role of metformin in cardiac hypertrophy and investigate the possible mechanism underlying this effect. METHODS Wild type and AMPKα2 knockout (AMPKα2⁻/⁻) littermates were subjected to left ventricular pressure overload caused by transverse aortic constriction. After administration of metformin (200 mg·kg⁻¹·d⁻¹) for 6 weeks, the degree of cardiac hypertrophy was evaluated using echocardiography and anatomic and histological methods. The antihypertrophic mechanism of metformin was analyzed using Western blotting. RESULTS Metformin significantly attenuated cardiac hypertrophy induced by pressure overload in wild type mice, but the antihypertrophic actions of metformin were ablated in AMPKα2⁻/⁻ mice. Furthermore, metformin suppressed the phosphorylation of Akt/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in response to pressure overload in wild type mice, but not in AMPKα2⁻/⁻ mice. CONCLUSION Long-term administration of metformin may attenuate cardiac hypertrophy induced by pressure overload in nondiabetic mice, and this attenuation is highly dependent on AMPK activation. These findings may provide a potential therapy for patients at risk of developing pathological cardiac hypertrophy.
Collapse
|
123
|
Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011; 60:1770-8. [PMID: 21562078 PMCID: PMC3114402 DOI: 10.2337/db10-0351] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Autophagy is a critical cellular system for removal of aggregated proteins and damaged organelles. Although dysregulated autophagy is implicated in the development of heart failure, the role of autophagy in the development of diabetic cardiomyopathy has not been studied. We investigated whether chronic activation of the AMP-activated protein kinase (AMPK) by metformin restores cardiac function and cardiomyocyte autophagy in OVE26 diabetic mice. RESEARCH DESIGN AND METHODS OVE26 mice and cardiac-specific AMPK dominant negative transgenic (DN)-AMPK diabetic mice were treated with metformin or vehicle for 4 months, and cardiac autophagy, cardiac functions, and cardiomyocyte apoptosis were monitored. RESULTS Compared with control mice, diabetic OVE26 mice exhibited a significant reduction of AMPK activity in parallel with reduced cardiomyocyte autophagy and cardiac dysfunction in vivo and in isolated hearts. Furthermore, diabetic OVE26 mouse hearts exhibited aggregation of chaotically distributed mitochondria between poorly organized myofibrils and increased polyubiquitinated protein and apoptosis. Inhibition of AMPK by overexpression of a cardiac-specific DN-AMPK gene reduced cardiomyocyte autophagy, exacerbated cardiac dysfunctions, and increased mortality in diabetic mice. Finally, chronic metformin therapy significantly enhanced autophagic activity and preserved cardiac functions in diabetic OVE26 mice but not in DN-AMPK diabetic mice. CONCLUSIONS Decreased AMPK activity and subsequent reduction in cardiac autophagy are important events in the development of diabetic cardiomyopathy. Chronic AMPK activation by metformin prevents cardiomyopathy by upregulating autophagy activity in diabetic OVE26 mice. Thus, stimulation of AMPK may represent a novel approach to treat diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhonglin Xie
- Section of Molecular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Tapping the brake on cardiac growth-endogenous repressors of hypertrophic signaling. J Mol Cell Cardiol 2011; 51:156-67. [PMID: 21586293 DOI: 10.1016/j.yjmcc.2011.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/26/2011] [Accepted: 04/30/2011] [Indexed: 12/14/2022]
Abstract
Cardiac hypertrophy is considered an early hallmark during the clinical course of heart failure and an important risk factor for cardiac morbidity and mortality. Although hypertrophy of individual cardiomyocytes in response to pathological stimuli has traditionally been considered as an adaptive response required to sustain cardiac output, accumulating evidence from studies in patients and animal models suggests that in most instances hypertrophy of the heart also harbors maladaptive aspects. Major strides have been made in our understanding of the pathways that convey pro-hypertrophic signals from the outside of the cell to the nucleus. In recent years it also has become increasingly evident that the heart possesses a variety of endogenous feedback mechanisms to counterbalance this growth response. These repressive mechanisms are of particular interest since they may provide valuable therapeutic options. In this review we summarize currently known endogenous repressors of pathological cardiac growth as they have been studied by gene targeting in mice. Many of the repressors that function in signal transduction appear to regulate calcineurin (e.g. PICOT, calsarcin, RCAN) and JNK signaling (e.g. CDC42, MKP-1) and some will be described in greater detail in this review. In addition, we will focus on factors such as Kruppel-like factors (KLF4, KLF15 and KLF10) and histone deacetylases (HDACs), which constitute a relevant group of nuclear proteins that repress transcription of the hypertrophic gene program in cardiomyocytes.
Collapse
|
125
|
Yun H, Ha J. AMP-activated protein kinase modulators: a patent review (2006 - 2010). Expert Opin Ther Pat 2011; 21:983-1005. [PMID: 21548715 DOI: 10.1517/13543776.2011.577069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION AMPK is a key player in the regulation of energy balance at both the cellular and whole-body levels, placing it at the center stage in studies of metabolic disorders. Recently, AMPK has also been identified as a potential target for either therapy or prevention of some types of cancer. Thus, identification of AMPK modulators for possible use as novel therapeutic drugs, both for treatment of metabolic disorders and cancer, will have a high commercial potential. AREAS COVERED This review covers the structures and activities of AMPK modulators described in the patent literature since 2006. The patents reviewed include those for direct and/or indirect activators of AMPK, and novel pharmaceutical compounds with potential for use in the prevention and/or treatment of metabolic disorders, and cancer targeting AMPK. EXPERT OPINION Targeting of AMPK appears to be an attractive strategy in the treatment of metabolic disorders. However, some detrimental effects of AMPK have also been reported, including a possible tumor-promoting effect in some settings and a heart disease-causing effect. Moreover, activation of AMPK in the hypothalamus may cause undesired consequences, such as an increase in feeding and body weight gain. These effects, therefore, must be carefully assessed for the development of therapeutic drugs targeting AMPK.
Collapse
Affiliation(s)
- Hee Yun
- Kyung Hee University, Medical Research Center and Biomedical Science Institute, School of Medicine, Department of Biochemistry and Molecular Biology, Seoul, Republic of Korea
| | | |
Collapse
|
126
|
Zhang CX, Pan SN, Meng RS, Peng CQ, Xiong ZJ, Chen BL, Chen GQ, Yao FJ, Chen YL, Ma YD, Dong YG. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats. Clin Exp Pharmacol Physiol 2011; 38:55-62. [PMID: 21083698 DOI: 10.1111/j.1440-1681.2010.05461.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1. Metformin is an activator of AMP-activated protein kinase (AMPK). Recent studies suggest that pharmacological activation of AMPK inhibits cardiac hypertrophy. In the present study, we examined whether long-term treatment with metformin could attenuate ventricular hypertrophy in a rat model. The potential involvement of nitric oxide (NO) in the effects of metformin was also investigated. 2. Ventricular hypertrophy was established in rats by transaortic constriction (TAC). Starting 1 week after the TAC procedure, rats were treated with metformin (300 mg/kg per day, p.o.), N(G)-nitro-L-arginine methyl ester (L-NAME; 50 mg/kg per day, p.o.) or both for 8 weeks prior to the assessment of haemodynamic function and cardiac hypertrophy. 3. Cultured cardiomyocytes were used to examine the effects of metformin on the AMPK-endothelial NO synthase (eNOS) pathway. Cells were exposed to angiotensin (Ang) II (10⁻⁶ mol/L) for 24 h under serum-free conditions in the presence or absence of metformin (10⁻³ mol/L), compound C (10⁻⁶ mol/L), L-NAME (10⁻⁶ mol/L) or their combination. The rate of incorporation of [³H]-leucine was determined, western blotting analyses of AMPK-eNOS, neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) were undertaken and the concentration of NO in culture media was determined. 4. Transaortic constriction resulted in significant haemodynamic dysfunction and ventricular hypertrophy. Myocardial fibrosis was also evident. Treatment with metformin improved haemodynamic function and significantly attenuated ventricular hypertrophy. Most of the effects of metformin were abolished by concomitant L-NAME treatment. L-NAME on its own had no effect on haemodynamic function and ventricular hypertrophy in TAC rats. 5. In cardiomyocytes, metformin inhibited AngII-induced protein synthesis, an effect that was suppressed by the AMPK inhibitor compound C or the eNOS inhibitor L-NAME. The improvement in cardiac structure and function following metformin treatment was associated with enhanced phosphorylation of AMPK and eNOS and increased NO production. 6. The findings of the present study indicate that long-term treatment with metformin could attenuate ventricular hypertrophy induced by pressure overload via activation of AMPK and a downstream signalling pathway involving eNOS-NO.
Collapse
Affiliation(s)
- Cheng-Xi Zhang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Sancho Solis R, Ge Y, Walker JW. A preferred AMPK phosphorylation site adjacent to the inhibitory loop of cardiac and skeletal troponin I. Protein Sci 2011; 20:894-907. [PMID: 21416543 PMCID: PMC3125873 DOI: 10.1002/pro.623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/01/2011] [Accepted: 03/07/2011] [Indexed: 12/15/2022]
Abstract
5'-AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is activated when cellular AMP to ATP ratios rise, potentially serving as a key regulator of cellular energetics. Among the known targets of AMPK are catabolic and anabolic enzymes, but little is known about the ability of this kinase to phosphorylate myofilament proteins and thereby regulating the contractile apparatus of striated muscles. Here, we demonstrate that troponin I isoforms of cardiac (cTnI) and fast skeletal (fsTnI) muscles are readily phosphorylated by AMPK. For cTnI, two highly conserved serine residues were identified as AMPK sites using a combination of high-resolution top-down electron capture dissociation mass spectrometry, (32) P-incorporation, synthetic peptides, phospho-specific antibodies, and site-directed mutagenesis. These AMPK sites in cTnI were Ser149 adjacent to the inhibitory loop and Ser22 in the cardiac-specific N-terminal extension, at the level of cTnI peptides, the intact cTnI subunit, whole cardiac troponin complexes and skinned cardiomyocytes. Phosphorylation time-course experiments revealed that Ser149 was the preferred site, because it was phosphorylated 12-16-fold faster than Ser22 in cTnI. Ser117 in fsTnI, analogous to Ser149 in cTnI, was phosphorylated with similar kinetics as cTnI Ser149. Hence, the master energy-sensing protein AMPK emerges as a possibly important regulator of cardiac and skeletal contractility via phosphorylation of a preferred site adjacent to the inhibitory loop of the thin filament protein TnI.
Collapse
Affiliation(s)
- Raquel Sancho Solis
- Department of Physiology, School of Medicine and Public Health, University of Wisconsin-MadisonWI 53706
| | - Ying Ge
- Department of Physiology, School of Medicine and Public Health, University of Wisconsin-MadisonWI 53706
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-MadisonWI 53706
| | - Jeffery W Walker
- Department of Physiology, University of ArizonaTucson, Arizona 85724
| |
Collapse
|
128
|
Kang S, Chemaly ER, Hajjar RJ, Lebeche D. Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways. J Biol Chem 2011; 286:18465-73. [PMID: 21478152 DOI: 10.1074/jbc.m110.200022] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Resistin has been suggested to be involved in the development of diabetes and insulin resistance. We recently reported that resistin is expressed in diabetic hearts and promotes cardiac hypertrophy; however, the mechanisms underlying this process are currently unknown. Therefore, we wanted to elucidate the mechanisms associated with resistin-induced cardiac hypertrophy and myocardial insulin resistance. Overexpression of resistin using adenoviral vector in neonatal rat ventricular myocytes was associated with inhibition of AMP-activated protein kinase (AMPK) activity, activation of tuberous sclerosis complex 2/mammalian target of rapamycin (mTOR) pathway, and increased cell size, [(3)H]leucine incorporation (i.e. protein synthesis) and mRNA expression of the hypertrophic marker genes, atrial natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain. Activation of AMPK with 5-aminoimidazole-4-carbozamide-1-β-D-ribifuranoside or inhibition of mTOR with rapamycin or mTOR siRNA attenuated these resistin-induced changes. Furthermore, resistin increased serine phosphorylation of insulin receptor substrate (IRS1) through the activation of the apoptosis signal-regulating kinase 1/c-Jun N-terminal Kinase (JNK) pathway, a module known to stimulate insulin resistance. Inhibition of JNK (with JNK inhibitor SP600125 or using dominant-negative JNK) reduced serine 307 phosphorylation of IRS1. Resistin also stimulated the activation of p70(S6K), a downstream kinase target of mTOR, and increased phosphorylation of the IRS1 serine 636/639 residues, whereas treatment with rapamycin reduced the phosphorylation of these residues. Interestingly, these in vitro signaling pathways were also operative in vivo in ventricular tissues from adult rat hearts overexpressing resistin. These data demonstrate that resistin induces cardiac hypertrophy and myocardial insulin resistance, possibly via the AMPK/mTOR/p70(S6K) and apoptosis signal-regulating kinase 1/JNK/IRS1 pathways.
Collapse
Affiliation(s)
- Soojeong Kang
- Cardiovascular Research Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
129
|
Padmasekar M, Sharifpanah F, Finkensieper A, Wartenberg M, Sauer H. Stimulation of cardiomyogenesis of embryonic stem cells by nitric oxide downstream of AMP-activated protein kinase and mTOR signaling pathways. Stem Cells Dev 2011; 20:2163-75. [PMID: 21470048 DOI: 10.1089/scd.2010.0581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nitric oxide (NO) is a key regulator of cardiomyogenesis of embryonic stem (ES) cells. However, signaling pathways involving the energy sensor AMP-activated protein kinase (AMPK) and/or mammalian target of rapamycin (mTOR) resulting in NO generation and stimulation of cardiomyogenesis are currently not known. Herein, the role of AMPK- versus mTOR-regulated signaling pathways and the impact of NO for cardiomyogenesis of mouse ES cells were investigated. Activation of AMPK by 5-amino-4-imidazolecarboxamide riboside (AICAr) or metformin as well as inactivation of AMPK by compound C (Comp C), siRNA ablation of AMPKα2, or exogenous ATP stimulated cardiomyogenesis of ES cells. Inhibition of AMPK by Comp C resulted in phosphorylation of mTOR and generation of NO. NO generation was likewise achieved when AMPK was either activated by AICAr or mTOR was inhibited by rapamycin, suggesting that NO generation occurred by two mutually active parallel signaling pathways, one being AMPK dependent and mTOR independent (AICAr pathway) and the other being AMPK independent and mTOR dependent (Comp C pathway). Consequently, cardiomyogenesis as well as NO generation was completely abrogated when ES cells were cultivated in the presence of rapamycin and Comp C, which inhibit both signaling pathways. The impact of NO for cardiomyogenesis of ES cells was corroborated in experiments showing that the effects of Comp C on cardiomyogenesis of ES cells were abolished by the NO synthase inhibitors NG-monomethyl-l-arginine and N (G)-nitro-l-arginine methyl ester. In summary, our data demonstrate that NO generation downstream of AMPK and mTOR is activated by distinct, interacting signaling pathways that initiate cardiomyogenesis of ES cells.
Collapse
Affiliation(s)
- Manju Padmasekar
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
130
|
Turdi S, Kandadi MR, Zhao J, Huff AF, Du M, Ren J. Deficiency in AMP-activated protein kinase exaggerates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol 2011; 50:712-22. [PMID: 21167835 PMCID: PMC3049828 DOI: 10.1016/j.yjmcc.2010.12.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 12/09/2010] [Indexed: 11/23/2022]
Abstract
AMPK, a metabolic sensor, protects against ischemic injury and cardiac hypertrophy although its role in obesity is unclear. This study was designed to examine the impact of AMPK deficiency on cardiac dysfunction following high fat feeding. Adult WT and transgenic mice overexpressing a kinase dead (KD) α2 isoform (K45R mutation) of AMPK were fed a low or high fat diet for 20 weeks. DEXA was used to confirm adiposity. Wheat germ agglutinin immunostaining was used to evaluate myocardial histology. Myocardial function was evaluated using echocardiography and edge-detection. AMPK activity was analyzed using fluorescence polarization assays. [1-(14)C] oleate was used to determine fatty acid oxidation. Expression of AMPK, α1, α2, ACC, Akt, the Glut-4 translocation mediator Akt substrate of 160KD (AS160), mTOR, total and membrane Glut-4 was evaluated using Western blot. AMPK activity was decreased in KD mice regardless of diet regimen. High fat diet led to obesity, glucose intolerance and cardiac hypertrophy with accentuated glucose intolerance, dampened fatty acid oxidation and cardiac hypertrophy in KD mice. High fat feeding triggered lower fractional shortening, increased LV mass, left ventricular end diastolic/systolic diameter, decreased PS, ± dL/dt, prolonged TR(90) and intracellular Ca(2+) mishandling with a more pronounced effect in KD mice. High fat diet and AMPK KD lessened AMPKα2 isoform activity and ACC phosphorylation. AMPK deficiency unveiled or accentuated high fat diet-induced decrease in phosphorylation of Akt and AS160, membrane fraction of Glut-4 and mTOR expression (a greater mTOR phosphorylation). Taken together, these data suggest that AMPK deficiency exacerbates obesity-induced cardiac hypertrophy and contractile dysfunction, possibly associated with AS160 and mTOR signaling.
Collapse
Affiliation(s)
- Subat Turdi
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Machender R. Kandadi
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Junxing Zhao
- Department of Animal Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Anna F. Huff
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Min Du
- Department of Animal Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Jun Ren
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
131
|
Lee KM, Jo S, Kim H, Lee J, Park CS. Functional modulation of AMP-activated protein kinase by cereblon. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:448-55. [DOI: 10.1016/j.bbamcr.2011.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 12/23/2010] [Accepted: 01/03/2011] [Indexed: 11/15/2022]
|
132
|
Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, Marcinek DJ, Dorn GW, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 2011; 108:837-46. [PMID: 21311045 DOI: 10.1161/circresaha.110.232306] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Mitochondrial dysfunction has been implicated in several cardiovascular diseases; however, the roles of mitochondrial oxidative stress and DNA damage in hypertensive cardiomyopathy are not well understood. OBJECTIVE We evaluated the contribution of mitochondrial reactive oxygen species (ROS) to cardiac hypertrophy and failure by using genetic mouse models overexpressing catalase targeted to mitochondria and to peroxisomes. METHODS AND RESULTS Angiotensin II increases mitochondrial ROS in cardiomyocytes, concomitant with increased mitochondrial protein carbonyls, mitochondrial DNA deletions, increased autophagy and signaling for mitochondrial biogenesis in hearts of angiotensin II-treated mice. The causal role of mitochondrial ROS in angiotensin II-induced cardiomyopathy is shown by the observation that mice that overexpress catalase targeted to mitochondria, but not mice that overexpress wild-type peroxisomal catalase, are resistant to cardiac hypertrophy, fibrosis and mitochondrial damage induced by angiotensin II, as well as heart failure induced by overexpression of Gαq. Furthermore, primary damage to mitochondrial DNA, induced by zidovudine administration or homozygous mutation of mitochondrial polymerase γ, is also shown to contribute directly to the development of cardiac hypertrophy, fibrosis and failure. CONCLUSIONS These data indicate the critical role of mitochondrial ROS in cardiac hypertrophy and failure and support the potential use of mitochondrial-targeted antioxidants for prevention and treatment of hypertensive cardiomyopathy.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, 1959 Pacific Ave. NE, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Dunn ME, Manfredi TG, Cosmas AC, Vetter FJ, King JN, Rodgers RL. Mechanical function, glycolysis, and ultrastructure of perfused working mouse hearts following thoracic aortic constriction. Cardiovasc Pathol 2011; 20:343-51. [PMID: 21296006 DOI: 10.1016/j.carpath.2010.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/02/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Glycolytic flux in the mouse heart during the progression of left ventricular hypertrophy (LVH) and mechanical dysfunction has not been described. METHODS The main objectives of this study were to characterize the effects of thoracic aortic banding, of 3- and 6-week duration, on: (1) left ventricular (LV) systolic and diastolic function of perfused working hearts quantified by analysis of pressure-volume loops; (2) glycolytic flux in working hearts expressed as the rate of conversion of (3)H-glucose to (3)H(2)O, and (3) ultrastructure of LV biopsies assessed by quantitative and qualitative analysis of light and electron micrographs. RESULTS Results revealed that (1) indexes of systolic function, including LV end-systolic pressure, cardiac output, and rate of LV pressure development and decline, were depressed to similar degrees at 3 and 6 weeks post-banding; (2) diastolic dysfunction, represented by elevated LV end-diastolic pressure and volume, was more severe at 6 than at 3 weeks, consistent with a transition to failure; (3) a progressive decline in glycolytic flux that was roughly half the control rate by 6 weeks post-banding; and (4) structural derangements, manifested by increases in interstitial collagen content and myocyte Z-band disruption, that were more marked at 3 weeks than at 6 weeks. CONCLUSION The results are consistent with the view that myocyte damage, fibrosis, and suppressed glycolytic flux represent maladaptive structural and metabolic remodeling that contribute to the development of failure in high pressure load-induced LVH in the mouse.
Collapse
Affiliation(s)
- Michael E Dunn
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | |
Collapse
|
134
|
Beauloye C, Bertrand L, Horman S, Hue L. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 2011; 90:224-33. [PMID: 21285292 DOI: 10.1093/cvr/cvr034] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heart failure is a progressive muscular disorder leading to a deterioration of the heart characterized by a contractile dysfunction and a chronic energy deficit. As a consequence, the failing heart is unable to meet the normal metabolic and energy needs of the body. The transition between compensated left ventricular hypertrophy and the de-compensated heart is multifactorial, although metabolic disturbances are considered to play a significant role. In this respect, the AMP-activated protein kinase (AMPK) could be a potential target in heart failure development. AMPK senses the energy state of the cell and orchestrates a global metabolic response to energy deprivation. We briefly review here the current knowledge about the chronic energy deficit of the failing heart, as well as the role of AMPK in energy homeostasis and in the control of non-metabolic targets in relation to cardiac hypertrophy and heart failure. The relative importance of energetic and non-metabolic effects in the potential cardioprotective action of AMPK is discussed.
Collapse
Affiliation(s)
- Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardio-Vasculaire, Université catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
135
|
Zungu M, Schisler JC, Essop MF, McCudden C, Patterson C, Willis MS. Regulation of AMPK by the ubiquitin proteasome system. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:4-11. [PMID: 21224036 DOI: 10.1016/j.ajpath.2010.11.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/13/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
Abstract
The 5'-AMP-activated protein kinase (AMPK) functions as a metabolic fuel gauge that is activated in response to environmental stressors to restore cellular energy balance. In the heart, AMPK coordinates the activation of glucose and fatty acid metabolic pathways to ensure increased production of myocardial ATP when required, such as during cardiac ischemia/reperfusion and hypertrophy, causing an increase in AMPK activity that can be viewed as both protective and maladaptive. While we understand the basic regulation of AMPK activity by kinases, recent studies have introduced the concept that AMPK is regulated by other post-translational modifications, specifically ubiquitination. These studies reported that the ubiquitin ligase cell death-inducing DFFA-like effector a ubiquitinates the β subunit of AMPK to regulate its steady-state protein levels. Other investigators found that AMPK regulatory components, including the AMPK α subunit and AMPK kinases NUAK1 and MARK4, can be ubiquitinated with atypical ubiquitin chains. The USP9X-deubiquitinating enzyme was identified to remove ubiquitination from both NUAK1 and MARK4. Lastly, AMPK activation increases the expression of the ubiquitin ligases MAFBx/Atrogin-1 and MuRF1. These ubiquitin ligases regulate key cardiac transcription factors to control cardiomyocyte mass and remodeling, thus suggesting another mechanism by which AMPK may function in the heart. The relevance of AMPK ubiquitination in cardiac disease has yet to be tested directly, but it likely represents an important mechanism that occurs in common cardiac diseases that may be targeted for therapy.
Collapse
Affiliation(s)
- Makhosazane Zungu
- Discipline of Human Physiology, University of KwaZulu Natal, Durban, South Africa
| | | | | | | | | | | |
Collapse
|
136
|
Growth restriction before and after birth increases kinase signaling pathways in the adult rat heart. J Dev Orig Health Dis 2010; 1:376-85. [DOI: 10.1017/s2040174410000607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
137
|
Banerjee SK, Wang DW, Alzamora R, Huang XN, Pastor-Soler NM, Hallows KR, McGaffin KR, Ahmad F. SGLT1, a novel cardiac glucose transporter, mediates increased glucose uptake in PRKAG2 cardiomyopathy. J Mol Cell Cardiol 2010; 49:683-92. [PMID: 20600102 PMCID: PMC2932762 DOI: 10.1016/j.yjmcc.2010.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/09/2010] [Indexed: 01/04/2023]
Abstract
Human mutations in the gene PRKAG2 encoding the gamma2 subunit of AMP-activated protein kinase (AMPK) cause a glycogen storage cardiomyopathy. Transgenic mice (TG(T400N)) with the human T400N mutation exhibit inappropriate activation of AMPK and consequent glycogen storage in the heart. Although increased glucose uptake and activation of glycogen synthesis have been documented in PRKAG2 cardiomyopathy, the mechanism of increased glucose uptake has been uncertain. Wildtype (WT), TG(T400N), and TG(alpha2DN) (carrying a dominant negative, kinase dead alpha2 catalytic subunit of AMPK) mice were studied at ages 2-8 weeks. Cardiac mRNA expression of sodium-dependent glucose transporter 1 (SGLT1), but not facilitated-diffusion glucose transporter 1 (GLUT1) or GLUT4, was increased approximately 5- to 7-fold in TG(T400N) mice relative to WT. SGLT1 protein was similarly increased at the cardiac myocyte sarcolemma in TG(T400N) mice. Phlorizin, a specific SGLT1 inhibitor, attenuated cardiac glucose uptake in TG(T400N) mice by approximately 40%, but not in WT mice. Chronic phlorizin treatment reduced cardiac glycogen content by approximately 25% in TG(T400N) mice. AICAR, an AMPK activator, increased cardiac SGLT1 mRNA expression approximately 3-fold in WT mice. Relative to TG(T400N) mice, double transgenic (TG(T400N)/TG(alpha2DN)) mice had decreased ( approximately 50%) cardiac glucose uptake and decreased (approximately 70%) cardiac SGLT1 expression. TG(T400N) hearts had increased binding activity of the transcription factors HNF-1 and Sp1 to the promoter of the gene encoding SGLT1. Our data suggest that upregulation of cardiac SGLT1 is responsible for increased cardiac glucose uptake in the TG(T400N) mouse. Increased AMPK activity leads to upregulation of SGLT1, which in turn mediates increased cardiac glucose uptake.
Collapse
Affiliation(s)
- Sanjay K. Banerjee
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - David W. Wang
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rodrigo Alzamora
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xueyin N. Huang
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Núria M. Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Kenneth R. Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Ferhaan Ahmad
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
138
|
Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 2010; 285:37503-12. [PMID: 20861022 DOI: 10.1074/jbc.m110.136796] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diabetes and high glucose (HG) increase the generation of NADPH oxidase-derived reactive oxygen species and induce apoptosis of glomerular epithelial cells (podocytes). Loss of podocytes contributes to albuminuria, a major risk factor for progression of kidney disease. Here, we show that HG inactivates AMP-activated protein kinase (AMPK), up-regulates Nox4, enhances NADPH oxidase activity, and induces podocyte apoptosis. Activation of AMPK blocked HG-induced expression of Nox4, NADPH oxidase activity, and apoptosis. We also identified the tumor suppressor protein p53 as a mediator of podocyte apoptosis in cells exposed to HG. Inactivation of AMPK by HG up-regulated the expression and phosphorylation of p53, and p53 acted downstream of Nox4. To investigate the mechanism of podocyte apoptosis in vivo, we used OVE26 mice, a model of type 1 diabetes. Glomeruli isolated from these mice showed decreased phosphorylation of AMPK and enhanced expression of Nox4 and p53. Pharmacologic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-riboside in OVE26 mice attenuated Nox4 and p53 expression. Administration of 5-aminoimidazole-4-carboxamide-1-riboside also prevented renal hypertrophy, glomerular basement thickening, foot process effacement, and podocyte loss, resulting in marked reduction in albuminuria. Our results uncover a novel function of AMPK that integrates metabolic input to Nox4 and provide new insight for activation of p53 to induce podocyte apoptosis. The data indicate the potential therapeutic utility of AMPK activators to block Nox4 and reactive oxygen species generation and to reduce urinary albumin excretion in type 1 diabetes.
Collapse
Affiliation(s)
- Assaad A Eid
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
AbstractAdenosine Monophosphate-activated Protein Kinase (AMPK), a serine/threonine kinase and a member of the Snf1/AMPK protein kinase family, consists of three protein subunits that together make a functional enzyme. AMPK, which is expressed in a number of tissues, including the liver, brain, and skeletal muscle, is allosterically activated by a rise in the AMP: ATP ratio (ie in a low ATP or energy depleted state). The net effect of AMPK activation is to halt energy consuming (anabolic) pathways but to promote energy conserving (catabolic) cellular pathways. AMPK has therefore often been dubbed the "metabolic master switch". AMPK also plays a critical physiological role in the cardiovascular system. Increasing evidence suggest that AMPK might also function as a sensor by responding to oxidative stress. Mostly importantly, AMPK modulates endogenous antioxidant gene expression and/or suppress the production of oxidants. AMPK promotes cardiovascular homeostasis by ensuring an optimum redox balance on the heart and vascular tissues. Dysfunctional AMPK is thought to underlie several cardiovascular pathologies. Here we review this kinase from its structure and discovery to current knowledge of its adaptive and maladaptive role in the cardiovascular system.
Collapse
Affiliation(s)
- Najeeb A Shirwany
- Department of Biochemistry and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ming-Hui Zou
- Department of Biochemistry and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
140
|
Kolwicz SC, Tian R. Assessment of cardiac function and energetics in isolated mouse hearts using 31P NMR spectroscopy. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2010. [PMID: 20834220 DOI: 10.3791/2069.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/26/2022]
Abstract
Bioengineered mouse models have become powerful research tools in determining causal relationships between molecular alterations and models of cardiovascular disease. Although molecular biology is necessary in identifying key changes in the signaling pathway, it is not a surrogate for functional significance. While physiology can provide answers to the question of function, combining physiology with biochemical assessment of metabolites in the intact, beating heart allows for a complete picture of cardiac function and energetics. For years, our laboratory has utilized isolated heart perfusions combined with nuclear magnetic resonance (NMR) spectroscopy to accomplish this task. Left ventricular function is assessed by Langendorff-mode isolated heart perfusions while cardiac energetics is measured by performing (31)P magnetic resonance spectroscopy of the perfused hearts. With these techniques, indices of cardiac function in combination with levels of phosphocreatine and ATP can be measured simultaneously in beating hearts. Furthermore, these parameters can be monitored while physiologic or pathologic stressors are instituted. For example, ischemia/reperfusion or high workload challenge protocols can be adopted. The use of aortic banding or other models of cardiac pathology are apt as well. Regardless of the variants within the protocol, the functional and energetic significance of molecular modifications of transgenic mouse models can be adequately described, leading to new insights into the associated enzymatic and metabolic pathways. Therefore, (31)P NMR spectroscopy in the isolated perfused heart is a valuable research technique in animal models of cardiovascular disease.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, USA
| | | |
Collapse
|
141
|
Kolwicz SC, Tian R. Assessment of cardiac function and energetics in isolated mouse hearts using 31P NMR spectroscopy. J Vis Exp 2010:2069. [PMID: 20834220 PMCID: PMC3156011 DOI: 10.3791/2069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Bioengineered mouse models have become powerful research tools in determining causal relationships between molecular alterations and models of cardiovascular disease. Although molecular biology is necessary in identifying key changes in the signaling pathway, it is not a surrogate for functional significance. While physiology can provide answers to the question of function, combining physiology with biochemical assessment of metabolites in the intact, beating heart allows for a complete picture of cardiac function and energetics. For years, our laboratory has utilized isolated heart perfusions combined with nuclear magnetic resonance (NMR) spectroscopy to accomplish this task. Left ventricular function is assessed by Langendorff-mode isolated heart perfusions while cardiac energetics is measured by performing 31P magnetic resonance spectroscopy of the perfused hearts. With these techniques, indices of cardiac function in combination with levels of phosphocreatine and ATP can be measured simultaneously in beating hearts. Furthermore, these parameters can be monitored while physiologic or pathologic stressors are instituted. For example, ischemia/reperfusion or high workload challenge protocols can be adopted. The use of aortic banding or other models of cardiac pathology are apt as well. Regardless of the variants within the protocol, the functional and energetic significance of molecular modifications of transgenic mouse models can be adequately described, leading to new insights into the associated enzymatic and metabolic pathways. Therefore, 31P NMR spectroscopy in the isolated perfused heart is a valuable research technique in animal models of cardiovascular disease.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, USA
| | | |
Collapse
|
142
|
Shimano M, Ouchi N, Shibata R, Ohashi K, Pimentel DR, Murohara T, Walsh K. Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. J Mol Cell Cardiol 2010; 49:210-20. [PMID: 20206634 PMCID: PMC2885542 DOI: 10.1016/j.yjmcc.2010.02.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/19/2010] [Accepted: 02/20/2010] [Indexed: 12/15/2022]
Abstract
Although increasing evidence indicates that an adipokine adiponectin exerts protective actions on heart, its effects on coronary angiogenesis following pressure overload have not been examined previously. Because disruption of angiogenesis during heart growth leads to contractile dysfunction and heart failure, we hypothesized that adiponectin modulates cardiac remodeling in response to pressure overload through its ability to regulate adaptive angiogenesis. Adiponectin-knockout (APN-KO) and wild-type (WT) mice were subjected to pressure overload caused by transverse aortic constriction (TAC). APN-KO mice exhibited greater cardiac hypertrophy, pulmonary congestion, left ventricular (LV) interstitial fibrosis and LV systolic dysfunction after TAC surgery compared with WT mice. APN-KO mice also displayed reduced capillary density in the myocardium after TAC, which was accompanied by a significant decrease in expression of vascular endothelial growth factor (VEGF) and phosphorylation of AMP-activated protein kinase (AMPK). Inhibition of AMPK in WT mice resulted in aggravated LV systolic function, attenuated myocardial capillary density and decreased VEGF expression in response to TAC. The adverse effects of AMPK inhibition on cardiac function and angiogenic response following TAC were diminished in APN-KO mice relative to WT mice. Moreover, adenovirus-mediated VEGF delivery reversed the TAC-induced deficiencies in cardiac microvessel formation and ventricular function observed in the APN-KO mice. In cultured cardiac myocytes, adiponectin treatment stimulated VEGF production, which was inhibited by inactivation of AMPK signaling pathway. Collectively, these data show that adiponectin deficiency can accelerate the transition from cardiac hypertrophy to heart failure during pressure overload through disruption of AMPK-dependent angiogenic regulatory axis.
Collapse
Affiliation(s)
- Masayuki Shimano
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, MA, USA
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, MA, USA
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, MA, USA
| | - David R. Pimentel
- Myocardial Biology Unit, Boston University Medical Campus, Boston, MA, USA
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenneth Walsh
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, MA, USA
| |
Collapse
|
143
|
Fujita Y, Hosokawa M, Fujimoto S, Mukai E, Abudukadier A, Obara A, Ogura M, Nakamura Y, Toyoda K, Nagashima K, Seino Y, Inagaki N. Metformin suppresses hepatic gluconeogenesis and lowers fasting blood glucose levels through reactive nitrogen species in mice. Diabetologia 2010; 53:1472-81. [PMID: 20349346 DOI: 10.1007/s00125-010-1729-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/24/2010] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Metformin, the major target of which is liver, is commonly used to treat type 2 diabetes. Although metformin activates AMP-activated protein kinase (AMPK) in hepatocytes, the mechanism of activation is still not well known. To investigate AMPK activation by metformin in liver, we examined the role of reactive nitrogen species (RNS) in suppression of hepatic gluconeogenesis. METHODS To determine RNS, we performed fluorescence examination and immunocytochemical staining in mouse hepatocytes. Since metformin is a mild mitochondrial complex I inhibitor, we compared its effects on suppression of gluconeogenesis, AMPK activation and generation of the RNS peroxynitrite (ONOO(-)) with those of rotenone, a representative complex I inhibitor. To determine whether endogenous nitric oxide production is required for ONOO(-) generation and metformin action, we used mice lacking endothelial nitric oxide synthase (eNOS). RESULTS Metformin and rotenone significantly decreased gluconeogenesis and increased phosphorylation of AMPK in wild-type mouse hepatocytes. However, unlike rotenone, metformin did not increase the AMP/ATP ratio. It did, however, increase ONOO(-) generation, whereas rotenone did not. Exposure of eNOS-deficient hepatocytes to metformin did not suppress gluconeogenesis, activate AMPK or increase ONOO(-) generation. Furthermore, metformin lowered fasting blood glucose levels in wild-type diabetic mice, but not in eNOS-deficient diabetic mice. CONCLUSIONS/INTERPRETATION Activation of AMPK by metformin is dependent on ONOO(-). For metformin action in liver, intra-hepatocellular eNOS is required.
Collapse
Affiliation(s)
- Y Fujita
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Jiang SY, Xu M, Ma XW, Xiao H, Zhang YY. A distinct AMP-activated protein kinase phosphorylation site characterizes cardiac hypertrophy induced by L-thyroxine and angiotensin II. Clin Exp Pharmacol Physiol 2010; 37:919-25. [PMID: 20497424 DOI: 10.1111/j.1440-1681.2010.05404.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. The purpose of the present study was to evaluate differences in the AMP-activated protein kinase (AMPK) phosphorylation sites in cardiac hypertrophy induced by L-thyroxine and angiotensin (Ang) II. 2. Cardiac hypertrophy was induced in wild-type and AMPKalpha2-knockout mice by treatment with 1 mg/kg, i.p., thyroxine or 1.44 mg/kg per day AngII for 14 days. The phenotype of the hypertrophy was evaluated using echocardiographic measurements and histological analyses. The phosphorylation of AMPK at alpha-Ser(485/491) and alpha-Thr(172) was determined by western blot analysis. 3. In wild-type mice, the phosphorylation of AMPKalpha-Ser(485/491) was significantly elevated in the AngII-treated group, but not in the thyroxine-treated group, compared with the vehicle control group. In contrast, the phosphorylation of AMPKalpha-Thr(172) was significantly increased by thyroxine, but not AngII, treatment compared with the vehicle control group. Furthermore, knockout of the AMPKalpha2 subunit abolished phosphorylation at the alpha-Ser(485/491) site and significantly suppressed phosphorylation at the alpha-Thr(172) site, resulting in alleviation of thyroxine- but not AngII-induced hypertrophy. 4. In conclusion, L-thyroxine and AngII induce the phosphorylation of distinct sites of AMPK in cardiac hypertrophy. Phosphorylation of AMPK alpha-Thr(172) may contribute to thyroxine-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Sheng-Yang Jiang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | | | | | | | | |
Collapse
|
145
|
Hao J, Kim HS, Choi W, Ha TS, Ahn HY, Kim CH. Mechanical Stretch-Induced Protection against Myocardial Ischemia-Reperfusion Injury Involves AMP-Activated Protein Kinase. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:1-9. [PMID: 20221273 DOI: 10.4196/kjpp.2010.14.1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/31/2009] [Accepted: 01/18/2010] [Indexed: 02/04/2023]
Abstract
AMP-activated protein kinase (AMPK) protects various tissues and cells from ischemic insults and is activated by many stimuli including mechanical stretch. Therefore, this study investigated if the activation of AMPK is involved in stretch-induced cardioprotection (SIC). Intraventricular balloon and aorto-caval shunt (ACS) were used to stretch rat hearts ex vivo and in vivo, respectively. Stretch preconditioning reduced myocardial infarct induced by ischemia-reperfusion (I/R) and improved post-ischemic functional recovery. Phosphorylation of AMPK and its downstream substrate, acetyl-CoA carboxylase (ACC) were increased by mechanical stretch and ACC phosphorylation was completely blocked by the AMPK inhibitor, Compound C. AMPK activator (AICAR) mimicked SIC. Gadolinium, a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of AMPK and ACC, whereas diltiazem, a specific L-type calcium channel blocker, did not affect AMPK activation. Furthermore, SIC was abrogated by Compound C and gadolinium. The in vivo stretch induced by ACS increased AMPK activation and reduced myocardial infarct. These findings indicate that stretch preconditioning can induce the cardioprotection against I/R injury, and activation of AMPK plays an important role in SIC, which might be mediated by SACs.
Collapse
Affiliation(s)
- Jia Hao
- Institute of Biomedical and Pharmaceutical Technology (IBPT), Fuzhou University, Fuzhou, 350002, PR China
| | | | | | | | | | | |
Collapse
|
146
|
Pang T, Rajapurohitam V, Cook MA, Karmazyn M. Differential AMPK phosphorylation sites associated with phenylephrine vs. antihypertrophic effects of adenosine agonists in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2010; 298:H1382-90. [PMID: 20190100 DOI: 10.1152/ajpheart.00424.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stimulation of cardiac AMP-activated protein kinase (AMPK) has been demonstrated in both prohypertrophic and antihypertrophic settings, although the reasons for such discrepant results are not well understood. We determined how AMPK is regulated in response to phenylephrine-induced cardiomyocyte hypertrophy and assessed whether AMPK activity may be a factor underlying the antihypertrophic effect of adenosine receptor agonists. The role of AMPK in hypertrophic responses was determined by assessing the effect of the AMPK activator 5-aminoimidazole-4-carboxyamide ribonucleoside on three hypertrophic indexes, including protein synthesis, cell surface area, and fetal gene expression. The changes in phosphorylation of the catalytic alpha-subunit of AMPK at two different sites, Thr(172) and Ser(485/491), in response to phenylephrine and adenosine receptor agonists were also examined. 5-Aminoimidazole-4-carboxyamide ribonucleoside completely abolished phenylephrine-induced increases in protein synthesis, cell surface area, and fetal gene expression. AMPK phosphorylation time course studies revealed that phenylephrine induced a time-dependent activation at site Ser(485/491), in contrast to adenosine receptor agonists, which demonstrated rapid AMPK phosphorylation at Thr(172). Furthermore, the phosphorylation at Ser(485/491) by phenylephrine was not affected by the addition of adenosine receptor agonists, although, conversely, phosphorylation of AMPK at Thr(172) by adenosine receptor agonists was abrogated by the addition of phenylephrine. We propose from these results that cardiomyocyte hypertrophic and antihypertrophic responses, at least with respect to inhibition of phenylephrine-induced hypertrophy by adenosine receptor agonists, are mediated by multisite AMPK regulation. The latter are reflected by increased phosphorylation at Ser(485/491) and at Thr(172), associated with prohypertrophic and antihypertrophic responses, respectively.
Collapse
Affiliation(s)
- Theresa Pang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
147
|
Abstract
The function and survival of all organisms is dependent on the dynamic control of energy metabolism, when energy demand is matched to energy supply. The AMP-activated protein kinase (AMPK) alphabetagamma heterotrimer has emerged as an important integrator of signals that control energy balance through the regulation of multiple biochemical pathways in all eukaryotes. In this review, we begin with the discovery of the AMPK family and discuss the recent structural studies that have revealed the molecular basis for AMP binding to the enzyme's gamma subunit. AMPK's regulation involves autoinhibitory features and phosphorylation of both the catalytic alpha subunit and the beta-targeting subunit. We review the role of AMPK at the cellular level through examination of its many substrates and discuss how it controls cellular energy balance. We look at how AMPK integrates stress responses such as exercise as well as nutrient and hormonal signals to control food intake, energy expenditure, and substrate utilization at the whole body level. Lastly, we review the possible role of AMPK in multiple common diseases and the role of the new age of drugs targeting AMPK signaling.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia.
| | | |
Collapse
|
148
|
Francione L, Smith PK, Accari SL, Taylor PE, Bokko PB, Bozzaro S, Beech PL, Fisher PR. Legionella pneumophila multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased Dictyostelium cells. Dis Model Mech 2009; 2:479-89. [PMID: 19638422 DOI: 10.1242/dmm.003319] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human patients with mitochondrial diseases are more susceptible to bacterial infections, particularly of the respiratory tract. To investigate the susceptibility of mitochondrially diseased cells to an intracellular bacterial respiratory pathogen, we exploited the advantages of Dictyostelium discoideum as an established model for mitochondrial disease and for Legionella pneumophila pathogenesis. Legionella infection of macrophages involves recruitment of mitochondria to the Legionella-containing phagosome. We confirm here that this also occurs in Dictyostelium and investigate the effect of mitochondrial dysfunction on host cell susceptibility to Legionella. In mitochondrially diseased Dictyostelium strains, the pathogen was taken up at normal rates, but it grew faster and reached counts that were twofold higher than in the wild-type host. We reported previously that other mitochondrial disease phenotypes for Dictyostelium are the result of the activity of an energy-sensing cellular alarm protein, AMP-activated protein kinase (AMPK). Here, we show that the increased ability of mitochondrially diseased cells to support Legionella proliferation is suppressed by antisense-inhibiting expression of the catalytic AMPKalpha subunit. Conversely, mitochondrial dysfunction is phenocopied, and intracellular Legionella growth is enhanced, by overexpressing an active form of AMPKalpha in otherwise normal cells. These results indicate that AMPK signalling in response to mitochondrial dysfunction enhances Legionella proliferation in host cells.
Collapse
Affiliation(s)
- Lisa Francione
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | | | | | | | | | | | | | | |
Collapse
|
149
|
AMP-activated protein kinase pathway: a potential therapeutic target in cardiometabolic disease. Clin Sci (Lond) 2009; 116:607-20. [PMID: 19275766 PMCID: PMC2762688 DOI: 10.1042/cs20080066] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AMPK (AMP-activated protein kinase) is a heterotrimetric enzyme that is expressed in many tissues, including the heart and vasculature, and plays a central role in the regulation of energy homoeostasis. It is activated in response to stresses that lead to an increase in the cellular AMP/ATP ratio caused either by inhibition of ATP production (i.e. anoxia or ischaemia) or by accelerating ATP consumption (i.e. muscle contraction or fasting). In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. There is increasing evidence that AMPK is implicated in the pathophysiology of cardiovascular and metabolic diseases. A principle mode of AMPK activation is phosphorylation by upstream kinases [e.g. LKB1 and CaMK (Ca2+/calmodulin-dependent protein kinase], which leads to direct effects on tissues and phosphorylation of various downstream kinases [e.g. eEF2 (eukaryotic elongation factor 2) kinase and p70 S6 kinase]. These upstream and downstream kinases of AMPK have fundamental roles in glucose metabolism, fatty acid oxidation, protein synthesis and tumour suppression; consequently, they have been implicated in cardiac ischaemia, arrhythmias and hypertrophy. Recent mechanistic studies have shown that AMPK has an important role in the mechanism of action of MF (metformin), TDZs (thiazolinediones) and statins. Increased understanding of the beneficial effects of AMPK activation provides the rationale for targeting AMPK in the development of new therapeutic strategies for cardiometabolic disease.
Collapse
|
150
|
Saeedi R, Saran VV, Wu SSY, Kume ES, Paulson K, Chan APK, Parsons HL, Wambolt RB, Dyck JRB, Brownsey RW, Allard MF. AMP-activated protein kinase influences metabolic remodeling in H9c2 cells hypertrophied by arginine vasopressin. Am J Physiol Heart Circ Physiol 2009; 296:H1822-32. [DOI: 10.1152/ajpheart.00396.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substrate use switches from fatty acids toward glucose in pressure overload-induced cardiac hypertrophy with an acceleration of glycolysis being characteristic. The activation of AMP-activated protein kinase (AMPK) observed in hypertrophied hearts provides one potential mechanism for the acceleration of glycolysis. Here, we directly tested the hypothesis that AMPK causes the acceleration of glycolysis in hypertrophied heart muscle cells. The H9c2 cell line, derived from the embryonic rat heart, was treated with arginine vasopressin (AVP; 1 μM) to induce a cellular model of hypertrophy. Rates of glycolysis and oxidation of glucose and palmitate were measured in nonhypertrophied and hypertrophied H9c2 cells, and the effects of inhibition of AMPK were determined. AMPK activity was inhibited by 6-[4-(2-piperidin-1- yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrrazolo-[1,5-a]pyrimidine (compound C) or by adenovirus-mediated transfer of dominant negative AMPK. Compared with nonhypertrophied cells, glycolysis was accelerated and palmitate oxidation was reduced with no significant alteration in glucose oxidation in hypertrophied cells, a metabolic profile similar to that of intact hypertrophied hearts. Inhibition of AMPK resulted in the partial reduction of glycolysis in AVP-treated hypertrophied H9c2 cells. Acute exposure of H9c2 cells to AVP also activated AMPK and accelerated glycolysis. These elevated rates of glycolysis were not altered by AMPK inhibition but were blocked by agents that interfere with Ca2+ signaling, including extracellular EGTA, dantrolene, and 2-aminoethoxydiphenyl borate. We conclude that the acceleration of glycolysis in AVP-treated hypertrophied heart muscle cells is partially dependent on AMPK, whereas the acute glycolytic effects of AVP are AMPK independent and at least partially Ca2+ dependent.
Collapse
|