101
|
Acharya C, Bajaj JS. Is it time to spit? More evidence for the oral-gut-liver axis in liver disease. Hepatol Int 2021; 15:4-5. [PMID: 33479868 DOI: 10.1007/s12072-021-10136-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Chathur Acharya
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, 1201 Broad Rock Boulevard, Richmond, VA, 23249, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, 1201 Broad Rock Boulevard, Richmond, VA, 23249, USA.
| |
Collapse
|
102
|
Liu Y, Fan L, Cheng Z, Yu L, Cong S, Hu Y, Zhu L, Zhang B, Cheng Y, Zhao P, Zhao X, Cheng M. Fecal transplantation alleviates acute liver injury in mice through regulating Treg/Th17 cytokines balance. Sci Rep 2021; 11:1611. [PMID: 33452411 PMCID: PMC7810881 DOI: 10.1038/s41598-021-81263-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in intestinal microecology during acute liver failure (ALF) directly affect the occurrence and development of the disease. The study aimed to investigate the relationship between the intestinal microbiota and the key immune cells. Fecal microbiota transplantation (FMT) was used to determine whether ALF can balance Th17/Treg cytokines. The relationship between gut microbiota and clinical indicators was analyzed. BALB/c mice were treated with d-galactosamine (d-GalN) to induce a murine ALF model. FMT to d-GalN mice was conducted to test for liver function indicators. Results showed that the proportions of Lachnospiraceae, Prevotella, S24-7, Odoribacter and Rikenellaceae in d-GalN mice with intestinal microbiota disorder were restored after FMT. Further, CIA analysis showed that bacteria had a covariant relationship with clinical indicators. Microbiota could account for changes in 49.9% of the overall clinical indicators. Adonis analysis showed that Ruminococcus, and Enterococcus have a greater impact on clinical indicators. FMT down-regulated the expression of IL-17A, TNF-α, and TGF-β, while up-regulated IL-10 and IL-22. Transplantation of feces from Saccharomyces boulardii donor mice improved GalN-induced liver damage. These findings indicate that FMT attenuates d-GalN-induced liver damage in mice, and a clinical trial is required to validate the relevance of our findings in humans, and to test whether this therapeutic approach is effective for patients with ALF.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Medical Examination, Guizhou Medical University, Guiyang, Guizhou, China.,Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Linda Fan
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyang Street, Guiyang, 550002, Guizhou, China
| | - Zhuo Cheng
- Department of Clinical Medicine, Peking University Health Science Center School of Foundational Education, Peking University, Beijing, China
| | - Lei Yu
- Guizhou Maternal and Child Health Care Center, Guiyang, Guizhou, China
| | - Shuo Cong
- Deparment of Blood Transfusion, The Affiliated Tumor Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yaxin Hu
- Prenatal Diagnosis Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lili Zhu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Baofang Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyang Street, Guiyang, 550002, Guizhou, China
| | - Yiju Cheng
- Department of Respiratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Peiling Zhao
- Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyang Street, Guiyang, 550002, Guizhou, China.
| | - Mingliang Cheng
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyang Street, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
103
|
Herrero R, Sánchez G, Asensio I, López E, Ferruelo A, Vaquero J, Moreno L, de Lorenzo A, Bañares R, Lorente JA. Liver-lung interactions in acute respiratory distress syndrome. Intensive Care Med Exp 2020; 8:48. [PMID: 33336286 PMCID: PMC7746785 DOI: 10.1186/s40635-020-00337-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with liver diseases are at high risk for the development of acute respiratory distress syndrome (ARDS). The liver is an important organ that regulates a complex network of mediators and modulates organ interactions during inflammatory disorders. Liver function is increasingly recognized as a critical determinant of the pathogenesis and resolution of ARDS, significantly influencing the prognosis of these patients. The liver plays a central role in the synthesis of proteins, metabolism of toxins and drugs, and in the modulation of immunity and host defense. However, the tools for assessing liver function are limited in the clinical setting, and patients with liver diseases are frequently excluded from clinical studies of ARDS. Therefore, the mechanisms by which the liver participates in the pathogenesis of acute lung injury are not totally understood. Several functions of the liver, including endotoxin and bacterial clearance, release and clearance of pro-inflammatory cytokines and eicosanoids, and synthesis of acute-phase proteins can modulate lung injury in the setting of sepsis and other severe inflammatory diseases. In this review, we summarized clinical and experimental support for the notion that the liver critically regulates systemic and pulmonary responses following inflammatory insults. Although promoting inflammation can be detrimental in the context of acute lung injury, the liver response to an inflammatory insult is also pro-defense and pro-survival. A better understanding of the liver–lung axis will provide valuable insights into new diagnostic targets and therapeutic strategies for clinical intervention in patients with or at risk for ARDS.
Collapse
Affiliation(s)
- Raquel Herrero
- Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain. .,CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain. .,Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.
| | - Gema Sánchez
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.,Laboratory of Biochemistry, Hospital Universitario de Getafe, Madrid, Spain
| | - Iris Asensio
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - Eva López
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain
| | - Antonio Ferruelo
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain
| | - Javier Vaquero
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - Laura Moreno
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba de Lorenzo
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - José A Lorente
- Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
104
|
Zhao F, Dong T, Yuan KY, Wang NJ, Xia FZ, Liu D, Wang ZM, Ma R, Lu YL, Huang ZW. Shifts in the Bacterial Community of Supragingival Plaque Associated With Metabolic-Associated Fatty Liver Disease. Front Cell Infect Microbiol 2020; 10:581888. [PMID: 33384967 PMCID: PMC7770214 DOI: 10.3389/fcimb.2020.581888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), also known as the hepatic manifestation of metabolic disorders, has become one of the most common chronic liver diseases worldwide. The associations between some oral resident microbes and MAFLD have been described. However, changes to the oral microbial community in patients with MAFLD remain unknown. In this study, variations to the supragingival microbiota of MAFLD patients were identified. The microbial genetic profile of supragingival plaque samples from 24 MAFLD patients and 22 healthy participants were analyzed by 16S rDNA sequencing and bioinformatics analysis. Clinical variables, including indicators of insulin resistance, obesity, blood lipids, and hepatocellular damage, were evaluated with laboratory tests and physical examinations. The results showed that the diversity of the supragingival microbiota in MAFLD patients was significantly higher than that in healthy individuals. Weighted UniFrac principal coordinates analysis and partial least squares discriminant analysis showed that the samples from the MAFLD and control groups formed separate clusters (Adonis, P = 0.0120). There were 27 taxa with differential distributions (linear discriminant analysis, LDA>2.0) between two groups, among which Actinomyces spp. and Prevotella 2 spp. were over-represented in the MAFLD group with highest LDA score, while Neisseria spp. and Bergeyella spp. were more abundant in the control group. Co-occurrence networks of the top 50 abundant genera in the two groups suggested that the inter-genera relationships were also altered in the supragingival plaque of MAFLD patients. In addition, in genus level, as risk factors for the development of MAFLD, insulin resistance was positively correlated with the abundances of Granulicatella, Veillonella, Streptococcus, and Scardovia, while obesity was positively correlated to the abundances of Streptococcus, Oslenella, Scardovia, and Selenomonas. Metagenomic predictions based on Phylogenetic Investigation of Communities by Reconstruction of Unobserved States revealed that pathways related to sugar (mainly free sugar) metabolism were enriched in the supragingival plaque of the MAFLD group. In conclusion, as compared to healthy individuals, component and interactional dysbioses were observed in the supragingival microbiota of the MAFLD group.
Collapse
Affiliation(s)
- Fen Zhao
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ting Dong
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ke-Yong Yuan
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ning-Jian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Zhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Min Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai, China
| | - Rui Ma
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ying-Li Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Wei Huang
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
105
|
Microbiota reprogramming for treatment of alcohol-related liver disease. Transl Res 2020; 226:26-38. [PMID: 32687975 PMCID: PMC7572584 DOI: 10.1016/j.trsl.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
In the past decade knowledge has expanded regarding the importance of the gut microbiota in maintaining intestinal homeostasis and overall health. During this same time, we have also gained appreciation for the role of the gut-liver axis in the development of liver diseases. Alcohol overconsumption is one of the leading causes of liver failure globally. However, not all people with alcohol use disorder progress to advanced stages of liver disease. With advances in technology to investigate the gut microbiome and metabolome, we are now beginning to delineate alcohol's effects on the gut microbiome in relation to liver disease. This review presents our current understanding on the role of the gut microbiota during alcohol exposure, and various therapeutic attempts that have been made to reprogram the gut microbiota with the goal of alleviating alcoholic-related liver disease.
Collapse
|
106
|
Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact 2020; 19:217. [PMID: 33243230 PMCID: PMC7689646 DOI: 10.1186/s12934-020-01483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
All of humans and other mammalian species are colonized by some types of microorganisms such as bacteria, archaea, unicellular eukaryotes like fungi and protozoa, multicellular eukaryotes like helminths, and viruses, which in whole are called microbiota. These microorganisms have multiple different types of interaction with each other. A plethora of evidence suggests that they can regulate immune and digestive systems and also play roles in various diseases, such as mental, cardiovascular, metabolic and some skin diseases. In addition, they take-part in some current health problems like diabetes mellitus, obesity, cancers and infections. Viral infection is one of the most common and problematic health care issues, particularly in recent years that pandemics like SARS and COVID-19 caused a lot of financial and physical damage to the world. There are plenty of articles investigating the interaction between microbiota and infectious diseases. We focused on stimulatory to suppressive effects of microbiota on viral infections, hoping to find a solution to overcome this current pandemic. Then we reviewed mechanistically the effects of both microbiota and probiotics on most of the viruses. But unlike previous studies which concentrated on intestinal microbiota and infection, our focus is on respiratory system's microbiota and respiratory viral infection, bearing in mind that respiratory system is a proper entry site and residence for viruses, and whereby infection, can lead to asymptomatic, mild, self-limiting, severe or even fatal infection. Finally, we overgeneralize the effects of microbiota on COVID-19 infection. In addition, we reviewed the articles about effects of the microbiota on coronaviruses and suggest some new therapeutic measures.
Collapse
Affiliation(s)
- Taha Baghbani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicin, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
107
|
Maccioni L, Gao B, Leclercq S, Pirlot B, Horsmans Y, De Timary P, Leclercq I, Fouts D, Schnabl B, Stärkel P. Intestinal permeability, microbial translocation, changes in duodenal and fecal microbiota, and their associations with alcoholic liver disease progression in humans. Gut Microbes 2020; 12:1782157. [PMID: 32588725 PMCID: PMC7524402 DOI: 10.1080/19490976.2020.1782157] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Animal data suggest a role of the gut-liver axis in progression of alcoholic liver disease (ALD), but human data are scarce especially for early disease stages. METHODS We included patients with alcohol use disorder (AUD) who follow a rehabilitation program and matched healthy controls. We determined intestinal epithelial and vascular permeability (IP) (using urinary excretion of 51Cr-EDTA, fecal albumin content, and immunohistochemistry in distal duodenal biopsies), epithelial damage (histology, serum iFABP, and intestinal gene expression), and microbial translocation (Gram - and Gram + serum markers by ELISA). Duodenal mucosa-associated microbiota and fecal microbiota were analyzed by 16 S rRNA sequencing. ALD was staged by Fibroscan® (liver stiffness, controlled attenuation parameter) in combination with serum AST, ALT, and CK18-M65. RESULTS Only a subset of AUD patients had increased 51Cr-EDTA and fecal albumin together with disrupted tight junctions and vasculature expression of plasmalemma Vesicle-Associated Protein-1. The so-defined increased intestinal permeability was not related to changes of the duodenal microbiota or alterations of the intestinal epithelium but associated with compositional changes of the fecal microbiota. Leaky gut alone did not explain increased microbial translocation in AUD patients. By contrast, duodenal dysbiosis with a dominance shift toward specific potential pathogenic bacteria genera (Streptococcus, Shuttleworthia, Rothia), increased IP and elevated markers of microbial translocation characterized AUD patients with progressive ALD (steato-hepatitis, steato-fibrosis). CONCLUSION Progressive ALD already at early disease stages is associated with duodenal mucosa-associated dysbiosis and elevated microbial translocation. Surprisingly, such modifications were not linked with increased IP. Rather, increased IP appears related to fecal microbiota dysbiosis.
Collapse
Affiliation(s)
- Luca Maccioni
- Institute of Experimental and Clinical Research, Laboratory of Hepato-gastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sophie Leclercq
- Institute of Neuroscience and Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Boris Pirlot
- Institute of Experimental and Clinical Research, Laboratory of Hepato-gastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Yves Horsmans
- Department of Hepato-gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Philippe De Timary
- Department of Adult Psychiatry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Leclercq
- Institute of Experimental and Clinical Research, Laboratory of Hepato-gastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Peter Stärkel
- Institute of Experimental and Clinical Research, Laboratory of Hepato-gastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium,Department of Hepato-gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium,CONTACT Peter Stärkel Laboratory of Hepato-gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
108
|
Metabolic Profiling by UPLC-Orbitrap-MS/MS of Liver from C57BL/6 Mice with DSS-Induced Inflammatory Bowel Disease. Mediators Inflamm 2020; 2020:6020247. [PMID: 33029104 PMCID: PMC7530511 DOI: 10.1155/2020/6020247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Liver disorder often occurs in patients with inflammatory bowel disease (IBD); however, the changes in IBD-induced liver disorder at the intrinsic molecular level (chiefly metabolites) and therapeutic targets are still poorly characterized. First, a refined and translationally relevant model of DSS chronic colitis in C57BL/6 mice was established, and cecropin A and antibiotics were used as interventions. We found that the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the liver tissues of mice were highly increased in the context of DSS treatment but were lowered by cecropin A and antibiotics. Subsequently, an untargeted metabolomics analysis was performed by UPLC–Orbitrap–MS/MS to reveal the metabolic profile and attempt to find the potential therapeutic targets of the liver disorders that occur in IBD. Notably, 133 metabolites were identified by an integrated database. Metabolism network and pathway analyses demonstrated that the metabolic disturbance of the liver in IBD mice was mainly enriched in bile acid metabolism, arachidonic acid metabolism, amino acid metabolism, and steroid hormone biosynthesis, while those disturbances were regulated or reversed through cecropin A and antibiotic treatment. Furthermore, the top 20 metabolites, such as glutathione, maltose, arachidonic acid, and thiamine, were screened as biomarkers via one-way analysis of variance (one-way ANOVA, p < 0.05) coupled with variable importance for project values (VIP >1) of orthogonal partial least-squares discriminant analysis (OPLS-DA), which could be upregulated or downregulated with the cecropin A and antibiotics treatment. Spearman correlation analysis showed that the majority of the biomarkers have a significant correlation with cytokines (TNF-α, IL-1β, IL-6, and IL-10), indicating that those biomarkers may act as potential targets to interact directly or indirectly with cecropin A and antibiotics to affect liver inflammation. Collectively, our results extend the understanding of the molecular alteration of liver disorders occurring in IBD and offer an opportunity for discovering potential therapeutic targets in the IBD process.
Collapse
|
109
|
Extrahepatic Drug Transporters in Liver Failure: Focus on Kidney and Gastrointestinal Tract. Int J Mol Sci 2020; 21:ijms21165737. [PMID: 32785140 PMCID: PMC7461118 DOI: 10.3390/ijms21165737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging information suggests that liver pathological states may affect the expression and function of membrane transporters in the gastrointestinal tract and the kidney. Altered status of the transporters could affect drug as well as endogenous compounds handling with subsequent clinical consequences. It seems that changes in intestinal and kidney transporter functions provide the compensatory activity of eliminating endogenous compounds (e.g., bile acids) generated and accumulated due to liver dysfunction. A literature search was conducted on the Ovid and PubMed databases to select relevant in vitro, animal and human studies that have reported expression, protein abundance and function of the gastrointestinal and kidney operating ABC (ATP-binding cassette) transporters and SLC (solute carriers) carriers. The accumulated data suggest that liver failure-associated transporter alterations in the gastrointestinal tract and kidney may affect drug pharmacokinetics. The altered status of drug transporters in those organs in liver dysfunction conditions may provide compensatory activity in handling endogenous compounds, affecting local drug actions as well as drug pharmacokinetics.
Collapse
|
110
|
Nishikawa H, Enomoto H, Nishiguchi S, Iijima H. Liver Cirrhosis and Sarcopenia from the Viewpoint of Dysbiosis. Int J Mol Sci 2020; 21:E5254. [PMID: 32722100 PMCID: PMC7432211 DOI: 10.3390/ijms21155254] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia in patients with liver cirrhosis (LC) has been attracting much attention these days because of the close linkage to adverse outcomes. LC can be related to secondary sarcopenia due to protein metabolic disorders and energy metabolic disorders. LC is associated with profound alterations in gut microbiota and injuries at the different levels of defensive mechanisms of the intestinal barrier. Dysbiosis refers to a state in which the diversity of gut microbiota is decreased by decreasing the bacterial species and the number of bacteria that compose the gut microbiota. The severe disturbance of intestinal barrier in LC can result in dysbiosis, several bacterial infections, LC-related complications, and sarcopenia. Here in this review, we will summarize the current knowledge of the relationship between sarcopenia and dysbiosis in patients with LC.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
- Center for Clinical Research and Education, Hyogo College of Medicine, Nishinomiya 6638136, Japan
| | - Hirayuki Enomoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
| | | | - Hiroko Iijima
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
| |
Collapse
|
111
|
Galectin-3 in Inflammasome Activation and Primary Biliary Cholangitis Development. Int J Mol Sci 2020; 21:ijms21145097. [PMID: 32707678 PMCID: PMC7404314 DOI: 10.3390/ijms21145097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic inflammatory autoimmune liver disease characterized by inflammation and damage of small bile ducts. The NLRP3 inflammasome is a multimeric complex of proteins that after activation with various stimuli initiates an inflammatory process. Increasing data obtained from animal studies implicate the role of NLRP3 inflammasome in the pathogenesis of various diseases. Galectin-3 is a β-galactoside-binding lectin that plays important roles in various biological processes including cell proliferation, differentiation, transformation and apoptosis, pre-mRNA splicing, inflammation, fibrosis and host defense. The multilineage immune response at various stages of PBC development includes the involvement of Gal-3 in the pathogenesis of this disease. The role of Galectin-3 in the specific binding to NLRP3, and inflammasome activation in models of primary biliary cholangitis has been recently described. This review provides a brief pathogenesis of PBC and discusses the current knowledge about the role of Gal-3 in NLRP3 activation and PBC development.
Collapse
|
112
|
Gut microbiota and aging-A focus on centenarians. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165765. [DOI: 10.1016/j.bbadis.2020.165765] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/10/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
|
113
|
Bajaj JS, Torre A, Rojas ML, Fagan A, Nandez IE, Gavis EA, De Leon Osorio O, White MB, Fuchs M, Sikaroodi M, Gillevet PM. Cognition and hospitalizations are linked with salivary and faecal microbiota in cirrhosis cohorts from the USA and Mexico. Liver Int 2020; 40:1395-1407. [PMID: 32181561 DOI: 10.1111/liv.14437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/15/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Gut microbiota are affected by diet and ethnicity, which impacts cognition and hospitalizations in cirrhosis. AIM Study interactions of diet with microbiota and impact on hospitalizations and cognition in American and Mexican cohorts. METHODS Controls and age-balanced patients with compensated/decompensated cirrhosis were included and followed for 90-day hospitalizations. A subset underwent minimal hepatic encephalopathy (MHE) testing. Parameters such as dietary, salivary and faecal microbiota (diversity, taxa analysis, cirrhosis dysbiosis ratio CDR:high = good) between/within countries were analysed. Regression analyses for hospitalizations and MHE were performed. RESULTS In all, 275 age-balanced subjects (133 US [40 Control, 50 Compensated, 43 Decompensated] and 142 Mexican [41 Control, 49 Compensated, 52 Decompensated]) were enrolled. MELD/cirrhosis severity was comparable. Diet showed lower protein and animal fat intake in all decompensated patients, but this was worse in Mexico. Diversity was lower in stool and saliva in decompensated patients, and worse in Mexican cohorts. Prevotellaceae were lower in decompensated cirrhosis, particularly those with lower animal fat/protein consumption across countries. Hospitalizations were higher in Mexico vs the USA (26% vs 14%, P = .04). On regression, Prevotellaceae, Ruminococcaceae and Lachnospiraceae lowered hospitalization risk independent of MELD and ascites. MHE testing was performed in 120 (60/country and 20/subgroup) subjects and MHE rate was similar. MELD and decompensation increased while CDR and Prevotellaceae decreased the risk of MHE. CONCLUSIONS Changes in diet and microbiota, especially related to animal fat and protein intake and Prevotellaceae, are associated with MHE and hospitalizations in Mexican patients with cirrhosis compared to an American cohort. Nutritional counselling to increase protein intake in cirrhosis could help prevent these hospitalizations.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - Aldo Torre
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Mayra L Rojas
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Andrew Fagan
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - Ivvone E Nandez
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Edith A Gavis
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - Omar De Leon Osorio
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Melanie B White
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - Michael Fuchs
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | | | | |
Collapse
|
114
|
Zheng R, Wang G, Pang Z, Ran N, Gu Y, Guan X, Yuan Y, Zuo X, Pan H, Zheng J, Wang F. Liver cirrhosis contributes to the disorder of gut microbiota in patients with hepatocellular carcinoma. Cancer Med 2020; 9:4232-4250. [PMID: 32281295 PMCID: PMC7300425 DOI: 10.1002/cam4.3045] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/20/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background Gut microbiota (GM) of patients with liver cancer is disordered, and syet no study reported the GM distribution of liver cirrhosis‐induced HCC (LC‐HCC) and nonliver cirrhosis‐induced HCC (NLC‐HCC). In this study, we aimed to characterize gut dysbiosis of LC‐HCC and NLC‐HCC to elucidate the role of GM in the pathogenesis of HCC. Methods A consecutive series of fecal samples of patients with hepatitis (24 patients), liver cirrhosis (24 patients), HCC (75 patients: 35 infected by HBV, 25 infected by HCV, and 15 with alcoholic liver disease), and healthy controls (20 patients) were obtained and sequenced on the Illumina Hiseq platform. The HCC group contains 52 LC‐HCC and 23 NLC‐HCC. Bioinformatic analysis of the intestinal microbiota was performed with QIIME and MicrobiomeAnalyst. Results Alpha‐diversity analysis showed that fecal microbial diversity was significantly decreased in the LC group, and there were significant differences in 3 phyla and 27 genera in the LC group vs the other groups (the healthy, hepatitis, and HCC groups). Beta‐diversity analysis showed that there were large differences between LC and the others. Gut microbial diversity was significantly increased from LC to HCC. Characterizing the fecal microbiota of LC‐HCC and NLC‐HCC, we found that microbial diversity was increased from LC to LC‐HCC rather than NLC‐HCC. Thirteen genera were discovered to be associated with the tumor size of HCC. Three biomarkers (Enterococcus, Limnobacter, and Phyllobacterium) could be used for precision diagnosis. We also found that HBV infection, HCV infection, or ALD (alcoholic liver disease) was not associated with intestinal microbial dysbiosis in HCC. Conclusion Our results suggest that GM disorders are more common in patients with LC‐HCC. The butyrate‐producing genera were decreased, while genera producing‐lipopolysaccharide (LPS) were increased in LC‐HCC patients. Further studies of GM disorders may achieve early diagnosis and new therapeutic approaches for HCC patients.
Collapse
Affiliation(s)
- Ruipeng Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhiqiang Pang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Nan Ran
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yinuo Gu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuewa Guan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuze Yuan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xu Zuo
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - He Pan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingtong Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
115
|
Arab JP, Arrese M, Shah VH. Gut microbiota in non-alcoholic fatty liver disease and alcohol-related liver disease: Current concepts and perspectives. Hepatol Res 2020; 50:407-418. [PMID: 31840358 PMCID: PMC7187400 DOI: 10.1111/hepr.13473] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
The term, gut-liver axis, is used to highlight the close anatomical and functional relationship between the intestine and the liver. It has been increasingly recognized that the gut-liver axis plays an essential role in the development and progression of liver disease. In particular, in non-alcoholic fatty liver disease and alcohol-related liver disease, the two most common causes of chronic liver disease, a dysbiotic gut microbiota can influence intestinal permeability, allowing some pathogens or bacteria-derived factors from the gut reaching the liver through the enterohepatic circulation contributing to liver injury, steatohepatitis, and fibrosis progression. Pathways involved are multiple, including changes in bile acid metabolism, intestinal ethanol production, generation of short-chain fatty acids, and other by-products. Bile acids act through dedicated bile acid receptors, farnesoid X receptor and TGR5, in both the ileum and the liver, influencing lipid metabolism, inflammation, and fibrogenesis. Currently, both non-alcoholic fatty liver disease and alcohol-related liver disease lack effective therapies, and therapeutic targeting of gut microbiota and bile acids enterohepatic circulation holds promise. In this review, we summarize current knowledge about the role of gut microbiota in the pathogenesis of non-alcoholic fatty liver disease and alcohol-related liver disease, as well as the relevance of microbiota or bile acid-based approaches in the management of those liver diseases.
Collapse
Affiliation(s)
- Juan P. Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
116
|
Gulamhusein AF, Hirschfield GM, Milovanovic J, Arsenijevic D, Arsenijevic N, Milovanovic M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 2020; 17:93-110. [PMID: 31819247 DOI: 10.1038/s41575-019-0226-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis is a chronic, seropositive and female-predominant inflammatory and cholestatic liver disease, which has a variable rate of progression towards biliary cirrhosis. Substantial progress has been made in patient risk stratification with the goal of personalized care, including early adoption of next-generation therapy with licensed use of obeticholic acid or off-label fibrate derivatives for those with insufficient benefit from ursodeoxycholic acid, the current first-line drug. The disease biology spans genetic risk, epigenetic changes, dysregulated mucosal immunity and altered biliary epithelial cell function, all of which interact and arise in the context of ill-defined environmental triggers. A current focus of research on nuclear receptor pathway modulation that specifically and potently improves biliary excretion, reduces inflammation and attenuates fibrosis is redefining therapy. Patients are benefiting from pharmacological agonists of farnesoid X receptor and peroxisome proliferator-activated receptors. Immunotherapy remains a challenge, with a lack of target definition, pleiotropic immune pathways and an interplay between hepatic immune responses and cholestasis, wherein bile acid-induced inflammation and fibrosis are dominant clinically. The management of patient symptoms, particularly pruritus, is a notable goal reflected in the development of rational therapy with apical sodium-dependent bile acid transporter inhibitors.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia.,Department of Histology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
117
|
Shrestha N, Sleep SL, Cuffe JSM, Holland OJ, McAinch AJ, Dekker Nitert M, Hryciw DH. Pregnancy and diet-related changes in the maternal gut microbiota following exposure to an elevated linoleic acid diet. Am J Physiol Endocrinol Metab 2020; 318:E276-E285. [PMID: 31846371 DOI: 10.1152/ajpendo.00265.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dietary intakes of linoleic acid (LA) have increased, including in women of reproductive age. Changes in maternal gut microbiome have been implicated in the metabolic adaptions that occur during pregnancy. We aimed to investigate whether consumption of a diet with elevated LA altered fecal microbiome diversity before and during pregnancy. Female Wistar-Kyoto rats consumed a high-LA diet (HLA: 6.21% of energy) or a low-LA diet (LLA: 1.44% of energy) for 10 wk before mating and during pregnancy. DNA was isolated from fecal samples before pregnancy [embryonic day 0 (E0)], or during pregnancy at E10 and E20. The microbiome composition was assessed with 16S rRNA sequencing. At E0, the beta-diversity of LLA and HLA groups differed with HLA rats having significantly lower abundance of the genera Akkermansia, Peptococcus, Sutterella, and Xo2d06 but higher abundance of Butyricimonas and Coprococcus. Over gestation, in LLA but not HLA rats, there was a reduction in alpha-diversity and an increase in beta-diversity. In the LLA group, the abundance of Akkermansia, Blautia, rc4.4, and Streptococcus decreased over gestation, whereas Coprococcus increased. In the HLA group; only the abundance of Butyricimonas decreased. At E20, there were no differences in alpha- and beta-diversity, and the abundance of Roseburia was significantly increased in the HLA group. In conclusion, consumption of a HLA diet alters gut microbiota composition, as does pregnancy in rats consuming a LLA diet. In pregnancy, consumption of a HLA diet does not alter gut microbiota composition.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Simone L Sleep
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - James S M Cuffe
- School of Medical Science, Griffith University, Southport, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Olivia J Holland
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science, Victoria University, St. Albans, Victoria, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
118
|
Cornide-Petronio ME, Álvarez-Mercado AI, Jiménez-Castro MB, Peralta C. Current Knowledge about the Effect of Nutritional Status, Supplemented Nutrition Diet, and Gut Microbiota on Hepatic Ischemia-Reperfusion and Regeneration in Liver Surgery. Nutrients 2020; 12:E284. [PMID: 31973190 PMCID: PMC7071361 DOI: 10.3390/nu12020284] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is an unresolved problem in liver resection and transplantation. The preexisting nutritional status related to the gut microbial profile might contribute to primary non-function after surgery. Clinical studies evaluating artificial nutrition in liver resection are limited. The optimal nutritional regimen to support regeneration has not yet been exactly defined. However, overnutrition and specific diet factors are crucial for the nonalcoholic or nonalcoholic steatohepatitis liver diseases. Gut-derived microbial products and the activation of innate immunity system and inflammatory response, leading to exacerbation of I/R injury or impaired regeneration after resection. This review summarizes the role of starvation, supplemented nutrition diet, nutritional status, and alterations in microbiota on hepatic I/R and regeneration. We discuss the most updated effects of nutritional interventions, their ability to alter microbiota, some of the controversies, and the suitability of these interventions as potential therapeutic strategies in hepatic resection and transplantation, overall highlighting the relevance of considering the extended criteria liver grafts in the translational liver surgery.
Collapse
Affiliation(s)
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix,” Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
119
|
Zhou A, Tang L, Zeng S, Lei Y, Yang S, Tang B. Gut microbiota: A new piece in understanding hepatocarcinogenesis. Cancer Lett 2020; 474:15-22. [PMID: 31917160 DOI: 10.1016/j.canlet.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiota forms a symbiotic relationship with the host and benefits the body in many critical aspects of life. However, immune system defects, alterations in the gut microbiota and environmental changes can destroy this symbiotic relationship and may lead to diseases, including cancer. Due to the anatomic and functional connection of the gut and liver, increasing studies show the important role of the gut microbiota in the carcinogenesis of hepatocellular carcinoma (HCC). In this manuscript, we review the available evidence and analyze some potential mechanisms of the gut microbiota, including bacterial dysbiosis, lipopolysaccharide (LPS), and genotoxins, in the progression and promotion of HCC. Furthermore, we discuss the possible therapeutic applications of probiotics, chemotherapy modulation, immunotherapy, targeted drugs and fecal microbiota transplantation (FMT) in targeting the gut microbiota.
Collapse
Affiliation(s)
- An Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shuo Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
120
|
Araujo DS, Klein MI, Scudine KGDO, de Sales Leite L, Parisotto TM, Ferreira CM, Fonseca FLA, Perez MM, Castelo PM. Salivary Microbiological and Gingival Health Status Evaluation of Adolescents With Overweight and Obesity: A Cluster Analysis. Front Pediatr 2020; 8:429. [PMID: 32850543 PMCID: PMC7411150 DOI: 10.3389/fped.2020.00429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Given the high prevalence of obesity in children and adolescents, the investigation of early markers is of clinical importance to better manage this condition. Thus, the aim was to evaluate the cross-sectional relationship between salivary microbiota, gingival health status, and excess weight in adolescents. A total of 248 students (14-17 y; 119 girls) were included, free of caries lesions and periodontal pockets. Physical examination included measures of height, weight, and body fat percentage (%BF). Oral examination was performed to gather information on dental (DMFT index) and gingival health status. Unstimulated saliva was submitted to qPCR reactions to quantify Streptococcus mutans, Porphyromonas gingivalis, Bifidobacteria, and Streptococcus pneumoniae percentages and the NFKappaB expression. Two-way ANOVA was applied considering group (normal-weight/overweight/obesity) and sex factors, in addition to cluster analysis. Group effect was significant for %S. mutans (partial eta2 = 0.20; p < 0.001) and %Bifidobacteria (partial eta2 = 0.19; p < 0.001), with overweight and obesity groups showing the highest levels compared to normal-weight ones, with no significant sex effect. There was no difference in the frequency of gingivitis, P. gingivalis, and S. pneumoniae percentages or NFKappaB expression between groups. Cluster analysis generated three clusters according to body fat accumulation: "Higher %BF," "Moderate %BF," and "Lower %BF." "Higher %BF" cluster was characterized by higher body fat percentage and higher salivary %Bifidobacteria, while cluster "Lower %BF" was characterized by lower body fat percentage and lower frequency of gingivitis ("Moderate %BF" cluster was the contrast). According to nutritional status, a difference in salivary S. mutans and Bifidobacteria percentages was found, with overweight or obesity adolescents showing the highest percentages than normal-weight ones. Besides, a positive relationship between body fat accumulation and Bifidobacteria count was observed, indicating a possible interaction between oral bacteria communities and weight gain.
Collapse
Affiliation(s)
- Darlle Santos Araujo
- Department of Pediatric Dentistry, Universidade Estadual de Campinas (UNICAMP), Piracicaba, Brazil
| | - Marlise Inêz Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | | | - Luana de Sales Leite
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Thais M Parisotto
- Laboratory of Molecular Biology of Microorganisms, São Francisco University, Bragança Paulista, Brazil
| | | | | | | | - Paula Midori Castelo
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| |
Collapse
|
121
|
Microbiota, type 2 diabetes and non-alcoholic fatty liver disease: protocol of an observational study. J Transl Med 2019; 17:408. [PMID: 31801616 PMCID: PMC6891972 DOI: 10.1186/s12967-019-02130-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is characterized by triglyceride accumulation in the hepatocytes in the absence of alcohol overconsumption, commonly associated with insulin resistance and obesity. Both NAFLD and type 2 diabetes (T2D) are characterized by an altered microbiota composition, however the role of the microbiota in NAFLD and T2D is not well understood. To assess the relationship between alteration in the microbiota and NAFLD while dissecting the role of T2D, we established a nested study on T2D and non-T2D individuals within the Cooperative Health Research In South Tyrol (CHRIS) study, called the CHRIS-NAFLD study. Here, we present the study protocol along with baseline and follow-up characteristics of study participants. Methods Among the first 4979 CHRIS study participants, 227 individuals with T2D were identified and recalled, along with 227 age- and sex-matched non-T2D individuals. Participants underwent ultrasound and transient elastography examination to evaluate the presence of hepatic steatosis and liver stiffness. Additionally, sampling of saliva and faeces, biochemical measurements and clinical interviews were carried out. Results We recruited 173 T2D and 183 non-T2D participants (78% overall response rate). Hepatic steatosis was more common in T2D (63.7%) than non-T2D (36.3%) participants. T2D participants also had higher levels of liver stiffness (median 4.8 kPa, interquartile range (IQR) 3.7, 5.9) than non-T2D participants (median 3.9 kPa, IQR 3.3, 5.1). The non-invasive scoring systems like the NAFLD fibrosis score (NFS) suggests an increased liver fibrosis in T2D (mean − 0.55, standard deviation, SD, 1.30) than non-T2D participants (mean − 1.30, SD, 1.17). Discussion Given the comprehensive biochemical and clinical characterization of study participants, once the bioinformatics classification of the microbiota will be completed, the CHRIS-NAFLD study will become a useful resource to further our understanding of the relationship between microbiota, T2D and NAFLD.
Collapse
|
122
|
Abstract
The human genome has been proposed to contribute to interpersonal variability in the way we respond to nutritional intake. However, personalized diets solely based on gene-nutrient interactions have not lived up to their expectations to date. Advances in microbiome research have indicated that a science-based generation of a personalized diet based on a combination of clinical and microbial features may constitute a promising new approach enabling accurate prediction of dietary responses. In addition, scientific advances in our understanding of defined dietary components and their effects on human physiology led to the incorporation and testing of defined diets as preventive and treatment approaches for diseases, such as epilepsy, ulcerative colitis, Crohn disease, and type 1 diabetes mellitus. Additionally, exciting new studies show that tailored diet regiments have the potential to modulate pharmaceutical treatment efficacy in cancer treatment. Overall, the true therapeutic potential of nutritional interventions is coming to light but is also facing substantial challenges in understanding mechanisms of activity, optimization of dietary interventions for specific human subpopulations, and elucidation of adverse effects potentially stemming from some dietary components in a number of individuals.
Collapse
|
123
|
Abstract
Microbiome dysbiosis is strongly associated with alcoholic liver disease (ALD). Recent studies on comprehensive analyses of microbiome compositional and functional changes have begun to uncover the mechanistic relation between microbiome and the pathogenesis of ALD. Importantly, targeting the microbiome has become a potential strategy for the prevention and treatment of ALD. In this review, we summarize the clinical evidence of microbiome dysbiosis in ALD patients, and experimental advances in microbiome and metabolomic functional changes in animals with different species and genetic backgrounds in ALD. We also summarize the studies in humanized intestinal microbiome and fecal microbiota transplantation in mice. We introduce new developments in the studies on the role of the circulating bacterial microbiome, oral bacterial microbiome and fungal microbiome in the development of ALD. We highlight the potential mechanisms by which microbiome dysbiosis contributes to ALD, including short chain fatty acid changes, bile acid metabolism, intestinal barrier function, release of bacterial and fungal products, and inflammation. In addition, we summarize the recent developments targeting the microbiome in prevention and treatment of ALD, including dietary nutrient interference, herbal medicine, antibiotics, anti-fungal agents, probiotics, engineered bacterial therapy, fecal transplantation and oral hygiene. Although recent preclinical studies have advanced our understanding of the microbiome and ALD, clinical studies, especially prospective studies with large samples, are needed to better understand the cause-effect of microbiome dysbiosis in ALD. Identifying new precision-based strategies targeting the microbiome are expected to be developed as more effective therapies in ALD.
Collapse
|
124
|
Fukui H. Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far? Diseases 2019; 7:diseases7040058. [PMID: 31726747 PMCID: PMC6956030 DOI: 10.3390/diseases7040058] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence supports that gut dysbiosis may relate to various liver diseases. Alcoholics with high intestinal permeability had a decrease in the abundance of Ruminnococcus. Intestinal dysmotility, increased gastric pH, and altered immune responses in addition to environmental and genetic factors are likely to cause alcohol-associated gut microbial changes. Alcohol-induced dysbiosis may be associated with gut barrier dysfunction, as microbiota and their products modulate barrier function by affecting epithelial pro-inflammatory responses and mucosal repair functions. High levels of plasma endotoxin are detected in alcoholics, in moderate fatty liver to advanced cirrhosis. Decreased abundance of Faecalibacterium prausnitzii, an anti-inflammatory commensal, stimulating IL-10 secretion and inhibiting IL-12 and interferon-γ expression. Proteobacteria, Enterobacteriaceae, and Escherichia were reported to be increased in NAFLD (nonalcoholic fatty liver disease) patients. Increased abundance of fecal Escherichia to elevated blood alcohol levels in these patients and gut microbiota enriched in alcohol-producing bacteria produce more alcohol (alcohol hypothesis). Some undetermined pathological sequences related to gut dysbiosis may facilitate energy-producing and proinflammatory conditions for the progression of NAFLD. A shortage of autochthonous non-pathogenic bacteria and an overgrowth of potentially pathogenic bacteria are common findings in cirrhotic patients. The ratio of the amounts of beneficial autochthonous taxa (Lachnospiraceae + Ruminococaceae + Veillonellaceae + Clostridiales Incertae Sedis XIV) to those of potentially pathogenic taxa (Enterobacteriaceae + Bacteroidaceae) was low in those with early death and organ failure. Cirrhotic patients with decreased microbial diversity before liver transplantation were more likely to develop post-transplant infections and cognitive impairment related to residual dysbiosis. Patients with PSC had marked reduction of bacterial diversity. Enterococcus and Lactobacillus were increased in PSC patients (without liver cirrhosis.) Treatment-naive PBC patients were associated with altered composition and function of gut microbiota, as well as a lower level of diversity. As serum anti-gp210 antibody has been considered as an index of disease progression, relatively lower species richness and lower abundance of Faecalibacterium spp. in gp210-positive patients are interesting. The dysbiosis-induced altered bacterial metabolites such as a hepatocarcinogenesis promotor DCA, together with a leaky gut and bacterial translocation. Gut protective Akkermansia and butyrate-producing genera were decreased, while genera producing-lipopolysaccharide were increased in early hepatocellular carcinoma (HCC) patients.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8522, Japan
| |
Collapse
|
125
|
|
126
|
Altay O, Nielsen J, Uhlen M, Boren J, Mardinoglu A. Systems biology perspective for studying the gut microbiota in human physiology and liver diseases. EBioMedicine 2019; 49:364-373. [PMID: 31636011 PMCID: PMC6945237 DOI: 10.1016/j.ebiom.2019.09.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
The advancement in high-throughput sequencing technologies and systems biology approaches have revolutionized our understanding of biological systems and opened a new path to investigate unacknowledged biological phenomena. In parallel, the field of human microbiome research has greatly evolved and the relative contribution of the gut microbiome to health and disease have been systematically explored. This review provides an overview of the network-based and translational systems biology-based studies focusing on the function and composition of gut microbiota. We also discussed the association between the gut microbiome and the overall human physiology, as well as hepatic diseases and other metabolic disorders.
Collapse
Affiliation(s)
- Ozlem Altay
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom.
| |
Collapse
|
127
|
Dong M, Xu X, Huang Q, Lei H, Xu G, Ma J, Hatzakis E, Wang X, Zhang L. Dose-Dependent Effects of Triclocarban Exposure on Lipid Homeostasis in Rats. Chem Res Toxicol 2019; 32:2320-2328. [DOI: 10.1021/acs.chemrestox.9b00316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Manyuan Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan National Research Center for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyi Xu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan National Research Center for Optoelectronics, Wuhan 430071, P. R. China
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Qingxia Huang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan National Research Center for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan National Research Center for Optoelectronics, Wuhan 430071, P. R. China
| | - Guangyong Xu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan National Research Center for Optoelectronics, Wuhan 430071, P. R. China
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, P. R. China
| | - Jianfeng Ma
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, P. R. China
| | - Emmanuel Hatzakis
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xian Wang
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan National Research Center for Optoelectronics, Wuhan 430071, P. R. China
| |
Collapse
|
128
|
Ezzeldin S, El-Wazir A, Enany S, Muhammad A, Johar D, Osama A, Ahmed E, Shikshaky H, Magdeldin S. Current Understanding of Human Metaproteome Association and Modulation. J Proteome Res 2019; 18:3539-3554. [PMID: 31262181 DOI: 10.1021/acs.jproteome.9b00301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the last decade, metaproteomics has provided a better understanding and functional characterization of the microbiome. A large body of evidence now reveals interspecies, species of bacteria-host interactions, via the secreted modulatory microbial protein "metaproteome". Although high-throughput state-of-art mass spectrometry has recently empowered metaproteomics, its profile remains unclear, and, most importantly, the exact consequences and underlying mechanism of these protein molecules on the host are insufficiently understood. Here we address the current progress in the study of the human metaproteome, suggesting possible modulation, a metaproteome dysbiotic signature, challenges, and future perspectives.
Collapse
Affiliation(s)
- Shahd Ezzeldin
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt
| | - Aya El-Wazir
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine , Suez Canal University , 41522 Ismailia , Egypt.,Center of Excellence of Molecular and Cellular Medicine , Suez Canal University , 41522 Ismailia , Egypt
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy , Suez Canal University , 41522 Ismailia , Egypt
| | - Abdelrahman Muhammad
- Department of Biomedical Engineering , Higher Technological Institute , 44634 Sharqia , Egypt
| | - Dina Johar
- Biomedical Sciences Program, University of Science and Technology , Zewail City of Science and Technology , 12588 Giza , Egypt
| | - Aya Osama
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt
| | - Eman Ahmed
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt.,Department of Pharmacology, Faculty of Veterinary Medicine , Suez Canal University , 41522 Ismailia , Egypt
| | - Hassan Shikshaky
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt.,Department of Physiology, Faculty of Veterinary Medicine , Suez Canal University , 41522 Ismailia , Egypt
| |
Collapse
|
129
|
Interplay of Liver Disease and Gut Microbiota in the Development of Colorectal Neoplasia. ACTA ACUST UNITED AC 2019; 17:378-393. [DOI: 10.1007/s11938-019-00241-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
130
|
Zhou R, Fan X, Schnabl B. Role of the intestinal microbiome in liver fibrosis development and new treatment strategies. Transl Res 2019; 209:22-38. [PMID: 30853445 DOI: 10.1016/j.trsl.2019.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/26/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Liver cirrhosis is a major cause of morbidity and mortality worldwide. The most common chronic liver diseases in western countries are alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). Although these diseases have different causes, liver fibrosis develops via shared mechanisms. The liver and intestinal microbiome are linked by the portal vein and have bidirectional interactions. Changes in the intestinal microbiome contribute to the pathogenesis and progression of liver diseases including ALD, NAFLD, viral hepatitis and cholestatic disorders, based on studies in patients and animal models. Intestinal microbial dysbiosis has been associated with liver cirrhosis and its complications. We review the mechanisms by which alterations in the microbiome contribute to liver fibrosis and discuss microbiome-based treatment approaches.
Collapse
Affiliation(s)
- Rongrong Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, and Key Laboratory of Viral Hepatitis, Changsha, Hunan, China; Department of Medicine, University of California San Diego, La Jolla, California
| | - Xuegong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, and Key Laboratory of Viral Hepatitis, Changsha, Hunan, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
131
|
Predicting Clinical Outcomes of Cirrhosis Patients With Hepatic Encephalopathy From the Fecal Microbiome. Cell Mol Gastroenterol Hepatol 2019; 8:301-318.e2. [PMID: 31004827 PMCID: PMC6718362 DOI: 10.1016/j.jcmgh.2019.04.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Gut dysbiosis plays a role in hepatic encephalopathy (HE), while its relationship at the acute episode of overt HE (AHE), the disease progression and clinical outcomes remains unclear. We aimed to identify AHE-specific microbiome and its association to patients' outcomes. METHODS We profiled fecal microbiome changes for a cohort of 62 patients with cirrhosis and AHE i) before treatment, ii) 2-3 days after medication and iii) 2-3 months after recovery, and three control cohorts i) healthy individuals, patients with ii) compensated or iii) decompensated cirrhosis. RESULTS Comparison of the microbiome shift from compensated, decompensated cirrhosis, AHE to recovery revealed the AHE-specific gut-dysbiosis. The gut microbiome diversity was decreased during AHE, further reduced after medication, and only partially reversed during the recovery. The relative abundance of Bacteroidetes phylum in the microbiome decreased, whereas that of Firmicute, Proteobacteria and Actinobacteria increased in patients during AHE compared with those with compensated cirrhosis. A total of 70 operational taxonomic units (OTUs) were significantly different between AHE and decompensated cirrhosis abundances. Of them, the abundance of Veillonella parvula increased the most during AHE via a metagenomics recovery of the genomes. Moreover, the relative abundances of three (Alistipes, Bacteroides, Phascolarctobacterium) and five OTUs (Clostridium-XI, Bacteroides, Bacteroides, Lactobacillus, Clostridium-sedis) at AHE were respectively associated with HE recurrence and overall survival during the subsequent one-year follow-up. CONCLUSIONS AHE-specific gut OTUs were identified that may be involved in HE development and able to predict clinical outcomes, providing new strategies for the prevention and treatment of HE recurrence in patients with cirrhosis.
Collapse
|
132
|
Helenius-Hietala J, Suominen AL, Ruokonen H, Knuuttila M, Puukka P, Jula A, Meurman JH, Åberg F. Periodontitis is associated with incident chronic liver disease-A population-based cohort study. Liver Int 2019; 39:583-591. [PMID: 30300961 DOI: 10.1111/liv.13985] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/20/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Chronic liver disease is a major health concern worldwide and the identification of novel modifiable risk factors may benefit subjects at risk. Few studies have analyzed periodontitis as a risk factor for liver complications. We studied whether periodontitis is associated with incident severe liver disease. METHODS The study comprised 6165 individuals without baseline liver disease who participated in the Finnish population-based Health 2000 Survey (BRIF8901) during 2000-2001, a nationally representative cohort. Follow-up was until 2013 for liver-related admissions, liver cancer and mortality from National Hospital Discharge, Finnish Cancer Registry and Causes of Death Register, Statistics Finland. Mild to moderate periodontitis was defined as ≥1 tooth with periodontal pocket ≥4 mm deep, and advanced periodontitis as ≥5 teeth with such pockets. Multiple confounders were considered. RESULTS A total of 79 subjects experienced a severe liver event during follow-up. When adjusted for age, sex and number of teeth, hazards ratios by Cox regression regarding incident severe liver disease were, for mild to moderate periodontitis, 2.12 (95% CI 0.98-4.58), and, for advanced periodontitis, 3.69 (95% CI 1.79-7.60). These risk estimates remained stable after additionally adjusting for alcohol use, smoking, metabolic risk, serum gamma-glutamyltransferase, dental-care habits, lifestyle and socioeconomic status. Periodontal disease-associated liver risk was accentuated among subjects with non-alcoholic fatty liver disease or heavy alcohol use at baseline. CONCLUSIONS Periodontitis was associated with incident liver disease in the general population independently of various confounders. As a preventable disease, periodontal disease might present a modifiable risk factor for chronic liver disease.
Collapse
Affiliation(s)
- Jaana Helenius-Hietala
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anna Liisa Suominen
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland.,Public Health Evaluation and Projection Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Hellevi Ruokonen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Matti Knuuttila
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Pauli Puukka
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Antti Jula
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Jukka H Meurman
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Fredrik Åberg
- Transplantation and Liver Surgery Clinic, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
133
|
Mester A, Ciobanu L, Taulescu M, Apostu D, Lucaciu O, Filip GA, Feldrihan V, Licarete E, Ilea A, Piciu A, Oltean‐Dan D, Scurtu I, Berce C, Campian RS. Periodontal disease may induce liver fibrosis in an experimental study on Wistar rats. J Periodontol 2019; 90:911-919. [DOI: 10.1002/jper.18-0585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/05/2018] [Accepted: 12/31/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Alexandru Mester
- Department of Oral Rehabilitation, Oral Health and Dental Office ManagementUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Lidia Ciobanu
- Department of Gastroenterology and HepatologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Marian Taulescu
- Department of PathologyUniversity of Agricultural Sciences and Veterinary Medicine Cluj‐Napoca Romania
| | - Dragos Apostu
- Department of Orthopedics and TraumatologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Ondine Lucaciu
- Department of Oral Rehabilitation, Oral Health and Dental Office ManagementUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Gabriela Adriana Filip
- Department of PhysiologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Vasile Feldrihan
- Department of Allergology and ImmunologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Emilia Licarete
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio‐Nano‐SciencesBabes‐Bolyai University Cluj‐Napoca Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Oral Health and Dental Office ManagementUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Andra Piciu
- Department of Medical OncologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Daniel Oltean‐Dan
- Department of Orthopedics and TraumatologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Iuliu Scurtu
- Department of Internal MedicineUniversity of Agricultural Sciences and Veterinary Medicine Cluj‐Napoca Romania
| | - Cristian Berce
- Animal FacilityUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Radu Septimiu Campian
- Department of Oral Rehabilitation, Oral Health and Dental Office ManagementUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| |
Collapse
|
134
|
Okura Y, Namisaki T, Sato S, Moriya K, Akahane T, Kitade M, Kawaratani H, Kaji K, Takaya H, Sawada Y, Shimozato N, Seki K, Saikawa S, Nakanishi K, Furukawa M, Fujinaga Y, Kubo T, Kaya D, Tsuji Y, Ozutsumi T, Kitagawa K, Mashitani T, Ogawa H, Ishida K, Mitoro A, Yamao J, Yoshiji H. Proton pump inhibitor therapy does not increase serum endotoxin activity in patients with cirrhosis. Hepatol Res 2019; 49:232-238. [PMID: 30198141 DOI: 10.1111/hepr.13249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/16/2018] [Accepted: 09/02/2018] [Indexed: 12/17/2022]
Abstract
AIM Proton pump inhibitors (PPIs) are frequently prescribed in patients with cirrhosis, but this therapy entails potential complications. We aimed to investigate the influence of PPI use on intestinal permeability in patients with cirrhosis. METHODS We recruited 228 patients with cirrhosis and divided them into four groups. Group (Gp)1 comprised patients receiving a PPI with concurrent neomycin (NEO) (PPI-NEO group, n = 14 [6.1%]), Gp2 and Gp3 comprised those receiving either PPI or NEO (PPI group, n = 91 [39.9%]; and NEO group, n = 11 [4.4%]), and Gp4 comprised those receiving neither of these medications (control group; n = 112 [49.1%]). We assessed the intestinal permeability by measuring endotoxin activity (EA) using a luminol chemiluminescence method. RESULTS Endotoxin activity levels were significantly higher in patients with Child B cirrhosis than in those with Child A cirrhosis, but we found no significant differences in EA levels between patients with Child C cirrhosis and those with either Child A or B cirrhosis. We observed no significant differences in EA levels among groups 1-4. Patients without antibiotic exposure (n = 203), comprising 91 patients on PPI therapy (Gp2) and 112 no-PPI-therapy controls (Gp4), were subdivided according to Child-Pugh (CP) classification. We found no significant differences in EA levels between Gp2 and Gp4 in either CP class. CONCLUSION Our results suggest that PPI usage does not have a significant impact on serum levels of gut-derived endotoxins, which are already elevated because of the increased intestinal permeability in patients with cirrhosis.
Collapse
Affiliation(s)
- Yasushi Okura
- Department of Endoscopy, Nara Medical University Hospital, Nara, Japan
| | - Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Shinya Sato
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kei Moriya
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Takemi Akahane
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Mitsuteru Kitade
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hideto Kawaratani
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hiroaki Takaya
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Yasuhiko Sawada
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Naotaka Shimozato
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kenichiro Seki
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Soichiro Saikawa
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Keisuke Nakanishi
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Masanori Furukawa
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Yukihisa Fujinaga
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Takuya Kubo
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Daisuke Kaya
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Yuki Tsuji
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Takahiro Ozutsumi
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Koh Kitagawa
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Tsuyoshi Mashitani
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hiroyuki Ogawa
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Koji Ishida
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Akira Mitoro
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Junichi Yamao
- Department of Endoscopy, Nara Medical University Hospital, Nara, Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
135
|
Enguita M, Razquin N, Pamplona R, Quiroga J, Prieto J, Fortes P. The cirrhotic liver is depleted of docosahexaenoic acid (DHA), a key modulator of NF-κB and TGFβ pathways in hepatic stellate cells. Cell Death Dis 2019; 10:14. [PMID: 30622239 PMCID: PMC6325107 DOI: 10.1038/s41419-018-1243-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Liver cirrhosis results from chronic hepatic damage and is characterized by derangement of the organ architecture with increased liver fibrogenesis and defective hepatocellular function. It frequently evolves into progressive hepatic insufficiency associated with high mortality unless liver transplantation is performed. We have hypothesized that the deficiency of critical nutrients such as essential omega-3 fatty acids might play a role in the progression of liver cirrhosis. Here we evaluated by LC-MS/MS the liver content of omega-3 docosahexaenoic fatty acid (DHA) in cirrhotic patients and investigated the effect of DHA in a murine model of liver injury and in the response of hepatic stellate cells (HSCs) (the main producers of collagen in the liver) to pro-fibrogenic stimuli. We found that cirrhotic livers exhibit a marked depletion of DHA and that this alteration correlates with the progression of the disease. Administration of DHA exerts potent anti-fibrogenic effects in an acute model of liver damage. Studies with HSCs show that DHA inhibits fibrogenesis more intensely than other omega-3 fatty acids. Data from expression arrays revealed that DHA blocks TGFβ and NF-κB pathways. Mechanistically, DHA decreases late, but not early, SMAD3 nuclear accumulation and inhibits p65/RelA-S536 phosphorylation, which is required for HSC survival. Notably, DHA increases ADRP expression, leading to the formation of typical quiescence-associated perinuclear lipid droplets. In conclusion, a marked depletion of DHA is present in the liver of patients with advanced cirrhosis. DHA displays anti-fibrogenic activities on HSCs targeting NF-κB and TGFβ pathways and inducing ADPR expression and quiescence in these cells.
Collapse
Affiliation(s)
- Mónica Enguita
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Nerea Razquin
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida (IRB), Lleida, Spain
| | - Jorge Quiroga
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Liver Unit, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Pamplona, Spain
| | | | - Puri Fortes
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain. .,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
136
|
Vaughn BP, Rank KM, Khoruts A. Fecal Microbiota Transplantation: Current Status in Treatment of GI and Liver Disease. Clin Gastroenterol Hepatol 2019; 17:353-361. [PMID: 30055267 DOI: 10.1016/j.cgh.2018.07.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/03/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Fecal microbiota transplantation was originally introduced as a method to repair intestinal microbiota following failure of multiple treatments of recurrent Clostridiumdifficile infection with antibiotics. However, it is hypothesized that intestinal dysbiosis may contribute to the pathogenesis of many diseases, especially those involving the gastrointestinal tract. Therefore, fecal microbiota transplantation is increasingly being explored as a potential treatment that aims to optimize microbiota composition and functionality. Here, we review the current state of fecal microbiota transplantation development and applications in conditions of greatest interest to a gastroenterologist.
Collapse
Affiliation(s)
- Byron P Vaughn
- Department of Medicine, Division of Gastroenterology, University of Minnesota, Minneapolis, Minnesota
| | - Kevin M Rank
- Department of Medicine, Division of Gastroenterology, University of Minnesota, Minneapolis, Minnesota
| | - Alexander Khoruts
- Department of Medicine, Division of Gastroenterology, University of Minnesota, Minneapolis, Minnesota; Center for Immunology and the BioTechnology Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
137
|
Mohammed H, Varoni EM, Cochis A, Cordaro M, Gallenzi P, Patini R, Staderini E, Lajolo C, Rimondini L, Rocchetti V. Oral Dysbiosis in Pancreatic Cancer and Liver Cirrhosis: A Review of the Literature. Biomedicines 2018; 6:biomedicines6040115. [PMID: 30544974 PMCID: PMC6316311 DOI: 10.3390/biomedicines6040115] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
The human body is naturally colonized by a huge number of different commensal microbial species, in a relatively stable equilibrium. When this microbial community undergoes dysbiosis at any part of the body, it interacts with the innate immune system and results in a poor health status, locally or systemically. Research studies show that bacteria are capable of significantly influencing specific cells of the immune system, resulting in many diseases, including a neoplastic response. Amongst the multiple different types of diseases, pancreatic cancer and liver cirrhosis were significantly considered in this paper, as they are major fatal diseases. Recently, these two diseases were shown to be associated with increased or decreased numbers of certain oral bacterial species. These findings open the way for a broader perception and more specific investigative studies, to better understand the possible future treatment and prevention. This review aims to describe the correlation between oral dysbiosis and both pancreatic cancer and liver cirrhotic diseases, as well as demonstrating the possible diagnostic and treatment modalities, relying on the oral microbiota, itself, as prospective, simple, applicable non-invasive approaches to patients, by focusing on the state of the art. PubMed was electronically searched, using the following key words: "oral microbiota" and "pancreatic cancer" (PC), "liver cirrhosis", "systemic involvement", and "inflammatory mediators". Oral dysbiosis is a common problem related to poor oral or systemic health conditions. Oral pathogens can disseminate to distant body organs via the local, oral blood circulation, or pass through the gastrointestinal tract and enter into the systemic circulation. Once oral pathogens reach an organ, they modify the immune response and stimulate the release of the inflammatory mediators, this results in a disease. Recent studies have reported a correlation between oral dysbiosis and the increased risk of pancreatic and liver diseases and provided evidence of the presence of oral pathogens in diseased organs. The profound impact that microbial communities have on human health, provides a wide domain towards precisely investigating and clearly understanding the mechanism of many diseases, including cancer. Oral microbiota is an essential contributor to health status and imbalance in this community was correlated to oral and systemic diseases. The presence of elevated numbers of certain oral bacteria, particularly P. gingivalis, as well as elevated levels of blood serum antibodies, against this bacterial species, was associated with a higher risk of pancreatic cancer and liver cirrhosis incidence. Attempts are increasingly directed towards investigating the composition of oral microbiome as a simple diagnostic approach in multiple diseases, including pancreatic and liver pathosis. Moreover, treatment efforts are concerned in the recruitment of microbiota, for remedial purposes of the aforementioned and other different diseases. Further investigation is required to confirm and clarify the role of oral microbiota in enhancing pancreatic and liver diseases. Improving the treatment modalities requires an exertion of more effort, especially, concerning the microbiome engineering and oral microbiota transplantation.
Collapse
Affiliation(s)
- Hiba Mohammed
- Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy.
- Fondazione Novara Sviluppo, 28100 Novara, Italy.
| | - Elena Maria Varoni
- Department of Biomedical Sciences, Surgery and Dentistry, Università degli Studi di Milano, 20142 Milano, Italy.
| | - Andrea Cochis
- Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy.
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), 28100 Novara, Italy.
| | - Massimo Cordaro
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Patrizia Gallenzi
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Romeo Patini
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Edoardo Staderini
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Carlo Lajolo
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Lia Rimondini
- Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy.
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), 28100 Novara, Italy.
| | - Vincenzo Rocchetti
- Fondazione Novara Sviluppo, 28100 Novara, Italy.
- Department of Clinical and Experimental Medicine, Università del Piemonte Orientale UPO, 28100 Novara, Italy.
| |
Collapse
|
138
|
Konturek PC, Harsch IA, Konturek K, Schink M, Zopf Y. [Gut-liver axis: How intestinal bacteria affect the liver]. MMW Fortschr Med 2018; 160:11-15. [PMID: 30367438 DOI: 10.1007/s15006-018-1051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Liver and intestine are in close contact with each other. The risk of damage to the liver increases, when the intestinal barrier is damaged ("leaky gut") . METHOD The review article describes how intestinal bacteria influence the pathogenesis of chronic liver diseases and what treatment options are available. RESULTS AND CONCLUSIONS Intestinal dysbiosis plays an important role in the development of chronic liver diseases such as alcoholic liver disease, nonalcoholic fatty liver disease, primary biliary cholangitis, primary sclerosing cholangitis, and cirrhosis. Intestinal microbial modulating therapy with probiotics, prebiotics or synbiotics shows positive effects. The more precise meaning of this therapeutic approach needs to be clarified in further studies.
Collapse
Affiliation(s)
- Peter C Konturek
- Klinik für Innere Medizin II, Thüringen-Kliniken Saalfeld, Saalfeld, Deutschland.
- Klinik für Innere Medizin II, Thüringen-Kliniken, "Georgius Agricola" GmbH, Rainweg 68, 07318, Saalfeld/Saale, Deutschland.
| | - Igor A Harsch
- Klinik für Innere Medizin II, Thüringen-Kliniken Saalfeld, Saalfeld, Deutschland
| | - Kathrin Konturek
- Hector-Center, Medizinische Klinik I, FAU Erlangen-Nürnberg, Erlangen-Nürnberg, Deutschland
| | - Monic Schink
- Hector-Center, Medizinische Klinik I, FAU Erlangen-Nürnberg, Erlangen-Nürnberg, Deutschland
| | - Yurdagül Zopf
- Hector-Center, Medizinische Klinik I, FAU Erlangen-Nürnberg, Erlangen-Nürnberg, Deutschland
| |
Collapse
|
139
|
Bajaj JS, Matin P, White MB, Fagan A, Deeb JG, Acharya C, Dalmet SS, Sikaroodi M, Gillevet PM, Sahingur SE. Periodontal therapy favorably modulates the oral-gut-hepatic axis in cirrhosis. Am J Physiol Gastrointest Liver Physiol 2018; 315:G824-G837. [PMID: 30118351 PMCID: PMC6293251 DOI: 10.1152/ajpgi.00230.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cirrhosis is associated with a systemic proinflammatory milieu, endotoxemia, and gut dysbiosis. The oral cavity could be an additional source of inflammation. We aimed to determine the effect of periodontal therapy in cirrhosis through evaluating endotoxemia, inflammation, cognition, and quality of life (QOL). Age-matched cirrhotic and noncirrhotic subjects exhibiting chronic gingivitis and/or mild or moderate periodontitis underwent periodontal therapy with follow-up at 30 days. Saliva/stool for microbial composition and serum for Model for End-stage Liver Disease (MELD) score, endotoxin and lipopolysaccharide binding protein (LBP) and immune-inflammatory markers (IL-1β; IL-6; histatins 1, 3, 5; and lysozyme) were collected at baseline and day 30. The cognitive function and QOL were also evaluated similarly. A separate group of cirrhotic patients were followed for the same duration without periodontal therapy. Cirrhotics, especially those with hepatic encephalopathy (HE), demonstrated improved dysbiosis in stool and saliva, and improved endotoxin, LBP, and salivary and serum inflammatory mediators following periodontal therapy. These parameters, which were higher in HE at baseline, became statistically similar posttherapy. Pretherapy vs. posttherapy QOL and cognition also improved in HE patients following oral interventions. On the other hand, LBP and endotoxin increased over time in cirrhotic patients not receiving therapy, but the rest of the parameters, including microbiota remained similar over time in the no-therapy group. This proof-of-concept study demonstrates that periodontal therapy in cirrhosis, especially in those with HE, is associated with improved oral and gut dysbiosis, systemic inflammation, MELD score, and cognitive function, which was not observed in those who did not receive therapy over the same time period. NEW & NOTEWORTHY Systematic periodontal therapy in cirrhotic outpatients improved endotoxemia, as well as systemic and local inflammation, and modulated salivary and stool microbial dysbiosis over 30 days. This was associated with improved quality of life and cognition in patients with prior hepatic encephalopathy. In a cirrhotic group that was not provided periodontal therapy, there was an increase in endotoxin and lipopolysaccharide binding protein in the same duration. The oral cavity could be an important underdefined source of inflammation in cirrhosis.
Collapse
Affiliation(s)
- Jasmohan S. Bajaj
- 1Department of Internal Medicine, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Payam Matin
- 2Department of Periodontics, Virginia Commonwealth University, Richmond, Virginia
| | - Melanie B. White
- 1Department of Internal Medicine, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Andrew Fagan
- 1Department of Internal Medicine, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Janina Golob Deeb
- 2Department of Periodontics, Virginia Commonwealth University, Richmond, Virginia
| | - Chathur Acharya
- 1Department of Internal Medicine, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Swati S. Dalmet
- 3Microbiome Analysis Center, George Mason University, Manassas, Virginia
| | - Masoumeh Sikaroodi
- 3Microbiome Analysis Center, George Mason University, Manassas, Virginia
| | | | - Sinem E. Sahingur
- 2Department of Periodontics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
140
|
Konturek PC, Harsch IA, Konturek K, Schink M, Konturek T, Neurath MF, Zopf Y. Gut⁻Liver Axis: How Do Gut Bacteria Influence the Liver? Med Sci (Basel) 2018; 6:medsci6030079. [PMID: 30227645 PMCID: PMC6165386 DOI: 10.3390/medsci6030079] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic liver diseases are a major cause of morbidity and mortality worldwide. Recently, gut dysbiosis was identified as an important factor in the pathogenesis of liver diseases. The relationship between gut microbiota and the liver is still not well understood; however, dysfunction of the gut mucosal barrier ("leaky gut") and increased bacterial translocation into the liver via the gut⁻liver axis probably play crucial roles in liver disease development and progression. The liver is an important immunological organ, and, after exposure to gut-derived bacteria via portal circulation, it responds with activation of the innate and adaptive immune system, leading to hepatic injury. A better understanding of the pathophysiological links among gut dysbiosis, the integrity of the gut barrier, and the hepatic immune response to gut-derived factors is essential for the development of new therapies to treat chronic liver diseases.
Collapse
Affiliation(s)
- Peter Christopher Konturek
- Department of Internal Medicine 2nd, Thuringia-Clinic Saalfeld, Teaching Hospital of the University of Jena, 68, D-07318 Jena, Germany.
| | - Igor Alexander Harsch
- Department of Internal Medicine 2nd, Thuringia-Clinic Saalfeld, Teaching Hospital of the University of Jena, 68, D-07318 Jena, Germany.
| | - Kathrin Konturek
- Department of Internal Medicine 2nd, Thuringia-Clinic Saalfeld, Teaching Hospital of the University of Jena, 68, D-07318 Jena, Germany.
| | - Monic Schink
- 1st Department of Internal Medicine, University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - Thomas Konturek
- Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.
| | - Markus F Neurath
- 1st Department of Internal Medicine, University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - Yurdaguel Zopf
- 1st Department of Internal Medicine, University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| |
Collapse
|
141
|
Oikonomou T, Papatheodoridis GV, Samarkos M, Goulis I, Cholongitas E. Clinical impact of microbiome in patients with decompensated cirrhosis. World J Gastroenterol 2018; 24:3813-3820. [PMID: 30228776 PMCID: PMC6141334 DOI: 10.3748/wjg.v24.i34.3813] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/11/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis is an increasing cause of morbidity and mortality. Recent studies are trying to clarify the role of microbiome in clinical exacerbation of patients with decompensated cirrhosis. Nowadays, it is accepted that patients with cirrhosis have altered salivary and enteric microbiome, characterized by the presence of dysbiosis. This altered microbiome along with small bowel bacterial overgrowth, through translocation across the gut, is associated with the development of decompensating complications. Studies have analyzed the correlation of certain bacterial families with the development of hepatic encephalopathy in cirrhotics. In general, stool and saliva dysbiosis with reduction of autochthonous bacteria in patients with cirrhosis incites changes in bacterial defenses and higher risk for bacterial infections, such as spontaneous bacterial peritonitis, and sepsis. Gut microbiome has even been associated with oncogenic pathways and under circumstances might promote the development of hepatocarcinogenesis. Lately, the existence of the oral-gut-liver axis has been related with the development of decompensating events. This link between the liver and the oral cavity could be via the gut through impaired intestinal permeability that allows direct translocation of bacteria from the oral cavity to the systemic circulation. Overall, the contribution of the microbiome to pathogenesis becomes more pronounced with progressive disease and therefore may represent an important therapeutic target in the management of cirrhosis.
Collapse
Affiliation(s)
- Theodora Oikonomou
- Fourth Department of Internal Medicine, Hippokration General Hospital, Medical School of Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - George V Papatheodoridis
- Academic Department of Gastroenterology, Laiko General Hospital, Medical School of National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michael Samarkos
- First Department of Internal Medicine, Laiko General Hospital, Medical School of National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Ioannis Goulis
- Fourth Department of Internal Medicine, Hippokration General Hospital, Medical School of Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Laiko General Hospital, Medical School of National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
142
|
Adolph TE, Grander C, Moschen AR, Tilg H. Liver–Microbiome Axis in Health and Disease. Trends Immunol 2018; 39:712-723. [DOI: 10.1016/j.it.2018.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
|
143
|
Atif M, Warner S, Oo YH. Linking the gut and liver: crosstalk between regulatory T cells and mucosa-associated invariant T cells. Hepatol Int 2018; 12:305-314. [PMID: 30027532 PMCID: PMC6097019 DOI: 10.1007/s12072-018-9882-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
The gut–liver axis is increasingly considered to play a vital part in the progression of chronic inflammatory gut and liver diseases. Hence, a detailed understanding of the local and systemic regulatory mechanisms is crucial to develop novel therapeutic approaches. In this review, we discuss in-depth the roles of regulatory T cells (Tregs) and mucosal-associated invariant T cells (MAITs) within the context of inflammatory bowel disease, primary sclerosing cholangitis, and non-alcoholic steatohepatitis. Tregs are crucial in maintaining peripheral tolerance and preventing autoimmunity. MAIT cells have a unique ability to rapidly recognize microbial metabolites and mount a local immune response and act as a ‘biliary firewall’ at the gut and biliary epithelial barrier. We also outline how current knowledge can be exploited to develop novel therapies to control the propagation of chronic gut- and liver-related inflammatory and autoimmune conditions. We specifically focus on the nature of the Tregs’ cell therapy product and outline an adjunctive role for low-dose IL-2. All in all, it is clear that translational immunology is at crucial crossroads. The success of ongoing clinical trials in cellular therapies for inflammatory gut and liver conditions could revolutionize the treatment of these conditions and the lives of our patients in the coming years.
Collapse
Affiliation(s)
- Muhammad Atif
- Centre for Liver Research and National Institute of Health Research Liver Biomedical Research Centre Birmingham, Institute of Immunology and lmmunotherapy, University of Birmingham, Birmingham, UK.,Academic Department of Surgery, University of Birmingham, Birmingham, UK
| | - Suz Warner
- Centre for Liver Research and National Institute of Health Research Liver Biomedical Research Centre Birmingham, Institute of Immunology and lmmunotherapy, University of Birmingham, Birmingham, UK
| | - Ye H Oo
- Centre for Liver Research and National Institute of Health Research Liver Biomedical Research Centre Birmingham, Institute of Immunology and lmmunotherapy, University of Birmingham, Birmingham, UK. .,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
144
|
Lai S, Iwakiri Y. Is miR-21 a potent target for liver fibrosis? Hepatology 2018; 67:2082-2084. [PMID: 29315674 PMCID: PMC5992001 DOI: 10.1002/hep.29774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Sanchuan Lai
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, U.S.A
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, U.S.A,Correspondence: Yasuko Iwakiri, Ph.D., Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, 1080 LMP, 333 Cedar St., New Haven, Connecticut, 06520, USA., Phone: 203-785-6204, Fax: 203-785-4313,
| |
Collapse
|