101
|
Landgraf KE, Steffek M, Quan C, Tom J, Yu C, Santell L, Maun HR, Eigenbrot C, Lazarus RA. An allosteric switch for pro-HGF/Met signaling using zymogen activator peptides. Nat Chem Biol 2014; 10:567-73. [DOI: 10.1038/nchembio.1533] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 04/17/2014] [Indexed: 12/17/2022]
|
102
|
Sluijter JPG, Condorelli G, Davidson SM, Engel FB, Ferdinandy P, Hausenloy DJ, Lecour S, Madonna R, Ovize M, Ruiz-Meana M, Schulz R, Van Laake LW. Novel therapeutic strategies for cardioprotection. Pharmacol Ther 2014; 144:60-70. [PMID: 24837132 DOI: 10.1016/j.pharmthera.2014.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
The morbidity and mortality from ischemic heart disease (IHD) remain significant worldwide. The treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of occluded coronary arteries. Although it is essential to re-open the artery as soon as possible, paradoxically this leads to additional myocardial injury, called acute ischemia-reperfusion injury (IRI), for which currently no effective therapy is available. Therefore, novel therapeutic strategies are required to protect the heart from acute IRI in order to reduce myocardial infarction size, preserve cardiac function and improve clinical outcomes in patients with IHD. In this review article, we will first outline the pathophysiology of acute IRI and review promising therapeutic strategies for cardioprotection. These include novel aspects of mitochondrial function, epigenetics, circadian clocks, the immune system, microvesicles, growth factors, stem cell therapy and gene therapy. We discuss the therapeutic potential of these novel cardioprotective strategies in terms of pharmacological targeting and clinical application.
Collapse
Affiliation(s)
- Joost P G Sluijter
- Department of Cardiology, University Medical Center Utrecht, The Netherlands; ICIN, Netherlands Heart Institute, Utrecht, The Netherlands
| | | | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Derek J Hausenloy
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, South Africa
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, South Africa
| | - Rosalinda Madonna
- Department of Neurosciences and Imaging, Institute of Cardiology, University of Chieti, Chieti, Italy
| | - Michel Ovize
- Service d'Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, France; Inserm U1060-CarMeN, CIC de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Marisol Ruiz-Meana
- Laboratori Cardiologia, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Spain
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig Universität, Gießen, Germany
| | - Linda W Van Laake
- Department of Cardiology, University Medical Center Utrecht, The Netherlands.
| | | |
Collapse
|
103
|
Gallo S, Gatti S, Sala V, Albano R, Costelli P, Casanova E, Comoglio PM, Crepaldi T. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy. Cell Death Dis 2014; 5:e1185. [PMID: 24743740 PMCID: PMC4001309 DOI: 10.1038/cddis.2014.155] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/31/2022]
Abstract
Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), mainly activates prosurvival pathways, including protection from apoptosis. In this work, we investigated the cardioprotective mechanisms of Met activation by agonist monoclonal antibodies (mAbs). Cobalt chloride (CoCl2), a chemical mimetic of hypoxia, was used to induce cardiac damage in H9c2 cardiomyoblasts, which resulted in reduction of cell viability by (i) caspase-dependent apoptosis and (ii) – surprisingly – autophagy. Blocking either apoptosis with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone or autophagosome formation with 3-methyladenine prevented loss of cell viability, which suggests that both processes contribute to cardiomyoblast injury. Concomitant treatment with Met-activating antibodies or HGF prevented apoptosis and autophagy. Pro-autophagic Redd1, Bnip3 and phospho-AMPK proteins, which are known to promote autophagy through inactivation of the mTOR pathway, were induced by CoCl2. Mechanistically, Met agonist antibodies or HGF prevented the inhibition of mTOR and reduced the flux of autophagosome formation. Accordingly, their anti-autophagic function was completely blunted by Temsirolimus, a specific mTOR inhibitor. Targeted Met activation was successful also in the setting of low oxygen conditions, in which Met agonist antibodies or HGF demonstrated anti-apoptotic and anti-autophagic effects. Activation of the Met pathway is thus a promising novel therapeutic tool for ischaemic injury.
Collapse
Affiliation(s)
- S Gallo
- Department of Oncology, University of Turin, Turin, Italy
| | - S Gatti
- Department of Oncology, University of Turin, Turin, Italy
| | - V Sala
- Department of Oncology, University of Turin, Turin, Italy
| | - R Albano
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - P Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - E Casanova
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - P M Comoglio
- 1] Department of Oncology, University of Turin, Turin, Italy [2] Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - T Crepaldi
- Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
104
|
Barrow-McGee R, Kermorgant S. Met endosomal signalling: In the right place, at the right time. Int J Biochem Cell Biol 2014; 49:69-74. [DOI: 10.1016/j.biocel.2014.01.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 01/04/2023]
|
105
|
Vogel S, Chatterjee M, Metzger K, Borst O, Geisler T, Seizer P, Müller I, Mack A, Schumann S, Bühring HJ, Lang F, Sorg RV, Langer H, Gawaz M. Activated platelets interfere with recruitment of mesenchymal stem cells to apoptotic cardiac cells via high mobility group box 1/Toll-like receptor 4-mediated down-regulation of hepatocyte growth factor receptor MET. J Biol Chem 2014; 289:11068-11082. [PMID: 24567328 DOI: 10.1074/jbc.m113.530287] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recruitment of mesenchymal stem cells (MSC) following cardiac injury, such as myocardial infarction, plays a critical role in tissue repair and may contribute to myocardial recovery. However, the mechanisms that regulate migration of MSC to the site of tissue damage remain elusive. Here, we demonstrate in vitro that activated platelets substantially inhibit recruitment of MSC toward apoptotic cardiac myocytes and fibroblasts. The alarmin high mobility group box 1 (HMGB1) was released by platelets upon activation and mediated inhibition of the cell death-dependent migratory response through Toll-like receptor (TLR)-4 expressed on the MSC. Migration of MSC to apoptotic cardiac myocytes and fibroblasts was driven by hepatocyte growth factor (HGF), and platelet activation was followed by HMGB1/TLR-4-dependent down-regulation of HGF receptor MET on MSC, thereby impairing HGF-driven MSC recruitment. We identify a novel mechanism by which platelets, upon activation, interfere with MSC recruitment to apoptotic cardiac cells, a process that may be of particular relevance for myocardial repair and regeneration.
Collapse
Affiliation(s)
- Sebastian Vogel
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Madhumita Chatterjee
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Katja Metzger
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Oliver Borst
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Tobias Geisler
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Peter Seizer
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Iris Müller
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Andreas Mack
- the Institute of Anatomy, Eberhard Karls University, 72076 Tübingen, Germany
| | - Susanne Schumann
- the Department of Oncology, Haematology, Immunology, Rheumatology and Pulmonology, and Eberhard Karls University, 72076 Tübingen, Germany
| | - Hans-Jörg Bühring
- the Department of Oncology, Haematology, Immunology, Rheumatology and Pulmonology, and Eberhard Karls University, 72076 Tübingen, Germany
| | - Florian Lang
- the Institute of Physiology, Eberhard Karls University, 72076 Tübingen, Germany and
| | - Rüdiger V Sorg
- the Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Harald Langer
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
106
|
Mesteri I, Schoppmann SF, Preusser M, Birner P. Overexpression of CMET is associated with signal transducer and activator of transcription 3 activation and diminished prognosis in oesophageal adenocarcinoma but not in squamous cell carcinoma. Eur J Cancer 2014; 50:1354-60. [PMID: 24565853 DOI: 10.1016/j.ejca.2014.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Inhibition of cMet is a promising therapeutic approach in human cancer, but few data in oesophageal cancer exist. METHODS Expression of mesenchymal-epithelial transition factor (cMet), epidermal growth factor receptor (EGFR) and phosphatase and tensin homologue (PTEN) were investigated immunohistochemically in 246 oesophageal carcinomas (128 adenocarcinomas (AC); 118 squamous cell carcinomas (SCC)) and corresponding metastases in a subset of AC (n=42). Data on phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and HER2 expression and on lymphovascular invasion (LVI) of tumour cells were available from previous studies. RESULTS Overexpression of cMet was seen in 44 (34.4%) of AC, and nine (7.6%) of SCC (p<0.001, Chi square test). In AC but not in SCC, cMet expression correlated with EGFR expression (p<0.001, Chi square test), pSTAT3 expression (p=0.01, Chi square tests) and LVI of tumour cells (p<0.001, Chi square test). Overexpression of cMet was associated with shorter disease free, disease specific and overall survival of AC patients (p<0.05, Cox regression, respectively). All cMet positive ACs in which metastases were investigated had also cMet positive lymph node and distant metastases, but 25% of cMet negative primary tumours showed cMet positive lymph node and 33% distant metastases. CONCLUSIONS CMet plays no relevant role in most oesophageal SCC. In contrast, cMet overexpression seems to be a key oncogene in about 35% of oesophageal AC, representing a highly promising therapeutic target and prognostic factor.
Collapse
Affiliation(s)
- Ildiko Mesteri
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria; Comprehensive Cancer Center Vienna Gastroesophageal Cancers Unit (CCC-GET), Medical University of Vienna, A-1090 Vienna, Austria
| | - Sebastian F Schoppmann
- Comprehensive Cancer Center Vienna Gastroesophageal Cancers Unit (CCC-GET), Medical University of Vienna, A-1090 Vienna, Austria; Department of Surgery, Medical University of Vienna, A-1090 Vienna, Austria
| | - Matthias Preusser
- Comprehensive Cancer Center Vienna Gastroesophageal Cancers Unit (CCC-GET), Medical University of Vienna, A-1090 Vienna, Austria; Department of Internal Medicine I, Division of Oncology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Peter Birner
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria; Comprehensive Cancer Center Vienna Gastroesophageal Cancers Unit (CCC-GET), Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
107
|
Pietronave S, Zamperone A, Oltolina F, Colangelo D, Follenzi A, Novelli E, Diena M, Pavesi A, Consolo F, Fiore GB, Soncini M, Prat M. Monophasic and biphasic electrical stimulation induces a precardiac differentiation in progenitor cells isolated from human heart. Stem Cells Dev 2014; 23:888-98. [PMID: 24328510 DOI: 10.1089/scd.2013.0375] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Electrical stimulation (ES) of cells has been shown to induce a variety of responses, such as cytoskeleton rearrangements, migration, proliferation, and differentiation. In this study, we have investigated whether monophasic and biphasic pulsed ES could exert any effect on the proliferation and differentiation of human cardiac progenitor cells (hCPCs) isolated from human heart fragments. Cells were cultured under continuous exposure to monophasic or biphasic ES with fixed cycles for 1 or 3 days. Results indicate that neither stimulation protocol affected cell viability, while the cell shape became more elongated and reoriented more perpendicular to the electric field direction. Moreover, the biphasic ES clearly induced the upregulation of early cardiac transcription factors, MEF2D, GATA-4, and Nkx2.5, as well as the de novo expression of the late cardiac sarcomeric proteins, troponin T, cardiac alpha actinin, and SERCA 2a. Both treatments increased the expression of connexin 43 and its relocation to the cell membrane, but biphasic ES was faster and more effective. Finally, when hCPCs were exposed to both monophasic and biphasic ES, they expressed de novo the mRNA of the voltage-dependent calcium channel Cav 3.1(α1G) subunit, which is peculiar of the developing heart. Taken together, these results show that ES alone is able to set the conditions for early differentiation of adult hCPCs toward a cardiac phenotype.
Collapse
Affiliation(s)
- Stefano Pietronave
- 1 Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro ," Novara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Sullivan KE, Quinn KP, Tang KM, Georgakoudi I, Black LD. Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells. Stem Cell Res Ther 2014; 5:14. [PMID: 24460869 PMCID: PMC4055039 DOI: 10.1186/scrt403] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 01/16/2014] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Although stem cell therapy is a promising treatment for myocardial infarction, the minimal functional improvements observed clinically limit its widespread application. A need exists to maximize the therapeutic potential of these stem cells by first understanding what factors within the infarct microenvironment affect their ability to regenerate the necrotic tissue. In this study, we assessed both differentiation capacity and paracrine signaling as a function of extracellular matrix remodeling after myocardial infarction. METHODS Mechanical and compositional changes to the decellularized infarcted myocardium were characterized to understand how the extracellular environment, specifically, was altered as a function of time after coronary artery ligation in Sprague-Dawley rats. These alterations were first modeled in a polyacrylamide gel system to understand how the variables of composition and stiffness drive mesenchymal stem cell differentiation towards a cardiac lineage. Finally, the paracrine secretome was characterized as a function of matrix remodeling through gene and protein expression and conditioned media studies. RESULTS The decellularized infarct tissue revealed significant alterations in both the mechanical and compositional properties of the ECM with remodeling following infarction. This altered microenvironment dynamically regulates the potential for early cardiac differentiation. Whereas Nkx2.5 expression is limited in the presence of chronic remodeled matrix of increased stiffness, GATA4 expression is enhanced. In addition, the remodeled matrix promotes the expression of several proangiogenic, prosurvival, antifibrotic, and immunomodulatory growth factors. In particular, an increase in HGF and SDF1 expression and secretion by mesenchymal stem cells can rescue oxidatively stressed cardiomyocytes in vitro. CONCLUSIONS This study demonstrated that decellularization of diseased tissue allows for the exclusive analysis of the remodeled matrix and its ability to influence significantly the cellular phenotype. Characterization of cell fate as a function of myocardial remodeling following infarction is critical in developing the ideal strategy for cell implantation to maximize tissue regeneration and to ultimately reduce the prevalence and severity of heart failure.
Collapse
|
109
|
Marsboom G, Janssens S. Endothelial progenitor cells: new perspectives and applications in cardiovascular therapies. Expert Rev Cardiovasc Ther 2014; 6:687-701. [DOI: 10.1586/14779072.6.5.687] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
110
|
Yhhu3813 is a novel selective inhibitor of c-Met kinase that inhibits c-Met-dependent neoplastic phenotypes of human cancer cells. Acta Pharmacol Sin 2014; 35:89-97. [PMID: 24241352 DOI: 10.1038/aps.2013.125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/02/2013] [Indexed: 01/17/2023] Open
Abstract
AIM c-Met kinase deregulation is strongly associated with the formation, progression and dissemination of human cancers. In this study we identified Yhhu3813 as a small-molecule inhibitor of c-Met kinase and characterized its antitumor properties both in vitro and in vivo. METHODS The activities of different kinases were measured using ELISA assays and signaling proteins in the cells were detected with Western blotting. Cell proliferation was assessed using SRB or MTT assay in twenty human cell lines and cell cycle distribution was determined with flow cytometry. Transwell-based assay was used to evaluate cell migration and invasion. Cell invasive growth was detected by a morphogenesis assay. c-Met overactivated human NSCLC cell line EBC-1 xenografts were used to evaluate the in vivo anti-tumor efficacy. RESULTS Yhhu3813 potently inhibited c-Met kinase activity in vitro with an IC50 value of 2.4±0.3 nmol/L, >400-fold higher than that for a panel of 15 different tyrosine kinases, suggesting a high selectivity of Yhhu3813. The compound (20, 100 and 500 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and Erk signal cascades in multiple c-Met aberrant human cancer cell lines, regardless of the mechanistic complexity in c-Met activation across different cellular contexts. In 20 human cancer cell lines harboring different backgrounds of c-Met expression/activation, Yhhu3813 potently inhibited c-Met-driven cell proliferation via arresting cells at G1/S phase. Furthermore, Yhhu3813 substantially impaired c-Met-mediated cell migration, invasion, scattering, and invasive growth. Oral administration of EBC-1 xenograft mice with Yhhu3813 (50 or 100 mg·kg(-1)·d(-1), qd, for 2 weeks) dose-dependently suppressed the tumor growth, which was correlated with a reduction in the intratumoral proliferation index and c-Met signaling. CONCLUSION Yhhu3813 is a potent selective inhibitor of c-Met that inhibits c-Met-dependent neoplastic phenotypes of human cancer cells in vitro and in vivo.
Collapse
|
111
|
Ellison GM, Smith AJ, Waring CD, Henning BJ, Burdina AO, Polydorou J, Vicinanza C, Lewis FC, Nadal-Ginard B, Torella D. Adult Cardiac Stem Cells: Identity, Location and Potential. ADULT STEM CELLS 2014. [DOI: 10.1007/978-1-4614-9569-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
112
|
Maroun CR, Rowlands T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther 2013; 142:316-38. [PMID: 24384534 DOI: 10.1016/j.pharmthera.2013.12.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/14/2022]
Abstract
The Met receptor tyrosine kinase (RTK) is an attractive oncology therapeutic target. Met and its ligand, HGF, play a central role in signaling pathways that are exploited during the oncogenic process, including regulation of cell proliferation, invasion, angiogenesis, and cancer stem cell regulation. Elevated Met and HGF as well as numerous Met genetic alterations have been reported in human cancers and correlate with poor outcome. Alterations of pathways that regulate Met, such as the ubiquitin ligase c-Cbl are also likely to activate Met in the oncogenic setting. Moreover, interactive crosstalk between Met and other receptors such as EGFR, HER2 and VEGFR, underlies a key role for Met in resistance to other RTK-targeted therapies. A large body of preclinical and clinical data exists that supports the use of either antibodies or small molecule inhibitors that target Met or HGF as oncology therapeutics. The prognostic potential of Met expression has been suggested from studies in numerous cancers including lung, renal, liver, head and neck, stomach, and breast. Clinical trials using Met inhibitors indicate that the level of Met expression is a determinant of trial outcome, a finding that is actively under investigation in multiple clinical scenarios. Research in Met prognostics and predictors of drug response is now shifting toward more sophisticated methodologies suitable for development as validated and effective biomarkers that can be partnered with therapeutics to improve patient survival.
Collapse
Affiliation(s)
- Christiane R Maroun
- Mirati Therapeutics, 7150 Frederick-Banting, Suite 200, Montreal, Quebec H4S 2A1, Canada.
| | - Tracey Rowlands
- Mirati Therapeutics, 7150 Frederick-Banting, Suite 200, Montreal, Quebec H4S 2A1, Canada
| |
Collapse
|
113
|
Nakano J, Marui A, Muranaka H, Masumoto H, Noma H, Tabata Y, Ido A, Tsubouchi H, Ikeda T, Sakata R. Effects of hepatocyte growth factor in myocarditis rats induced by immunization with porcine cardiac myosin. Interact Cardiovasc Thorac Surg 2013; 18:300-7. [PMID: 24327573 DOI: 10.1093/icvts/ivt512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES Myocarditis is considered one of the major causes of dilated cardiomyopathy. Hepatocyte growth factor (HGF) has pleiotropic activities that promote tissue regeneration and facilitate functional improvement of injured tissue. We investigated whether the epicardial sustained-release of HGF, using gelatin hydrogel sheets, improves cardiac function in a chronic myocarditis rat model. METHODS Six weeks after Lewis rats were immunized with porcine cardiac myosin to establish autoimmune myocarditis, HGF- or normal saline (NS)-incorporated gelatin hydrogel sheets were applied to the epicardium (G-HGF and G-NS, respectively). At either 2 or 4 weeks after treatment, these were compared with the Control myocarditis group. Cardiac function was evaluated by echocardiography and cardiac catheterization. Development of fibrosis was determined by histological study and expression of transforming growth factor-β1 (TGF-β1). Bax and Bcl-2 levels were measured to evaluate apoptotic activity. RESULTS At both points, fractional shortening and end-systolic elastance were higher in the G-HGF group than in the Control and G-NS groups (P < 0.01). Fractional shortening at 2 weeks of each group were as follows: 31.0 ± 0.9%, 24.8 ± 2.7% and 48.6 ± 2.6% (Control, G-NS and G-HGF, respectively). The ratio of the fibrotic area of the myocardium was lower in the G-HGF group than in the Control and G-NS groups at 2 weeks (G-HGF, 8.8 ± 0.9%; Control, 17.5 ± 0.2%; G-NS, 15.6 ± 0.7%; P < 0.01). The ratio at 4 weeks was lower in the G-HGF group than in the G-NS group (10.9 ± 1.4% vs 18.5 ± 1.3%; P < 0.01). The mRNA expression of TGF-β1 in the G-HGF group was lower than in the Control group at 2 weeks (0.6 ± 0.1 vs 1.1 ± 0.2) and lower than that in the G-NS group at 4 weeks (0.7 ± 0.1 vs 1.3 ± 0.2). The Bax-to-Bcl-2 ratios at both points were lower in the G-HGF group than in the Control group. CONCLUSIONS Sustained-released HGF markedly improves cardiac function in chronic myocarditis rats. The antifibrotic and antiapoptotic actions of HGF may contribute to the improvement. HGF-incorporated gelatin hydrogel sheet can be a new therapeutic modality for myocarditis.
Collapse
Affiliation(s)
- Jota Nakano
- Department of Cardiovascular Surgery, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Objective: To investigate the effects of two different sets of graft temperature during perfusion on myocardial protection in the immediate post transplantation period in rats. Materials and Methods: Rats grouped into: Sham and two study groups, which include two set groups of heterotopic heart transplant perfused at two different temperature set. The studied groups underwent cuff method cervical heterotopic heart transplant. Myocardial cell injury and stress were assessed by measuring: Cardiac troponin-I, score of tissue injury, reactive oxygen species (ROS) and nitrogen, caspase 3 enzyme, and degree of myocardial apoptosis. The low set temperature (18°C) significantly reduced myocardial cell injury compared to 37°C reperfusion temperature. This cytoprotective effect of low temperature reperfusion phase was addressed by significant reduction in ROS and nitrogen and inflammatory cytokines, caspase 3, and myocardial apoptosis. Conclusion: Hypothermic reperfusion phase exerts cytoprotection in heart transplant through down regulation of oxygen, nitrogen reactive species, and inhibition of apoptosis.
Collapse
Affiliation(s)
- Fadhil G Al-Amran
- MD FRCS FACS, Surgical Department, Medical College, Kufa University, Najaf, Iraq
| |
Collapse
|
115
|
Wright JW, Kawas LH, Harding JW. A Role for the Brain RAS in Alzheimer's and Parkinson's Diseases. Front Endocrinol (Lausanne) 2013; 4:158. [PMID: 24298267 PMCID: PMC3829467 DOI: 10.3389/fendo.2013.00158] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/09/2013] [Indexed: 12/30/2022] Open
Abstract
The brain renin-angiotensin system (RAS) has available the necessary functional components to produce the active ligands angiotensins II (AngII), angiotensin III, angiotensins (IV), angiotensin (1-7), and angiotensin (3-7). These ligands interact with several receptor proteins including AT1, AT2, AT4, and Mas distributed within the central and peripheral nervous systems as well as local RASs in several organs. This review first describes the enzymatic pathways in place to synthesize these ligands and the binding characteristics of these angiotensin receptor subtypes. We next discuss current hypotheses to explain the disorders of Alzheimer's disease (AD) and Parkinson's disease (PD), as well as research efforts focused on the use of angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs), in their treatment. ACE inhibitors and ARBs are showing promise in the treatment of several neurodegenerative pathologies; however, there is a need for the development of analogs capable of penetrating the blood-brain barrier and acting as agonists or antagonists at these receptor sites. AngII and AngIV have been shown to play opposing roles regarding memory acquisition and consolidation in animal models. We discuss the development of efficacious AngIV analogs in the treatment of animal models of AD and PD. These AngIV analogs act via the AT4 receptor subtype which may coincide with the hepatocyte growth factor/c-Met receptor system. Finally, future research directions are described concerning new approaches to the treatment of these two neurological diseases.
Collapse
Affiliation(s)
- John W. Wright
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| | - Leen H. Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| | - Joseph W. Harding
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| |
Collapse
|
116
|
|
117
|
Arechederra M, Carmona R, González-Nuñez M, Gutiérrez-Uzquiza A, Bragado P, Cruz-González I, Cano E, Guerrero C, Sánchez A, López-Novoa JM, Schneider MD, Maina F, Muñoz-Chápuli R, Porras A. Met signaling in cardiomyocytes is required for normal cardiac function in adult mice. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2204-15. [PMID: 23994610 DOI: 10.1016/j.bbadis.2013.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/02/2013] [Accepted: 08/20/2013] [Indexed: 11/30/2022]
Abstract
Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control.
Collapse
Affiliation(s)
- María Arechederra
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Besides mediating primary hemostasis and thrombosis, platelets play a critical role in tissue repair and regeneration. They regulate fundamental mechanisms involved in the healing process including cellular migration, proliferation, and angiogenesis. Control of apoptosis/cell survival and interaction with progenitor cells, which are clinically relevant but poorly understood aspects of platelets in tissue repair, will be highlighted in this review. Gaining deeper insight into the less well-characterized molecular mechanisms is necessary to develop new therapeutic platelet-based options.
Collapse
|
119
|
Fu L, Guo W, Liu B, Sun L, Bi Z, Zhu L, Wang X, Liu B, Xie Q, Li K. Shedding of c-Met ectodomain correlates with c-Met expression in non-small cell lung cancer. Biomarkers 2013; 18:126-35. [PMID: 23410046 DOI: 10.3109/1354750x.2012.751455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study is to reveal the correlation of shedding and expression of c-Met in non-small cell lung cancer (NSCLC) patient. MATERIALS AND METHODS We measured soluble c-Met and c-Met level in a panel of pre-clinical models and 197 advanced Chinese NSCLC patients by enzyme-linked immunosorbent assay and immunohistochemistry, respectively. RESULTS Shedding of soluble c-Met associates with total c-Met amount in pre-clinical models, and soluble c-Met correlates with both c-Met expression level and tumor size in human, high soluble c-Met predicts poorer outcome.
Collapse
Affiliation(s)
- Le Fu
- Department of Radiology, Huashan Hospital of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Dy GK, Adjei AA. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J Clin 2013; 63:249-79. [PMID: 23716430 DOI: 10.3322/caac.21184] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/11/2022] Open
Abstract
Answer questions and earn CME/CNE Advances in genomics and molecular biology have identified aberrant proteins in cancer cells that are attractive targets for cancer therapy. Because these proteins are overexpressed or dysregulated in cancer cells compared with normal cells, it was assumed that their inhibitors will be narrowly targeted and relatively nontoxic. However, this hope has not been achieved. Current targeted agents exhibit the same frequency and severity of toxicities as traditional cytotoxic agents, with the main difference being the nature of the toxic effects. Thus, the classical chemotherapy toxicities of alopecia, myelosuppression, mucositis, nausea, and vomiting have been generally replaced by vascular, dermatologic, endocrine, coagulation, immunologic, ocular, and pulmonary toxicities. These toxicities need to be recognized, prevented, and optimally managed.
Collapse
Affiliation(s)
- Grace K Dy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | |
Collapse
|
121
|
Kochegura TN, Makarevich PI, Ovchinnikov AG, Zhigunova LV, Lahova EL, Shestakova MV, Ageev FT, Parfenova EV. Circulating hepatocyte growth factor (HGF) in patients with comorbidity of chronic heart failure, type 2 diabetes mellitus and impaired lipid metabolism. DIABETES MELLITUS 2013. [DOI: 10.14341/2072-0351-3752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AIM: To evaluate the plasma level of circulating heptocyte growth factor (HGF) in patients with comorbidity of post-infarction chronic heart failure (CHF), type 2 diabetes mellitus (T2DM) and obesity. We also aimed to assess possible correlations between HGF levels and parameters of carbohydrate and lipid metabolism, as well as myocardial functional characteristics and classic biochemical severity markers for CHF.17Сахар ный диабет КардиологияСахарный диабет. 2013;(2):17-25
MATERIALS AND METHODS: We enrolled 100 patients for participation in this study, including the following subgroups: 20 individuals with- out cardiovascular and glycemic disorders, 30 patients with CHF, 25 patients with CHF/T2DM comorbidity and 25 diabetic patients with no signs of heart failure. Quantitative plasma HGF analysis was performed with enzyme-linked immunosorbent assay (ELISA).
RESULTS: Plasma HGF was elevated both in patients with CHF and T2DM as measured against healthy control group. The elevation was most prominent in patients with CHF/T2DM comorbidity and was found to correlate with HbA1c level (r=0.52, p=0.03). Plasma HGF also correlated with BMI (r=0.42, p=0007) in a unified study group, though we observed no statistically significant difference between subgroups with a trend toward higher HGF in obese patients with CHF/T2DM comorbidity (626.1?254.1 pg/ml vs 742.0?210.7 pg/ml respectively; p 0.05). Interestingly, plasma HGF was also significantly higher in controls with BMI 30 km/m2 (324.1?107.7 pg/ml vs 436.9?112.3 pg/ml, p=0.03).Circulating HGF correlated with plasma levels of N-terminal fragment of B-type natriuretic peptide (NT-proBNP) and such structural and functional myocardial characteristics as left atrial size and maximum volume along with left ventricular ejection fraction (EF), end-diastolic volume (EDV) and end-diastolic dimension (EDD).
CONCLUSION: These findings suggest that HGF may potentially serve as a prediction marker for unfavorable myocardial remodeling and poor prognosis in CHF patients with T2DM and obesity, though this possibility should be further investigated in follow-up studies.
Collapse
|
122
|
|
123
|
Xiang FL, Lu X, Liu Y, Feng Q. Cardiomyocyte-specific overexpression of human stem cell factor protects against myocardial ischemia and reperfusion injury. Int J Cardiol 2013; 168:3486-94. [PMID: 23680593 DOI: 10.1016/j.ijcard.2013.04.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 03/05/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Cardiomyocyte-specific overexpression of human membrane-associated stem cell factor (hSCF) improves cardiac function post-myocardial infarction. However, whether hSCF overexpression protects the heart from ischemia and reperfusion (I/R) injury is unknown. We aimed to investigate the effects of cardiomyocyte-specific overexpression of hSCF on cardiac injury after acute myocardial I/R and related cellular and molecular signaling mechanisms. METHODS AND RESULTS Wild-type (WT) and hSCF/tetracycline transactivator (tTA) transgenic mice (hSCF/tTA) were subjected to myocardial ischemia for 45 min followed by 3 h of reperfusion. Infarct size and myocardial apoptosis were decreased in hSCF/tTA compared to WT mice (P<0.05). Furthermore, these cardioprotective effects in the hSCF/tTA mice were abrogated by doxycycline, which turned off hSCF overexpression, and by a PI3 kinase inhibitor LY294002. Myocardial expression of insulin-like growth factor (IGF)-1 and hepatocyte growth factor (HGF), which are upstream activators of Akt signaling, was significantly increased in hSCF/tTA compared to WT mice after I/R (P<0.05), and was associated with higher number of c-kit(+) cardiac stem cells (CSCs) (P<0.05). Inhibition of c-kit signaling by ACK2 treatment abolished these protective effects in hSCF/tTA mice. CONCLUSIONS Cardiomyocyte-specific overexpression of hSCF protects the heart from I/R injury. The cardioprotective effects of hSCF overexpression are mediated by increased c-kit(+) CSCs, enhanced growth factor expression and activation of Akt signaling pathway.
Collapse
Affiliation(s)
- Fu-Li Xiang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
124
|
Mungunsukh O, Day RM. Transforming growth factor-β1 selectively inhibits hepatocyte growth factor expression via a micro-RNA-199-dependent posttranscriptional mechanism. Mol Biol Cell 2013; 24:2088-97. [PMID: 23657814 PMCID: PMC3694793 DOI: 10.1091/mbc.e13-01-0017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a multipotent endogenous repair factor. The profibrotic cytokine transforming growth factor (TGF)-β1 inhibits HGF expression by a micro-RNA-199 (miR-199)-dependent posttranscriptional mechanism. In contrast, NK2, a truncated isoform of HGF that inhibits normal repair, is protected from TGF-β1–induced downregulation by miR-199. Hepatocyte growth factor (HGF) is a multipotent endogenous repair factor secreted primarily by mesenchymal cells with effects on cells expressing its receptor, Met. HGF promotes normal tissue regeneration and inhibits fibrotic remodeling in part by promoting proliferation and migration of endothelial and epithelial cells and protecting these cells from apoptosis. HGF also inhibits myofibroblast proliferation. The profibrotic cytokine transforming growth factor beta 1 (TGF-β1) suppresses HGF expression but not the expression of NK2, an HGF splice variant that antagonizes HGF-induced proliferation. We investigated the mechanism for differential regulation of HGF and NK2 by TGF-β1. TGF-β1 down-regulated HGF in primary human adult pulmonary fibroblasts (HLFb) and increased the expression of miR-199a-3p, a microRNA (miRNA) associated with fibrotic remodeling. HGF and NK2 contain completely different 3′ untranslated regions (UTRs), and we determined that miR-199a-3p targeted HGF mRNA for suppression but not NK2. A pre–miR-199 mimic inhibited the expression of a luciferase reporter harboring the HGF 3′ UTR but not a pmirGLO reporter containing the NK2 3′ UTR. In contrast, an anti-miRNA inhibitor specific for miR-199a-3p prevented TGF-β1–induced reduction of both HGF mRNA and HGF protein secretion. Taken together, these findings demonstrate that HGF is distinctly regulated at the posttranscriptional level from its antagonist NK2.
Collapse
Affiliation(s)
- Ognoon Mungunsukh
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
125
|
Lönn J, Johansson CS, Nakka S, Palm E, Bengtsson T, Nayeri F, Ravald N. High concentration but low activity of hepatocyte growth factor in periodontitis. J Periodontol 2013; 85:113-22. [PMID: 23594192 DOI: 10.1902/jop.2013.130003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND High levels of hepatocyte growth factor (HGF), a healing factor with regenerative and cytoprotective effects, are associated with inflammatory diseases, including periodontitis. HGF biologic activity requires binding to its receptors, the proto-oncogene c-Met and heparan sulfate proteoglycan (HSPG). This study investigates HGF expression and its relationship to subgingival microbiota in medically healthy individuals with and without periodontitis. METHODS Saliva, gingival crevicular fluid (GCF), and blood samples from 30 patients with severe periodontitis and 30 healthy controls were analyzed for HGF concentration using enzyme-linked immunosorbent assay and binding affinity for HSPG and c-Met using surface plasmon resonance. The regenerative effects of saliva from three patients and controls were analyzed in an in vitro model of cell injury. Subgingival plaques were analyzed for the presence of 18 bacterial species. RESULTS Patients with periodontitis showed higher HGF concentrations in saliva, GCF, and serum (P <0.001); however, the binding affinities for HSPG and c-Met were reduced in GCF and saliva (P <0.002). In contrast to the controls, saliva from patients showed no significant regenerative effect over time on gingival epithelial cells. Compared with controls, patients had a higher prevalence of periodontally related bacteria. CONCLUSIONS Higher circulatory HGF levels indicate a systemic effect of periodontitis. However, the HGF biologic activity at local inflammation sites was reduced, and this effect was associated with the amount of periodontal bacteria. Loss of function of healing factors may be an important mechanism in degenerative processes in periodontally susceptible individuals.
Collapse
Affiliation(s)
- Johanna Lönn
- The Institution for Protein Environment Affinity Surveys (PEAS Institute), Linköping, Sweden
| | | | | | | | | | | | | |
Collapse
|
126
|
Yan L, Zhu T, Sun T, Wang L, Pan S, Tao Z, Yang Z, Cao K. Activation of calcium-sensing receptors is associated with apoptosis in a model of simulated cardiomyocytes ischemia/reperfusion. J Biomed Res 2013; 24:301-7. [PMID: 23554644 PMCID: PMC3596596 DOI: 10.1016/s1674-8301(10)60042-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Indexed: 02/03/2023] Open
Abstract
Objective Calcium-sensing receptors (CaSRs) are G-protein coupled receptors which maintain systemic calcium homeostasis and participate in hormone secretion, activation of ion channels, cell apoptosis, proliferation, and differentiation. Previous studies have shown that CaSRs induce apoptosis in isolated adult rat heart and in normal neonatal rat cardiomyocytes by G-protein-PLC-IP3 signaling transduction. However, little knowledge is presently available concerning the role of CaSRs in the apoptosis induced by ischemia and reperfusion in neonatal cardiomyocytes. Methods Primary neonatal rat ventricular cardiomyocytes were incubated in ischemiamimetic solution for 2 h, and then re-incubated in normal culture medium for 24 h to establish a model of simulated ischemia/reperfusion (I/R). Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). The expression of CaSRs mRNA was detected by real-time reverse transcription polymerase chain reaction (RT-PCR). In addition, the expressions of caspase-3 and Bcl-2 were analyzed by western blot. Results The simulated I/R enhanced the expression of CaSRs and cardiomyocyte apoptosis. GdCl3, a specific activator of CaSRs, further increased the expression of CaSRs and cardiomyocyte apoptosis, along with up-regulation of caspase-3 and down-regulation of Bcl-2. Conclusion CaSRs are associated with I/R injury and apoptosis in neonatal rat ventricular cardiomyocytes via suppressing Bcl-2 and promoting caspase-3 expression.
Collapse
Affiliation(s)
- Ling Yan
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Madonna R, Bolli R, Rokosh G, De Caterina R. Targeting phosphatidylinositol 3-kinase-Akt through hepatocyte growth factor for cardioprotection. J Cardiovasc Med (Hagerstown) 2013; 14:249-53. [DOI: 10.2459/jcm.0b013e3283542017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
128
|
Kishore R, Verma SK, Mackie AR, Vaughan EE, Abramova TV, Aiko I, Krishnamurthy P. Bone marrow progenitor cell therapy-mediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts. PLoS One 2013; 8:e60161. [PMID: 23560074 PMCID: PMC3613379 DOI: 10.1371/journal.pone.0060161] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/18/2013] [Indexed: 11/19/2022] Open
Abstract
Diabetes is associated with a higher incidence of myocardial infarction (MI) and increased risk for adverse vascular and fibrogenic events post-MI. Bone marrow-derived progenitor cell (BMPC) therapy has been shown to promote neovascularization, decrease infarct area and attenuate left ventricular (LV) dysfunction after MI. Unlike vascular effects, the anti-fibrosis mechanisms of BMPC, specifically under diabetic conditions, are poorly understood. We demonstrated that intramyocardial delivery of BMPCs in infarcted diabetic db/db mice significantly down-regulates profibrotic miRNA-155 in the myocardium and improves LV remodeling and function. Furthermore, inhibition of paracrine factor hepatocyte growth factor (HGF) signaling in vivo suppressed the BMPC-mediated inhibition of miR-155 expression and the associated protective effect on cardiac fibrosis and function. In vitro studies confirmed that the conditioned media of BMPC inhibited miR-155 expression and profibrotic signaling in mouse cardiac fibroblasts under diabetic conditions. However, neutralizing antibodies directed against HGF blocked these effects. Furthermore, miR-155 over-expression in mouse cardiac fibroblasts inhibited antifibrotic Sloan-Kettering Institute proto-oncogene (Ski) and Ski-related novel gene, non-Alu-containing (SnoN) signaling and abrogated antifibrogenic response of HGF. Together, our data demonstrates that paracrine regulation of cardiac miRNAs by transplanted BMPCs contributes to the antifibrotic effects of BMPC therapy. BMPCs release HGF, which inhibits miR-155-mediated profibrosis signaling, thereby preventing cardiac fibrosis. These data suggest that targeting miR-155 might serve as a potential therapy against cardiac fibrosis in the diabetic heart.
Collapse
Affiliation(s)
- Raj Kishore
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Suresh K. Verma
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Alexander R. Mackie
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Erin E. Vaughan
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tatiana V. Abramova
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ito Aiko
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Prasanna Krishnamurthy
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
129
|
Raibaut L, Vicogne J, Leclercq B, Drobecq H, Desmet R, Melnyk O. Total synthesis of biotinylated N domain of human hepatocyte growth factor. Bioorg Med Chem 2013; 21:3486-94. [PMID: 23523386 DOI: 10.1016/j.bmc.2013.02.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 01/03/2023]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is the high affinity ligand of MET tyrosine kinase receptor. We report here the total synthesis of a biotinylated analogue of human HGF/SF N domain. Functionally, N domain is part of the HGF/SF high affinity binding site for MET and also the main HGF/SF binding site for heparin. The 97 Aa linear chain featuring a C-terminal biotin group was assembled in high yield using an N-to-C one-pot three segments assembly strategy relying on a sequential Native Chemical Ligation (NCL)/bis(2-sulfanylethyl)amido (SEA) native peptide ligation process. The folded protein displayed the native disulfide bond pattern and showed the ability to bind heparin.
Collapse
Affiliation(s)
- Laurent Raibaut
- UMR CNRS 8161 Univ Lille Nord de France, Institut Pasteur de Lille, 1 rue du Pr Calmette, Lille 59021, France
| | | | | | | | | | | |
Collapse
|
130
|
Scagliotti GV, Novello S, von Pawel J. The emerging role of MET/HGF inhibitors in oncology. Cancer Treat Rev 2013; 39:793-801. [PMID: 23453860 DOI: 10.1016/j.ctrv.2013.02.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 02/06/2023]
Abstract
The N-methyl-N'-nitroso-guanidine human osteosarcoma transforming gene (MET) receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) control cellular signaling cascades that direct cell growth, proliferation, survival, and motility. Aberrant MET/HGF activation has been observed in many tumor types, can occur by multiple mechanisms, and promotes cellular proliferation and metastasis via growth factor receptors and other oncogenic receptor pathways. Thus, MET/HGF inhibition has emerged as targeted anticancer therapies. Preclinically, neoplastic and metastatic phenotypes of several tumor cells, including non-small cell lung cancer, hepatocellular carcinoma, and gastric cancer, were abrogated by MET inhibition. Ongoing clinical development with tivantinib, cabozantinib, onartuzumab, crizotinib, rilotumumab, and ficlatuzumab has shown encouraging results. These trials have established a key role for MET in a variety of tumor types. Evidence is emerging for identification of aberrant MET activity biomarkers and selection of patient subpopulations that may benefit from targeted MET and HGF inhibitor treatment.
Collapse
|
131
|
Mizuno S, Nakamura T. HGF-MET cascade, a key target for inhibiting cancer metastasis: the impact of NK4 discovery on cancer biology and therapeutics. Int J Mol Sci 2013; 14:888-919. [PMID: 23296269 PMCID: PMC3565297 DOI: 10.3390/ijms14010888] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 01/14/2023] Open
Abstract
Hepatocyte growth factor (HGF) was discovered in 1984 as a mitogen of rat hepatocytes in a primary culture system. In the mid-1980s, MET was identified as an oncogenic mutant protein that induces malignant phenotypes in a human cell line. In the early 1990s, wild-type MET was shown to be a functional receptor of HGF. Indeed, HGF exerts multiple functions, such as proliferation, morphogenesis and anti-apoptosis, in various cells via MET tyrosine kinase phosphorylation. During the past 20 years, we have accumulated evidence that HGF is an essential conductor for embryogenesis and tissue regeneration in various types of organs. Furthermore, we found in the mid-1990s that stroma-derived HGF is a major contributor to cancer invasion at least in vitro. Based on this background, we prepared NK4 as an antagonist of HGF: NK4 inhibits HGF-mediated MET tyrosine phosphorylation by competing with HGF for binding to MET. In vivo, NK4 treatments produced the anti-tumor outcomes in mice bearing distinct types of malignant cancers, associated with the loss in MET activation. There are now numerous reports showing that HGF-antagonists and MET-inhibitors are logical for inhibiting tumor growth and metastasis. Additionally, NK4 exerts anti-angiogenic effects, partly through perlecan-dependent cascades. This paper focuses on the chronology and significance of HGF-antagonisms in anti-tumor researches, with an interest in NK4 discovery. Tumor HGF–MET axis is now critical for drug resistance and cancer stem cell maintenance. Thus, oncologists cannot ignore this cascade for the future success of anti-metastatic therapy.
Collapse
Affiliation(s)
- Shinya Mizuno
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2-B7 Yamadaoka, Suita 565-0871, Japan; E-Mail:
| | - Toshikazu Nakamura
- Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-6-6879-4130
| |
Collapse
|
132
|
Chen B, Tao Z, Zhao Y, Chen H, Yong Y, Liu X, Wang H, Wu Z, Yang Z, Yuan L. Catheter-based intramyocardial delivery (NavX) of adenovirus achieves safe and accurate gene transfer in pigs. PLoS One 2013; 8:e53007. [PMID: 23301013 PMCID: PMC3536803 DOI: 10.1371/journal.pone.0053007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 11/26/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is one of the major angiogenic factors being studied for the treatment of ischemic heart diseases. Our previous study demonstrated adenovirus-HGF was effective in myocardial ischemia models. The first clinical safety study showed a positive effect in patients with severe and diffused triple coronary disease. METHODS 12 Pigs were randomized (1:1) to receive HGF, which was administered as five injections into the infarcted myocardium, or saline (control group). The injections were guided by EnSite NavX left ventricular electroanatomical mapping. RESULTS The catheter-based injections caused no pericardial effusion, malignant arrhythmia or death. During mapping and injection, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, serum creatinine and creatine kinase-MB levels have no significant increase as compared to those before and after the injection in HGF group(P>0.05). HGF group has high HGF expression with Western blot, less myocardial infarct sizes by electroanatomical mapping (HGF group versus after saline group, 5.28 ± 0.55 cm(2) versus 9.06 ± 1.06 cm(2), P<0.01), better cardiac function with Gated-Single Photon Emission Computed Tomography compared with those in saline group. Histological, strongly increased lectin-positive microvessels and microvessel density were found in the myocardial ischemic regions in HGF group. CONCLUSION Intramyocardial injection guided by NavX system provides a method of feasible and safe percutaneous gene transfer to myocardial infarct regions.
Collapse
Affiliation(s)
- Bo Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, The People’s Republic of China
| | - Zhengxian Tao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, The People’s Republic of China
| | - Yingming Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, The People’s Republic of China
| | - Hongwu Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, The People’s Republic of China
| | - Yonghong Yong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, The People’s Republic of China
| | - Xiang Liu
- Department of Technological Development, MicroPort Medical (Shanghai) Co. Ltd., Shanghai, The People’s Republic of China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine of China, Academy of Military Medical Sciences, Beijing, The People’s Republic of China
| | - Zuze Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine of China, Academy of Military Medical Sciences, Beijing, The People’s Republic of China
| | - Zhijian Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, The People’s Republic of China
| | - Li Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, The People’s Republic of China
| |
Collapse
|
133
|
Abstract
Under normal physiological conditions, the hepatocyte growth factor (HGF) and its receptor, the MET transmembrane tyrosine kinase (cMET), are involved in embryogenesis, morphogenesis, and wound healing. The HGF-cMET axis promotes cell survival, proliferation, migration, and invasion via modulation of epithelial-mesenchymal interactions. Hepatocellular cancer (HCC) is the third most common cause of worldwide cancer-related mortality; advanced disease is associated with a paucity of therapeutic options and a five-year survival rate of only 10%. Dysregulation of the HGF-cMET pathway is implicated in HCC carcinogenesis and progression through activation of multiple signaling pathways; therefore, cMET inhibition is a promising therapeutic strategy for HCC treatment. The authors review HGF-cMET structure and function in normal tissue and in HCC, cMET inhibition in HCC, and future strategies for biomarker identification.
Collapse
|
134
|
Zelarayán LC, Zafiriou MP, Zimmermann WH. Emerging Concepts in Myocardial Pharmacoregeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
135
|
Wright JW, Harding JW. Importance of the brain Angiotensin system in Parkinson's disease. PARKINSON'S DISEASE 2012; 2012:860923. [PMID: 23213621 PMCID: PMC3503402 DOI: 10.1155/2012/860923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) has become a major health problem affecting 1.5% of the world's population over 65 years of age. As life expectancy has increased so has the occurrence of PD. The primary direct consequence of this disease is the loss of dopaminergic (DA) neurons in the substantia nigra and striatum. As the intensity of motor dysfunction increases, the symptomatic triad of bradykinesia, tremors-at-rest, and rigidity occur. Progressive neurodegeneration may also impact non-DA neurotransmitter systems including cholinergic, noradrenergic, and serotonergic, often leading to the development of depression, sleep disturbances, dementia, and autonomic nervous system failure. L-DOPA is the most efficacious oral delivery treatment for controlling motor symptoms; however, this approach is ineffective regarding nonmotor symptoms. New treatment strategies are needed designed to provide neuroprotection and encourage neurogenesis and synaptogenesis to slow or reverse this disease process. The hepatocyte growth factor (HGF)/c-Met receptor system is a member of the growth factor family and has been shown to protect against degeneration of DA neurons in animal models. Recently, small angiotensin-based blood-brain barrier penetrant mimetics have been developed that activate this HGF/c-Met system. These compounds may offer a new and novel approach to the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- John W. Wright
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| | - Joseph W. Harding
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| |
Collapse
|
136
|
Nery AA, Nascimento IC, Glaser T, Bassaneze V, Krieger JE, Ulrich H. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry A 2012; 83:48-61. [PMID: 23027703 DOI: 10.1002/cyto.a.22205] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 12/25/2022]
Abstract
Modern medicine will unequivocally include regenerative medicine as a major breakthrough in the re-establishment of damaged or lost tissues due to degenerative diseases or injury. In this scenario, millions of patients worldwide can have their quality of life improved by stem cell implantation coupled with endogenous secretion or administration of survival and differentiation promoting factors. Large efforts, relying mostly on flow cytometry and imaging techniques, have been put into cell isolation, immunophenotyping, and studies of differentiation properties of stem cells of diverse origins. Mesenchymal stem cells (MSCs) are particularly relevant for therapy due to their simplicity of isolation. A minimal phenotypic pattern for the identification of MSCs cells requires them to be immunopositive for CD73, CD90, and CD105 expression, while being negative for CD34, CD45, and HLA-DR and other surface markers. MSCs identified by their cell surface marker expression pattern can be readily purified from patient's bone marrow and adipose tissues. Following expansion and/or predifferentiation into a desired tissue type, stem cells can be reimplanted for tissue repair in the same patient, virtually eliminating rejection problems. Transplantation of MSCs is subject of almost 200 clinical trials to cure and treat a very broad range of conditions, including bone, heart, and neurodegenerative diseases. Immediate or medium term improvements of clinical symptoms have been reported as results of many clinical studies.
Collapse
Affiliation(s)
- Arthur A Nery
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
137
|
Ruvinov E, Sapir Y, Cohen S. Cardiac Tissue Engineering: Principles, Materials, and Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.2200/s00437ed1v01y201207tis009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
138
|
Morishita R, Okayama K, Azuma J, Dosaka N, Iekushi K, Sanada F, Kusunoki H, Iwabayashi M, Rakugi H, Taniyama Y. Response to Hepatocyte Growth Factor and Cardiomyopathy in Dialysis Patients. Hypertension 2012. [DOI: 10.1161/hypertensionaha.112.199778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Keita Okayama
- Department of Clinical Gene Therapy
Osaka University Graduate School of Medicine
Osaka, Japan (Morishita, Okayama)
| | | | | | - Kazuma Iekushi
- Departments of Clinical Gene Therapy and Geriatric Medicine and Nephrology
Osaka University Graduate School of Medicine
Osaka, Japan (Azuma, Dosaka, Iekushi)
| | - Fumihiro Sanada
- Department of Clinical Gene Therapy
Osaka University Graduate School of Medicine
Osaka, Japan (Sanada)
| | - Hiroshi Kusunoki
- Departments of Clinical Gene Therapy and Geriatric Medicine and Nephrology
Osaka University Graduate School of Medicine
Osaka, Japan (Kusunoki)
| | - Masaaki Iwabayashi
- Department of Clinical Gene Therapy
Osaka University Graduate School of Medicine
Osaka, Japan (Iwabayashi)
| | - Hiromi Rakugi
- Department of Geriatric Medicine and Nephrology
Osaka University Graduate School of Medicine
Osaka, Japan (Rakugi)
| | - Yoshiaki Taniyama
- Departments of Clinical Gene Therapy and Geriatric Medicine and Nephrology
Osaka University Graduate School of Medicine
Osaka, Japan (Taniyama)
| |
Collapse
|
139
|
Locatelli A, Lofgren KA, Daniel AR, Castro NE, Lange CA. Mechanisms of HGF/Met signaling to Brk and Sam68 in breast cancer progression. Discov Oncol 2012; 3:14-25. [PMID: 22124844 DOI: 10.1007/s12672-011-0097-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Signal transduction pathways downstream of receptor tyrosine kinases (RTKs) are often deregulated during oncogenesis, tumor progression, and metastasis. In particular, the peptide growth factor hormone, hepatocyte growth factor (HGF), and its specific receptor, Met tyrosine kinase, regulate cancer cell migration, thereby conferring an aggressive phenotype (Nakamura et al., J Clin Invest 106(12):1511-1519, 2000; Huh et al., Proc Natl Acad Sci U S A 101:4477-4482, 2004). Additionally, overexpression of Met is associated with enhanced invasiveness of breast cancer cells (Edakuni et al., Pathol Int 51(3):172-178, 2001; Jin et al., Cancer 79(4):749-760, 1997; Tuck et al., Am J Pathol 148(1):225-232, 1996). Here, we review the regulation of recently identified novel downstream mediators of HGF/Met signaling, Breast tumor kinase (Brk/PTK6), and Src-associated substrate during mitosis of 68 kDa (Sam68), and discuss their relevance to mechanisms of breast cancer progression.
Collapse
Affiliation(s)
- Alessia Locatelli
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | | | |
Collapse
|
140
|
Mesenchymal stromal cells but not cardiac fibroblasts exert beneficial systemic immunomodulatory effects in experimental myocarditis. PLoS One 2012; 7:e41047. [PMID: 22815907 PMCID: PMC3398879 DOI: 10.1371/journal.pone.0041047] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 06/21/2012] [Indexed: 12/17/2022] Open
Abstract
Systemic application of mesenchymal stromal cells (MSCs) in inflammatory cardiomyopathy exerts cardiobeneficial effects. The mode of action is unclear since a sufficient and long-acting cardiac homing of MSCs is unlikely. We therefore investigated the regulation of the immune response in coxsackievirus B3 (CVB3)-induced acute myocarditis after intravenous application of MSCs. Wildtype mice were infected with CVB3 and treated with either PBS, human MSCs or human cardiac fibroblasts intravenously 1 day after infection. Seven days after infection, MSCs could be detected in the spleen, heart, pancreas, liver, lung and kidney, whereby the highest presence was observed in the lung. MSCs increased significantly the myocardial expression of HGF and decreased the expression of the proinflammatory cytokines TNFα, IL1β and IL6 as well as the severity of myocarditis and ameliorated the left ventricular dysfunction measured by conductance catheter. MSCs upregulated the production of IFNγ in CD4+ and CD8+ cells, the number of IL10-producing regulatory T cells and the apoptosis rate of T cells in the spleen. An increased number of CD4+CD25+FoxP3 could be found in the spleen as well as in the circulation. In contrast, application of human cardiac fibroblasts had no effect on the severity of myocarditis and the systemic immune response observed after MSCs-administration. In conclusion, modulation of the immune response in extracardiac organs is associated with cardiobeneficial effects in experimental inflammatory cardiomyopathy after systemic application of MSCs.
Collapse
|
141
|
Abstract
The MET pathway is dysregulated in many human cancers and promotes tumour growth, invasion and dissemination. Abnormalities in MET signalling have been reported to correlate with poor clinical outcomes and drug resistance in patients with cancer. Thus, MET has emerged as an attractive target for cancer therapy. Several MET inhibitors have been introduced into the clinic, and are currently in all phases of clinical trials. In general, initial results from these studies indicate only a modest benefit in unselected populations. In this Review, we discuss current challenges in developing MET inhibitors--including identification of predictive biomarkers--as well as the most-efficient ways to combine these drugs with other targeted agents or with classic chemotherapy or radiotherapy.
Collapse
|
142
|
Fountoulaki K, Parissis J. Hepatocyte growth factor as a prognostic marker in heart failure: promise and challenges. Cardiology 2012; 121:237-9. [PMID: 22555339 DOI: 10.1159/000338158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 12/15/2022]
Affiliation(s)
- K Fountoulaki
- Adult Cardiothoracic Intensive Care Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | | |
Collapse
|
143
|
Wright JW, Harding JW. The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch 2012; 465:133-51. [DOI: 10.1007/s00424-012-1102-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 12/14/2022]
|
144
|
Liu L, Norman MH, Lee M, Xi N, Siegmund A, Boezio AA, Booker S, Choquette D, D'Angelo ND, Germain J, Yang K, Yang Y, Zhang Y, Bellon SF, Whittington DA, Harmange JC, Dominguez C, Kim TS, Dussault I. Structure-based design of novel class II c-Met inhibitors: 2. SAR and kinase selectivity profiles of the pyrazolone series. J Med Chem 2012; 55:1868-97. [PMID: 22320327 DOI: 10.1021/jm201331s] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As part of our effort toward developing an effective therapeutic agent for c-Met-dependent tumors, a pyrazolone-based class II c-Met inhibitor, N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)-3-fluorophenyl)-1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (1), was identified. Knowledge of the binding mode of this molecule in both c-Met and VEGFR-2 proteins led to a novel strategy for designing more selective analogues of 1. Along with detailed SAR information, we demonstrate that the low kinase selectivity associated with class II c-Met inhibitors can be improved significantly. This work resulted in the discovery of potent c-Met inhibitors with improved selectivity profiles over VEGFR-2 and IGF-1R that could serve as useful tools to probe the relationship between kinase selectivity and in vivo efficacy in tumor xenograft models. Compound 59e (AMG 458) was ultimately advanced into preclinical safety studies.
Collapse
Affiliation(s)
- Longbin Liu
- Department of Medicinal Chemistry, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Mohsin S, Siddiqi S, Collins B, Sussman MA. Empowering adult stem cells for myocardial regeneration. Circ Res 2012; 109:1415-28. [PMID: 22158649 DOI: 10.1161/circresaha.111.243071] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Treatment strategies for heart failure remain a high priority for ongoing research due to the profound unmet need in clinical disease coupled with lack of significant translational progress. The underlying issue is the same whether the cause is acute damage, chronic stress from disease, or aging: progressive loss of functional cardiomyocytes and diminished hemodynamic output. To stave off cardiomyocyte losses, a number of strategic approaches have been embraced in recent years involving both molecular and cellular approaches to augment myocardial structure and performance. Resultant excitement surrounding regenerative medicine in the heart has been tempered by realizations that reparative processes in the heart are insufficient to restore damaged myocardium to normal functional capacity and that cellular cardiomyoplasty is hampered by poor survival, proliferation, engraftment, and differentiation of the donated population. To overcome these limitations, a combination of molecular and cellular approaches must be adopted involving use of genetic engineering to enhance resistance to cell death and increase regenerative capacity. This review highlights biological properties of approached to potentiate stem cell-mediated regeneration to promote enhanced myocardial regeneration, persistence of donated cells, and long-lasting tissue repair. Optimizing cell delivery and harnessing the power of survival signaling cascades for ex vivo genetic modification of stem cells before reintroduction into the patient will be critical to enhance the efficacy of cellular cardiomyoplasty. Once this goal is achieved, then cell-based therapy has great promise for treatment of heart failure to combat the loss of cardiac structure and function associated with acute damage, chronic disease, or aging.
Collapse
|
146
|
Hinkel R, Boekstegers P, Kupatt C. Adjuvant early and late cardioprotective therapy: access to the heart. Cardiovasc Res 2012; 94:226-36. [PMID: 22318936 DOI: 10.1093/cvr/cvs075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Coronary heart disease is still the leading cause of death in industrialized nations, occurring either as acute coronary occlusion and myocardial infarction or as chronic ischaemic cardiomyopathy caused by continuous obstruction of one or more coronary arteries. Even after successful reperfusion, an additional loss of otherwise vital cardiomyocytes may occur in the primary ischaemic area, called lethal reperfusion injury. In experimental settings, delivery of therapeutic agents targeting the reperfusion injury reduces the infarct size by 30%. In addition to the choice of therapeutic agent and time point, the mode of application may be crucial for the therapeutic success. Therefore, this review focuses on the current and future administration techniques for early and late post-myocardial infarction therapies.
Collapse
Affiliation(s)
- Rabea Hinkel
- Medizinische Klinik und Poliklinik I, Klinikum der LMU München, Marchioninistraße 15, Munich, Germany.
| | | | | |
Collapse
|
147
|
Therapeutic potential of fibroblast growth factor-2 for hypertrophic scars: upregulation of MMP-1 and HGF expression. J Transl Med 2012; 92:214-23. [PMID: 21946856 DOI: 10.1038/labinvest.2011.127] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although hypertrophic scars (HTSs) and keloids are challenging problems, their pathogenesis is not well understood, making therapy difficult. We showed that matrix metalloproteinase (MMP)-1 expression was downregulated in HTS compared with normal skin from the same patients, whereas type 1 and 3 collagen and transforming growth factor-β (TGF-β) were upregulated. These differences, however, were not seen in cultured fibroblasts, suggesting the involvement of microenvironmental factors in the pathogenesis of HTS. Fibroblast growth factor-2 (FGF-2) highly upregulated the expression of MMP-1 and hepatocyte growth factor (HGF) in both HTS-derived and control fibroblasts; the upregulation was reversed by extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors. An animal study using human HTS tissue implanted into nude mice indicated that controlled-release FGF-2 resulted in significantly less weight and decreased hydroxyproline content in HTS. Degradation of collagen fibers in FGF-2-treated HTS was also confirmed histologically. Western blotting showed that FGF-2-treated HTS expressed significantly higher MMP-1 protein than control. Decreased MMP-1 expression may be an important transcriptional change in HTS, and its reversal as well as upregulation of HGF by FGF-2 could be a new therapeutic approach for HTS.
Collapse
|
148
|
Abstract
Uncontrolled cell survival, growth, angiogenesis and metastasis are essential hallmarks of cancer. Genetic and biochemical data have demonstrated that the growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, the tyrosine kinase MET, have a causal role in all of these processes, thus providing a strong rationale for targeting these molecules in cancer. Parallel progress in understanding the structure and function of HGF/SF, MET and associated signalling components has led to the successful development of blocking antibodies and a large number of small-molecule MET kinase inhibitors. In this Review, we discuss these advances, as well as results from recent clinical studies that demonstrate that inhibiting MET signalling in several types of solid human tumours has major therapeutic value.
Collapse
Affiliation(s)
- Ermanno Gherardi
- Medical Research Council (MRC) Centre, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | |
Collapse
|
149
|
Beitnes JO, Lunde K, Brinchmann JE, Aakhus S. Stem cells for cardiac repair in acute myocardial infarction. Expert Rev Cardiovasc Ther 2012; 9:1015-25. [PMID: 21878046 DOI: 10.1586/erc.11.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite recent advances in medical therapy, reperfusion strategies, implantable cardioverter-defibrillators and cardiac assist devices, ischemic heart disease is a frequent cause of morbidity and mortality worldwide. Cell therapy has been introduced as a new treatment modality to regenerate lost cardiomyocytes. At present, several cell types seem to improve left ventricular function in animal models as well as in humans, but evidence for true generation of new myocardium is confined to the experimental models. In the clinical perspective, myocardial regeneration has been replaced by myocardial repair, as other mechanisms seem to be involved. Clinical studies on adult stem cells suggest, at best, moderate beneficial effects on surrogate end points, but some applications may qualify for evaluation in larger trials. Complete regeneration of the myocardium by cell therapy after a large myocardial infarction is still visionary, but pluripotent stem cells and tissue engineering are important tools to solve the puzzle.
Collapse
Affiliation(s)
- Jan Otto Beitnes
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Nydalen, Oslo, Norway.
| | | | | | | |
Collapse
|
150
|
Mohammadi Gorji S, Karimpor Malekshah AA, Hashemi-Soteh MB, Rafiei A, Parivar K, Aghdami N. Effect of mesenchymal stem cells on Doxorubicin-induced fibrosis. CELL JOURNAL 2012; 14:142-51. [PMID: 23508361 PMCID: PMC3584430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/04/2012] [Indexed: 10/29/2022]
Abstract
OBJECTIVE The aim of this study was to test the effect of intravenous injection of mesenchymal stem cells (MSCs) on doxorubicin (DOX)-induced fibrosis in the heart. We investigated the mechanisms that possibly mediate this effect. MATERIALS AND METHODS In this experimental study, fibrosis in the myocardium of adult male Wistar rats (weights 180-200 g, 9-10 weeks of age, total n=30) was created by DOX administration. DOX (2.5 mg/kg) was administered intraperitoneally 3 times a week, for a total dose of 15 mg/kg over a period of 2 weeks. MSCs from Wistar rats were separated and cultured in Dulbecco's modified eagle medium (DMEM). The condition medium (CM) which contained factors secreted by MSCs was also collected from MSCs cultured in serum-free DMEM. Two weeks after the first injection of DOX, MSCs, CM and standard medium (SM) were transplanted via intravenous injection. Four weeks after transplantation, histological (Masson's trichrome staining for fibrosis detection) and molecular [real-time polymerase chain reaction (RT-PCR)] analyses were conducted. In addition, insulin-like growth factor (IGF-1) and hepatocyte growth factor (HGF) in the CM were measured with an enzyme-linked immunosorbent assay (ELISA). For immunosuppressive treatment, cyclosporine A was given (intraperitoneally, 5 mg/kg/day) starting on the day of surgery until the end of study in all groups. Fibrosis rate and relative gene expression were compared by analysis of variance (ANOVA) and post-Tukey's test. HGF and (IGF-1 in the CM were analyzed by independent sample t test. P<0.01 was considered statistically significant. RESULTS Our data demonstrated that intravenously transplanted MSCs and CM significantly reduced fibrosis and significantly increased Bcl-2 expression levels in the myocardium compared to the DOX group (p<0.01). However, there was no significant difference between Bax expression levels in these groups. In addition, secretion of HGF and IGF-1 was detected in the CM (p<0.01). CONCLUSION We conclude that intravenous transplantation of MSCs and CM can attenuate myocardial fibrosis and increase Bcl-2 expression. This may be mediated by paracrine signaling from MSCs via anti-fibrotic and anti-apoptotic factors such as HGF and IGF-1.
Collapse
Affiliation(s)
- Simin Mohammadi Gorji
- 1. Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Abbas Ali Karimpor Malekshah
- 2. Department of Anatomy and Embryology, Cellular and Molecular Research Center, Faculty of
Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mohammad Baghere Hashemi-Soteh
- 3. Department of Biochemistry and Genetics, Cellular and Molecular Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- 4. Department of Immunology, Cellular and Molecular Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kazem Parivar
- 1. Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran, * Corresponding Address:
P.O.Box: 14515-775Department of BiologyIslamic Azad UniversityScience and Research BranchTehranIran
kazem_
| | - Nasser Aghdami
- 5. Department of Regenerative Medicine and Cell Therapy, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran,6. Department of stem cell and Developmental biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran, * Corresponding Address:
P.O.Box: 14515-775Department of BiologyIslamic Azad UniversityScience and Research BranchTehranIran
kazem_
| |
Collapse
|