101
|
Abstract
Muscle protein breakdown (MPB) is an important metabolic component of muscle remodeling, adaptation to training, and increasing muscle mass. Degradation of muscle proteins occurs via the integration of three main systems—autophagy and the calpain and ubiquitin-proteasome systems. These systems do not operate independently, and the regulation is complex. Complete degradation of a protein requires some combination of the systems. Determination of MPB in humans is technically challenging, leading to a relative dearth of information. Available information on the dynamic response of MPB primarily comes from stable isotopic methods with expression and activity measures providing complementary information. It seems clear that resistance exercise increases MPB, but not as much as the increase in muscle protein synthesis. Both hyperaminoacidemia and hyperinsulinemia inhibit the post-exercise response of MPB. Available data do not allow a comprehensive examination of the mechanisms behind these responses. Practical nutrition recommendations for interventions to suppress MPB following exercise are often made. However, it is likely that some degree of increased MPB following exercise is an important component for optimal remodeling. At this time, it is not possible to determine the impact of nutrition on any individual muscle protein. Thus, until we can develop and employ better methods to elucidate the role of MPB following exercise and the response to nutrition, recommendations to optimize post exercise nutrition should focus on the response of muscle protein synthesis. The aim of this review is to provide a comprehensive examination of the state of knowledge, including methodological considerations, of the response of MPB to exercise and nutrition in humans.
Collapse
|
102
|
Exercise and the control of muscle mass in human. Pflugers Arch 2018; 471:397-411. [DOI: 10.1007/s00424-018-2217-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
|
103
|
Exercise prevents impaired autophagy and proteostasis in a model of neurogenic myopathy. Sci Rep 2018; 8:11818. [PMID: 30087400 PMCID: PMC6081439 DOI: 10.1038/s41598-018-30365-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023] Open
Abstract
Increased proteolytic activity has been widely associated with skeletal muscle atrophy. However, elevated proteolysis is also critical for the maintenance of cellular homeostasis by disposing cytotoxic proteins and non-functioning organelles. We recently demonstrated that exercise activates autophagy and re-establishes proteostasis in cardiac diseases. Here, we characterized the impact of exercise on skeletal muscle autophagy and proteostasis in a model of neurogenic myopathy induced by sciatic nerve constriction in rats. Neurogenic myopathy, characterized by progressive atrophy and impaired contractility, was paralleled by accumulation of autophagy-related markers and loss of acute responsiveness to both colchicine and chloroquine. These changes were correlated with elevated levels of damaged proteins, chaperones and pro-apoptotic markers compared to control animals. Sustained autophagy inhibition using chloroquine in rats (50 mg.kg-1.day-1) or muscle-specific deletion of Atg7 in mice was sufficient to impair muscle contractility in control but not in neurogenic myopathy, suggesting that dysfunctional autophagy is critical in skeletal muscle pathophysiology. Finally, 4 weeks of aerobic exercise training (moderate treadmill running, 5x/week, 1 h/day) prior to neurogenic myopathy improved skeletal muscle autophagic flux and proteostasis. These changes were followed by spared muscle mass and better contractility properties. Taken together, our findings suggest the potential value of exercise in maintaining skeletal muscle proteostasis and slowing down the progression of neurogenic myopathy.
Collapse
|
104
|
Scicchitano BM, Dobrowolny G, Sica G, Musarò A. Molecular Insights into Muscle Homeostasis, Atrophy and Wasting. Curr Genomics 2018; 19:356-369. [PMID: 30065611 PMCID: PMC6030854 DOI: 10.2174/1389202919666180101153911] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Muscle homeostasis is guaranteed by a delicate balance between synthesis and degradation of cell proteins and its alteration leads to muscle wasting and diseases. In this review, we describe the major anabolic pathways that are involved in muscle growth and homeostasis and the proteolytic systems that are over-activated in muscle pathologies. Modulation of these pathways comprises an attractive target for drug intervention.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Gabriella Dobrowolny
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Gigliola Sica
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Antonio Musarò
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
105
|
Zhang A, Li M, Wang B, Klein JD, Price SR, Wang XH. miRNA-23a/27a attenuates muscle atrophy and renal fibrosis through muscle-kidney crosstalk. J Cachexia Sarcopenia Muscle 2018; 9:755-770. [PMID: 29582582 PMCID: PMC6104113 DOI: 10.1002/jcsm.12296] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/11/2018] [Accepted: 01/31/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The treatment of muscle wasting is accompanied by benefits in other organs, possibly resulting from muscle-organ crosstalk. However, how the muscle communicates with these organs is less understood. Two microRNAs (miRs), miR-23a and miR-27a, are located together in a gene cluster and regulate proteins that are involved in the atrophy process. MiR-23a/27a has been shown to reduce muscle wasting and act as an anti-fibrotic agent. We hypothesized that intramuscular injection of miR-23a/27a would counteract both muscle wasting and renal fibrosis lesions in a streptozotocin-induced diabetic model. METHODS We generated an adeno-associated virus (AAV) that overexpresses the miR-23a∼27a∼24-2 precursor RNA and injected it into the tibialis anterior muscle of streptozotocin-induced diabetic mice. Muscle cross-section area (immunohistology plus software measurement) and muscle function (grip strength) were used to evaluate muscle atrophy. Fibrosis-related proteins were measured by western blot to monitor renal damage. In some cases, AAV-GFP was used to mimic the miR movement in vivo, allowing us to track organ redistribution by using the Xtreme Imaging System. RESULTS The injection of AAV-miR-23a/27a increased the levels of miR-23a and miR-27a as well as increased phosphorylated Akt, attenuated the levels of FoxO1 and PTEN proteins, and reduced the abundance of TRIM63/MuRF1 and FBXO32/atrogin-1 in skeletal muscles. It also decreased myostatin mRNA and protein levels as well as the levels of phosphorylated pSMAD2/3. Provision of miR-23a/27a attenuates the diabetes-induced reduction of muscle cross-sectional area and muscle function. Curiously, the serum BUN of diabetic animals was reduced in mice undergoing the miR-23a/27a intervention. Renal fibrosis, evaluated by Masson trichromatic staining, was also decreased as were kidney levels of phosphorylated SMAD2/3, alpha smooth muscle actin, fibronectin, and collagen. In diabetic mice injected intramuscularly with AAV-GFP, GFP fluorescence levels in the kidneys showed linear correlation with the levels in injected muscle when examined by linear regression. Following intramuscular injection of AAV-miR-23a∼27a∼24-2, the levels of miR-23a and miR-27a in serum exosomes and kidney were significantly increased compared with samples from control virus-injected mice; however, no viral DNA was detected in the kidney. CONCLUSIONS We conclude that overexpression of miR-23a/27a in muscle prevents diabetes-induced muscle cachexia and attenuates renal fibrosis lesions via muscle-kidney crosstalk. Further, this crosstalk involves movement of miR potentially through muscle originated exosomes and serum distribution without movement of AAV. These results could provide new approaches for developing therapeutic strategies for diabetic nephropathy with muscle wasting.
Collapse
Affiliation(s)
- Aiqing Zhang
- Renal Division, Dept. of MedicineEmory UniversityAtlantaGAUSA
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Min Li
- Renal Division, Dept. of MedicineEmory UniversityAtlantaGAUSA
- Molecular Biology Laboratory, Guanganmen HospitalChinese Academy of traditional Chinese MedicineBeijingChina
| | - Bin Wang
- Renal Division, Dept. of MedicineEmory UniversityAtlantaGAUSA
- Institute of Nephrology, Zhong Da HospitalSoutheast UniversityNanjingChina
| | - Janet D. Klein
- Renal Division, Dept. of MedicineEmory UniversityAtlantaGAUSA
| | - S. Russ Price
- Renal Division, Dept. of MedicineEmory UniversityAtlantaGAUSA
- Research Service LineAtlanta Veterans Affairs Medical CenterDecaturILUSA
- Department of Biochemistry and Molecular Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNCUSA
| | - Xiaonan H. Wang
- Renal Division, Dept. of MedicineEmory UniversityAtlantaGAUSA
| |
Collapse
|
106
|
Woodworth-Hobbs ME, Perry BD, Rahnert JA, Hudson MB, Zheng B, Russ Price S. Docosahexaenoic acid counteracts palmitate-induced endoplasmic reticulum stress in C2C12 myotubes: Impact on muscle atrophy. Physiol Rep 2018; 5. [PMID: 29199180 PMCID: PMC5727283 DOI: 10.14814/phy2.13530] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Lipid accumulation in skeletal muscle results in dysregulation of protein metabolism and muscle atrophy. We previously reported that treating C2C12 myotubes with palmitate (PA), a saturated fatty acid, increases the overall rate of proteolysis via activation of the ubiquitin-proteasome and autophagy systems; co-treatment with the omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) prevents the PA-induced responses. Others have reported that PA induces endoplasmic reticulum (ER) stress which initiates the unfolded protein response (UPR), a collective group of responses that can lead to activation of caspase-mediated proteolysis and autophagy. Presently, we tested the hypothesis that DHA protects against PA-induced ER stress/UPR and its atrophy-related responses in muscle cells. C2C12 myotubes were treated with 500 μmol/L PA and/or 100 μmol/L DHA for 24 h. Proteins and mRNA associated with ER stress/UPR, autophagy, and caspase-3 activation were evaluated. PA robustly increased the phosphorylation of protein kinase R (PKR)-like ER kinase (PERK) and eukaryotic initiation factor 2α (eIF2α). It also increased the mRNAs encoding activating transcription factor 4 (ATF4), spliced X-box binding protein 1 (XBP1s), C/EBP homologous protein (CHOP), and autophagy-related 5 (Atg5) as well as the protein levels of the PERK target nuclear factor erythroid 2-related factor (Nrf2), CHOP, and cleaved (i.e., activated) caspase-3. Co-treatment with DHA prevented all of the PA-induced responses. Our results indicate that DHA prevents PA-induced muscle cell atrophy, in part, by preventing ER stress/UPR, a process that leads to activation of caspase-mediated proteolysis and an increase in expression of autophagy-related genes.
Collapse
Affiliation(s)
- Myra E Woodworth-Hobbs
- Nutrition and Health Sciences Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia.,Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Ben D Perry
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Jill A Rahnert
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Matthew B Hudson
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia.,University of Delaware, Department of Kinesiology and Applied Physiology, Newark, Delaware
| | - Bin Zheng
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - S Russ Price
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia.,Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
107
|
Myoepithelial cell-driven acini contraction in response to oxytocin receptor stimulation is impaired in lacrimal glands of Sjögren's syndrome animal models. Sci Rep 2018; 8:9919. [PMID: 29967327 PMCID: PMC6028591 DOI: 10.1038/s41598-018-28227-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/19/2018] [Indexed: 02/08/2023] Open
Abstract
The purpose of the present studies was to investigate the impact of chronic inflammation of the lacrimal gland, as occurs in Sjögren’s syndrome, on the morphology and function of myoepithelial cells (MECs). In spite of the importance of MECs for lacrimal gland function, the effect of inflammation on MECs has not been well defined. We studied changes in MEC structure and function in two animal models of aqueous deficient dry eye, NOD and MRL/lpr mice. We found a statistically significant reduction in the size of MECs in diseased compared to control lacrimal glands. We also found that oxytocin receptor was highly expressed in MECs of mouse and human lacrimal glands and that its expression was strongly reduced in diseased glands. Furthermore, we found a significant decrease in the amount of two MEC contractile proteins, α-smooth muscle actin (SMA) and calponin. Finally, oxytocin-mediated contraction was impaired in lacrimal gland acini from diseased glands. We conclude that chronic inflammation of the lacrimal gland leads to a substantial thinning of MECs, down-regulation of contractile proteins and oxytocin receptor expression, and therefore impaired acini contraction. This is the first study highlighting the role of oxytocin mediated MEC contraction on lacrimal gland function.
Collapse
|
108
|
Pottecher J, Adamopoulos C, Lejay A, Bouitbir J, Charles AL, Meyer A, Singer M, Wolff V, Diemunsch P, Laverny G, Metzger D, Geny B. Diabetes Worsens Skeletal Muscle Mitochondrial Function, Oxidative Stress, and Apoptosis After Lower-Limb Ischemia-Reperfusion: Implication of the RISK and SAFE Pathways? Front Physiol 2018; 9:579. [PMID: 29872405 PMCID: PMC5972292 DOI: 10.3389/fphys.2018.00579] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Objectives: Diabetic patients respond poorly to revascularization for peripheral arterial disease (PAD) but the underlying mechanisms are not well understood. We aimed to determine whether diabetes worsens ischemia-reperfusion (IR)-induced muscle dysfunction and the involvement of endogenous protective kinases in this process. Materials and Methods: Streptozotocin-induced diabetic and non-diabetic rats were randomized to control or to IR injury (3 h of aortic cross-clamping and 2 h of reperfusion). Mitochondrial respiration, reactive oxygen species (ROS) production, protein levels of superoxide dismutase (SOD2) and endogenous protective kinases (RISK and SAFE pathways) were investigated in rat gastrocnemius, together with upstream (GSK-3β) and downstream (cleaved caspase-3) effectors of apoptosis. Results: Although already impaired when compared to non-diabetic controls at baseline, the decline in mitochondrial respiration after IR was more severe in diabetic rats. In diabetic animals, IR-triggered oxidative stress (increased ROS production and reduced SOD2 levels) and effectors of apoptosis (reduced GSK-3β inactivation and higher cleaved caspase-3 levels) were increased to a higher level than in the non-diabetics. IR had no effect on the RISK pathway in non-diabetics and diabetic rats, but increased STAT 3 only in the latter. Conclusion: Type 1 diabetes worsens IR-induced skeletal muscle injury, endogenous protective pathways not being efficiently stimulated.
Collapse
Affiliation(s)
- Julien Pottecher
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Pôle Anesthésie Réanimations Chirurgicales SAMU/SMUR (POLARS), Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Chris Adamopoulos
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Department of Cardiology, St. Paul General Hospital, Thessaloniki, Greece
| | - Anne Lejay
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Service de Chirurgie Vasculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jamal Bouitbir
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France
| | - Anne-Laure Charles
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Alain Meyer
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - Valerie Wolff
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Unité Neurovasculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pierre Diemunsch
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Pôle Anesthésie Réanimations Chirurgicales SAMU/SMUR (POLARS), Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gilles Laverny
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Daniel Metzger
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Bernard Geny
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
109
|
Lakhdar R, Rabinovich RA. Can muscle protein metabolism be specifically targeted by nutritional support and exercise training in chronic obstructive pulmonary disease? J Thorac Dis 2018; 10:S1377-S1389. [PMID: 29928520 PMCID: PMC5989103 DOI: 10.21037/jtd.2018.05.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) associates with several extra-pulmonary effects. Muscle dysfunction and wasting is one of the most prominent extra-pulmonary effects and contributes to exercise limitation and health related quality of life (HRQoL), morbidity as well as mortality. The loss of muscle mass is characterised by an impaired balance between protein synthesis (anabolism) and protein breakdown (catabolism) which relates to nutritional disturbances, muscle disuse and the presence of a systemic inflammation, among other factors. Current approaches to reverse skeletal muscle dysfunction and wasting attain only modest improvements. The development of new therapeutic strategies aiming at improving skeletal muscle dysfunction and wasting are needed. This requires a better understanding of the underlying molecular pathways responsible for these abnormalities. In this review we update recent research on protein metabolism, nutritional depletion as well as physical (in)activity in relation to muscle wasting and dysfunction in patients with COPD. We also discuss the role of nutritional supplementation and exercise training as strategies to re-establish the disrupted balance of protein metabolism in the muscle of patients with COPD. Future areas of research and clinical practice directions are also addressed.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- ELEGI Colt Laboratory, MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Roberto A. Rabinovich
- ELEGI Colt Laboratory, MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Scotland, UK
- Respiratory Medicine Department, Royal Infirmary of Edinburgh, Scotland, UK
| |
Collapse
|
110
|
Naidoo DB, Chuturgoon AA, Phulukdaree A, Guruprasad KP, Satyamoorthy K, Sewram V. Withania somnifera modulates cancer cachexia associated inflammatory cytokines and cell death in leukaemic THP-1 cells and peripheral blood mononuclear cells (PBMC's). Altern Ther Health Med 2018; 18:126. [PMID: 29631586 PMCID: PMC5891897 DOI: 10.1186/s12906-018-2192-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022]
Abstract
Background Cancer and inflammation are associated with cachexia. Withania somnifera (W. somnifera) possesses antioxidant and anti-inflammatory potential. We investigated the potential of an aqueous extract of the root of W. somnifera (WRE) to modulate cytokines, antioxidants and apoptosis in leukaemic THP-1 cells and peripheral blood mononuclear cells (PBMC’s). Methods Cytotoxcity of WRE was determined at 24 and 72 h (h). Oxidant scavenging activity of WRE was evaluated (2, 2-diphenyl-1 picrylhydrazyl assay). Glutathione (GSH) levels, caspase (− 8, − 9, − 3/7) activities and adenosine triphosphate (ATP) levels (Luminometry) were thereafter assayed. Tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and IL-10 levels were also assessed using enzyme-linked immunosorbant assay. Results At 24 h, WRE (0.2–0.4 mg/ml) decreased PBMC viability between 20 and 25%, whereas it increased THP-1 viability between 15 and 23% (p < 0.001). At 72 h, WRE increased PBMC viability by 27–39% (0.05, 0.4 mg/ml WRE) whereas decreased THP-1 viability between 9 and 16% (0.05–0.4 mg/ml WRE) (p < 0.001). Oxidant scavenging activity was increased by WRE (0.05–0.4 mg/ml, p < 0.0001). PBMC TNF-α and IL-10 levels were decreased by 0.2–0.4 mg/ml WRE, whereas IL-1β levels were increased by 0.05–0.4 mg/ml WRE (p < 0.0001). In THP-1 cells, WRE (0.05–0.4 mg/ml) decreased TNF-α, IL-1β and IL-6 levels (p < 0.0001). At 24 h, GSH levels were decreased in PBMC’s, whilst increased in THP-1 cells by 0.2–0.4 mg/ml WRE (p < 0.0001). At 72 h, WRE (0.1–0.4 mg/ml) decreased GSH levels in both cell lines (p < 0.0001). At 24 h, WRE (0.2–0.4 mg/ml) increased PBMC caspase (-8, -3/7) activities whereas WRE (0.05, 0.1, 0.4 mg/ml) increased THP-1 caspase (-9, -3/7) activities (p < 0.0001). At 72 h, PBMC caspase (-8, -9, -3/7) activities were increased at 0.05–0.1 mg/ml WRE (p < 0.0001). In THP-1 cells, caspase (-8, -9, -3/7) activities and ATP levels were increased by 0.1–0.2 mg/ml WRE, whereas decreased by 0.05 and 0.4 mg/ml WRE (72 h, p < 0.0001). Conclusion In PBMC’s and THP-1 cells, WRE proved to effectively modulate antioxidant activity, inflammatory cytokines and cell death. In THP-1 cells, WRE decreased pro-inflammatory cytokine levels, which may alleviate cancer cachexia and excessive leukaemic cell growth. Electronic supplementary material The online version of this article (10.1186/s12906-018-2192-y) contains supplementary material, which is available to authorized users.
Collapse
|
111
|
S-allyl cysteine inhibits TNFα-induced skeletal muscle wasting through suppressing proteolysis and expression of inflammatory molecules. Biochim Biophys Acta Gen Subj 2018; 1862:895-906. [DOI: 10.1016/j.bbagen.2017.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
|
112
|
Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7582730. [PMID: 29743983 PMCID: PMC5878876 DOI: 10.1155/2018/7582730] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Many cancer therapies produce toxic side effects whose molecular mechanisms await full elucidation. The most feared and studied side effect of chemotherapeutic drugs is cardiotoxicity. Also, skeletal muscle physiology impairment has been recorded after many chemotherapeutical treatments. However, only doxorubicin has been extensively studied for its side effects on skeletal muscle. Chemotherapeutic-induced adverse side effects are, in many cases, mediated by mitochondrial damage. In particular, trastuzumab and sunitinib toxicity is mainly associated with mitochondria impairment and is mostly reversible. Vice versa, doxorubicin-induced toxicity not only includes mitochondria damage but can also lead to a more robust and extensive cell injury which is often irreversible and lethal. Drugs interfering with mitochondrial functionality determine the depletion of ATP reservoirs and lead to subsequent reversible contractile dysfunction. Mitochondrial damage includes the impairment of the respiratory chain and the loss of mitochondrial membrane potential with subsequent disruption of cellular energetic. In a context of increased stress, AMPK has a key role in maintaining energy homeostasis, and inhibition of the AMPK pathway is one of the proposed mechanisms possibly mediating mitochondrial toxicity due to chemotherapeutics. Therapies targeting and protecting cell metabolism and energy management might be useful tools in protecting muscular tissues against the toxicity induced by chemotherapeutic drugs.
Collapse
|
113
|
Lorenzi M, Bonassi S, Lorenzi T, Giovannini S, Bernabei R, Onder G. A review of telomere length in sarcopenia and frailty. Biogerontology 2018; 19:209-221. [PMID: 29549539 DOI: 10.1007/s10522-018-9749-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/23/2018] [Indexed: 12/16/2022]
Abstract
Sarcopenia and frailty are associated with several important health-related adverse events, including disability, loss of independence, institutionalization and mortality. Sarcopenia can be considered a biological substrate of frailty, and the prevalence of both these conditions progressively increases with age. Telomeres are nucleoprotein structures located at the end of linear chromosomes and implicated in cellular ageing, shorten with age, and are associated with various age-related diseases. In addition, telomere length (TL) is widely considered a molecular/cellular hallmark of the ageing process. This narrative review summarizes the knowledge about telomeres and analyzes for the first time a possible association of TL with sarcopenia and frailty. The overview provided by the present review suggests that leukocyte TL as single measurement, calculated by quantitative real-time polymerase chain reaction (qRT-PCR), cannot be considered a meaningful biological marker for complex, multidimensional age-related conditions, such as sarcopenia and frailty. Panels of biomarkers, including TL, may provide more accurate assessment and prediction of outcomes in these geriatric syndromes in elderly people.
Collapse
Affiliation(s)
- Maria Lorenzi
- Laboratory of Biogerontology, Department of Geriatrics, Neurosciences and Orthopedics, A. Gemelli Foundation, Catholic University of the Sacred Heart, School of Medicine, L.go F. Vito 1, 00168, Rome, Italy.
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Via Tronto 10/A, 60020, Ancona, Italy
| | - Silvia Giovannini
- Laboratory of Biogerontology, Department of Geriatrics, Neurosciences and Orthopedics, A. Gemelli Foundation, Catholic University of the Sacred Heart, School of Medicine, L.go F. Vito 1, 00168, Rome, Italy
| | - Roberto Bernabei
- Department of Geriatrics, Neurosciences and Orthopedics, A. Gemelli Foundation, Catholic University of the Sacred Heart, School of Medicine, L.go F. Vito 1, 00168, Rome, Italy
| | - Graziano Onder
- Department of Geriatrics, Neurosciences and Orthopedics, A. Gemelli Foundation, Catholic University of the Sacred Heart, School of Medicine, L.go F. Vito 1, 00168, Rome, Italy
| |
Collapse
|
114
|
Mihailidou C, Papakotoulas P, Papavassiliou AG, Karamouzis MV. Superior efficacy of the antifungal agent ciclopirox olamine over gemcitabine in pancreatic cancer models. Oncotarget 2018; 9:10360-10374. [PMID: 29535812 PMCID: PMC5828195 DOI: 10.18632/oncotarget.23164] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Ciclopirox olamine (CPX) is an antifungal agent that has recently demonstrated promising anti-neoplastic activity against hematologic and solid tumors. Here, we evaluated CPX compared with gemcitabine alone as well as their combination in human pancreatic cancer cell lines; BxPC-3, Panc-1, and MIA PaCa-2 and in humanized xenograft mouse models. We also examined the preclinical pharmacodynamic activity of CPX. CPX caused a pronounced decrease in cell proliferation and clonogenic growth potential. These inhibitory effects were accompanied by induction of reactive oxygen species (ROS), which were strongly associated with reduced Bcl-xL and survivin levels and activation of a panel of caspases, especially caspase-3, and finally resulted in apoptotic death. CPX-induced apoptosis was associated with reduced pEGFR (Y1068) and pAkt (Ser473) protein levels. Additionally, decreased proliferation was observed in CPX-treated xenografts tumors, demonstrating unique tumor regression and a profound survival benefit. Finally, we showed that CPX significantly abrogated gemcitabine-induced ROS levels in pancreatic tissues. These pre-clinical results have verified the superior antitumor efficacy of CPX over gemcitabine alone, while their combination is even more effective, providing the rationale for further clinical testing of CPX plus gemcitabine in pancreatic cancer patients.
Collapse
Affiliation(s)
- Chrysovalantou Mihailidou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Pavlos Papakotoulas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- 2 Department of Medical Oncology, Theagenion Hospital, 54007 Thessaloniki, Greece
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Internal Medicine, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
115
|
Perry BD, Rahnert JA, Xie Y, Zheng B, Woodworth-Hobbs ME, Price SR. Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4. PLoS One 2018; 13:e0191313. [PMID: 29329354 PMCID: PMC5766250 DOI: 10.1371/journal.pone.0191313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
Saturated fatty acids, such as palmitate, are elevated in metabolically dysfunctional conditions like type 2 diabetes mellitus. Palmitate has been shown to impair insulin sensitivity and suppress protein synthesis while upregulating proteolytic systems in skeletal muscle. Increased sarco/endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response may contribute to the palmitate-induced impairment of muscle protein synthesis. In some cell types, ER stress occurs through activation of the Toll-like receptor 4 (TLR4). Given the link between ER stress and suppression of protein synthesis, we investigated whether palmitate induces markers of ER stress and protein synthesis by activating TLR4 in cultured mouse C2C12 myotubes. Myotubes were treated with vehicle, a TLR4-specific ligand (lipopolysaccharides), palmitate, or a combination of palmitate plus a TLR4-specific inhibitor (TAK-242). Inflammatory indicators of TLR4 activation (IL-6 and TNFα) and markers of ER stress were measured, and protein synthesis was assessed using puromycin incorporation. Palmitate substantially increased the levels of IL-6, TNF-α, CHOP, XBP1s, and ATF 4 mRNAs and augmented the levels of CHOP, XBP1s, phospho-PERK and phospho-eIF2α proteins. The TLR4 antagonist attenuated both acute palmitate and LPS-induced increases in IL-6 and TNFα, but did not reduce ER stress signaling with either 6 h or 24 h palmitate treatment. Similarly, treating myotubes with palmitate for 6 h caused a 43% decline in protein synthesis consistent with an increase in phospho-eIF2α, and the TLR4 antagonist did not alter these responses. These results suggest that palmitate does not induce ER stress through TLR4 in muscle, and that palmitate impairs protein synthesis in skeletal muscle in part by induction of ER stress.
Collapse
Affiliation(s)
- Ben D. Perry
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
| | - Jill A. Rahnert
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
| | - Yang Xie
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
| | - Bin Zheng
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
| | - Myra E. Woodworth-Hobbs
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
- Center for the Study of Human Health, Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States of America
| | - S. Russ Price
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
- Atlanta VA Medical Center, Decatur, GA, United States of America
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
- * E-mail:
| |
Collapse
|
116
|
Shen L, Meng X, Zhang Z, Wang T. Physical Exercise for Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:529-545. [PMID: 30390268 DOI: 10.1007/978-981-13-1435-3_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The most direct characteristic of muscle atrophy is reduction in muscle mass, which is due to increased protein degradation or reduced protein synthesis in skeletal muscle. The loss of muscle mass can directly affect the quality of daily life, prolong the recovery period, and become the main risk factor for chronic diseases. However, there is currently no effective way to prevent and treat this disease, and therefore it is imperative to explore effective therapeutic approaches for muscle atrophy. It is well known that physical exercise is important for maintaining good health and long-term adherence to exercise can reduce the risk of cardiovascular diseases, obesity, and diabetes. It is also well established that exercise training can promote the synthesis of muscle protein and activate signaling pathways that regulate the metabolism and function of muscle fibers. Therefore, exercise can be used as a method to treat muscle atrophy in many of these conditions. Mitochondria play an important role in skeletal muscle homeostasis and bioenergy metabolism. Mitochondria are sensitive to contractile signals, and hence exercise can improve mitochondrial function and promote biosynthesis, which ultimately maintains the healthy state of cells and the whole body. On the other hand, frequent unaccustomed exercise will change the structure and function of skeletal muscle fibers, which is called exercise-induced muscle damage. When the exercise-induced muscle damage happens, it can cause temporary muscle damage and soreness, giving a negative effect on the muscle function.
Collapse
Affiliation(s)
- Liang Shen
- Physical Education College of Shanghai University, Shanghai, China
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Zhongrong Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Tianhui Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
117
|
The Role of IGF-1 Signaling in Skeletal Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:109-137. [PMID: 30390250 DOI: 10.1007/978-981-13-1435-3_6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is a key anabolic growth factor stimulating phosphatidylinositol 3-kinase (PI3K)/Akt signaling which is well known for regulating muscle hypertrophy. However, the role of IGF-1 in muscle atrophy is less clear. This review provides an overview of the mechanisms via which IGF-1 signaling is implicated in several conditions of muscle atrophy and via which mechanisms protein turnover is altered. IGF-1/PI3K/Akt signaling stimulates the rate of protein synthesis via p70S6Kinase and p90 ribosomal S6 kinase and negatively regulates protein degradation, predominantly by its inhibiting effect on proteasomal and lysosomal protein degradation. Caspase-dependent protein degradation is also attenuated by IGF/PI3K/Akt signaling, whereas evidence for an effect on calpain-dependent protein degradation is inconclusive. IGF-1/PI3K/Akt signaling reduces during denervation-, unloading-, and joint immobilization-induced muscle atrophy, whereas IGF-1/PI3K/Akt signaling seems unaltered during aging-associated muscle atrophy. During denervation and aging, IGF-1 overexpression or injection counteracts denervation- and aging-associated muscle atrophy, despite enhanced anabolic resistance with regard to IGF-1 signaling with aging. It remains unclear whether pharmacological stimulation of IGF-1/PI3K/Akt signaling attenuates immobilization- or unloading-induced muscle atrophy. Exploration of the possibilities to interfere with IGF-1/PI3K/Akt signaling reveals that microRNAs targeting IGF-1 signaling components are promising targets to counterbalance muscle atrophy. Overall, the findings summarized in this review show that in disuse conditions, but not with aging, IGF-1/PI3K/Akt signaling is attenuated and that in some conditions stimulation of this pathway may alleviate skeletal muscle atrophy.
Collapse
|
118
|
Friedrich O, Diermeier S, Larsson L. Weak by the machines: muscle motor protein dysfunction - a side effect of intensive care unit treatment. Acta Physiol (Oxf) 2018; 222. [PMID: 28387014 DOI: 10.1111/apha.12885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/12/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Abstract
Intensive care interventions involve periods of mechanical ventilation, sedation and complete mechanical silencing of patients. Critical illness myopathy (CIM) is an ICU-acquired myopathy that is associated with limb muscle weakness, muscle atrophy, electrical silencing of muscle and motor proteinopathy. The hallmark of CIM is a preferential muscle myosin loss due to increased catabolic and reduced anabolic activity. The ubiquitin proteasome pathway plays an important role, apart from recently identified novel mechanisms affecting non-lysosomal protein degradation or autophagy. CIM is not reproduced by pure disuse atrophy, denervation atrophy, steroid-induced atrophy or septic myopathy, although combinations of high-dose steroids and denervation can mimic CIM. New animal models of critical illness and ICU treatment (i.e. mechanical ventilation and complete immobilization) provide novel insights regarding the time course of protein synthesis and degradation alterations, and the role of protective chaperone activities in the process of myosin loss. Altered mechano-signalling seems involved in triggering a major part of myosin loss in experimental CIM models, and passive loading of muscle potently ameliorates the CIM phenotype. We provide a systematic overview of similarities and distinct differences in the signalling pathways involved in triggering muscle atrophy in CIM and isolated trigger factors. As preferential myosin loss is mostly determined from biochemistry analyses providing no spatial resolution of myosin loss processes within myofibres, we also provide first results monitoring myosin signal intensities during experimental ICU intervention using multi-photon Second Harmonic Generation microscopy. Our results confirm that myosin loss is an evenly distributed process within myofibres rather than being confined to hot spots.
Collapse
Affiliation(s)
- O. Friedrich
- Institute of Medical Biotechnology; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Advanced Optical Technologie (SAOT); Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - S. Diermeier
- Institute of Medical Biotechnology; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Advanced Optical Technologie (SAOT); Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - L. Larsson
- Department of Physiology & Pharmacology; Karolinska Institutet; Stockholm Sweden
- Section of Clinical Neurophysiology; Department of Clinical Neuroscience; Karolinska Institutet; Stockholm Sweden
- Department of Biobehavioral Health; The Pennsylvania State University; University Park PA USA
| |
Collapse
|
119
|
De Moraes WMAM, de Souza PRM, da Paixão NA, de Sousa LGO, Ribeiro DA, Marshall AG, Prestes J, Irigoyen MC, Brum PC, Medeiros A. Aerobic exercise training rescues protein quality control disruption on white skeletal muscle induced by chronic kidney disease in rats. J Cell Mol Med 2017; 22:1452-1463. [PMID: 29265674 PMCID: PMC5824409 DOI: 10.1111/jcmm.13374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
We tested whether aerobic exercise training (AET) would modulate the skeletal muscle protein quality control (PQC) in a model of chronic kidney disease (CKD) in rats. Adult Wistar rats were evaluated in four groups: control (CS) or trained (CE), and 5/6 nephrectomy sedentary (5/6NxS) or trained (5/6NxE). Exercised rats were submitted to treadmill exercise (60 min., five times/wk for 2 months). We evaluated motor performance (tolerance to exercise on the treadmill and rotarod), cross-sectional area (CSA), gene and protein levels related to the unfolded protein response (UPR), protein synthesis/survive and apoptosis signalling, accumulated misfolded proteins, chymotrypsin-like proteasome activity (UPS activity), redox balance and heat-shock protein (HSP) levels in the tibialis anterior. 5/6NxS presented a trend towards to atrophy, with a reduction in motor performance, down-regulation of protein synthesis and up-regulation of apoptosis signalling; increases in UPS activity, misfolded proteins, GRP78, derlin, HSP27 and HSP70 protein levels, ATF4 and GRP78 genes; and increase in oxidative damage compared to CS group. In 5/6NxE, we observed a restoration in exercise tolerance, accumulated misfolded proteins, UPS activity, protein synthesis/apoptosis signalling, derlin, HSPs protein levels as well as increase in ATF4, GRP78 genes and ATF6α protein levels accompanied by a decrease in oxidative damage and increased catalase and glutathione peroxidase activities. The results suggest a disruption of PQC in white muscle fibres of CKD rats previous to the atrophy. AET can rescue this disruption for the UPR, prevent accumulated misfolded proteins and reduce oxidative damage, HSPs protein levels and exercise tolerance.
Collapse
Affiliation(s)
- Wilson Max Almeida Monteiro De Moraes
- Biosciences Department, Federal University of Sao Paulo, Santos, Brazil.,Post-Graduation Program on Physical Education, Catholic University of Brasilia (UCB), Brasilia, Federal District, Brazil
| | | | | | | | | | - Andrea G Marshall
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | - Jonato Prestes
- Post-Graduation Program on Physical Education, Catholic University of Brasilia (UCB), Brasilia, Federal District, Brazil
| | - Maria Claudia Irigoyen
- Hypertension Unit, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Patricia Chakur Brum
- Department of Post-graduation in Medicine, Nove de Julho University (UNINOVE), Sao Paulo, Brazil
| | | |
Collapse
|
120
|
Arcaro CA, Assis RP, Zanon NM, Paula-Gomes S, Navegantes LCC, Kettelhut IC, Brunetti IL, Baviera AM. Involvement of cAMP/EPAC/Akt signaling in the antiproteolytic effects of pentoxifylline on skeletal muscles of diabetic rats. J Appl Physiol (1985) 2017; 124:704-716. [PMID: 29357512 DOI: 10.1152/japplphysiol.00499.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Advances in the knowledge of the mechanisms controlling protein breakdown in skeletal muscles have allowed the exploration of new options for treating muscle-wasting conditions. Pentoxifylline (PTX), a nonselective phosphodiesterase (PDE) inhibitor, attenuates the loss of muscle mass during catabolic conditions, mainly via inhibiting protein breakdown. The aim of this study was to explore the mechanisms by which PTX inhibits proteolysis in the soleus and extensor digitorum longus (EDL) muscles of streptozotocin-induced diabetic rats. The levels of atrogin-1 and muscle RING finger-1 were decreased, as were the activities of caspase-3 (EDL) and calpains (soleus and EDL), in diabetic rats treated with PTX, which at least partly explains the drop in the ubiquitin conjugate (EDL) levels and in proteasome activity (soleus and EDL). Treatment with PTX decreased PDE activity and increased cAMP content in muscles of diabetic rats; moreover, it also increased both the protein levels of exchange protein directly activated by cAMP (EPAC, a cAMP effector) and the phosphorylation of Akt. The loss of muscle mass was practically prevented in diabetic rats treated with PTX. These findings advance our understanding of the mechanisms underlying the antiproteolytic effects of PTX and suggest the use of PDE inhibitors as a strategy to activate cAMP signaling, which is emerging as a promising target for treating muscle mass loss during atrophic conditions. NEW & NOTEWORTHY cAMP signaling has been explored as a strategy to attenuate skeletal muscle atrophies. Therefore, in addition to β2AR agonists, phosphodiesterase inhibitors such as pentoxifylline (PTX) can be an interesting option. This study advances the understanding of the mechanisms related to the antiproteolytic effects of PTX on skeletal muscles of diabetic rats, which involve the activation of both exchange protein directly activated by cAMP and Akt effectors, inhibiting the expression of atrogenes and calpain/caspase-3-proteolytic machinery.
Collapse
Affiliation(s)
- Carlos Alberto Arcaro
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| | - Renata Pires Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| | - Neusa Maria Zanon
- Department of Physiology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil
| | - Silvia Paula-Gomes
- Department of Biochemistry/Immunology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil
| | | | - Isis Carmo Kettelhut
- Department of Physiology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil.,Department of Biochemistry/Immunology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
121
|
Kataoka H, Miyatake N, Kitayama N, Murao S, Tanaka S. Decrease in toe pinch force in male type 2 diabetic patients with diabetic nephropathy. Clin Exp Nephrol 2017; 22:647-652. [PMID: 29181659 DOI: 10.1007/s10157-017-1507-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND The purpose of this cross-sectional study was to investigate the toe pinch force (TPF) of type 2 diabetic patients with diabetic nephropathy by disease stage, and to clarify the factors affecting the TPF. METHODS Seventy-four men with diabetic nephropathy (age: 62.7 ± 8.9 years, duration of diabetes: 14.2 ± 8.6 years) were enrolled. According to the staging of diabetic nephropathy, TPF and knee extension force (KEF) were compared among three groups: normoalbuminuria, microalbuminuria, and overt nephropathy. In addition, we investigated factors influencing TPF and KEF by performing multiple regression analysis. RESULTS Normoalbuminuria group, microalbuminuria group, and overt nephropathy group included 26, 25, and 23 patients, respectively. The TPF of the overt nephropathy group (3.15 ± 0.75 kg) was significantly lower than that of the normoalbuminuria (4.2 ± 0.7 kg, p < 0.001) and microalbuminuria groups (3.65 ± 0.81 kg, p = 0.022). The KEF of the overt nephropathy group (37.1 ± 8.3 kgf) was significantly lower than that of the normoalbuminuria group (44.8 ± 8.3 kgf, p = 0.010). Multiple regression analysis revealed that diabetic polyneuropathy (DPN) and diabetic nephropathy were determinant factors of the TPF; and age, body mass index, and diabetic nephropathy were determinant factors of the KEF. CONCLUSION We found in male patients with diabetic nephropathy, the TPF and KEF decreased with progression of diabetic nephropathy. Furthermore, our findings suggest diabetic nephropathy and DPN are critically involved in the reduction of TPF and KEF.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Rehabilitation Center, KKR Takamatsu Hospital, 4-18, Tenjinmae, Takamatsu-city, Kagawa, 760-0018, Japan. .,Department of Hygiene, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Nobuyuki Miyatake
- Department of Hygiene, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naomi Kitayama
- Rehabilitation Center, KKR Takamatsu Hospital, 4-18, Tenjinmae, Takamatsu-city, Kagawa, 760-0018, Japan
| | - Satoshi Murao
- Department of Diabetes and Endocrinology, KKR Takamatsu Hospital, Kagawa, Japan
| | - Satoshi Tanaka
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
122
|
Wang B, Zhang F, Zhang H, Wang Z, Ma YN, Zhu MJ, Du M. Alcohol intake aggravates adipose browning and muscle atrophy in cancer-associated cachexia. Oncotarget 2017; 8:100411-100420. [PMID: 29245988 PMCID: PMC5725030 DOI: 10.18632/oncotarget.22243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer is commonly associated with cachexia, a paraneoplastic syndrome characterized by body weight loss, muscle wasting, adipose tissue atrophy and inflammation. Chronic alcohol consumption increases the risk of multiple types of cancer, and enhances cancer-associated cachexia (CAC), but the underlying mechanisms remain poorly defined. To test, C57BL/6 mice were fed with 0% or 20% (w/v) alcohol for 3 months, then inoculated with B16BL6 melanoma cells subcutaneously in the right side of the hip and continued to feed with/without alcohol for 3 or 4 weeks. Alcohol intake upregulated ALDH1A1 expression and elevated retinoic acid (RA) content in inguinal white adipose tissue (iWAT), which led to enhanced iWAT browning and brown adipose tissue (BAT) activation, accelerating fat loss. Moreover, alcohol increased muscle loss through augmenting muscle protein degradation, cell apoptosis and inflammation. In addition, alcohol reduced satellite cell density and impaired myogenesis in skeletal muscle. Taken together, alcohol aggravates cancer-associated cachexia at least partially through elevating adipose browning and muscle atrophy.
Collapse
Affiliation(s)
- Bo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100094, P. R. China
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Faya Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210, USA
| | - Zhixiu Wang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yan-Nan Ma
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Chemistry and Lifer Sciences, Gansu Normal University for Nationalities, Hezuo 747000, P. R. China
| | - Mei-Jun Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210, USA
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100094, P. R. China
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
123
|
A novel puromycin decorporation method to quantify skeletal muscle protein breakdown: A proof-of-concept study. Biochem Biophys Res Commun 2017; 494:608-614. [PMID: 29054406 PMCID: PMC5697498 DOI: 10.1016/j.bbrc.2017.10.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023]
Abstract
The precise roles that the major proteolytic pathways play in the regulation of skeletal muscle mass remain incompletely understood, in part due to technical limitations associated with current techniques used to quantify muscle protein breakdown (MPB). We aimed to develop a method to assess MPB in cells, based on loss of puromycin labelling of translated polypeptide chains. Following an initial 24 h incubation period with puromycin (1 μM), loss of puromycin labelling from murine C2C12 myotubes was assessed over 48 h, both in the presence or absence of protein synthesis inhibitor cycloheximide (CHX). To validate the method, loss of puromycin labelling was determined from cells treated with selected compounds known to influence MPB (e.g. serum starvation, Dexamethasone (Dex), tumour necrosis factor alpha (TNF-α) and MG-132)). Reported established (static) markers of MPB were measured following each treatment. Loss of puromycin labelling from cells pre-incubated with puromycin was evident over a 48 h period, both with and without CHX. Treatment with Dex (−14 ± 2% vs. Ctl; P < 0.01), TNF-α (−20 ± 4% vs. Ctl; P < 0.001) and serum starvation (−14 ± 4% vs. Ctl; P < 0.01) caused a greater loss of puromycin labelling than untreated controls, while the proteasome inhibitor MG-132 caused a relatively lower loss of puromycin labelling (+15 ± 8% vs. Ctl; P < 0.05). Thus, we have developed a novel decorporation method for measuring global changes in MPB, validated in vitro using an established muscle cell line. It is anticipated this non isotopic-tracer alternative to measuring MPB will facilitate insight into the mechanisms that regulate muscle mass/MPB both in vitro, and perhaps, in vivo. Limitations exist in the techniques used to quantify muscle protein breakdown (MPB). We developed a method for assessing MPB through loss of puromycin labelling in cells. We validated the method using selected compounds known to dynamically modulate MPB.
Collapse
|
124
|
Ding Z, Huang F, Zhang C, Zhang L, Sun H, Zhang H. Effect of heat shock protein 27 on the
in vitro
degradation of myofibrils by caspase‐3 and μ‐calpain. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Zhenjiang Ding
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Feng Huang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
- Academy of Food and Nutrition Health Chinese Academy of Agricultural Sciences Hefei 238000 China
- College of Staple Food Technology Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Harbin 151900 China
| | - Chunjiang Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
- Academy of Food and Nutrition Health Chinese Academy of Agricultural Sciences Hefei 238000 China
- College of Staple Food Technology Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Harbin 151900 China
| | - Liang Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
- Academy of Food and Nutrition Health Chinese Academy of Agricultural Sciences Hefei 238000 China
- College of Staple Food Technology Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Harbin 151900 China
| | - Hongxia Sun
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Hong Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
- Academy of Food and Nutrition Health Chinese Academy of Agricultural Sciences Hefei 238000 China
- College of Staple Food Technology Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Harbin 151900 China
| |
Collapse
|
125
|
Differential Regulation of the Autophagy and Proteasome Pathways in Skeletal Muscles in Sepsis. Crit Care Med 2017; 45:e971-e979. [PMID: 28538438 DOI: 10.1097/ccm.0000000000002520] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Skeletal muscle fiber atrophy develops in response to severe sepsis, but it is unclear as to how the proteolytic pathways that are involved in its development are differentially regulated. We investigated the link between sepsis-induced fiber atrophy and activation of the proteasome and autophagy pathways and whether the degree of activation is more severe and sustained in limb muscles than it is in the diaphragm. DESIGN Randomized controlled experiment. SETTING Animal research laboratory. SUBJECTS Adult male C57/BL6 mice. INTERVENTIONS Two groups of animals were studied. The sepsis group was subjected to a cecal ligation and perforation technique, whereas the control (sham) group was subjected to abdominal surgery without cecal ligation and perforation. Measurements for both groups were performed 24, 48, and 96 hours after the surgical procedure. MEASUREMENTS AND MAIN RESULTS Atrophy was quantified in the diaphragm and tibialis anterior by measuring fiber diameter. Autophagy was evaluated using electron microscopic detection of autophagosomes and by measuring LC3B protein lipidation and autophagy-related protein expressions. Proteasomal degradation was quantified by measuring chymotrypsin-like activity of the 26S proteasome and messenger RNA expressions of muscle-specific E3 ligases. Sepsis triggered transient fiber atrophy in the diaphragm that lasted for 24 hours and prolonged atrophy in the tibialis anterior that persisted for 96 hours. The autophagy and proteasome pathways were activated in both muscles at varying intensities over the time course of sepsis. Activation was more pronounced in the tibialis anterior than in the diaphragm. Sepsis inhibited the V-Akt thymoma viral oncogene homolog 1 and complex 1 of the mammalian target of rapamycin pathways and stimulated the AMP-activated protein kinase pathway in both muscles. CONCLUSIONS Sepsis triggers more severe and sustained muscle fiber atrophy in limb muscles when compared with respiratory muscle. This response is associated with enhanced proteasomal and autophagic proteolytic pathway activities and is triggered by inhibition of the AKT and complex 1 of the mammalian target of rapamycin pathways and activation of the AMPK pathway.
Collapse
|
126
|
Naidoo DB, Chuturgoon AA, Phulukdaree A, Guruprasad KP, Satyamoorthy K, Sewram V. Centella asiatica modulates cancer cachexia associated inflammatory cytokines and cell death in leukaemic THP-1 cells and peripheral blood mononuclear cells (PBMC's). Altern Ther Health Med 2017; 17:377. [PMID: 28764778 PMCID: PMC5540453 DOI: 10.1186/s12906-017-1865-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
Abstract
Background Cancer cachexia is associated with increased pro-inflammatory cytokine levels. Centella asiatica (C. asiatica) possesses antioxidant, anti-inflammatory and anti-tumour potential. We investigated the modulation of antioxidants, cytokines and cell death by C. asiatica ethanolic leaf extract (CLE) in leukaemic THP-1 cells and normal peripheral blood mononuclear cells (PBMC’s). Methods Cytotoxcity of CLE was determined at 24 and 72 h (h). Oxidant scavenging activity of CLE was evaluated using the 2, 2-diphenyl-1 picrylhydrazyl (DPPH) assay. Glutathione (GSH) levels, caspase (−8, −9, −3/7) activities and adenosine triphosphate (ATP) levels (Luminometry) were then assayed. The levels of tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and IL-10 were also assessed using enzyme-linked immunosorbant assay. Results CLE decreased PBMC viability between 33.25–74.55% (24 h: 0.2–0.8 mg/ml CLE and 72 h: 0.4–0.8 mg/ml CLE) and THP-1 viability by 28.404% (72 h: 0.8 mg/ml CLE) (p < 0.0001). Oxidant scavenging activity was increased by CLE (0.05–0.8 mg/ml) (p < 0.0001). PBMC TNF-α and IL-10 levels were decreased by CLE (0.05–0.8 mg/ml) (p < 0.0001). However, PBMC IL-6 and IL-1β concentrations were increased at 0.05–0.2 mg/ml CLE but decreased at 0.4 mg/ml CLE (p < 0.0001). In THP-1 cells, CLE (0.2–0.8 mg/ml) decreased IL-1β and IL-6 whereas increased IL-10 levels (p < 0.0001). In both cell lines, CLE (0.05–0.2 mg/ml, 24 and 72 h) increased GSH concentrations (p < 0.0001). At 24 h, caspase (−9, −3/7) activities was increased by CLE (0.05–0.8 mg/ml) in PBMC’s whereas decreased by CLE (0.2–0.4 mg/ml) in THP-1 cells (p < 0.0001). At 72 h, CLE (0.05–0.8 mg/ml) decreased caspase (−9, −3/7) activities and ATP levels in both cell lines (p < 0.0001). Conclusion In PBMC’s and THP-1 cells, CLE proved to effectively modulate antioxidant activity, inflammatory cytokines and cell death. In THP-1 cells, CLE decreased pro-inflammatory cytokine levels whereas it increased anti-inflammatory cytokine levels which may alleviate cancer cachexia.
Collapse
|
127
|
Watson EL, Viana JL, Wimbury D, Martin N, Greening NJ, Barratt J, Smith AC. The Effect of Resistance Exercise on Inflammatory and Myogenic Markers in Patients with Chronic Kidney Disease. Front Physiol 2017; 8:541. [PMID: 28804461 PMCID: PMC5532513 DOI: 10.3389/fphys.2017.00541] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Muscle wasting is a common complication of Chronic Kidney Disease (CKD) and is clinically important given its strong association with morbidity and mortality in many other chronic conditions. Exercise provides physiological benefits for CKD patients, however the molecular response to exercise remains to be fully determined. We investigated the inflammatory and molecular response to resistance exercise before and after training in these patients. Methods: This is a secondary analysis of a randomized trial that investigated the effect of 8 week progressive resistance training on muscle mass and strength compared to non-exercising controls. A sub-set of the cohort consented to vastus lateralis skeletal muscle biopsies (n = 10 exercise, n = 7 control) in which the inflammatory response (IL-6, IL-15, MCP-1 TNF-α), myogenic (MyoD, myogenin, myostatin), anabolic (P-Akt, P-eEf2) and catabolic events (MuRF-1, MAFbx, 14 kDa, ubiquitin conjugates) and overall levels of oxidative stress have been studied. Results: A large inflammatory response to unaccustomed exercise was seen with IL-6, MCP-1, and TNF-α all significantly elevated from baseline by 53-fold (P < 0.001), 25-fold (P < 0.001), and 4-fold (P < 0.001), respectively. This response was reduced following training with IL-6, MCP-1, and TNF-α elevated non-significantly by 2-fold (P = 0.46), 2.4-fold (P = 0.19), and 2.5-fold (P = 0.06), respectively. In the untrained condition, an acute bout of resistance exercise did not result in increased phosphorylation of Akt (P = 0.84), but this was restored following training (P = 0.01). Neither unaccustomed nor accustomed exercise resulted in a change in myogenin or MyoD mRNA expression (P = 0.88, P = 0.90, respectively). There was no evidence that resistance exercise training created a prolonged oxidative stress response within the muscle, or increased catabolism. Conclusions: Unaccustomed exercise creates a large inflammatory response within the muscle, which is no longer present following a period of training. This indicates that resistance exercise does not provoke a detrimental on-going inflammatory response within the muscle.
Collapse
Affiliation(s)
- Emma L Watson
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom
| | - Joao L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAIPorto, Portugal.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - David Wimbury
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom
| | - Naomi Martin
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - Neil J Greening
- Department of Respiratory Medicine, Institute for Lung Health, University Hospitals of Leicester NHS TrustLeicester, United Kingdom
| | - Jonathan Barratt
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom
| | - Alice C Smith
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom.,John Walls Renal Unit, University Hospitals of Leicester NHS TrustLeicester, United Kingdom
| |
Collapse
|
128
|
Loumaye A, Thissen JP. Biomarkers of cancer cachexia. Clin Biochem 2017; 50:1281-1288. [PMID: 28739222 DOI: 10.1016/j.clinbiochem.2017.07.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia.
Collapse
Affiliation(s)
- Audrey Loumaye
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium.
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
129
|
Li F, Li X, Peng X, Sun L, Jia S, Wang P, Ma S, Zhao H, Yu Q, Huo H. Ginsenoside Rg1 prevents starvation-induced muscle protein degradation via regulation of AKT/mTOR/FoxO signaling in C2C12 myotubes. Exp Ther Med 2017; 14:1241-1247. [PMID: 28781621 DOI: 10.3892/etm.2017.4615] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/19/2016] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle atrophy is often caused by catabolic conditions including fasting, disuse, aging and chronic diseases, such as chronic obstructive pulmonary disease. Atrophy occurs when the protein degradation rate exceeds the rate of protein synthesis. Therefore, maintaining a balance between the synthesis and degradation of protein in muscle cells is a major way to prevent skeletal muscle atrophy. Ginsenoside Rg1 (Rg1) is a primary active ingredient in Panax ginseng, which is considered to be one of the most valuable herbs in traditional Chinese medicine. In the current study, Rg1 was observed to inhibit the expression of MuRF-1 and atrogin-1 in C2C12 muscle cells in a starvation model. Rg1 also activated the phosphorylation of mammalian target of rapamycin (mTOR), protein kinase B (AKT), and forkhead transcription factor O, subtypes 1 and 3a. This phosphorylation was inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. These data suggest that Rg1 may participate in the regulation of the balance between protein synthesis and degradation, and that the function of Rg1 is associated with the AKT/mTOR/FoxO signaling pathway.
Collapse
Affiliation(s)
- Fengyu Li
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xiaoxue Li
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xuewei Peng
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Lili Sun
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Shengnan Jia
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Ping Wang
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Shuang Ma
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Hongyan Zhao
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Qingmiao Yu
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Hongliang Huo
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
130
|
Boulinguiez A, Staels B, Duez H, Lancel S. Mitochondria and endoplasmic reticulum: Targets for a better insulin sensitivity in skeletal muscle? Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:901-916. [PMID: 28529179 DOI: 10.1016/j.bbalip.2017.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022]
Abstract
Obesity and its associated metabolic disorders represent a major health burden, with economic and social consequences. Although adapted lifestyle and bariatric surgery are effective in reducing body weight, obesity prevalence is still rising. Obese individuals often become insulin-resistant. Obesity impacts on insulin responsive organs, such as the liver, adipose tissue and skeletal muscle, and increases the risk of cardiovascular diseases, type 2 diabetes and cancer. In this review, we discuss the effects of obesity and insulin resistance on skeletal muscle, an important organ for the control of postprandial glucose. The roles of mitochondria and the endoplasmic reticulum in insulin signaling are highlighted and potential innovative research and treatment perspectives are proposed.
Collapse
Affiliation(s)
- Alexis Boulinguiez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| | - Hélène Duez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| |
Collapse
|
131
|
Khelfi A, Azzouz M, Abtroun R, Reggabi M, Alamir B. [Direct mechanism of action in toxic myopathies]. ANNALES PHARMACEUTIQUES FRANÇAISES 2017; 75:323-343. [PMID: 28526123 DOI: 10.1016/j.pharma.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 01/04/2023]
Abstract
Toxic myopathies are a large group of disorders generated by surrounding agents and characterized by structural and/or functional disturbances of muscles. The most recurrent are those induced by commonly used medications. Illicit drugs, environmental toxins from animals, vegetables, or produced by micro-organisms as well as chemical products commonly used are significant causes of such disorders. The muscle toxicity results from multiple mechanisms at different biological levels. Many agents can induce myotoxicity through a direct mechanism in which statins, glucocorticoids and ethyl alcohol are the most representative. Diverse mechanisms were highlighted as interaction with macromolecules and induction of metabolic and cellular dysfunctions. Muscle damage can be related to amphiphilic properties of some drugs (chloroquine, hydroxychloroquine, etc.) leading to specific lysosomal disruptions and autophagic dysfunctions. Some agents affect the whole muscle fiber by inducing oxidative stress (ethyl alcohol and some statins) or triggering cell death pathways (apoptosis or necrosis) resulting in extensive alterations. More studies on these mechanisms are needed. They would allow a better knowledge of the intracellular mediators involved in these pathologies in order to develop targeted therapies of high efficiency.
Collapse
Affiliation(s)
- A Khelfi
- Service de toxicologie, CHU Bab-El-Oued, rue Mohamed-Lamine-Debaghine, 16009 Alger, Algérie; Centre national de toxicologie, route du Petit-Staouali-Delly-Brahim, 16062 Alger, Algérie.
| | - M Azzouz
- Laboratoire central de biologie et de toxicologie, EHS Ait-Idir, rue Abderrezak-Hahad-Casbah, 16017 Alger, Algérie
| | - R Abtroun
- Service de toxicologie, CHU Bab-El-Oued, rue Mohamed-Lamine-Debaghine, 16009 Alger, Algérie
| | - M Reggabi
- Laboratoire central de biologie et de toxicologie, EHS Ait-Idir, rue Abderrezak-Hahad-Casbah, 16017 Alger, Algérie
| | - B Alamir
- Service de toxicologie, CHU Bab-El-Oued, rue Mohamed-Lamine-Debaghine, 16009 Alger, Algérie; Centre national de toxicologie, route du Petit-Staouali-Delly-Brahim, 16062 Alger, Algérie
| |
Collapse
|
132
|
Bohnert KR, McMillan JD, Kumar A. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol 2017; 233:67-78. [PMID: 28177127 DOI: 10.1002/jcp.25852] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is the most abundant tissue in the human body and can adapt its mass as a consequence of physical activity, metabolism, growth factors, and disease conditions. Skeletal muscle contains an extensive network of endoplasmic reticulum (ER), called sarcoplasmic reticulum, which plays an important role in the regulation of proteostasis and calcium homeostasis. In many cell types, environmental and genetic factors that disrupt ER function cause an accumulation of misfolded and unfolded proteins in the ER lumen that ultimately leads to ER stress. To alleviate the stress and restore homeostasis, the ER activates a signaling network called the unfolded protein response (UPR). The UPR has three arms, which regulate protein synthesis and expression of many ER chaperone and regulatory proteins. However, the role of individual UPR pathways in skeletal muscle has just begun to be investigated. Recent studies suggest that UPR pathways play pivotal roles in muscle stem cell homeostasis, myogenic differentiation, and regeneration of injured skeletal muscle. Moreover, markers of ER stress and the UPR are activated in skeletal muscle in diverse conditions such as exercise, denervation, starvation, high fat diet, cancer cachexia, and aging. Accumulating evidence also suggests that ER stress may have important roles in the pathogenesis of inflammatory myopathies and genetic muscle disorders. The purpose of this review article is to discuss the role and potential mechanisms by which ER stress and the individual arms of the UPR regulate skeletal muscle formation, plasticity, and function in various physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Kyle R Bohnert
- Department of Anatomical Sciences Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Joseph D McMillan
- Department of Anatomical Sciences Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Ashok Kumar
- Department of Anatomical Sciences Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
133
|
Wang B, Zhang C, Zhang A, Cai H, Price SR, Wang XH. MicroRNA-23a and MicroRNA-27a Mimic Exercise by Ameliorating CKD-Induced Muscle Atrophy. J Am Soc Nephrol 2017; 28:2631-2640. [PMID: 28400445 DOI: 10.1681/asn.2016111213] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/14/2017] [Indexed: 11/03/2022] Open
Abstract
Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24-2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24-2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly, in silico miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24-2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Cong Zhang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Division of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Aiqing Zhang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
| | - Hui Cai
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Research Service Line, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - S Russ Price
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Research Service Line, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Xiaonan H Wang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;
| |
Collapse
|
134
|
Su Z, Klein JD, Du J, Franch HA, Zhang L, Hassounah F, Hudson MB, Wang XH. Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle. Am J Physiol Renal Physiol 2017; 312:F1128-F1140. [PMID: 28381463 PMCID: PMC5495886 DOI: 10.1152/ajprenal.00600.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 01/07/2023] Open
Abstract
Chronic kidney disease (CKD) causes loss of lean body mass by multiple mechanisms. This study examines whether autophagy-mediated proteolysis contributes to CKD-induced muscle wasting. We tested autophagy in the muscle of CKD mice with plantaris muscle overloading to mimic resistance exercise or with acupuncture plus low-frequency electrical stimulation (Acu/LFES) treatment. In CKD muscle, Bnip3, Beclin-1, and LC3II mRNAs and proteins were increased compared with those in control muscle, indicating autophagosome-lysosome formation induction. Acu/LFES suppressed the CKD-induced upregulation of autophagy. However, overloading increased autophagy-related proteins in normal and CKD muscle. Serum from uremic mice induces autophagy formation but did not increase the myosin degradation or actin break down in cultured muscle satellite cells. We examined mitochondrial biogenesis, copy number, and ATP production in cultured myotubes, and found all three aspects to be decreased by uremic serum. Inhibition of autophagy partially reversed this decline in cultured myotubes. In CKD mice, the mitochondrial copy number, biogenesis marker peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), mitochondrial transcription factor A (TFAM), and mitochondrial fusion marker Mitofusin-2 (Mfn2) are decreased. Both muscle overloading and Acu/LFES increased mitochondrial copy number, and reversed the CKD-induced decreases in PGC-1α, TFAM, and Mfn2. We conclude that the autophagy is activated in the muscle of CKD mice. However, myofibrillar protein is not directly broken down through autophagy. Instead, CKD-induced upregulation of autophagy leads to dysfunction of mitochondria and decrease of ATP production.
Collapse
Affiliation(s)
- Zhen Su
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Jie Du
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Harold A Franch
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Liping Zhang
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas; and
| | - Faten Hassounah
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Matthew B Hudson
- Department of Kinesiology, Temple University, Philadelphia, Pennsylvania.,Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
135
|
|
136
|
Paddon-Jones D, Coss-Bu JA, Morris CR, Phillips SM, Wernerman J. Variation in Protein Origin and Utilization: Research and Clinical Application. Nutr Clin Pract 2017; 32:48S-57S. [PMID: 28388379 DOI: 10.1177/0884533617691244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Muscle health can be rapidly compromised in clinical environments. Modifiable strategies to preserve metabolic homeostasis in adult patient populations include physical activity and pharmacologic support; however, optimizing dietary practices, or more specifically protein intake, is a necessary prerequisite for any other treatment strategy to be fully effective. Simply increasing protein intake is a well-intentioned but often unfocused strategy to protect muscle health in an intensive care setting. Protein quality is a frequently overlooked factor with the potential to differentially influence health outcomes. Quality can be assessed by a variety of techniques, with digestible indispensable amino acid score being the current and most comprehensive technique endorsed by the Food and Agriculture Organization. In practical terms, animal-based proteins are consistently scored higher in quality compared with incomplete proteins, regardless of the assessment method. Consequently, choosing parenteral and/or enteral feeding options that contain high-quality proteins, rich in the branched-chain amino acid leucine, may help establish a dietary framework with the potential to support clinical practice and improve health outcomes in critically ill patients.
Collapse
Affiliation(s)
- Douglas Paddon-Jones
- 1 Department of Nutrition and Metabolism, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Jorge A Coss-Bu
- 2 Pediatrics Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Claudia R Morris
- 3 Division of Pediatric Emergency Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Stuart M Phillips
- 4 Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jan Wernerman
- 5 Department of Clinical Science, Karolinska University, Solna, Sweden
| |
Collapse
|
137
|
Shahini A, Mistriotis P, Asmani M, Zhao R, Andreadis ST. NANOG Restores Contractility of Mesenchymal Stem Cell-Based Senescent Microtissues. Tissue Eng Part A 2017; 23:535-545. [PMID: 28125933 DOI: 10.1089/ten.tea.2016.0494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been extensively used in the field of tissue engineering as a source of smooth muscle cells (SMCs). However, recent studies showed deficits in the contractile function of SMCs derived from senescent MSCs and there are no available strategies to restore the contractile function that is impaired due to cellular or organismal senescence. In this study, we developed a tetracycline-regulatable system and employed micropost tissue arrays to evaluate the effects of the embryonic transcription factor, NANOG, on the contractility of senescent MSCs. Using this system, we show that expression of NANOG fortified the actin cytoskeleton and restored contractile function that was impaired in senescent MSCs. NANOG increased the expression of smooth muscle α-actin (ACTA2) as well as the contractile force generated by cells in three-dimensional microtissues. Interestingly, NANOG worked together with transforming growth factor-beta1 to further enhance the contractility of senescent microtissues. The effect of NANOG on contractile function was sustained for about 10 days after termination of its expression. Our results show that NANOG could reverse the effects of stem cell senescence and restore the myogenic differentiation potential of senescent MSCs. These findings may enable development of novel strategies to restore the function of senescent cardiovascular and other SMC-containing tissues.
Collapse
Affiliation(s)
- Aref Shahini
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Panagiotis Mistriotis
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Mohammadnabi Asmani
- 2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Ruogang Zhao
- 2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Stelios T Andreadis
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York.,2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York.,3 Center of Excellence in Bioinformatics and Life Sciences , Buffalo, New York
| |
Collapse
|
138
|
Zha Y, Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017; 9:nu9030208. [PMID: 28264439 PMCID: PMC5372871 DOI: 10.3390/nu9030208] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/23/2017] [Indexed: 01/28/2023] Open
Abstract
Elevated protein catabolism and protein malnutrition are common in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). The underlying etiology includes, but is not limited to, metabolic acidosis intestinal dysbiosis; systemic inflammation with activation of complements, endothelin-1 and renin-angiotensin-aldosterone (RAAS) axis; anabolic hormone resistance; energy expenditure elevation; and uremic toxin accumulation. All of these derangements can further worsen kidney function, leading to poor patient outcomes. Many of these CKD-related derangements can be prevented and substantially reversed, representing an area of great potential to improve CKD and ESRD care. This review integrates known information and recent advances in the area of protein nutrition and malnutrition in CKD and ESRD. Management recommendations are summarized. Thorough understanding the pathogenesis and etiology of protein malnutrition in CKD and ESRD patients will undoubtedly facilitate the design and development of more effective strategies to optimize protein nutrition and improve outcomes.
Collapse
Affiliation(s)
- Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guizhou 550002, China.
| | - Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
139
|
Ju H, Kim T, Chung CM, Park J, Nikawa T, Park K, Choi I. Metabolic Suppression by 3-Iodothyronamine Induced Muscle Cell Atrophy via Activation of FoxO-Proteasome Signaling and Downregulation of Akt1-S6K Signaling. Biol Pharm Bull 2017; 40:576-582. [PMID: 28163294 DOI: 10.1248/bpb.b16-00653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The homeostasis of muscle properties depends on both physical and metabolic stresses. Whereas physical stress entails metabolic response for muscle homeostasis, the latter does not necessarily involve the former and may thus solely affect the homeostasis. We here report that metabolic suppression by the hypometabolic agent 3-iodothyronamine (T1AM) induced muscle cell atrophy without physical stress. We observed that the oxygen consumption rate of C2C12 myotubes decreased 40% upon treatment with 75 µM T1AM for 6 h versus 10% in the vehicle (dimethyl sulfoxide) control. The T1AM treatment reduced cell diameter of myotubes by 15% compared to the control (p<0.05). The cell diameter was reversed completely by 9 h after T1AM was removed. The T1AM treatment also significantly suppressed the expression levels of heat shock protein 72 and αB-crystallin as well as the phosphorylation levels of Akt1, mammalian target of rapamycin (mTOR), S6K, forkhead box O1 (FoxO1) and FoxO3. In contrast, the levels of ubiquitin E3 ligase MuRF1 and chymotrypsin-like activity of proteasome were significantly elevated by T1AM treatment. These results suggest that T1AM-mediated metabolic suppression induced muscle cell atrophy via activation of catabolic signaling and inhibition of anabolic signaling.
Collapse
Affiliation(s)
- Hyunwoo Ju
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University
| | - Taewan Kim
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University
| | - Chan-Moon Chung
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University
| | - Junsoo Park
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Health Biosciences, University of Tokushima Graduate School
| | | | - Inho Choi
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University
| |
Collapse
|
140
|
Abou-El-Hassan H, Sukhon F, Assaf EJ, Bahmad H, Abou-Abbass H, Jourdi H, Kobeissy FH. Degradomics in Neurotrauma: Profiling Traumatic Brain Injury. Methods Mol Biol 2017; 1598:65-99. [PMID: 28508358 DOI: 10.1007/978-1-4939-6952-4_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Degradomics has recently emerged as a subdiscipline in the omics era with a focus on characterizing signature breakdown products implicated in various disease processes. Driven by promising experimental findings in cancer, neuroscience, and metabolomic disorders, degradomics has significantly promoted the notion of disease-specific "degradome." A degradome arises from the activation of several proteases that target specific substrates and generate signature protein fragments. Several proteases such as calpains, caspases, cathepsins, and matrix metalloproteinases (MMPs) are involved in the pathogenesis of numerous diseases that disturb the physiologic balance between protein synthesis and protein degradation. While regulated proteolytic activities are needed for development, growth, and regeneration, uncontrolled proteolysis initiated under pathological conditions ultimately culminates into apoptotic and necrotic processes. In this chapter, we aim to review the protease-substrate repertoires in neural injury concentrating on traumatic brain injury. A striking diversity of protease substrates, essential for neuronal and brain structural and functional integrity, namely, encryptic biomarker neoproteins, have been characterized in brain injury. These include cytoskeletal proteins, transcription factors, cell cycle regulatory proteins, synaptic proteins, and cell junction proteins. As these substrates are subject to proteolytic fragmentation, they are ceaselessly exposed to activated proteases. Characterization of these molecules allows for a surge of "possible" therapeutic approaches of intervention at various levels of the proteolytic cascade.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Fares Sukhon
- Faculty of Medicine, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Edwyn Jeremy Assaf
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hisham Bahmad
- Faculty of Medical, Neuroscience Research Center, Beirut Arab University, Beirut, Lebanon
- Faculty of Medicine, Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hussein Abou-Abbass
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussam Jourdi
- Faculty of Science¸ Department of Biology, University of Balamand, Souk-el-Gharb Campus, Aley, Lebanon
| | - Firas H Kobeissy
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
141
|
Yoshihara T, Yamamoto Y, Shibaguchi T, Miyaji N, Kakigi R, Naito H, Goto K, Ohmori D, Yoshioka T, Sugiura T. Dietary astaxanthin supplementation attenuates disuse-induced muscle atrophy and myonuclear apoptosis in the rat soleus muscle. J Physiol Sci 2017; 67:181-190. [PMID: 27117878 PMCID: PMC10717173 DOI: 10.1007/s12576-016-0453-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/15/2016] [Indexed: 12/01/2022]
Abstract
Extended periods of skeletal muscle disuse results in muscle atrophy and weakness. Currently, no therapeutic treatment is available for the prevention of this problem. Nonetheless, growing evidence suggests that prevention of disuse-induced oxidative stress in inactive muscle fibers can delay inactivity-induced muscle wasting. Therefore, this study tested the hypothesis that dietary supplementation with the antioxidant astaxanthin would protect against disuse muscle atrophy, in part, by prevention of myonuclear apoptosis. Wistar rats (8 weeks old) were divided into control (CT, n = 9), hindlimb unloading (HU, n = 9), and hindlimb unloading with astaxanthin (HU + AX, n = 9) groups. Following 2 weeks of dietary supplementation, rats in the HU and HU + AX groups were exposed to unloading for 7 days. Seven-day unloading resulted in reduced soleus muscle weight and myofiber cross-sectional area (CSA) by ~30 and ~47 %, respectively. Nonetheless, relative muscle weights and CSA of the soleus muscle in the HU + AX group were significantly greater than those of the HU group. Moreover, astaxanthin prevented disuse-induced increase in the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive nuclei. We conclude that astaxanthin supplementation prior to and during hindlimb unloading attenuates soleus muscle atrophy, in part, by suppressing myonuclear apoptosis.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Yuki Yamamoto
- Sports Research and Development Core, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Tsubasa Shibaguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-17 Machikaneyama-cho, Toyonaka, Osaka, Japan
| | - Nobuyuki Miyaji
- Toyo Koso Kagaku Co. Ltd., 4-4-27 Horie, Urayasu, Chiba, Japan
| | - Ryo Kakigi
- Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Katsumasa Goto
- Graduate School of Health Sciences, Toyohashi SOZO University, 20-1 Matsushita, Toyohashi, Aichi, Japan
| | - Daijiro Ohmori
- Department of Chemistry, School of Medicine, Juntendo University, 1-1 Hrakagakuendai, Inzai, Chiba, Japan
| | | | - Takao Sugiura
- Faculty of Education, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Japan
| |
Collapse
|
142
|
Belani M, Shah P, Banker M, Gupta S. Dual effect of insulin resistance and cadmium on human granulosa cells - In vitro study. Toxicol Appl Pharmacol 2016; 313:119-130. [DOI: 10.1016/j.taap.2016.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/10/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
|
143
|
Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci Rep 2016; 6:36618. [PMID: 27830716 PMCID: PMC5103201 DOI: 10.1038/srep36618] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/12/2016] [Indexed: 11/25/2022] Open
Abstract
Sarcopenia is associated with increased morbidity and mortality in chronic kidney disease (CKD). Pathogenic mechanism of skeletal muscle loss in CKD, which is defined as uremic sarcopenia, remains unclear. We found that causative pathological mechanism of uremic sarcopenia is metabolic alterations by uremic toxin indoxyl sulfate. Imaging mass spectrometry revealed indoxyl sulfate accumulated in muscle tissue of a mouse model of CKD. Comprehensive metabolomics revealed that indoxyl sulfate induces metabolic alterations such as upregulation of glycolysis, including pentose phosphate pathway acceleration as antioxidative stress response, via nuclear factor (erythroid-2-related factor)-2. The altered metabolic flow to excess antioxidative response resulted in downregulation of TCA cycle and its effected mitochondrial dysfunction and ATP shortage in muscle cells. In clinical research, a significant inverse association between plasma indoxyl sulfate and skeletal muscle mass in CKD patients was observed. Our results indicate that indoxyl sulfate is a pathogenic factor for sarcopenia in CKD.
Collapse
|
144
|
Kang C, Yeo D, Ji LL. Muscle immobilization activates mitophagy and disrupts mitochondrial dynamics in mice. Acta Physiol (Oxf) 2016; 218:188-197. [PMID: 27083499 DOI: 10.1111/apha.12690] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 12/23/2022]
Abstract
AIM Skeletal muscle atrophy following prolonged immobilization (IM) is a catabolic state characterized by increased proteolysis and functional deterioration. Previous research indicates that discord of mitochondrial homoeostasis plays a critical role in muscle atrophy. We hypothesized that muscle IM would activate the ubiquitin-proteolysis, autophagy-lysosome (mitophagy) pathway, mitochondrial dynamics remodelling and apoptosis partially controlled by the FoxO signalling pathway. METHODS Female FVB/N mice were randomly divided into five groups (n = 8 each): control (CON), IM with banding of one of the hindlimbs for 1, 2 and 3 weeks (1w-, 2w- and 3w-IM) and 2w-IM followed by 1 week of remobilization (RM). RESULTS Mitochondrial density and DNA copies in tibialis anterior (TA) muscle were reduced by approx. 80% (P < 0.05 for 2w-IM; P < 0.01 for 3w-IM), along with activation of FoxO3a, atrogin-1 and MuRF1 following 2w- and 3w-IM (P < 0.01). Protein markers of autophagy/mitophagy, such as beclin 1 (approx. 2.7-fold; P < 0.01), LC3, ubiquitin-binding adaptor (approx. 1.47-fold; P < 0.01), Rheb (approx. 1.9-fold; P < 0.05) and parkin (approx. 70%; P < 0.05), were all increased by IM and remained activated after RM, whereas BNIP3 and PINK1 levels were decreased by IM (P < 0.05), but elevated upon RM (P < 0.01). IM decreased Mfn2 expression (approx. 50%; P < 0.01) and increased Fis-1 expression (approx. 2.4-fold; P < 0.05). Muscle apoptosis indicator Bax/Bcl2 ratio was elevated at 2w- to 3w-IM (approx. 3.7-fold; P < 0.01), whereas caspase-3 activity was five- to sixfold higher (P < 0.01) and remained threefold higher above CON (P < 0.05). CONCLUSION Our data indicate that IM-induced mitochondrial deterioration is associated with altered protein expressions in the autophagic/mitophagic pathway, more fragmented mitochondrial network and activation of apoptosis partly under the influence of FoxO3 activation.
Collapse
Affiliation(s)
- C. Kang
- Laboratory of Physiological Hygiene and Exercise Science; School of Kinesiology; University of Minnesota at Twin Cities; Minneapolis MN USA
| | - D. Yeo
- Laboratory of Physiological Hygiene and Exercise Science; School of Kinesiology; University of Minnesota at Twin Cities; Minneapolis MN USA
| | - L. L. Ji
- Laboratory of Physiological Hygiene and Exercise Science; School of Kinesiology; University of Minnesota at Twin Cities; Minneapolis MN USA
| |
Collapse
|
145
|
Wong TC, Su HY, Chen YT, Wu PY, Chen HH, Chen TH, Hsu YH, Yang SH. Ratio of C-Reactive Protein to Albumin Predicts Muscle Mass in Adult Patients Undergoing Hemodialysis. PLoS One 2016; 11:e0165403. [PMID: 27768746 PMCID: PMC5074567 DOI: 10.1371/journal.pone.0165403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022] Open
Abstract
Recent studies have indicated that the ratio of C-reactive protein to albumin (CRP–Alb ratio) is associated with clinical outcomes in patients with disease. We examined the predictive value of this ratio in patients undergoing hemodialysis (HD). In this cross-sectional study, 91 eligible adult HD patients were analyzed, and the correlation between the CRP–Alb ratio and skeletal muscle mass normalized for body weight (SMM/wt; estimated using a bioelectrical impedance analyzer) was investigated. The mean age of the study participants was 54.9 ± 6.6 years (ranging from 27 to 64 years); 43 (47.2%) were men. The mean values for the SMM/wt were 39.1% ± 5.4%. The CRP–Alb ratio was found to be negatively correlated with SMM/wt (r = −0.33, P = 0.002) and creatinine (r = −0.20, P = 0.056). All the univariate significant and nonsignificant relevant covariates were selected for multivariable stepwise regression analysis. We determined that the homeostasis model assessment-estimated insulin resistance and CRP–Alb ratio were independent risk determinants for SMM/wt (βHOMA-IR = −0.18 and βCRP–Alb ratio = −3.84, adjusted R2 = 0.32). This study indicated that the CRP–Alb ratio may help clinicians in predicting muscle mass in adult patients undergoing HD.
Collapse
Affiliation(s)
- Te-Chih Wong
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Hsiu-Yueh Su
- Department of Dietetics, Taipei Medical University Hospital, Taipei, Taiwan, Republic of China
| | - Yu-Tong Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Pei-Yu Wu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, Republic of China
| | - Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Shwu-Huey Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, Republic of China
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
146
|
Pan F, Zhu L, Lv H, Pei C. Quercetin promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by upregulating lncRNA MALAT1. Int J Mol Med 2016; 38:1507-1514. [PMID: 28026003 DOI: 10.3892/ijmm.2016.2755] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/08/2016] [Indexed: 11/05/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune joint disease and fibroblast-like synoviocytes (FLS) are the resident mesenchymal cells of synovial joints. Quercetin is a dietary antioxidant. In this study, we aimed to explore the mechanisms responsible for the quercetin-induced apoptosis of FLS from patients with RA (termed RAFLS). RAFLS viability was determined following treatent of the cells with or without quercetin using the Cell Counting kit-8 (CCK-8) assay. The apoptosis of the RAFLS was analyzed using the Annexin V-fluorescein isothiocyanate (FITC) apoptosis detection kit I. The results revealed that RAFLS viability decreased and apoptosis increased in following treatment with quercetin. The differentially expressed long non-coding RNAs (lncRNAs) were screened and marked by PCR array following treatment with quercetin. The expression levels of the screened lncRNAs were then determined and compared in the cells treated with or without quercetin by quantitative PCR. The lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was finally selected. Small interfering RNA (siRNA) was then used to knock down the expression of MALAT1 in order to determine the role of MALAT1 in the quercetin-induced apoptosis of RAFLS. The results revealed that the knockdown of MALAT1 inhibited RAFLS apoptosis. At the same time, the expression of caspase-3 and caspase-9 was significantly decreased in the cells in which MALAT1 was knocked down. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway was activated; this activation is known to be associated with enhanced cell proliferation and decreased apoptosis. The findings of our study indicate that quercetin promotes RAFLS apoptosis by upregulating lncRNA MALAT1, and that MALAT1 induces apoptosis by inhibiting the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fang Pan
- Department of Rheumatology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, P.R. China
| | - Lihua Zhu
- Department of Rheumatology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, P.R. China
| | - Haozhe Lv
- Department of Rheumatology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, P.R. China
| | - Chunpeng Pei
- Department of Renal Diseases, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
147
|
Proteolysis in meat tenderization from the point of view of each single protein: A proteomic perspective. J Proteomics 2016; 147:85-97. [DOI: 10.1016/j.jprot.2016.02.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
|
148
|
Rodney GG, Pal R, Abo-Zahrah R. Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med 2016; 98:103-112. [PMID: 27184957 PMCID: PMC4975974 DOI: 10.1016/j.freeradbiomed.2016.05.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/15/2016] [Accepted: 05/12/2016] [Indexed: 01/02/2023]
Abstract
Autophagy is a cellular degradative pathway that involves the delivery of cytoplasmic components, including proteins and organelles, to the lysosome for degradation. Autophagy is implicated in the maintenance of skeletal muscle; increased autophagy leads to muscle atrophy while decreased autophagy leads to degeneration and weakness. A growing body of work suggests that reactive oxygen species (ROS) are important cellular signal transducers controlling autophagy. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria are major sources of ROS generation in skeletal muscle that are likely regulating autophagy through different signaling cascades based on localization of the ROS signals. This review aims to provide insight into the redox control of autophagy in skeletal muscle. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for skeletal muscle diseases.
Collapse
Affiliation(s)
- George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Reem Abo-Zahrah
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
149
|
Pierre N, Appriou Z, Gratas-Delamarche A, Derbré F. From physical inactivity to immobilization: Dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy. Free Radic Biol Med 2016; 98:197-207. [PMID: 26744239 DOI: 10.1016/j.freeradbiomed.2015.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/16/2022]
Abstract
In the literature, the terms physical inactivity and immobilization are largely used as synonyms. The present review emphasizes the need to establish a clear distinction between these two situations. Physical inactivity is a behavior characterized by a lack of physical activity, whereas immobilization is a deprivation of movement for medical purpose. In agreement with these definitions, appropriate models exist to study either physical inactivity or immobilization, leading thereby to distinct conclusions. In this review, we examine the involvement of oxidative stress in skeletal muscle insulin resistance and atrophy induced by, respectively, physical inactivity and immobilization. A large body of evidence demonstrates that immobilization-induced atrophy depends on the chronic overproduction of reactive oxygen and nitrogen species (RONS). On the other hand, the involvement of RONS in physical inactivity-induced insulin resistance has not been investigated. This observation outlines the need to elucidate the mechanism by which physical inactivity promotes insulin resistance.
Collapse
Affiliation(s)
- Nicolas Pierre
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Zephyra Appriou
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Arlette Gratas-Delamarche
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Frédéric Derbré
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France.
| |
Collapse
|
150
|
Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med 2016; 98:218-230. [PMID: 26738803 DOI: 10.1016/j.freeradbiomed.2015.12.031] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/30/2015] [Accepted: 12/25/2015] [Indexed: 12/21/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored.
Collapse
Affiliation(s)
- Oren Rom
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel.
| | - Abraham Z Reznick
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel
| |
Collapse
|