101
|
Cole LK, Vance JE, Vance DE. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:754-61. [PMID: 21979151 DOI: 10.1016/j.bbalip.2011.09.009] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 12/28/2022]
Abstract
Phosphatidylcholine (PC) is the major phospholipid component of all plasma lipoprotein classes. PC is the only phospholipid which is currently known to be required for lipoprotein assembly and secretion. Impaired hepatic PC biosynthesis significantly reduces the levels of circulating very low density lipoproteins (VLDLs) and high density lipoproteins (HDLs). The reduction in plasma VLDLs is due in part to impaired hepatic secretion of VLDLs. Less PC within the hepatic secretory pathway results in nascent VLDL particles with reduced levels of PC. These particles are recognized as being defective and are degraded within the secretory system by an incompletely defined process that occurs in a post-endoplasmic reticulum compartment, consistent with degradation directed by the low-density lipoprotein receptor and/or autophagy. Moreover, VLDL particles are taken up more readily from the circulation when the PC content of the VLDLs is reduced, likely due to a preference of cell surface receptors and/or enzymes for lipoproteins that contain less PC. Impaired PC biosynthesis also reduces plasma HDLs by inhibiting hepatic HDL formation and by increasing HDL uptake from the circulation. These effects are mediated by elevated expression of ATP-binding cassette transporter A1 and hepatic scavenger receptor class B type 1, respectively. Hepatic PC availability has recently been linked to the progression of liver and heart disease. These findings demonstrate that hepatic PC biosynthesis can regulate the amount of circulating lipoproteins and suggest that hepatic PC biosynthesis may represent an important pharmaceutical target. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Laura K Cole
- Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
102
|
n-3 PUFA prevent metabolic disturbances associated with obesity and improve endothelial function in golden Syrian hamsters fed with a high-fat diet. Br J Nutr 2011; 107:1305-15. [PMID: 21920060 DOI: 10.1017/s0007114511004387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glucose intolerance and dyslipidaemia are independent risk factors for endothelium dysfunction and CVD. The aim of the present study was to analyse the preventive effect of n-3 PUFA (EPA and DHA) on lipid and carbohydrate disturbances and endothelial dysfunction. Three groups of adult hamsters were studied for 20 weeks: (1) control diet (Control); (2) high-fat diet (HF); (3) high-fat diet enriched with n-3 PUFA (HFn-3) groups. The increase in body weight and fat mass in the HF compared to the Control group (P < 0.05) was not found in the HFn-3 group. Muscle TAG content was similar in the Control and HF groups, but significantly lower in the HFn-3 group (P = 0.008). Glucose tolerance was impaired in the HF compared to the Control group, but this impairment was prevented by n-3 PUFA in the HFn-3 group (P < 0.001). Plasma TAG and cholesterol were higher in the HF group compared to the Control group (P < 0.001), but lower in the HFn-3 group compared to the HF group (P < 0.001). HDL-cholesterol was lower in the HFn-3 group compared to the Control and HF groups (P < 0.0005). Hepatic secretion of TAG was lower in the HFn-3 group compared to the HF group (P < 0.005), but did not differ from the Control group. Hepatic gene expression of sterol regulatory element-binding protein-1c, diacylglycerol O-acyltransferase 2 and stearyl CoA desaturase 1 was lower in the HFn-3 group, whereas carnitine palmitoyl transferase 1 and scavenger receptor class B type 1 expression was higher (P < 0.05). In adipocytes and adipose macrophages, PPARγ and TNFα expression was higher in the HF and HFn-3 groups compared to the Control group. Endothelium relaxation was higher in the HFn-3 (P < 0.001) than in the HF and Control groups, and was correlated with glucose intolerance (P = 0.03) and cholesterol (P = 0.0003). In conclusion, n-3 PUFA prevent some metabolic disturbances induced by high-fat diet and improve endothelial function in hamsters.
Collapse
|
103
|
Interrelationships between paraoxonase-1 and monocyte chemoattractant protein-1 in the regulation of hepatic inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 660:5-18. [PMID: 20221866 DOI: 10.1007/978-1-60761-350-3_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxidative stress and inflammation play a central role in the onset and development of liver diseases irrespective of the agent causing the hepatic impairment. The monocyte chemoattractant protein-1 is intimately involved in the inflammatory reaction and is directly correlated with the degree of hepatic inflammation in patients with chronic liver disease. Recent studies showed that hepatic paraoxonase-1 may counteract the production of the monocyte chemoattractant protein-1, thus playing an anti-inflammatory role. The current review summarises experiments suggesting how paraoxonase-1 activity and expression are altered in liver diseases, and their relationships with the monocyte chemoattractant protein-1 and inflammation.
Collapse
|
104
|
Gambino R, Musso G, Cassader M. Redox balance in the pathogenesis of nonalcoholic fatty liver disease: mechanisms and therapeutic opportunities. Antioxid Redox Signal 2011; 15:1325-65. [PMID: 20969475 DOI: 10.1089/ars.2009.3058] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease in the world. It encompasses a histological spectrum, ranging from simple, nonprogressive steatosis to nonalcoholic steatohepatitis (NASH), which may progress to cirrhosis and hepatocellular carcinoma. While liver-related complications are confined to NASH, emerging evidence suggests both simple steatosis and NASH predispose to type 2 diabetes and cardiovascular disease. The pathogenesis of NAFLD is currently unknown, but accumulating data suggest that oxidative stress and altered redox balance play a crucial role in the pathogenesis of steatosis, steatohepatitis, and fibrosis. We will examine intracellular mechanisms, including mitochondrial dysfunction and impaired oxidative free fatty acid metabolism, leading to reactive oxygen species generation; additionally, the potential pathogenetic role of extracellular sources of reactive oxygen species in NAFLD, including increased myeloperoxidase activity and oxidized low density lipoprotein accumulation, will be reviewed. We will discuss how these mechanisms converge to determine the whole pathophysiological spectrum of NAFLD, including hepatocyte triglyceride accumulation, hepatocyte apoptosis, hepatic inflammation, hepatic stellate cell activation, and fibrogenesis. Finally, available animal and human data on treatment opportunities with older and newer antioxidant will be presented.
Collapse
Affiliation(s)
- Roberto Gambino
- Department of Internal Medicine, University of Turin, Turin, Italy
| | | | | |
Collapse
|
105
|
Xiao C, Hsieh J, Adeli K, Lewis GF. Gut-liver interaction in triglyceride-rich lipoprotein metabolism. Am J Physiol Endocrinol Metab 2011; 301:E429-46. [PMID: 21693689 DOI: 10.1152/ajpendo.00178.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The liver and intestine have complementary and coordinated roles in lipoprotein metabolism. Despite their highly specialized functions, assembly and secretion of triglyceride-rich lipoproteins (TRL; apoB-100-containing VLDL in the liver and apoB-48-containing chylomicrons in the intestine) are regulated by many of the same hormonal, inflammatory, nutritional, and metabolic factors. Furthermore, lipoprotein metabolism in these two organs may be affected in a similar fashion by certain disorders. In insulin resistance, for example, overproduction of TRL by both liver and intestine is a prominent component of and underlies other features of a complex dyslipidemia and increased risk of atherosclerosis. The intestine is gaining increasing recognition for its importance in affecting whole body lipid homeostasis, in part through its interaction with the liver. This review aims to integrate recent advances in our understanding of these processes and attempts to provide insight into the factors that coordinate lipid homeostasis in these two organs in health and disease.
Collapse
|
106
|
Andreo U, Elkind J, Blachford C, Cederbaum AI, Fisher EA. Role of superoxide radical anion in the mechanism of apoB100 degradation induced by DHA in hepatic cells. FASEB J 2011; 25:3554-60. [PMID: 21757500 DOI: 10.1096/fj.11-182725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
VLDL is produced by the liver. Its major protein is apoB100. Docosahexaenoic acid (DHA), a dietary polyunsaturated fatty acid (PUFA), reduces VLDL levels and is used therapeutically for hypertriglyceridemia. In model systems, DHA lowers VLDL secretion by inducing presecretory apoB100 degradation, a process dependent on PUFA-derived lipid peroxides. We hypothesized that superoxide (SO) was a major participant in DHA-induced apoB100 degradation, given its promotion of lipid peroxidation. SO levels in a model of VLDL metabolism, rat hepatoma McArdle cells, were either decreased by a mimetic of superoxide dismutase 1 (SOD1) or by overexpressing SOD1 or increased by SOD1 siRNA. ApoB100 recovery was assessed by immunoprecipitation, SO by 2-hydroxyethidine, and lipid peroxides by thiobarbituric acid reactive substances. The SOD1 mimetic or SOD1 overexpression reduced SO and inhibited apoB100 degradation in DHA-treated cells by up to 100%. Surprisingly, silencing SOD1 did not increase DHA-induced degradation, although levels of SO were higher (+44%); those of lipid peroxides were similar, and their reduction by α-tocopherol decreased degradation by 50%. SO is required for lipid peroxidation in DHA-induced apoB100 degradation, but it is the peroxide level that has a tighter relationship to the level of degradation and the regulation of VLDL production.
Collapse
Affiliation(s)
- Ursula Andreo
- Department of Medicine, Leon H. Charney Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York, USA 10016, USA
| | | | | | | | | |
Collapse
|
107
|
Seth D, Haber PS, Syn WK, Diehl AM, Day CP. Pathogenesis of alcohol-induced liver disease: classical concepts and recent advances. J Gastroenterol Hepatol 2011; 26:1089-105. [PMID: 21545524 DOI: 10.1111/j.1440-1746.2011.06756.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is a primary consequence of heavy and prolonged drinking. ALD contributes to the bulk of liver disease burden worldwide. Progression of ALD is a multifactorial and multistep process that includes many genetic and environmental risk factors. The molecular pathogenesis of ALD involves alcohol metabolism and secondary mechanisms such as oxidative stress, endotoxin, cytokines and immune regulators. The histopathological manifestation of ALD occurs as an outcome of complex but controlled interactions between hepatic cell types. Hepatic stellate cells (HSCs) are the key drivers of fibrogenesis, but transformation of hepatocytes to myofibroblastoids also implicate parenchymal cells as playing an active role in hepatic fibrogenesis. Recent discoveries indicate that lipogenesis during the early stages of ALD is a risk for advancement to cirrhosis. Other recently identified novel molecules and physiological/cell signaling pathways include fibrinolysis, osteopontin, transforming growth factor-β-SMAD and hedgehog signaling, and involvement of novel cytokines in hepatic fibrogenesis. The observation that ALD and non-alcoholic steatohepatitis share common pathways and genetic polymorphisms suggests operation of parallel pathogenic mechanisms. Future research involving genomics, epigenomics, deep sequencing and non-coding regulatory elements holds promise to identify novel diagnostic and therapeutic targets for ALD. There is also a need for adequate animal models to study pathogenic mechanisms at the molecular level and targeted therapy.
Collapse
Affiliation(s)
- Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
108
|
Caviglia JM, Gayet C, Ota T, Hernandez-Ono A, Conlon DM, Jiang H, Fisher EA, Ginsberg HN. Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy. J Lipid Res 2011; 52:1636-51. [PMID: 21719579 DOI: 10.1194/jlr.m016931] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although short-term incubation of hepatocytes with oleic acid (OA) stimulates secretion of apolipoprotein B100 (apoB100), exposure to higher doses of OA for longer periods inhibits secretion in association with induction of endoplasmic reticulum (ER) stress. Palmitic acid (PA) induces ER stress, but its effects on apoB100 secretion are unclear. Docosahexaenoic acid (DHA) inhibits apoB100 secretion, but its effects on ER stress have not been studied. We compared the effects of each of these fatty acids on ER stress and apoB100 secretion in McArdle RH7777 (McA) cells: OA and PA induced ER stress and inhibited apoB100 secretion at higher doses; PA was more potent because it also increased the synthesis of ceramide. DHA did not induce ER stress but was the most potent inhibitor of apoB100 secretion, acting via stimulation of autophagy. These unique effects of each fatty acid were confirmed when they were infused into C57BL6J mice. Our results suggest that when both increased hepatic secretion of VLDL apoB100 and hepatic steatosis coexist, reducing ER stress might alleviate hepatic steatosis but at the expense of increased VLDL secretion. In contrast, increasing autophagy might reduce VLDL secretion without causing steatosis.
Collapse
Affiliation(s)
- Jorge Matias Caviglia
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Orlicky DJ, Roede JR, Bales E, Greenwood C, Greenberg A, Petersen D, McManaman JL. Chronic ethanol consumption in mice alters hepatocyte lipid droplet properties. Alcohol Clin Exp Res 2011; 35:1020-33. [PMID: 21535024 DOI: 10.1111/j.1530-0277.2011.01434.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Hepatosteatosis is a common pathological feature of impaired hepatic metabolism following chronic alcohol consumption. Although often benign and reversible, it is widely believed that steatosis is a risk factor for development of advanced liver pathologies, including steatohepatitis and fibrosis. The hepatocyte alterations accompanying the initiation of steatosis are not yet clearly defined. METHODS Induction of hepatosteatosis by chronic ethanol consumption was investigated using the Lieber-DeCarli (LD) high fat diet model. Effects were assessed by immunohistochemistry and blood and tissue enzymatic assays. Cell culture models were employed for mechanistic studies. RESULTS Pair feeding mice ethanol (LD-Et) or isocaloric control (LD-Co) diets for 6 weeks progressively increased hepatocyte triglyceride accumulation in morphological, biochemical, and zonally distinct cytoplasmic lipid droplets (CLD). The LD-Et diet induced zone 2-specific triglyceride accumulation in large CLD coated with perilipin, adipophilin (ADPH), and TIP47. In LD-Co-fed mice, CLD were significantly smaller than those in LD-Et-fed mice and lacked perilipin. A direct role of perilipin in formation of large CLD was further suggested by cell culture studies showing that perilipin-coated CLD were significantly larger than those coated with ADPH or TIP47. LD-Co- and LD-Et-fed animals also differed in hepatic metabolic stress responses. In LD-Et but not LD-Co-fed mice, inductions were observed in the following: microsomal ethanol-oxidizing system [cytochrome P-4502E1 (CYP2E1)], hypoxia response pathway (hypoxia-inducible factor 1 alpha, HIF1α), endoplasmic reticulum stress pathway (calreticulin), and synthesis of lipid peroxidation products [4-hydroxynonenal (4-HNE)]. CYP2E1 and HIF1 α immunostaining localized to zone 3 and did not correlate with accumulation of large CLD. In contrast, calreticulin and 4-HNE immunostaining closely correlated with large CLD accumulation. Importantly, 4-HNE staining significantly colocalized with ADPH and perilipin on the CLD surface. CONCLUSIONS These data suggest that ethanol contributes to macrosteatosis by both altering CLD protein composition and inducing lipid peroxide adduction of CLD-associated proteins.
Collapse
Affiliation(s)
- David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Pattullo V, Douglas MW, George J. Organelle dysfunction in hepatitis C virus-associated steatosis: anything to learn from nonalcoholic steatohepatitis? Expert Rev Gastroenterol Hepatol 2011; 5:265-77. [PMID: 21476921 DOI: 10.1586/egh.11.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) spans a pathological spectrum from nonalcoholic steatosis to steatohepatitis. The pathophysiology of this disorder is complex, but includes insulin resistance and disrupted lipid and carbohydrate homeostasis, which at a subcellular level results in oxidative stress, free fatty acid-mediated lipotoxicity, defects in mitochondrial function, endoplasmic reticulum stress and cytokine-mediated toxicity. In chronic hepatitis C (CHC), systemic metabolic derangements similar to NAFLD may be operative, but in addition, virus-specific factors contribute to steatosis. The mechanisms for steatosis in CHC appear to share common pathways with those observed in NAFLD. This article outlines our current understanding of the subcellular mechanisms of steatosis in NAFLD and CHC, including their similarities and differences.
Collapse
Affiliation(s)
- Venessa Pattullo
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | | | | |
Collapse
|
111
|
Lee M, Martin H, Firpo MA, Demerath EW. Inverse association between adiposity and telomere length: The Fels Longitudinal Study. Am J Hum Biol 2011; 23:100-6. [PMID: 21080476 DOI: 10.1002/ajhb.21109] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES To assess the relationship between telomere length and adiposity, using dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI), in addition to conventional anthropometric proxies including body mass index (BMI) and cardiovascular disease risk factors. METHODS A cross-sectional sample of 309 non-Hispanic white participants in the Fels Longitudinal Study aged 8 to 80 yr (52% female) was included. Average telomere length was measured by quantitative PCR. RESULTS Telomere length was negatively correlated with age (r = -0.32, P < 0.0001) and had numerous significant correlations with established cardiovascular disease risk factors including waist circumference (r = -0.33), apolipoprotein B (r = -0.26), systolic blood pressure (r = -0.28), and fasting serum glucose (r = -0.15); all P < 0.0025. In backward selection linear regression models of telomere length, adiposity measures were consistently retained in the best models; BMI, waist circumference, hip circumference, total body fat, and visceral adipose tissue volume were all inversely associated with telomere length at the nominal P < 0.05 level or lower, independent of age, sex, systolic blood pressure, and fasting serum lipid, lipoprotein, and glucose concentrations. The negative association of BMI with telomere length was stronger among younger than older participants (P for interaction, 0.03). CONCLUSIONS Individuals with higher total and abdominal adiposity have lower telomere length, a marker of cellular senescence, suggesting obesity may hasten the aging process. Longitudinal studies are required to establish the causal association of early life adiposity with biological aging.
Collapse
Affiliation(s)
- Miryoung Lee
- Lifespan Health Research Center, Wright State University, Dayton, Ohio 45420, USA
| | | | | | | |
Collapse
|
112
|
Sato SB, Sato S, Kawamoto J, Kurihara T. Differential roles of internal and terminal double bonds in docosahexaenoic acid: Comparative study of cytotoxicity of polyunsaturated fatty acids to HT-29 human colorectal tumor cell line. Prostaglandins Leukot Essent Fatty Acids 2011; 84:31-7. [PMID: 20952172 DOI: 10.1016/j.plefa.2010.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
Abstract
The role of the double bonds in docosahexaenoic acid (22:6(Δ4,7,10,13,16,19); DHA) in cytotoxic lipid peroxidation was studied in a superoxide dismutase-defective human colorectal tumor cell line, HT-29. In a conventional culture, DHA and other polyunsaturated fatty acids (PUFAs) were found to induce acute lipid peroxidation and subsequent cell death. PUFAs that lack one or both the terminal double bonds (Δ19 and Δ4) but share Δ7,10,13,16 such as 22:5(Δ7,10,13,16,19), 22:5(Δ4,7,10,13,16), and 22:4(Δ7,10,13,16) were more effective than DHA. Lipid peroxidation and cell death were completely inhibited, except by 22:4(Δ7,10,13,16) when radical-mediated reactions were suppressed by culturing cells in 2% O(2) in the presence of vitamin E. DHA and C22:5 PUFAs but not 22:4(Δ7,10,13,16) were efficiently incorporated in phosphatidylinositol, regardless of the culturing conditions. These and other results suggested that the internal unsaturations Δ7,10,13,16 were sensitive to lipid peroxidation, whereas the terminal ones Δ19 and Δ4 appeared to be involved in assimilation into phospholipids.
Collapse
Affiliation(s)
- Satoshi B Sato
- Research Center for Low Temperature and Material Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|
113
|
Ronis MJJ, Hennings L, Stewart B, Basnakian AG, Apostolov EO, Albano E, Badger TM, Petersen DR. Effects of long-term ethanol administration in a rat total enteral nutrition model of alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2011; 300:G109-19. [PMID: 21051528 PMCID: PMC3025509 DOI: 10.1152/ajpgi.00145.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Male Sprague-Dawley rats were chronically fed a high-unsaturated-fat diet for 130 days by using total enteral nutrition (TEN), or the same diet in which ethanol (EtOH) isocalorically replaced carbohydrate calories. Additional groups were supplemented with the antioxidant N-acetylcysteine (NAC) at 1.7 g·kg(-1)·day(-1). Relative to an ad libitum chow-fed group, the high-fat-fed controls had three- to fourfold greater expression of fatty acid transporter CD36 mRNA and developed mild steatosis but little other hepatic pathology. NAC treatment resulted in increased somatic growth relative to controls (4.0 ± 0.1 vs. 3.1 ± 0.1 g/day) and increased hepatic steatosis score (3.5 ± 0.6 vs. 2.7 ± 1.2), associated with suppression of the triglyceride hydrolyzing protein adiponutrin, but produced no elevation in serum alanine aminotransferase (ALT). Chronic EtOH treatment increased expression of fatty acid transport protein FATP-2 mRNA twofold, resulting in marked hepatic steatosis, oxidative stress, and a twofold elevation in serum ALT. However, no changes in tumor necrosis factor-α or transforming growth factor-β expression were observed. Fibrosis, as measured by Masson's trichrome and picrosirius red staining, and a twofold increase in expression of type I and type III collagen mRNA, was only observed after EtOH treatment. Long-term EtOH treatment increased hepatocyte proliferation but did not modify the hepatic mRNAs for hedgehog pathway ligands or target genes or genes regulating epithelial-to-mesenchymal transition. Although the effects of NAC on EtOH-induced fibrosis could not be fully evaluated, NAC had additive effects on hepatocyte proliferation and prevented EtOH-induced oxidative stress and necrosis, despite a failure to reverse hepatic steatosis.
Collapse
Affiliation(s)
- Martin J. J. Ronis
- Departments of 1Pharmacology and Toxicology, ,2University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas;
| | | | - Ben Stewart
- 4Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado; and
| | | | | | - Emanuele Albano
- 5Department of Medical Sciences, University A Avogadro of East Piedmonte, Novara, Italy
| | - Thomas M. Badger
- 6Physiology and Biophysics, ,2University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas;
| | - Dennis R. Petersen
- 4Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado; and
| |
Collapse
|
114
|
Gonzalez CD, Lee MS, Marchetti P, Pietropaolo M, Towns R, Vaccaro MI, Watada H, Wiley JW. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 2011; 7:2-11. [PMID: 20935516 PMCID: PMC3359481 DOI: 10.4161/auto.7.1.13044] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/24/2010] [Accepted: 07/13/2010] [Indexed: 12/24/2022] Open
Abstract
An emerging body of evidence supports a role for autophagy in the pathophysiology of type 1 and type 2 diabetes mellitus. Persistent high concentrations of glucose lead to imbalances in the antioxidant capacity within the cell resulting in oxidative stress-mediated injury in both disorders. An anticipated consequence of impaired autophagy is the accumulation of dysfunctional organelles such as mitochondria within the cell. Mitochondria are the primary site of the production of reactive oxygen species (ROS), and an imbalance in ROS production relative to the cytoprotective action of autophagy may lead to the accumulation of ROS. Impaired mitochondrial function associated with increased ROS levels have been proposed as mechanisms contributing to insulin resistance. In this article we review and interpret the literature that implicates a role for autophagy in the pathophysiology of type 1 and type 2 diabetes mellitus as it applies to β-cell dysfunction, and more broadly to organ systems involved in complications of diabetes including the cardiovascular, renal and nervous systems.
Collapse
Affiliation(s)
- Claudio D Gonzalez
- Department of Pharmacology, CEMIC University Hospital and University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
In 1980, Ludwig and colleagues described a series of patients with liver histology characterized by the accumulation of fat and the presence of hepatic necroinflammation in the absence of a history of excessive alcohol consumption. They coined the term nonalcoholic steatohepatitis (NASH), which today is regarded as one of the most common causes of liver disease in affluent countries. NASH is a subset of a larger spectrum of diseases termed fatty liver disease (including alcoholic and nonalcoholic fatty liver disease; AFLD and NAFLD, respectively). NAFLD and NASH are linked to visceral adiposity, insulin resistance, dyslipidemia and type 2 diabetes, and are increasing due to the prevalence of the metabolic syndrome. In this context, research has been undertaken using animals to model human steatosis and NAFLD to NASH disease progression. This Review discusses the prevalent dietary and inflammation-based genetic animal models described in recent years.
Collapse
Affiliation(s)
- Lionel Hebbard
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | | |
Collapse
|
116
|
Mohiti-Asli M, Zaghari M. Does dietary vitamin E or C decrease egg yolk cholesterol? Biol Trace Elem Res 2010; 138:60-8. [PMID: 20127202 DOI: 10.1007/s12011-010-8612-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
An experiment was conducted to determine the effect of dietary vitamin E and C on serum metabolites, yolk cholesterol, egg quality, and performance of layer hens. One hundred sixty-eight commercial Hy-Line W-36 layer hens were randomly divided into seven groups and six replicates with four hens in each. Dietary treatments were introduced after the pre-experimental period (10 days) to adjust egg production. Treatments were levels of vitamin E or C (100, 200, and 400 mg/kg diet) supplementation to the basal diet for 4 weeks, whereas the control group received no supplementation. Egg production, egg weight, and feed consumption were recorded during the study. Shell thickness, Haugh unit score, yolk color, yolk weight, yolk cholesterol, and blood parameters were measured at the end of experiment. There was no significant effect of dietary vitamin E or C on hen performance. Egg yolk cholesterol concentrations decreased linearly by antioxidant vitamin supplementation (P < 0.01). Egg yolk cholesterol reduction did not have any negative effect on egg production rate. Antioxidants, especially vitamin C, increased serum glucose concentration (P < 0.05). Serum total cholesterol content did not change by vitamin supplementation but cholesterol in high-density lipoprotein (HDL-C) decreased and cholesterol in low-density lipoprotein (LDL-C) increased (P < 0.05), as dietary vitamin E or C supplementation increased in diets. These results are in conflict with the previous hypothesis that antioxidants have a role in LDL-C removal from the blood or increasing HDL-C. Vitamin E was more effective than vitamin C in this case and if these results are confirmed by further studies, they may result to revision in researchers' point of view about antioxidant especially in human medicine.
Collapse
Affiliation(s)
- Maziar Mohiti-Asli
- Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | | |
Collapse
|
117
|
Meex SJR, Andreo U, Sparks JD, Fisher EA. Huh-7 or HepG2 cells: which is the better model for studying human apolipoprotein-B100 assembly and secretion? J Lipid Res 2010; 52:152-8. [PMID: 20956548 DOI: 10.1194/jlr.d008888] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein-B100 (apoB100) is the essential protein for the assembly and secretion of very low density lipoproteins (VLDL) from liver. The hepatoma HepG2 cell line has been the cell line of choice for the study of synthesis and secretion of human apoB-100. Despite the general use of HepG2 cells to study apoB100 metabolism, they secrete relatively dense, lipid-poor particles compared with VLDL secreted in vivo. Recently, Huh-7 cells were adopted as an alternative model to HepG2 cells, with the implicit assumption that Huh-7 cells were superior in some respects of lipoprotein metabolism, including VLDL secretion. In this study we addressed the hypothesis that the spectrum of apoB100 lipoprotein particles secreted by Huh-7 cells more closely resembles the native state in human liver. We find that Huh-7 cells resemble HepG2 cells in the effects of exogenous lipids, microsomal triglyceride transfer protein (MTP)-inhibition, and proteasome inhibitors of apoB100 secretion, recovery, and degradation. In contrast to HepG2 cells, however, MEK-ERK inhibition does not correct the defect in VLDL secretion. Huh-7 cells do not appear to offer any advantages over HepG2 cells as a general model of human apoB100-lipoprotein metabolism.
Collapse
Affiliation(s)
- Steven J R Meex
- Department of Medicine (Leon H. Charney Division of Cardiology), New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
118
|
Sorrentino P, Terracciano L, D'Angelo S, Ferbo U, Bracigliano A, Tarantino L, Perrella A, Perrella O, De Chiara G, Panico L, De Stefano N, Lepore M, Mariolina, Vecchione R. Oxidative stress and steatosis are cofactors of liver injury in primary biliary cirrhosis. J Gastroenterol 2010; 45:1053-62. [PMID: 20393861 DOI: 10.1007/s00535-010-0249-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/29/2010] [Indexed: 02/05/2023]
Abstract
BACKGROUND Factors responsible for the progression of primary biliary cirrhosis (PBC) are still poorly understood. In the present study, we investigated the associations between the stage of PBC and the immune reaction triggered by oxidative stress; the presence of obesity, steatosis,steatohepatitis; and other toxic, metabolic, or steatogenic factors. METHODS We studied clinical, laboratory, and histological data for 274 untreated patients with serum antimitochondrial antibody (AMA)-positive PBC. Circulating IgG against human serum albumin adducted with malondialdeyde, the major product of lipid peroxidation, was measured in these patients and in a group of 98 sex-, age and body mass index (BMI)-matched controls. RESULTS Steatosis was present in 40.5% of all patients. Steatohepatitis was present in 14.9% of all patients. There was a significant association between the frequencies of steatosis and steatohepatitis and the worsening of PBC. Circulating IgG against lipid peroxidation products was significantly higher in the PBC patients than in the controls. Titers of lipid peroxidation-related antibodies were significantly increased in patients with steatosis and inpatients at more advanced stages. Bivariate analysis revealed a significant association between indirect evidence of oxidative stress, steatosis, steatohepatitis, age, BMI, frequency of diabetes, alcohol intake, iron grade after Perl's stain, and PBC stage. Logistic regression analysis confirmed that the titers of antibodies against lipid peroxidation products (odds ratio 4.5, p< .001, 95% confidence interval 3.9–14.4), the presence of steatosis (odds ratio 4.1, 95% confidence interval 2.5–15.4, p< .001), higher BMI (odds ratio 3.9, p< .021, 95%confidence interval 1.4–9.5), and alcohol intake (males ≥ 30 g/day, females ≥ 20 g/day, odds ratio 4.5,95% confidence interval 1.3–19.8, p< .029) were independently associated with more advanced stages of the disease. CONCLUSIONS The immune reactions triggered by oxidative stress, steatosis, obesity, and alcohol intake are independent predictors of PBC stage progression.
Collapse
Affiliation(s)
- Paolo Sorrentino
- Liver Unit, Clinical and Experimental Hepatology, Department of Internal Medicine, S.G. Moscati Hospital, Via Pennini, Avellino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Clerodendron glandulosum.Coleb extract ameliorates high fat diet/fatty acid induced lipotoxicity in experimental models of non-alcoholic steatohepatitis. Food Chem Toxicol 2010; 48:3424-31. [PMID: 20849909 DOI: 10.1016/j.fct.2010.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 01/21/2023]
Abstract
This study evaluates the protective role of Clerodendron glandulosum.Coleb (CG) aqueous extract against high fat diet/fatty acid induced lipotoxicity in experimental models of non-alcoholic steatohepatitis (NASH). Supplementation of NASH mice with CG extract (1% and 3% in high fat diet for 16 weeks) prevented high fat diet induced elevation in liver enzymes, plasma and hepatic lipids, mitochondrial oxidative stress and compromised enzymatic and non-enzymatic antioxidant status and histopathological damage to hepatocytes. Furthermore, results from in vitro study indicates, addition of CG extract (20-200 μg/ml for 24h) to HepG2 cells minimizes oleic acid induced lipid accumulation, higher lipid peroxidation, cytotoxicity and reduced cell viability. These in vivo and in vitro studies suggest that CG extract has the potential of preventing high fat/fatty acid induced NASH.
Collapse
|
120
|
Branicky R, Desjardins D, Liu JL, Hekimi S. Lipid transport and signaling in Caenorhabditis elegans. Dev Dyn 2010; 239:1365-77. [PMID: 20151418 DOI: 10.1002/dvdy.22234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The strengths of the Caenorhabditis elegans model have been recently applied to the study of the pathways of lipid storage, transport, and signaling. As the lipid storage field has recently been reviewed, in this minireview we (1) discuss some recent studies revealing important physiological roles for lipases in mobilizing lipid reserves, (2) describe various pathways of lipid transport, with a particular focus on the roles of lipoproteins, (3) debate the utility of using C. elegans as a model for human dyslipidemias that impinge on atherosclerosis, and (4) describe several systems where lipids affect signaling, highlighting the particular properties of lipids as information-carrying molecules. We conclude that the study of lipid biology in C. elegans exemplifies the advantages afforded by a whole-animal model system where interactions between tissues and organs, and functions such as nutrient absorption, distribution, and storage, as well as reproduction can all be studied simultaneously.
Collapse
Affiliation(s)
- Robyn Branicky
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
121
|
Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol 2010; 53:372-84. [PMID: 20494470 DOI: 10.1016/j.jhep.2010.04.008] [Citation(s) in RCA: 753] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/02/2010] [Indexed: 02/06/2023]
Affiliation(s)
- Vlad Ratziu
- Université Pierre et Marie Curie Paris VI, Assistance Publique Hôpitaux de Paris, INSERM UMRS 893, France
| | | | | | | | | |
Collapse
|
122
|
Kaser S, Ebenbichler CF, Tilg H. Pharmacological and non-pharmacological treatment of non-alcoholic fatty liver disease. Int J Clin Pract 2010; 64:968-83. [PMID: 20584230 DOI: 10.1111/j.1742-1241.2009.02327.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a disease spectrum ranging from simple steatosis and steatohepatitis to cirrhosis. Based on its strongest risk factors namely visceral obesity and insulin resistance, NAFLD is thought to be the hepatic manifestation of the metabolic syndrome and is considered to be the most common liver disorder in Western countries. Pathophysiological mechanisms include an enlarged pool of fatty acids, subclinical inflammation, oxidative stress and imbalances of various adipocytokines such as adiponectin. Accordingly, targets for therapeutic interventions are miscellaneous: amelioration of obesity by pharmacological, surgical or lifestyle intervention has been evaluated with success in numerous, but not all studies. Some efficacy was reported for metformin and short-term glitazone treatment. In a large recently reported trial, vitamin E supplementation improved biochemical and histological markers in subjects with non-alcoholic steatohepatitis. Blockade of the endocannabinoid system has been proposed to be a promising target in NAFLD; however, very recently the cannabinoid receptor blocker rimonabant has been withdrawn because of central nervous system toxicity. Cytoprotective therapies and statins have been mainly ineffective in NAFLD. New but so far insufficiently studied therapeutic approaches include inhibitors of the renin-angiotensin system as well as incretin mimetics respectively.
Collapse
Affiliation(s)
- S Kaser
- Department of Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
123
|
Rutledge AC, Su Q, Adeli K. Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assemblyThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:251-67. [DOI: 10.1139/o09-168] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Apolipoprotein B100 (apoB) is a large amphipathic lipid-binding protein that is synthesized by hepatocytes and used to assemble and stabilize very low density lipoproteins (VLDL). It may have been derived through evolution from other lipid-associating proteins such as microsomal triglyceride transfer protein or vitellogenin. The correct folding of apoB requires assistance from chaperone proteins in co-translational lipidation, disulfide bond formation, and glycosylation. Any impairment in these processes results in co-translational targeting of the misfolded apoB molecule for proteasomal degradation. In fact, most of the regulation of apoB production is mediated by intracellular degradation. ApoB that misfolds post-translationally, perhaps as a result of oxidative stress, may be eliminated through autophagy. This review focuses on the proposed pentapartite domain structure of apoB, the role that each domain plays in the binding of lipid species and regulation of apoB synthesis, and the process of VLDL assembly. The factors involved in the recognition, ubiquitination, and proteasomal delivery of defective apoB molecules are also discussed.
Collapse
Affiliation(s)
- Angela C. Rutledge
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Qiaozhu Su
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Khosrow Adeli
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
124
|
Liver apolipoprotein B100 expression and secretion are down-regulated early postpartum in dairy cows. Livest Sci 2009. [DOI: 10.1016/j.livsci.2009.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
125
|
Brown JM, Chung S, Sawyer JK, Degirolamo C, Alger HM, Nguyen TM, Zhu X, Duong MN, Brown AL, Lord C, Shah R, Davis MA, Kelley K, Wilson MD, Madenspacher J, Fessler MB, Parks JS, Rudel LL. Combined therapy of dietary fish oil and stearoyl-CoA desaturase 1 inhibition prevents the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 30:24-30. [PMID: 19834103 DOI: 10.1161/atvbaha.109.198036] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Stearoyl-CoA desaturase 1 (SCD1) is a critical regulator of energy metabolism and inflammation. We have previously reported that inhibition of SCD1 in hyperlipidemic mice fed a saturated fatty acid (SFA)-enriched diet prevented development of the metabolic syndrome, yet surprisingly promoted severe atherosclerosis. In this study we tested whether dietary fish oil supplementation could prevent the accelerated atherosclerosis caused by SCD1 inhibition. METHODS AND RESULTS LDLr(-/-), ApoB(100/100) mice were fed diets enriched in saturated fat or fish oil in conjunction with antisense oligonucleotide (ASO) treatment to inhibit SCD1. As previously reported, in SFA-fed mice, SCD1 inhibition dramatically protected against development of the metabolic syndrome, yet promoted atherosclerosis. In contrast, in mice fed fish oil, SCD1 inhibition did not result in augmented macrophage inflammatory response or severe atherosclerosis. In fact, the combined therapy of dietary fish oil and SCD1 ASO treatment effectively prevented both the metabolic syndrome and atherosclerosis. CONCLUSIONS SCD1 ASO treatment in conjunction with dietary fish oil supplementation is an effective combination therapy to comprehensively combat the metabolic syndrome and atherosclerosis in mice.
Collapse
Affiliation(s)
- J Mark Brown
- Wake Forest University School of Medicine, Department of Pathology, Section on Lipid Sciences, Medical Center Blvd, Winston-Salem, NC 27157-1040, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Autophagy in the cardiovascular system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1485-95. [DOI: 10.1016/j.bbamcr.2008.12.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 12/14/2008] [Accepted: 12/16/2008] [Indexed: 12/26/2022]
|
127
|
Cano A, Ciaffoni F, Safwat GM, Aspichueta P, Ochoa B, Bravo E, Botham KM. Hepatic VLDL assembly is disturbed in a rat model of nonalcoholic fatty liver disease: is there a role for dietary coenzyme Q? J Appl Physiol (1985) 2009; 107:707-17. [PMID: 19608932 DOI: 10.1152/japplphysiol.00297.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The overproduction of very-low-density lipoprotein (VLDL) is a characteristic feature of nonalcoholic fatty liver disease (NAFLD). The aim of this study was to use a high-fat diet-induced model of NAFLD in rats to investigate 1) the influence of the disease on hepatic VLDL processing in the endoplasmic reticulum and 2) the potential modulatory effects of dietary coenzyme Q (CoQ). Rats were fed a standard low-fat diet (control) or a diet containing 35% fat (57% metabolizable energy). After 10 wk, high-fat diet-fed animals were divided into three groups: the first group was given CoQ9 (30 mg*kg body wt(-1)*day(-1) in 0.3 ml olive oil), the second group was given olive oil (0.3 ml/day) only, and the third group received no supplements. Feeding (3 high-fat diets and the control diet) was then continued for 8 wk. In all high-fat diet-fed groups, the content of triacylglycerol (TG) and cholesterol in plasma VLDL, the liver, and liver microsomes was increased, hepatic levels of apolipoprotein B48 were raised, and the activities of microsomal TG transfer protein and acyl CoA:cholesterol acyltransferase were reduced. These findings provide new evidence indicating that VLDL assembly and the inherent TG transfer to the endoplasmic reticulum are altered in NAFLD and suggest a possible explanation for both the overproduction of VLDL associated with the condition and the disease etiology itself. Dietary CoQ caused significant increases in apolipoprotein B mRNA and microsomal TG levels and altered the phospholipid content of microsomal membranes. These changes, however, may not be beneficial as they may lead to the secretion of larger, more atherogenic VLDL.
Collapse
Affiliation(s)
- Ainara Cano
- Department of Veterinary Basic Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
128
|
Wong YT, Ruan R, Tay FEH. Relationship between levels of oxidative DNA damage, lipid peroxidation and mitochondrial membrane potential in young and old F344 rats. Free Radic Res 2009; 40:393-402. [PMID: 16517504 DOI: 10.1080/10715760600556074] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The extent of in vivo oxidative damage has been known to be cumulative over the period of the life of mammals. Our hypothesis is that there should be a positive correlation between the levels of 8-hydroxy-2'-deoxyguanosine (8OHdG) and 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) in major rat tissues. We also investigated whether increased level of oxidative stress causes a decrease in the mitochondrial membrane potential of peripheral lymphocytes of old rats using the MitoTracker Red fluorochrome. Our results show positive correlations between 8OHdG and 8-iso-PGF(2alpha) for liver, brain and kidney measured by HPLC-UV-ECD (electrochemical detector) and EIA methods, respectively. However, heart tissues show a negative correlation. The mitochondrial membrane potential of old rat lymphocytes records significant decrease compared with the young lymphocytes. Based on our results, we conclude that in ageing studies, specific tissues need to be examined in order to measure the localised DNA damage and lipid peroxidation as different tissues display different extent of oxidative damage. We believe this approach of using combined markers is useful to verify the true efficacy of health intervention studies in animals and humans. In addition, the isoprostane assay can be further developed looking at lipid peroxidation as a potential marker in ageing studies.
Collapse
Affiliation(s)
- Yee Ting Wong
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | | |
Collapse
|
129
|
Lottenberg AMP. Importância da gordura alimentar na prevenção e no controle de distúrbios metabólicos e da doença cardiovascular. ACTA ACUST UNITED AC 2009; 53:595-607. [DOI: 10.1590/s0004-27302009000500012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022]
Abstract
A Organização Mundial da Saúde (OMS) reiterou recentemente que o consumo de dietas inadequadas e a inatividade física estão entre os dez principais fatores de mortalidade. Diversos ensaios aleatorizados demonstram que intervenções alimentares adequadas podem diminuir ou prevenir significativamente o aparecimento de várias doenças crônicas não transmissíveis. Neste contexto, o papel da dieta vem sendo exaustivamente avaliado em estudos clínicos e epidemiológicos. Assim, já foi bem estabelecido na literatura que a quantidade e o tipo de gordura alimentar exercem influência direta sobre fatores de risco cardiovascular, tais como a concentração de lípides e de lipoproteínas plasmáticas, bem como sua associação a processos inflamatórios. Os ácidos graxos participam de complexos sistemas de sinalização intracelular, função que vem sendo bastante explorada. Os ácidos graxos poli-insaturados não somente influenciam a composição das membranas, metabolismo celular e sinais de tradução, mas também modulam a expressão de genes, regulando a atividade e a produção de diversos fatores de transcrição. A proposta deste artigo é rever tópicos relevantes referentes ao metabolismo de lípides e os relacionar a terapias nutricionais que possam contribuir para a prevenção e o tratamento de doenças associadas.
Collapse
|
130
|
Oosterveer MH, van Dijk TH, Tietge UJF, Boer T, Havinga R, Stellaard F, Groen AK, Kuipers F, Reijngoud DJ. High fat feeding induces hepatic fatty acid elongation in mice. PLoS One 2009; 4:e6066. [PMID: 19557132 PMCID: PMC2699051 DOI: 10.1371/journal.pone.0006066] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 05/25/2009] [Indexed: 01/07/2023] Open
Abstract
Background High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated. Methodology/Principal Findings To interrogate this apparent paradox, we have quantified de novo lipogenesis in C57Bl/6J mice fed either chow, a high-fat or a n-3 polyunsaturated fatty acid (PUFA)-enriched high-fat diet. A novel approach based on mass isotopomer distribution analysis (MIDA) following 1-13C acetate infusion was applied to simultaneously determine de novo lipogenesis, fatty acid elongation as well as cholesterol synthesis. Furthermore, we measured very low density lipoprotein-triglyceride (VLDL-TG) production rates. High-fat feeding promoted hepatic lipid accumulation and induced the expression of lipogenic and cholesterogenic genes compared to chow-fed mice: induction of gene expression was found to translate into increased oleate synthesis. Interestingly, this higher lipogenic flux (+74 µg/g/h for oleic acid) in mice fed the high-fat diet was mainly due to an increased hepatic elongation of unlabeled palmitate (+66 µg/g/h) rather than to elongation of de novo synthesized palmitate. In addition, fractional cholesterol synthesis was increased, i.e. 5.8±0.4% vs. 8.1±0.6% for control and high fat-fed animals, respectively. Hepatic VLDL-TG production was not affected by high-fat feeding. Partial replacement of saturated fat by fish oil completely reversed the lipogenic effects of high-fat feeding: hepatic lipogenic and cholesterogenic gene expression levels as well as fatty acid and cholesterol synthesis rates were normalized. Conclusions/Significance High-fat feeding induces hepatic fatty acid synthesis in mice, by chain elongation and subsequent desaturation rather than de novo synthesis, while VLDL-TG output remains unaffected. Suppression of lipogenic fluxes by fish oil prevents from high fat diet-induced hepatic steatosis in mice.
Collapse
Affiliation(s)
- Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2009; 19:291-302. [PMID: 19359149 DOI: 10.1016/j.numecd.2008.12.015] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly recognized pathology with a high prevalence and a possible evolution to its inflammatory counterpart (non-alcoholic steatohepatitis, or NASH). The pathophysiology of NAFLD and NASH has many links with the metabolic syndrome, sharing a causative factor in insulin resistance. According to a two-hit hypothesis, increased intrahepatic triglyceride accumulation (due to increased synthesis, decreased export, or both) is followed by a second step (or "hit"), which may lead to NASH. The latter likely involves oxidative stress, cytochrome P450 activation, lipid peroxidation, increased inflammatory cytokine production, activation of hepatic stellate cells and apoptosis. However, both "hits" may be caused by the same factors. The aim of this article is to overview the biochemical steps of fat regulation in the liver and the alterations occurring in the pathogenesis of NAFLD and NASH.
Collapse
Affiliation(s)
- P Tessari
- Department of Clinical and Experimental Medicine, Chair of Metabolism, University of Padua, Italy.
| | | | | | | |
Collapse
|
132
|
Camps J, Marsillach J, Joven J. Measurement of serum paraoxonase-1 activity in the evaluation of liver function. World J Gastroenterol 2009; 15:1929-33. [PMID: 19399923 PMCID: PMC2675081 DOI: 10.3748/wjg.15.1929] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Paraoxonase-1 (PON1) is an esterase and lactonase synthesized by the liver and found in the circulation associated with high-density lipoproteins. The physiological function of PON1 seems to be to degrade specific oxidized cholesteryl esters and oxidized phospholipids in lipoproteins and cell membranes. PON1 is, therefore, an antioxidant enzyme. Alterations in circulating PON1 levels have been reported in a variety of diseases involving oxidative stress including chronic liver diseases. Measurement of serum PON1 activity has been proposed as a potential test for the evaluation of liver function. However, this measurement is still restricted to research and has not been extensively applied in routine clinical chemistry laboratories. The reason for this restriction is due to the problem that the substrate commonly used for PON1 measurement, paraoxon, is toxic and unstable. The recent development of new assays with non-toxic substrates makes this proposal closer to a practical development. The present editorial summarizes PON1 biochemistry and function, its involvement with chronic liver impairment, and some aspects related to the measurement of PON1 activity in circulation.
Collapse
|
133
|
Lipid aldehyde-mediated cross-linking of apolipoprotein B-100 inhibits secretion from HepG2 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:772-80. [PMID: 19393338 DOI: 10.1016/j.bbalip.2009.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/20/2009] [Accepted: 04/13/2009] [Indexed: 01/27/2023]
Abstract
Hepatic oxidative stress and lipid peroxidation are common features of several prevalent disease states, including alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), a common component of the metabolic syndrome. These conditions are characterized in part by excessive accumulation of lipids within hepatocytes, which can lead to autocatalytic degradation of cellular lipids giving rise to electrophilic end products of lipid peroxidation. The pathobiology of reactive lipid aldehydes remains poorly understood. We therefore sought to investigate the effects of 4-hydroxynonenal (4-HNE) and 4-oxononenal (4-ONE) on the transport and secretion of very low-density lipoprotein using HepG2 cells as a model hepatocyte system. Physiologically relevant concentrations of 4-HNE and 4-ONE rapidly disrupted cellular microtubules in a concentration-dependent manner. Interestingly, 4-ONE reduced apolipoprotein B-100 (ApoB) secretion while 4-HNE did not significantly impair secretion. Both 4-HNE and 4-ONE formed adducts with ApoB protein, but 4-HNE adducts were detectable as mono-adducts, while 4-ONE adducts were present as protein-protein cross-links. These results demonstrate that reactive aldehydes generated by lipid peroxidation can differ in their biological effects, and that these differences can be mechanistically explained by the structures of the protein adducts formed.
Collapse
|
134
|
Ginsberg HN, Fisher EA. The ever-expanding role of degradation in the regulation of apolipoprotein B metabolism. J Lipid Res 2009; 50 Suppl:S162-S166. [PMID: 19050312 PMCID: PMC2674708 DOI: 10.1194/jlr.r800090-jlr200] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/02/2008] [Indexed: 11/17/2023] Open
Abstract
Apolipoprotein B (apoB) is the essential protein required for the assembly and secretion of chylomicrons from the small intestine and VLDLs from the liver. These lipoproteins, as well as their remnants and LDL, play key roles in the transport of dietary and endogenously synthesized lipids throughout the body. However, they can be involved in the initiation of atherosclerotic lesions in the vessel wall. Therefore, it is not surprising that the assembly of apoB-containing lipoproteins in the small intestine and liver is a highly regulated process. In particular, cotranslational and posttranslational targeting of apoB for degradation, regulated largely by the availability of the core lipids carried in the lipoprotein, by the types of dietary fatty acids consumed, and by the hormonal milieu, determines the number of chylomicrons or VLDL that are secreted. In this review, we summarize both older and more recent findings on the pathways of apoB degradation, focusing on events in the liver.
Collapse
Affiliation(s)
- Henry N Ginsberg
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
135
|
Martinet W, De Meyer GRY. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res 2009; 104:304-17. [PMID: 19213965 DOI: 10.1161/circresaha.108.188318] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. A growing body of evidence suggests that autophagy is stimulated in advanced atherosclerotic plaques by oxidized lipids, inflammation, and metabolic stress conditions. However, despite the increasing interest in autophagy in various pathophysiological situations such as neurodegeneration, cancer, and cardiac myopathies, the process remains an underestimated and overlooked phenomenon in atherosclerosis. As a consequence, its role in plaque formation and stability is poorly understood. Most likely, autophagy safeguards plaque cells against cellular distress, in particular oxidative injury, by degrading damaged intracellular material. In this way, autophagy is antiapoptotic and contributes to cellular recovery in an adverse environment. An interesting observation is that basal autophagy can be intensified by specific drugs. Excessively stimulated autophagic activity is capable of destroying major proportions of the cytosol, leading finally to type II programmed cell death that lacks several hallmarks of apoptosis or necrosis. Because atherosclerosis is an inflammatory disorder of the arterial intima, pharmacological approaches could be developed to stabilize vulnerable, rupture-prone lesions through selective induction of macrophage autophagic death.
Collapse
Affiliation(s)
- Wim Martinet
- Division of Pharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | |
Collapse
|
136
|
Abstract
The treatment of elevated levels of low-density lipoprotein cholesterol is standard medical practice supported by conclusive outcome data. Less definitive information exists for hypertriglyceridemia. Only in the setting of severe hyperchylomicronemia is the benefit of triglyceride lowering clear: it is a means to reduce the risk of pancreatitis. The relationship of triglycerides and cardiovascular disease is still unclear. Moreover, the cardiovascular benefits of reducing triglycerides and of using triglyceride-lowering medications remain unproved. Nonetheless it has become almost standard to reduce the levels of triglyceride-rich lipoproteins that are a major component of plasma non-high-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY10032, USA.
| |
Collapse
|
137
|
Bartolomé N, Arteta B, Martínez MJ, Chico Y, Ochoa B. Kupffer cell products and interleukin 1beta directly promote VLDL secretion and apoB mRNA up-regulation in rodent hepatocytes. Innate Immun 2009; 14:255-66. [PMID: 18669611 DOI: 10.1177/1753425908094718] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plasma VLDL accumulation in Gram-negative sepsis is partly ascribed to an increased hepatic VLDL production driven by pro-inflammatory cytokines. We previously showed that hepatocytes of the Kupffer cell (KC)-rich periportal area are major contributors to enhanced VLDL production in lipopolysaccharide (LPS)-injected rats. However, it remains to be established whether KC generated products directly affect the number (apoB) and composition of secreted VLDL. Using rat primary cells, we show here that hepatocytes respond to stimulation by soluble mediators released by LPS-stimulated Kupffer cells with enhanced secretion of apoB and triglycerides in phospholipid-rich VLDL particles. Unstimulated KC products also augmented the secretion of normal VLDL, doubling apoB mRNA abundance. IL-1beta treatment resulted in concentration-dependent increases of hepatocyte apoB mRNA and protein secretion, increases that were greater, but not additive, when combined with IL-6 and TNF-alpha. Lipid secretion and MTP mRNA levels were unaffected by cytokines. In summary: (i) enhanced secretion of phospholipid-rich VLDL particles is a net hepatocyte response to LPS-stimulated KC products, which gives a clue about the local role of Kupffer cells in septic dyslipidemia induction; and (ii) pro-inflammatory cytokines act redundantly to enhance apoB secretion involving translational apoB up-regulation, but other humoral components or KC mediators are necessary to accomplish increased lipid association.
Collapse
Affiliation(s)
- Nerea Bartolomé
- Department of Physiology, Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | | | | | | | | |
Collapse
|
138
|
Yin HQ, Je YT, Kim YC, Shin YK, Sung S, Lee K, Jeong GS, Kim YC, Lee BH. Magnolia officinalis Reverses Alcoholic Fatty Liver by Inhibiting the Maturation of Sterol Regulatory Element–Binding Protein-1c. J Pharmacol Sci 2009; 109:486-95. [DOI: 10.1254/jphs.08182fp] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
139
|
Kobayashi H, Yamada Y, Kanayama S, Furukawa N, Noguchi T, Haruta S, Yoshida S, Sakata M, Sado T, Oi H. The role of iron in the pathogenesis of endometriosis. Gynecol Endocrinol 2009; 25:39-52. [PMID: 19165662 DOI: 10.1080/09513590802366204] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endometriosis may cause symptoms including chronic pelvic pain and infertility, and increases susceptibility to the development of ovarian cancer. Genomic studies have started to delineate the wide array of mediators involved in the development of endometriosis. Understanding the mechanisms of endometriosis development and elucidating its pathogenesis and pathophysiology are intrinsic to prevention and the search for effective therapies. METHOD OF STUDY The present article reviews the English language literature for biological, pathogenetic and pathophysiological studies on endometriosis. Several recent genomic studies are discussed in the context of endometriosis biology. RESULTS Severe hemolysis occurring during the development of endometriosis results in high levels of free heme and iron. These compounds oxidatively modify lipids and proteins, leading to cell and DNA damage, and subsequently fibrosis development. Recent studies based on genome-wide expression analysis technology have noted specific expression of heme/iron-dependent mediators in endometriosis. The heme/iron-dependent signaling pathway of endometriosis, which is providing new insights into the regulation of inflammation, detoxification and survival, is discussed. CONCLUSION Several important endometriosis-specific genes overlap with those known to be regulated by iron. Other genes are involved in oxidative stress. Iron has a significant impact on endometriotic-cell gene expression. This review summarizes recent advances in the heme/iron-mediated signaling and its target genes, outlines the potential challenges to understanding of the pathogenesis and pathophysiology of endometriosis, and proposes a possible novel model.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
Alcoholic liver disease still represents an important cause for death and disability in most well-developed countries and is becoming a leading cause of disease in developing countries. It is now increasingly clear that, besides the formation of acetaldehyde, alcohol effects on the liver include oxidative stress, disturbances in methionine metabolism, endoplasmic reticulum stress, inflammatory/immune responses and adipokine imbalances. This article will discuss the most recent findings on the mechanisms by which alcohol abuse causes hepatic steatosis and steatohepatitis, and now it contributes to the progression of fibrosis. Although still incomplete, these data shed new light on the multifactorial pathogenesis of alcoholic liver disease and open new possibilities in the understanding of how gender and genetic factors can influence disease progression.
Collapse
Affiliation(s)
- Emanuele Albano
- Department of Medical Science, University Amedeo Avogadro of East Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
141
|
Moritz B, Wazlawik E, Minatti J, Miranda RCDD. Interferência dos ácidos graxos ômega-3 nos lipídeos sangüíneos de ratos submetidos ao exercício de natação. REV NUTR 2008. [DOI: 10.1590/s1415-52732008000600005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Investigar os efeitos da suplementação com ácidos graxos ômega-3, nas doses de 0,5 e 1,0g/kg/dia, nos lipídeos sangüíneos de ratos submetidos ou não ao protocolo do nado. MÉTODOS: Ratos Wistar foram divididos em grupos: controle, controle+nado, ácidos graxos ômega-3 e ácidos graxos ômega-3+nado. Os ácidos graxos ômega-3 e ácidos graxos ômega-3+nado receberam suplementação; os demais receberam água por gavagem. Os controle+nado e ácidos graxos ômega-3+nado foram submetidos ao exercício. Foram avaliadas as concentrações plasmáticas de colesterol total, triglicérides e lipoproteína de alta densidade, antes e após os procedimentos experimentais. RESULTADOS: No protocolo de 0,5g/kg/dia, em relação às concentrações de colesterol total, foi observada redução significativa proporcionalmente maior no grupo ácidos graxos ômega-3+nado, apesar de o grupo controle+nado e o ácidos graxos ômega-3 também terem apresentado diminuição. No ensaio de 1,0g/kg/dia todos os grupos apresentaram uma diminuição que foi maior, respectivamente, no ácidos graxos ômega-3+nado e, a seguir, no ácidos graxos ômega-3. Quanto aos triglicérides, foram encontradas reduções em todos os grupos experimentais, que foi maior no grupo ácidos graxos ômega-3+nado, do protocolo de 0,5g/kg/dia, enquanto que no de 1,0g/kg/dia a diminuição foi significativa apenas nos grupos ácidos graxos ômega-3 e ácidos graxos ômega-3+nado. Quanto ao HDL, no protocolo de 0,5g/kg/dia foi encontrado aumento nos animais que não foram suplementados, enquanto que em todos os grupos de 1,0g/kg/dia houve uma diminuição do HDL. CONCLUSÃO: A suplementação com ácidos graxos ômega-3 nas doses 0,5 ou 1,0g/kg/dia, associada ao nado, reduzem as concentrações plasmáticas de colesterol total e triglcérides, mas estudos adicionais, também com outras doses, são necessários para a compreensão da relação entre a ingestão de óleo de peixe e as concentrações de lipídeos sangüíneos.
Collapse
|
142
|
Pachikian BD, Neyrinck AM, Cani PD, Portois L, Deldicque L, De Backer FC, Bindels LB, Sohet FM, Malaisse WJ, Francaux M, Carpentier YA, Delzenne NM. Hepatic steatosis in n-3 fatty acid depleted mice: focus on metabolic alterations related to tissue fatty acid composition. BMC PHYSIOLOGY 2008; 8:21. [PMID: 19046413 PMCID: PMC2612019 DOI: 10.1186/1472-6793-8-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 12/01/2008] [Indexed: 01/22/2023]
Abstract
Background There are only few data relating the metabolic consequences of feeding diets very low in n-3 fatty acids. This experiment carried out in mice aims at studying the impact of dietary n-3 polyunsaturated fatty acids (PUFA) depletion on hepatic metabolism. Results n-3 PUFA depletion leads to a significant decrease in body weight despite a similar caloric intake or adipose tissue weight. n-3 PUFA depleted mice exhibit hypercholesterolemia (total, HDL, and LDL cholesterol) as well as an increase in hepatic cholesteryl ester and triglycerides content. Fatty acid pattern is profoundly modified in hepatic phospholipids and triglycerides. The decrease in tissue n-3/n-6 PUFA ratio correlates with steatosis. Hepatic mRNA content of key factors involved in lipid metabolism suggest a decreased lipogenesis (SREBP-1c, FAS, PPARγ), and an increased β-oxidation (CPT1, PPARα and PGC1α) without modification of fatty acid esterification (DGAT2, GPAT1), secretion (MTTP) or intracellular transport (L-FABP). Histological analysis reveals alterations of liver morphology, which can not be explained by inflammatory or oxidative stress. However, several proteins involved in the unfolded protein response are decreased in depleted mice. Conclusion n-3 PUFA depletion leads to important metabolic alterations in murine liver. Steatosis occurs through a mechanism independent of the shift between β-oxidation and lipogenesis. Moreover, long term n-3 PUFA depletion decreases the expression of factors involved in the unfolded protein response, suggesting a lower protection against endoplasmic reticulum stress in hepatocytes upon n-3 PUFA deficiency.
Collapse
Affiliation(s)
- B D Pachikian
- Unit of Pharmacokinetics, Metabolism, Nutrition and Toxicology, Université catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Angiotensin receptor blockers in the treatment of NASH/NAFLD: could they be a first-class option? Adv Ther 2008; 25:1141-74. [PMID: 18972077 DOI: 10.1007/s12325-008-0110-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition pathogenically linked to metabolic syndrome (MS) by insulin resistance (IR), and characterized by hepatic steatosis in the absence of significant alcohol use, hepatotoxicity, and/or other known liver diseases.The principles of NAFLD therapy target IR: the key point of MS. As the renin-angiotensin system (RAS) plays a central role in IR, and subsequently in NAFLD and nonalcoholic steatohepatitis (NASH), an attempt to block the deleterious effects of RAS overexpression seems a logical target. While many potential therapies tested in NASH target only the consequences of this condition, or try to "get rid" of excessive fat, angiotensin receptor blockers (ARBs) could act as an elegant tool for adequate correction of the various imbalances that act in harmony in NASH/NAFLD. Indeed, by inhibiting RAS we can improve the intracellular insulin signaling pathway, better control adipose tissue proliferation and adipokine production, and produce more balanced local and systemic levels of various cytokines. At the same time, by controlling the local RAS in the liver we might be able to prevent at least fibrosis and also slow down the vicious cycle that links steatosis to necroinflammation. By targeting the pancreatic effects of angiotensin we should be able to preserve an adequate insulin secretion and acquire a better metabolic balance.In our opinion there are two major advantages of ARBs that make them a possible therapeutic option for treating NASH and MS: their specific antihypertensive effect, and their impact on liver fibrosis. In light of this, and based on the current evidence (including existent human studies), we can speculate that some ARBs like telmisartan, candesartan, and losartan can be beneficial in treating NASH/NAFLD and its consequences, and further larger controlled clinical trials will bring consistent data into this field.
Collapse
|
144
|
Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. FIBROGENESIS & TISSUE REPAIR 2008; 1:5. [PMID: 19014652 PMCID: PMC2584013 DOI: 10.1186/1755-1536-1-5] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 10/13/2008] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) generated within cells or, more generally, in a tissue environment, may easily turn into a source of cell and tissue injury. Aerobic organisms have developed evolutionarily conserved mechanisms and strategies to carefully control the generation of ROS and other oxidative stress-related radical or non-radical reactive intermediates (that is, to maintain redox homeostasis), as well as to 'make use' of these molecules under physiological conditions as tools to modulate signal transduction, gene expression and cellular functional responses (that is, redox signalling). However, a derangement in redox homeostasis, resulting in sustained levels of oxidative stress and related mediators, can play a significant role in the pathogenesis of major human diseases characterized by chronic inflammation, chronic activation of wound healing and tissue fibrogenesis. This review has been designed to first offer a critical introduction to current knowledge in the field of redox research in order to introduce readers to the complexity of redox signalling and redox homeostasis. This will include ready-to-use key information and concepts on ROS, free radicals and oxidative stress-related reactive intermediates and reactions, sources of ROS in mammalian cells and tissues, antioxidant defences, redox sensors and, more generally, the major principles of redox signalling and redox-dependent transcriptional regulation of mammalian cells. This information will serve as a basis of knowledge to introduce the role of ROS and other oxidative stress-related intermediates in contributing to essential events, such as the induction of cell death, the perpetuation of chronic inflammatory responses, fibrogenesis and much more, with a major focus on hepatic chronic wound healing and liver fibrogenesis.
Collapse
Affiliation(s)
- Erica Novo
- Dipartimento di Medicina e Oncologia Sperimentale and Centro Interuniversitario di Fisiopatologia Epatica, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | | |
Collapse
|
145
|
Hooper AJ, van Bockxmeer FM, Burnett JR. Monogenic Hypocholesterolaemic Lipid Disorders and Apolipoprotein B Metabolism. Crit Rev Clin Lab Sci 2008; 42:515-45. [PMID: 16390683 DOI: 10.1080/10408360500295113] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The study of apolipoprotein (apo) B metabolism is central to our understanding of human lipoprotein metabolism. Moreover, the assembly and secretion of apoB-containing lipoproteins is a complex process. Increased plasma concentrations of apoB-containing lipoproteins are an important risk factor for the development of atherosclerotic coronary heart disease. In contrast, decreased levels of, but not the absence of, these apoB-containing lipoproteins is associated with resistance to atherosclerosis and potential long life. The study of inherited monogenic dyslipidaemias has been an effective means to elucidate key metabolic steps and biologically relevant mechanisms. Naturally occurring gene mutations in affected families have been useful in identifying important domains of apoB and microsomal triglyceride transfer protein (MTP) governing the metabolism of apoB-containing lipoproteins. Truncation-causing mutations in the APOB gene cause familial hypobetalipoproteinaemia, whereas mutations in MTP result in abetalipoproteinaemia; both rare conditions are characterised by marked hypocholesterolaemia. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the key biochemical, clinical, metabolic and genetic features of the monogenic hypocholesterolaemic lipid disorders affecting apoB metabolism.
Collapse
Affiliation(s)
- Amanda J Hooper
- School of Surgery and Pathology, University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
146
|
Fisher EA, Lapierre LR, Junkins RD, McLeod RS. The AAA-ATPase p97 facilitates degradation of apolipoprotein B by the ubiquitin-proteasome pathway. J Lipid Res 2008; 49:2149-60. [DOI: 10.1194/jlr.m800108-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
147
|
Brodsky JL, Fisher EA. The many intersecting pathways underlying apolipoprotein B secretion and degradation. Trends Endocrinol Metab 2008; 19:254-9. [PMID: 18691900 PMCID: PMC3216472 DOI: 10.1016/j.tem.2008.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 02/06/2023]
Abstract
Because the levels of secreted apolipoprotein B (apoB) directly correlate with circulating serum cholesterol levels, there is a pressing need to define how the biosynthesis of this protein is regulated. Most commonly, the concentration of a secreted, circulating protein corresponds to transcriptionally and/or translationally regulated events. By contrast, circulating apoB levels are controlled by degradative pathways in the cell that select the protein for disposal. This article summarizes recent findings on two apoB disposal pathways, endoplasmic reticulum (ER)-associated degradation and autophagy, and describes a role for post-ER degradation in the increased circulating lipid levels in insulin-resistant diabetics.
Collapse
Affiliation(s)
- Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
148
|
Manchekar M, Richardson PE, Sun Z, Liu Y, Segrest JP, Dashti N. Charged amino acid residues 997-1000 of human apolipoprotein B100 are critical for the initiation of lipoprotein assembly and the formation of a stable lipidated primordial particle in McA-RH7777 cells. J Biol Chem 2008; 283:29251-65. [PMID: 18725409 DOI: 10.1074/jbc.m804912200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We previously demonstrated that a portion, or perhaps all, of the residues between 931 and 1000 of apolipoprotein (apo) B100 are required for the initiation of apoB-containing particle assembly. Based on our structural model of the first 1000 residues of apoB (designated as apoB:1000), we hypothesized that this domain folds into a three-sided lipovitellin-like "lipid pocket" via a hairpin-bridge mechanism. We proposed that salt bridges are formed between four tandem charged residues 717-720 in the turn of the hairpin bridge and four tandem complementary residues 997-1000 located at the C-terminal end of the model. To identify the specific motif within residues 931 and 1000 that is critical for apoB particle assembly, apoB:956 and apoB:986 were produced. To test the hairpin-bridge hypothesis, the following mutations were made: 1) residues 997-1000 deletion (apoB:996), 2) residues 717-720 deletion (apoB:1000Delta717-720), and 3) substitution of charged residues 997-1000 with alanines (apoB:996 + 4Ala). Characterization of particles secreted by stable transformants of McA-RH7777 cells demonstrated the following. 1) ApoB:956 did not form stable particles and was secreted as large lipid-rich aggregates. 2) ApoB:986 formed both a lipidated particle that was denser than HDL(3) and large lipid-rich aggregates. 3) Compared with wild-type apoB:1000, apoB:1000Delta717-720 displayed the following: (i) significantly diminished capacity to form intact lipidated particles and (ii) increased propensity to form large lipid-rich aggregates. 4) In striking contrast to wild-type apoB:1000, (i) apoB:996 and apoB:996 + 4Ala were highly susceptible to intracellular degradation, (ii) only a small proportion of the secreted proteins formed stable HDL(3)-like lipoproteins, and (iii) a majority of the secreted proteins formed large lipid-rich aggregates. We conclude that the first 1000 amino acid residues of human apoB100 are required for the initiation of nascent apoB-containing lipoprotein assembly, and residues 717-720 and 997-1000 play key roles in this process, perhaps via a hairpin-bridge mechanism.
Collapse
Affiliation(s)
- Medha Manchekar
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
149
|
Magkos F, Tsekouras YE, Prentzas KI, Basioukas KN, Matsama SG, Yanni AE, Kavouras SA, Sidossis LS. Acute exercise-induced changes in basal VLDL-triglyceride kinetics leading to hypotriglyceridemia manifest more readily after resistance than endurance exercise. J Appl Physiol (1985) 2008; 105:1228-36. [PMID: 18669933 DOI: 10.1152/japplphysiol.90761.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resistance training is considered less effective than endurance training in lowering plasma triglyceride (TG) concentrations. Acutely, however, a single bout of strenuous exercise, whether endurance or resistance, increases the efficiency of very low-density lipoprotein (VLDL)-TG removal from the circulation and leads to hypotriglyceridemia. The comparative effects of these two types of exercise on VLDL-TG metabolism are not known. We therefore examined basal VLDL-TG kinetics by using stable isotope-labeled tracers in seven healthy, nonobese, untrained young men in the postabsorptive state, the morning after a single 90-min bout of either low-intensity endurance exercise (approximately 30% of peak oxygen consumption) or high-intensity resistance exercise (3 sets of 10 repetitions for 12 exercises at 80% of peak torque production), matched for total energy expenditure (approximately 400 kcal), or an equivalent period of rest on the preceding afternoon. Compared with rest, resistance exercise lowered fasting plasma VLDL-TG concentration by -28 +/- 10% (P = 0.034), increased VLDL-TG plasma clearance rate by 30 +/- 8% (P = 0.003), and shortened the mean residence time (MRT) of VLDL-TG in the circulation by -36 +/- 11 min (P = 0.016), whereas endurance exercise had no effect (all P > 0.05). Basal VLDL-TG plasma clearance rate was greater (P = 0.003) and VLDL-TG MRT was shorter (P = 0.012) the morning after resistance than endurance exercise. We conclude that, for the same total energy expenditure, resistance exercise is more potent than endurance exercise in eliciting changes in VLDL-TG metabolism that have been linked with hypotriglyceridemia, and it should thus be considered as an alternative to or in addition to endurance exercise for the control of plasma TG concentrations.
Collapse
Affiliation(s)
- Faidon Magkos
- Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave., 17671 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Sparks JD, Sparks CE. Overindulgence and metabolic syndrome: is FoxO1 a missing link? J Clin Invest 2008; 118:2012-5. [PMID: 18497882 DOI: 10.1172/jci35693] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Excessive production of triglyceride-rich VLDL, which can result from dietary overindulgence, underlies metabolic syndrome--a combination of disorders including high blood pressure, obesity, high triglyceride, and insulin resistance--and places individuals at increased risk of developing cardiovascular disease and type 2 diabetes. However, the link between VLDL overproduction and insulin resistance has remained unclear. VLDL assembly in the liver is catalyzed by microsomal triglyceride transfer protein (MTP). In this issue of the JCI, Kamagate et al. investigate the events controlling hepatic MTP expression and VLDL production and secretion (see the related article beginning on page 2347). They demonstrate that MTP is a target of the transcription factor FoxO1 and that excessive VLDL production associated with insulin resistance is caused by the inability of insulin to regulate FoxO1 transcriptional activation of MTP.
Collapse
Affiliation(s)
- Janet D Sparks
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|