101
|
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disorder of unknown etiology, possibly caused by a virus or virus-triggered immunopathology. The virus might reactivate after years of latency and lyse oligodendrocytes, as in progressive multifocal leukoencephalopathy, or initiate immunopathological demyelination, as in animals infected with Theiler's murine encephalomyelitis virus or coronaviruses. The argument for a viral cause of MS is supported by epidemiological analyses and studies of MS in identical twins, indicating that disease is acquired. However, the most important evidence is the presence of bands of oligoclonal IgG (OCBs) in MS brain and CSF that persist throughout the lifetime of the patient. OCBs are found almost exclusively in infectious CNS disorders, and antigenic targets of OCBs represent the agent that causes disease. Here, the authors review past attempts to identify an infectious agent in MS brain cells and discuss the promise of using recombinant antibodies generated from clonally expanded plasma cells in brain and CSF to identify disease-relevant antigens. They show how this strategy has been used successfully to analyze antigen specificity in subacute sclerosing panencephalitis, a chronic encephalitis caused by measles virus, and in neuromyelitis optica, a chronic autoimmune demyelinating disease produced by antibodies directed against the aquaporin-4 water channel.
Collapse
Affiliation(s)
- Gregory P Owens
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
102
|
Pikor N, Gommerman JL. B cells in MS: Why, where and how? Mult Scler Relat Disord 2012; 1:123-30. [PMID: 25877077 DOI: 10.1016/j.msard.2012.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS), in which auto-aggressive lymphocytes participate in inflammation that causes myelin destruction. Although T lymphocytes have been viewed as important culprits in the inflammatory cascade that results in MS, clinical trial results and animal model data support a role for B lymphocytes in MS pathology. In spite of these encouraging results, the mechanism behind why B cell depletion might be effective for MS treatment remains unknown. Herein we summarize the state of our knowledge for how B cells and their antibody products may influence the initiation and or propagation of MS, drawing from human studies and animal model data.
Collapse
Affiliation(s)
- Natalia Pikor
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Jennifer L Gommerman
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| |
Collapse
|
103
|
Katz Sand IB, Krieger S. Emerging strategies for the treatment of multiple sclerosis. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite extraordinary advances in the field of neuroimmunology, ideal treatment for patients with multiple sclerosis remains an unmet need. Existing treatments are only partially effective in preventing multiple sclerosis relapses, have a limited impact on the accrual of disability, have not been effective in progressive forms of the disease, and treatment remains preventive rather than restorative. This review provides an overview of emerging therapies and targets, and incorporates strategies for two different approaches to multiple sclerosis: prevention, through immune modulation; and repair, through neuroprotection and remyelination. Agents at all stages of development, from late-stage clinical trials of BG-12, teriflunomide, alemtuzumab, daclizumab and anti-CD20 agents, to novel approaches in preclinical testing, are discussed.
Collapse
Affiliation(s)
- Ilana B Katz Sand
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Mount Sinai School of Medicine, 5 East 98th Street, Box 1138, New York, NY, 10029, USA
| | - Stephen Krieger
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Mount Sinai School of Medicine, 5 East 98th Street, Box 1138, New York, NY, 10029, USA
| |
Collapse
|
104
|
CD8+ T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D Deficiency, and Steps to Autoimmunity: A Unifying Hypothesis. Autoimmune Dis 2012; 2012:189096. [PMID: 22312480 PMCID: PMC3270541 DOI: 10.1155/2012/189096] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/03/2011] [Accepted: 10/16/2011] [Indexed: 12/16/2022] Open
Abstract
CD8+ T-cell deficiency is a feature of many chronic autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, dermatomyositis, primary biliary cirrhosis, primary sclerosing cholangitis, ulcerative colitis, Crohn's disease, psoriasis, vitiligo, bullous pemphigoid, alopecia areata, idiopathic dilated cardiomyopathy, type 1 diabetes mellitus, Graves' disease, Hashimoto's thyroiditis, myasthenia gravis, IgA nephropathy, membranous nephropathy, and pernicious anaemia. It also occurs in healthy blood relatives of patients with autoimmune diseases, suggesting it is genetically determined. Here it is proposed that this CD8+ T-cell deficiency underlies the development of chronic autoimmune diseases by impairing CD8+ T-cell control of Epstein-Barr virus (EBV) infection, with the result that EBV-infected autoreactive B cells accumulate in the target organ where they produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells which would otherwise die in the target organ by activation-induced apoptosis. Autoimmunity is postulated to evolve in the following steps: (1) CD8+ T-cell deficiency, (2) primary EBV infection, (3) decreased CD8+ T-cell control of EBV, (4) increased EBV load and increased anti-EBV antibodies, (5) EBV infection in the target organ, (6) clonal expansion of EBV-infected autoreactive B cells in the target organ, (7) infiltration of autoreactive T cells into the target organ, and (8) development of ectopic lymphoid follicles in the target organ. It is also proposed that deprivation of sunlight and vitamin D at higher latitudes facilitates the development of autoimmune diseases by aggravating the CD8+ T-cell deficiency and thereby further impairing control of EBV. The hypothesis makes predictions which can be tested, including the prevention and successful treatment of chronic autoimmune diseases by controlling EBV infection.
Collapse
|
105
|
Meier UC, Giovannoni G, Tzartos JS, Khan G. Translational Mini-Review Series on B cell subsets in disease. B cells in multiple sclerosis: drivers of disease pathogenesis and Trojan horse for Epstein-Barr virus entry to the central nervous system? Clin Exp Immunol 2012; 167:1-6. [PMID: 22132878 DOI: 10.1111/j.1365-2249.2011.04446.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The recent success of therapies directed at B cells has highlighted their potential as central players in multiple sclerosis (MS) pathogenesis. Exciting new data showed that B cell depletion led to reduced clinical and magnetic resonance imaging (MRI) evidence of disease activity. However, the mechanisms of action remain unknown, but could involve autoantibody production, antigen presentation and/or cytokine production by B cells. Another exciting line of investigation in the field of MS comes from latent infection of memory B cells by Epstein-Barr virus (EBV). These cells are hijacked as 'Trojan horses' and 'smuggle' the virus into the central nervous system (CNS). Thus, these new anti B cell treatments will also be likely to have anti-viral effects. We briefly review recent findings in the field of MS pathogenesis, and highlight promising new targets for therapeutic intervention in MS.
Collapse
Affiliation(s)
- U-C Meier
- Neuroimmunology Group, Centre for Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, Queen Mary University London, Barts and The London School of Medicine and Dentistry, London, UK.
| | | | | | | |
Collapse
|
106
|
Quintana FJ, Farez MF, Izquierdo G, Lucas M, Cohen IR, Weiner HL. Antigen microarrays identify CNS-produced autoantibodies in RRMS. Neurology 2012; 78:532-9. [PMID: 22262743 DOI: 10.1212/wnl.0b013e318247f9f3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is characterized by the local production of antibodies in the CNS and the presence of oligoclonal bands in the CSF. Antigen arrays allow the study of antibody reactivity against a large number of antigens using small volumes of fluid with greater sensitivity than ELISA. We investigated whether there were unique autoantibodies in the CSF of patients with MS as measured by antigen arrays and whether these antibodies differed from those in serum. METHODS We used antigen arrays to analyze the reactivity of antibodies in matched serum and CSF samples of 20 patients with untreated relapsing-remitting MS (RRMS), 26 methylprednisolone-treated patients with RRMS, and 20 control patients with other noninflammatory neurologic conditions (ONDs) against 334 different antigens including heat shock proteins, lipids, and myelin antigens. RESULTS We found different antibody signatures in matched CSF and serum samples The targets of these antibodies included epitopes of the myelin antigens CNP, MBP, MOBP, MOG, and PLP (59%), HSP60 and HSP70 (38%), and the 68-kD neurofilament (3%). The antibody response in patients with MS was heterogeneous; CSF antibodies in individual patients reacted with different autoantigens. These autoantibodies were locally synthesized in the CNS and were of the immunoglobulin G class. Finally, we found that treatment with steroids decreased autoantibody reactivity, epitope spreading, and intrathecal autoantibody synthesis. CONCLUSIONS These studies provide a new avenue to investigate the local antibody response in the CNS, which may serve as a biomarker to monitor both disease progression and response to therapy in MS.
Collapse
Affiliation(s)
- F J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Acs P, Kalman B. Pathogenesis of multiple sclerosis: what can we learn from the cuprizone model. Methods Mol Biol 2012; 900:403-431. [PMID: 22933081 DOI: 10.1007/978-1-60761-720-4_20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Multiple sclerosis is an inflammatory demyelinating and neurodegenerative disorder of the central nervous system (CNS). The primary cause of the disease remains unknown, but an altered immune regulation with features of autoimmunity has generally been considered to play a critical role in the pathogenesis. Historically, lesion development has been attributed to activation of CD4 and CD8 T lymphocytes, B lymphocytes, and monocytes in the peripheral circulation and the migration of these cells through the blood-brain barrier to exert direct or indirect cytotoxic effects on myelin, oligodendrocytes and neuronal processes in the CNS. This broadly accepted concept was significantly influenced by the experimental autoimmune encephalitis (EAE) model, in which either immunization with myelin antigens or injection of a myelin antigen-specific T cell line into a recipient results in inflammatory demyelination in the CNS. More recent studies reveal that the loss of oligodendrocytes and neurons begins in the earliest stages of the disease and may not always be associated with blood-derived inflammatory cells. The pathology affects both the white and the gray matters and the clinical disability best correlates with the overall neurodegenerative process. These newer observations prompted several revisions of the classical concept of MS and facilitated a shift from using EAE to using other model systems. This chapter summarizes the classical and more contemporary concepts of MS, and provides methodologies for employing the cuprizone model for further explorations of the pathogenesis and treatment of the disease.
Collapse
Affiliation(s)
- Peter Acs
- Department of Neurology, SUNY Upstate Medical University, VA Medical Center, Syracuse, NY, USA
| | | |
Collapse
|
108
|
Boster A, Bartoszek MP, O'Connell C, Pitt D, Racke M. Efficacy, safety, and cost-effectiveness of glatiramer acetate in the treatment of relapsing-remitting multiple sclerosis. Ther Adv Neurol Disord 2011; 4:319-32. [PMID: 22010043 DOI: 10.1177/1756285611422108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The current Multiple Sclerosis (MS) therapeutic landscape is rapidly growing. Glatiramer acetate (GA) remains unique given its non-immunosuppressive mechanism of action as well as its superior long-term safety and sustained efficacy data. In this review, we discuss proposed mechanisms of action of GA. Then we review efficacy data for reduction of relapses and slowing disability as well as long term safety data. Finally we discuss possible future directions of this unique polymer in the treatment of MS.
Collapse
Affiliation(s)
- Aaron Boster
- Multiple Sclerosis Center, Department of Neurology The Ohio State University Medical Center 395 West 12th Avenue, 7th floor Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
109
|
Liu G, Muili KA, Agashe VV, Lyons JA. Unique B cell responses in B cell-dependent and B cell-independent EAE. Autoimmunity 2011; 45:199-209. [DOI: 10.3109/08916934.2011.616558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
110
|
Evidence for the role of B cells and immunoglobulins in the pathogenesis of multiple sclerosis. Neurol Res Int 2011; 2011:780712. [PMID: 21961063 PMCID: PMC3179868 DOI: 10.1155/2011/780712] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/27/2011] [Indexed: 01/06/2023] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains elusive. Recent reports advocate greater involvement of B cells and immunoglobulins in the initiation and propagation of MS lesions at different stages of their ontogeny. The key role of B cells and immunoglobulins in pathogenesis was initially identified by studies in which patients whose fulminant attacks of demyelination did not respond to steroids experienced remarkable functional improvement following plasma exchange. The positive response to Rituximab in Phase II clinical trials of relapsing-remitting MS confirms the role of B cells. The critical question is how B cells contribute to MS. In this paper, we discuss both the deleterious and the beneficial roles of B cells and immunoglobulins in MS lesions. We provide alternative hypotheses to explain both damaging and protective antibody responses.
Collapse
|
111
|
Brennan KM, Galban-Horcajo F, Rinaldi S, O'Leary CP, Goodyear CS, Kalna G, Arthur A, Elliot C, Barnett S, Linington C, Bennett JL, Owens GP, Willison HJ. Lipid arrays identify myelin-derived lipids and lipid complexes as prominent targets for oligoclonal band antibodies in multiple sclerosis. J Neuroimmunol 2011; 238:87-95. [PMID: 21872346 DOI: 10.1016/j.jneuroim.2011.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/12/2011] [Accepted: 08/01/2011] [Indexed: 01/21/2023]
Abstract
The presence of oligoclonal bands of IgG (OCB) in cerebrospinal fluid (CSF) is used to establish a diagnosis of multiple sclerosis (MS), but their specificity has remained an enigma since its first description over forty years ago. We now report that the use of lipid arrays identifies heteromeric complexes of myelin derived lipids as a prominent target for this intrathecal B cell response.
Collapse
Affiliation(s)
- Kathryn M Brennan
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Smolders J, Moen SM, Damoiseaux J, Huitinga I, Holmøy T. Vitamin D in the healthy and inflamed central nervous system: access and function. J Neurol Sci 2011; 311:37-43. [PMID: 21862439 DOI: 10.1016/j.jns.2011.07.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/25/2011] [Accepted: 07/18/2011] [Indexed: 11/16/2022]
Abstract
High exposure to vitamin D may protect against development and progression of multiple sclerosis (MS), possibly through the immunomodulatory properties of its biologically active metabolite 1,25-dihydroxyvitamin D. So far, most studies on the possible mechanisms for vitamin D involvement in MS have focused on immune modulation outside the central nervous system (CNS). However, vitamin D may also interfere with the pathophysiology of MS within the CNS. In this review, the potential presence and functions of vitamin D in the inflamed and healthy CNS are explored. We discuss that vitamin D, vitamin D binding protein (DBP), the vitamin D receptor (VDR) and enzymes needed for metabolism (CYP27B1) are present in the CNS. Both VDR and CYP27B1 are expressed on a variety of cells, including neurons, glial cells, and invading lymphocytes. Additionally, vitamin D has been postulated to play a modulating role in several key-processes in MS pathophysiology, including inflammation, demyelination, axonal damage, and remyelination. We conclude that a local role of vitamin D in the inflamed CNS is likely and potentially relevant to MS. Future studies should further characterize the impact of vitamin D on the local disease process of MS in the CNS.
Collapse
Affiliation(s)
- Joost Smolders
- Department of Internal Medicine, Division of Clinical and Experimental Immunology, and School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
113
|
Lee-Chang C, Top I, Zéphir H, Dubucquoi S, Trauet J, Dussart P, Prin L, Vermersch P. Primed status of transitional B cells associated with their presence in the cerebrospinal fluid in early phases of multiple sclerosis. Clin Immunol 2011; 139:12-20. [PMID: 21310664 DOI: 10.1016/j.clim.2010.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 12/23/2022]
Abstract
In the present study we showed that transitional B cells of patients with clinically isolated syndrome (CIS) and relapsing-remitting multiple sclerosis (RR-MS) are reduced in the peripheral blood (PB) (5.5- and 3.7-fold, respectively). In addition, these cells appeared to up-regulate different integrins (α4 and β1). These observations were associated with a primed cellular status, confirmed by an increased proportion of circulating CD80(+) transitional B cells. Interestingly, these results correlate with presence of transitional B cells in the CSF. Furthermore, these cells were absent in the CSF of individuals with other inflammatory neurological disease, and their levels in paired PB and CD80 expression were normal. Altogether, our data revealed that a differential primed status of transitional B cells is a characteristic feature of early phases of MS disease, and this functional status is associated with the ability of these cells to cross the blood-CSF barrier.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Université de Lille Nord de France, 1 place de Verdun, Lille Cedex, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disorder of unknown etiology, possibly caused by a virus or virus-triggered immunopathology. The virus might reactivate after years of latency and lyse oligodendrocytes, as in progressive multifocal leukoencephalopathy, or initiate immunopathological demyelination, as in animals infected with Theiler’s murine encephalomyelitis virus or coronaviruses. The argument for a viral cause of MS is supported by epidemiological analyses and studies of MS in identical twins, indicating that disease is acquired. However, the most important evidence is the presence of bands of oligoclonal IgG (OCBs) in MS brain and CSF that persist throughout the lifetime of the patient. OCBs are found almost exclusively in infectious CNS disorders, and antigenic targets of OCBs represent the agent that causes disease. Here, the authors review past attempts to identify an infectious agent in MS brain cells and discuss the promise of using recombinant antibodies generated from clonally expanded plasma cells in brain and CSF to identify disease-relevant antigens. They show how this strategy has been used successfully to analyze antigen specificity in subacute sclerosing panencephalitis, a chronic encephalitis caused by measles virus, and in neuromyelitis optica, a chronic autoimmune demyelinating disease produced by antibodies directed against the aquaporin-4 water channel.
Collapse
|
115
|
Obermeier B, Lovato L, Mentele R, Brück W, Forne I, Imhof A, Lottspeich F, Turk KW, Willis SN, Wekerle H, Hohlfeld R, Hafler DA, O'Connor KC, Dornmair K. Related B cell clones that populate the CSF and CNS of patients with multiple sclerosis produce CSF immunoglobulin. J Neuroimmunol 2011; 233:245-8. [PMID: 21353315 PMCID: PMC3090654 DOI: 10.1016/j.jneuroim.2011.01.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/19/2011] [Accepted: 01/26/2011] [Indexed: 02/01/2023]
Abstract
We investigated the overlap shared between the immunoglobulin (Ig) proteome of the cerebrospinal fluid (CSF) and the B cell Ig-transcriptome of CSF and the central nervous system (CNS) tissue of three patients with multiple sclerosis. We determined the IgG-proteomes of CSF by mass spectrometry, and compared them to the IgG-transcriptomes from CSF and brain lesions, which were analyzed by cDNA cloning. Characteristic peptides that were identified in the CSF-proteome could also be detected in the transcriptomes of both, brain lesions and CSF, providing evidence for a strong overlap of the IgG repertoires in brain lesions and in the CSF.
Collapse
Affiliation(s)
- Birgit Obermeier
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Comabella M, Khoury SJ. Immunopathogenesis of multiple sclerosis. Clin Immunol 2011; 142:2-8. [PMID: 21458377 DOI: 10.1016/j.clim.2011.03.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 01/10/2023]
Abstract
Multiple sclerosis (MS) is a chronic disorder of the central nervous system characterized by autoimmune inflammation, demyelination, and axonal damage. MS etiology remains unknown, but disease phenotype is most likely the result of an interaction between complex genetic factors and environmental influences. The better understanding of the mechanisms involved in the immunopathogenesis of MS has led to the development of promising new therapeutic strategies for the disease. This review will discuss the key pathogenic steps implicated in the disease and the role of the main cellular populations that drive the immune responses in MS.
Collapse
Affiliation(s)
- Manuel Comabella
- Centre d'Esclerosi Múltiple de Catalunya, CEM-Cat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain.
| | | |
Collapse
|
117
|
The role of antibodies in multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2011; 1812:239-45. [DOI: 10.1016/j.bbadis.2010.06.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 06/11/2010] [Accepted: 06/16/2010] [Indexed: 11/23/2022]
|
118
|
Lovato L, Willis SN, Rodig SJ, Caron T, Almendinger SE, Howell OW, Reynolds R, O’Connor KC, Hafler DA. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain 2011; 134:534-41. [PMID: 21216828 PMCID: PMC3030766 DOI: 10.1093/brain/awq350] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/06/2010] [Accepted: 10/18/2010] [Indexed: 01/13/2023] Open
Abstract
In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis.
Collapse
Affiliation(s)
- Laura Lovato
- 1 Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- 2 Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Simon N. Willis
- 1 Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- 2 Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Scott J. Rodig
- 2 Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Caron
- 2 Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Owain W. Howell
- 3 Wolfson Neuroscience Laboratories, Imperial College London, Hammersmith Hospital Campus, London, SW7 2AZ, UK
| | - Richard Reynolds
- 3 Wolfson Neuroscience Laboratories, Imperial College London, Hammersmith Hospital Campus, London, SW7 2AZ, UK
| | - Kevin C. O’Connor
- 1 Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- 2 Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David A. Hafler
- 1 Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- 2 Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
119
|
Ray A, Mann MK, Basu S, Dittel BN. A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol 2011; 230:1-9. [PMID: 21145597 PMCID: PMC3032987 DOI: 10.1016/j.jneuroim.2010.10.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is considered to be a T cell-mediated autoimmune disease that results in the presence of inflammatory lesions/plaques associated with mononuclear cell infiltrates, demyelination and axonal damage within the central nervous system (CNS). To date, FDA approved therapies in MS are thought to largely function by modulation of the immune response. Since autoimmune responses require many arms of the immune system, the direct cellular mechanisms of action of MS therapeutics are not definitively known. The mouse model of MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in deciphering the mechanism of action of MS drugs. In addition, EAE has been widely used to study the contribution of individual components of the immune system in CNS autoimmunity. In this regard, the role of B cells in EAE has been studied in mice deficient in B cells due to genetic ablation and following depletion with a B cell-targeted monoclonal antibody (mAb) (anti-CD20). Both strategies have indicated that B cells regulate the extent of EAE clinical disease and in their absence disease is exacerbated. Thus a new population of "regulatory B cells" has emerged. One reoccurring component of regulatory B cell function is the production of IL-10, a pleiotropic cytokine with potent anti-inflammatory properties. B cell depletion has also indicated that B cells, in particular antibody production, play a pathogenic role in EAE. B cell depletion in MS using a mAb to CD20 (rituximab) has shown promising results. In this review, we will discuss the current thinking on the role of B cells in MS drawing from knowledge gained in EAE studies and clinical trials using therapeutics that target B cells.
Collapse
Affiliation(s)
- Avijit Ray
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI
| | - Monica K. Mann
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI
| | - Sreemanti Basu
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - Bonnie N. Dittel
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
120
|
Berer K, Wekerle H, Krishnamoorthy G. B cells in spontaneous autoimmune diseases of the central nervous system. Mol Immunol 2010; 48:1332-7. [PMID: 21146219 DOI: 10.1016/j.molimm.2010.10.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 10/18/2010] [Accepted: 10/26/2010] [Indexed: 12/17/2022]
Abstract
B cells and their secreted products participate in the intricate network of pathogenic and regulatory immune responses. In human autoimmune diseases like rheumatoid arthritis, systemic lupus erythematosus and type 1 diabetes, a role for B cells and antibodies is well established. However, in multiple sclerosis (MS), despite the presence of autoantibodies, B cells were less considered as a major participant of autoimmune processes, until recently. Several lines of evidence now indicate a more active role for B cells in disease pathogenesis. In this review, we discuss the diverse roles of B cells in autoimmune diseases with particular focus on multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE) as well as the recently generated spontaneous EAE mouse models.
Collapse
Affiliation(s)
- Kerstin Berer
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
121
|
Scheikl T, Pignolet B, Mars LT, Liblau RS. Transgenic mouse models of multiple sclerosis. Cell Mol Life Sci 2010; 67:4011-34. [PMID: 20714779 PMCID: PMC11115830 DOI: 10.1007/s00018-010-0481-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/08/2010] [Accepted: 07/27/2010] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease affecting the central nervous system (CNS) and a frequent cause of neurological disability in young adults. Multifocal inflammatory lesions in the CNS white matter, demyelination, oligodendrocyte loss, axonal damage, as well as astrogliosis represent the histological hallmarks of the disease. These pathological features of MS can be mimicked, at least in part, using animal models. This review discusses the current concepts of the immune effector mechanisms driving CNS demyelination in murine models. It highlights the fundamental contribution of transgenesis in identifying the mediators and mechanisms involved in the pathophysiology of MS models.
Collapse
Affiliation(s)
- Tanja Scheikl
- Institut National de la Santé et de la Recherche Médicale, Unité 563, Toulouse, France.
| | | | | | | |
Collapse
|
122
|
Gatto D, Brink R. The germinal center reaction. J Allergy Clin Immunol 2010; 126:898-907; quiz 908-9. [DOI: 10.1016/j.jaci.2010.09.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
|
123
|
Meinl E, Derfuss T, Krumbholz M, Pröbstel AK, Hohlfeld R. Humoral autoimmunity in multiple sclerosis. J Neurol Sci 2010; 306:180-2. [PMID: 20817206 DOI: 10.1016/j.jns.2010.08.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/05/2010] [Accepted: 08/09/2010] [Indexed: 11/15/2022]
Abstract
The important role of B cells and autoantibodies in the pathogenesis of MS is increasingly appreciated. The recruitment and maintenance of B cells and plasma cells in MS lesions is presumably based on local production of lymphoid chemokines and B cell activation factor of the TNF family (BAFF). The failure of the clinical trial with Atacicept targeting BAFF and its relative APRIL was a great surprise and cannot readily be explained. A role for BAFF in CNS physiology, e.g. via targeting of the Nogo-66 receptor might have to be considered. The identification of patient subgroups based on autoantibodies is a future challenge. Currently patients with neuromyelitis optica (NMO) can be identified by antibodies to aquaporin 4 and about a third of children with acquired demyelinating diseases have antibodies against conformationally correct MOG, while such antibodies are hardly found in adult MS patients. Searching for new targets of the autoimmune response in adult MS patients, we have identified two axo-glial proteins focused around the node of Ranvier, namely neurofascin and contactin-2/TAG-1. Testing the functional relevance of such an autoimmune response in animal models revealed that antibodies to neurofascin may induce axonal injury and that T cells specific for contactin-2/TAG-1 mediate preferentially gray matter injury.
Collapse
Affiliation(s)
- Edgar Meinl
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | | | |
Collapse
|
124
|
Zhang AH, Li X, Onabajo OO, Su Y, Skupsky J, Thomas JW, Scott DW. B-cell delivered gene therapy for tolerance induction: role of autoantigen-specific B cells. J Autoimmun 2010; 35:107-13. [PMID: 20579844 PMCID: PMC2926203 DOI: 10.1016/j.jaut.2010.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/30/2010] [Accepted: 05/19/2010] [Indexed: 11/17/2022]
Abstract
Antigen-specific tolerance induction using autologous B-cell gene therapy is a potential treatment to eliminate undesirable immune responses. For example, we have shown that experimental autoimmune encephalomyelitis (EAE) and type 1 diabetes in NOD mice can be ameliorated using antigen-Ig fusion protein transduced B cells. However, it is well established that auto-reactive antigen-specific B cells are activated in many autoimmune diseases and can contribute to pathogenesis. While syngeneic B cells from immunized or autoimmune mice can serve as tolerogenic antigen-presenting cells (APC), this observation begs the question of whether the antigen-specific B cells per se can be transduced as tolerogenic APC. To test this, we employed two model systems employing B cell receptor (BCR) transgenic or wild type (wt) mice as B-cell donors. While adoptively transferred MOG-Ig transduced wt C57Bl/6 B cells were highly tolerogenic and ameliorated EAE, MOG-Ig transduced anti-MOG B cells from BCR transgenic mice were not. This phenomenon was reproduced in the NOD diabetes model in which pro-insulin-Ig transduced polyclonal wt NOD B cells were protective, whereas similarly transduced anti-insulin BCR B cells were not. Since the frequency of antigen-specific B cells in an immunized animal is quite low, we wished to determine the threshold numbers of BCR transgenic B cells that could be present in an effective transduced population. Therefore, we "spiked" polyclonal wt C57Bl/6 B cells with different numbers of anti-MOG BCR transgenic B cells. In the EAE model, we found protection when BCR B cells were present at 1%, but they prevented tolerance induction at 10%. Antigen-specific B cells expressed normal levels of co-stimulatory molecules and were tolerogenic when transduced with an irrelevant antigen (OVA). Thus, the presence of a BCR specific for the target autoantigen may interfere with the tolerogenic process to that antigen, but BCR-specific B cells are not intrinsically defective as tolerogenic APC. Taken together, these data suggest that antigen-specific tolerance induction can be achieved in the presence of a limited number of antigen-specific B cells, but higher numbers of pathogenic B cells may mask this induction. This observation should guide future development of therapies using autologous B cells to treat patients with autoimmune diseases.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Autoantigens
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Count
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Genetic Therapy
- Immune Tolerance
- Immunoglobulins/genetics
- Immunoglobulins/immunology
- Immunoglobulins/metabolism
- Insulin/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Receptors, Antigen, B-Cell/genetics
Collapse
Affiliation(s)
- Ai-Hong Zhang
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xin Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Olusegun O. Onabajo
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yan Su
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jonathan Skupsky
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - James W. Thomas
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David W. Scott
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Departments of Surgery and of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
125
|
Jones JL, Coles AJ. New treatment strategies in multiple sclerosis. Exp Neurol 2010; 225:34-9. [PMID: 20547155 DOI: 10.1016/j.expneurol.2010.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/27/2010] [Accepted: 06/07/2010] [Indexed: 02/02/2023]
Abstract
Multiple sclerosis is the most common, non-traumatic, disabling neurological disease of young adults, affecting an estimated two million people worldwide. At onset multiple sclerosis can be categorised clinically into relapsing remitting MS (RRMS - 85-90% of patients) or primary progressive MS (PPMS). Relapses typically present sub-acutely over hours to days with neurological symptoms persisting for days to weeks before they gradually dissipate. At first full recovery is the norm, later patients accumulate deficits and ultimately most convert to a secondary progressive phase (SPMS), characterised by deficits that increase in the absence of further relapses. The clinical picture reflects the complex interplay of focal inflammation, demyelination and axonal degeneration occurring within the central nervous system. Since the introduction of a genuine disease-modifying drug, interferon-beta1b in 1993, there has been a growing interest from academia and pharmaceutical companies alike in multiple sclerosis therapy. In part this effort has focused on investigating the "window of therapeutic opportunity" within the natural history of the disease: it is becoming increasingly clear that immunotherapies are not useful in the secondary phase of the disease but may offer long-term benefit if given early in the relapsing-remitting phase. In part, attention is being paid to the details of dosing and administration of the various licensed therapies, but there is also a significant research effort to explore new ways to treat the disease. In this review, we first sketch the landscape of novel therapies in multiple sclerosis and then discuss in detail approaches which are likely to emerge over the next few years.
Collapse
Affiliation(s)
- Joanne L Jones
- Dept. of Clinical Neurosciences, Box 165 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | | |
Collapse
|
126
|
Zuckerman NS, Hazanov H, Barak M, Edelman H, Hess S, Shcolnik H, Dunn-Walters D, Mehr R. Somatic hypermutation and antigen-driven selection of B cells are altered in autoimmune diseases. J Autoimmun 2010; 35:325-35. [PMID: 20727711 DOI: 10.1016/j.jaut.2010.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/20/2010] [Accepted: 07/23/2010] [Indexed: 11/19/2022]
Abstract
B cells have been found to play a critical role in the pathogenesis of several autoimmune (AI) diseases. A common feature amongst many AI diseases is the formation of ectopic germinal centers (GC) within the afflicted tissue or organ, in which activated B cells expand and undergo somatic hypermutation (SHM) and antigen-driven selection on their immunoglobulin variable region (IgV) genes. However, it is not yet clear whether these processes occurring in ectopic GCs are identical to those in normal GCs. The analysis of IgV mutations has aided in revealing many aspects concerning B cell expansion, mutation and selection in GC reactions. We have applied several mutation analysis methods, based on lineage tree construction, to a large set of data, containing IgV productive and non-productive heavy and light chain sequences from several different tissues, to examine three of the most profoundly studied AI diseases - Rheumatoid Arthritis (RA), Multiple Sclerosis (MS) and Sjögren's Syndrome (SS). We have found that RA and MS sequences exhibited normal mutation spectra and targeting motifs, but a stricter selection compared to normal controls, which was more apparent in RA. SS sequence analysis results deviated from normal controls in both mutation spectra and indications of selection, also showing differences between light and heavy chain IgV and between different tissues. The differences revealed between AI diseases and normal control mutation patterns may result from the different microenvironmental influences to which ectopic GCs are exposed, relative to those in normal secondary lymphoid tissues.
Collapse
Affiliation(s)
- Neta S Zuckerman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
|
128
|
Kölln J, Zhang Y, Thai G, Demetriou M, Hermanowicz N, Duquette P, van den Noort S, Qin Y. Inhibition of glyceraldehyde-3-phosphate dehydrogenase activity by antibodies present in the cerebrospinal fluid of patients with multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2010; 185:1968-75. [PMID: 20610654 DOI: 10.4049/jimmunol.0904083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that B cells and Abs reactive with GAPDH and antitriosephosphate isomerase (TPI) are present in lesions and cerebrospinal fluid (CSF) in multiple sclerosis (MS). In the current study, we studied the effect of anti-GAPDH and anti-TPI CSF IgG on the glycolytic enzyme activity of GAPDH and TPI after exposure to intrathecal IgG from 10 patients with MS and 34 patients with other neurologic diseases. The degree of inhibition of GAPDH activity by CSF anti-GAPDH IgG in the seven MS samples tested varied from 13 to 98%, which seemed to correlate with the percentage of anti-GAPDH IgG in the CSF IgG (1-45%). Inhibition of GAPDH activity (18 and 23%) by CSF IgG was seen in two of the 34 patients with other neurologic diseases, corresponding to the low percentage of CSF anti-GAPDH IgG (1 and 8%). In addition, depletion of anti-GAPDH IgG from CSF IgG, using immobilized GAPDH, removed the inhibitory effect of the IgG on GAPDH. No inhibition of GAPDH activity was seen with CSF samples not containing anti-GAPDH IgG. No inhibition of TPI activity was seen with any purified CSF IgG sample. These findings demonstrate an increased percentage of anti-GAPDH Abs in the CSF of patients with MS that can inhibit GAPDH glycolytic enzyme activity and may contribute to neuroaxonal degeneration.
Collapse
Affiliation(s)
- Johanna Kölln
- Department of Neurology, University of California at Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Serafini B, Severa M, Columba-Cabezas S, Rosicarelli B, Veroni C, Chiappetta G, Magliozzi R, Reynolds R, Coccia EM, Aloisi F. Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation. J Neuropathol Exp Neurol 2010; 69:677-93. [PMID: 20535037 DOI: 10.1097/nen.0b013e3181e332ec] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A cardinal feature of multiple sclerosis (MS) is the persistent intrathecal synthesis of antibodies. Our previous finding that a large fraction of B cells infiltrating the MS brain are infected with Epstein-Barr virus (EBV) raises the possibility that this virus, because of its ability to establish a latent infection in B cells and interfere with their differentiation, contributes to B-cell dysregulation in MS. The aim of this study was to gain further insight into EBV latency programs and their relationship to B-cell activation in the MS brain. Immunohistochemical analysis of postmortem MS brain samples harboring large EBV deposits revealed that most B cells in white matter lesions, meninges, and ectopic B-cell follicles are CD27+ antigen-experienced cells and coexpress latent membrane protein 1 and latent membrane protein 2A, 2 EBV-encoded proteins that provide survival and maturation signals to B cells. By combining laser-capture microdissection with preamplification reverse transcription-polymerase chain reaction techniques, EBV latency transcripts (latent membrane protein 2A, EBV nuclear antigen 1) were detected in all MS brain samples analyzed. We also found that B cell-activating factor of the tumor necrosis factor family is expressed in EBV-infected B cells in acute MS lesions and ectopic B-cell follicles. These findings support a role for EBV infection in B-cell activation in the MS brain and suggest that B cell-activating factor of the tumor necrosis factor family produced by EBV-infected B cells may contribute to this process resulting in viral persistence and, possibly, disruption of B-cell tolerance.
Collapse
Affiliation(s)
- Barbara Serafini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Minagar A, Alexander JS, Sahraian MA, Zivadinov R. Alemtuzumab and multiple sclerosis: therapeutic application. Expert Opin Biol Ther 2010; 10:421-9. [PMID: 20095876 DOI: 10.1517/14712591003586806] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IMPORTANCE OF THE FIELD The cause and cure for multiple sclerosis (MS) remain unknown. Immunomodulatory agents are only partially effective and many patients do not tolerate the side effects or fail them. Immunosuppressive agents act non-specifically and are associated with serious complications. An emerging group of biologic agents with great potential for treatment of immune-mediated disorders such as MS are monoclonal antibodies. A review of alemtuzumab in MS is presented. AREAS COVERED IN THIS REVIEW Mechanisms of action of alemtuzumab and the results of Phase II clinical trials in MS. WHAT THE READER WILL GAIN Alemtuzumab is a humanized mAb, which targets the surface molecule CD52 on all T cell populations and other cellular components of the immune system such as thymocytes, B cells, and monocytes. Alemtuzumab, which is administered intravenously, depletes T as well as B lymphocyte populations for extended periods. Adverse effects in MS patients such as thyroid disorders and idiopathic thrombocytopenic purpura are discussed. TAKE HOME MESSAGE Alemtuzumab may hold great promise for treatment of MS patients and serve as an option for patients refractory to immunomodulatory therapies. Due to its unique mechanism of action and profound effect on MS disease activity it enhances our knowledge about pathogenic mechanisms of MS.
Collapse
Affiliation(s)
- Alireza Minagar
- Louisiana State University Health Sciences Center, Department of Neurology, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
131
|
Korn T, Mitsdoerffer M, Kuchroo VK. Immunological basis for the development of tissue inflammation and organ-specific autoimmunity in animal models of multiple sclerosis. Results Probl Cell Differ 2010; 51:43-74. [PMID: 19513635 DOI: 10.1007/400_2008_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model for multiple sclerosis (MS) that has shaped our understanding of autoimmune tissue inflammation in the central nervous system (CNS). Major therapeutic approaches to MS have been first validated in EAE. Nevertheless, EAE in all its modifications is not able to recapitulate the full range of clinical and histopathogenic aspects of MS. Furthermore, autoimmune reactions in EAE-prone rodent strains and MS patients may differ in terms of the relative involvement of various subsets of immune cells. However, the role of specific molecules that play a role in skewing the immune response towards pathogenic autoreactivity is very similar in mice and humans. Thus, in this chapter, we will focus on the identification of a novel subset of inflammatory T cells, called Th17 cells, in EAE and their interplay with other immune cells including protective regulatory T cells (T-regs). It is likely that the discovery of Th17 cells and their relationship with T-regs will change our understanding of organ-specific autoimmune diseases in the years to come.
Collapse
Affiliation(s)
- Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany.
| | | | | |
Collapse
|
132
|
Dornmair K, Meinl E, Hohlfeld R. Novel approaches for identifying target antigens of autoreactive human B and T cells. Semin Immunopathol 2009; 31:467-77. [PMID: 19763575 PMCID: PMC2845891 DOI: 10.1007/s00281-009-0179-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 08/13/2009] [Indexed: 11/09/2022]
Abstract
Antigen-specific immune responses in multiple sclerosis have been studied for decades, but the target antigens of the putatively autoaggressive B and T cells still remain elusive. Here, we summarize recent strategies which are based on the direct analysis of biopsy or autopsy specimens from patients. Since this material is extremely scarce, the experimental methods need to be exceptionally sensitive. We describe technologies to distinguish (auto) aggressive T cells from irrelevant bystander lymphocytes by analyzing clonal expansions in relation to the morphological location of the cells in the tissue lesions. We then discuss approaches to clone matching α- and β-chains of the antigen-specific T cell receptor (TCR) molecules from single T cells. This is necessary because usually, several clones are expanded and are diluted by many irrelevant cells. The matching TCR chains from individual T cells can be resurrected in hybridoma cells which may then be used for antigen searches. We discuss strategies to identify antigens of γδ- and αβ-TCR molecules, such as biochemical methods, candidate antigens, human leukocyte antigen requirements, synthetic peptide, and cDNA libraries. These strategies are tailored to characterize the antigens of the membrane-anchored, low-affinity TCR molecules. The strategies to identify (auto) reactive B cells or immunoglobulin (Ig) molecules are fundamentally different, because Ig molecules are water-soluble and have high affinities. We further discuss proteome-based approaches, techniques that analyze Ig-chains from single B cells, and a repertoire-based method that compares Ig-proteomes and Ig-transcriptomes. The first method detects Ig antigens directly, whereas the latter two methods allow reconstruction of Ig molecules, which can be used for antigen searches.
Collapse
Affiliation(s)
- Klaus Dornmair
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | | | | |
Collapse
|
133
|
Cameron EM, Spencer S, Lazarini J, Harp CT, Ward ES, Burgoon M, Owens GP, Racke MK, Bennett JL, Frohman EM, Monson NL. Potential of a unique antibody gene signature to predict conversion to clinically definite multiple sclerosis. J Neuroimmunol 2009; 213:123-30. [PMID: 19631394 PMCID: PMC2785005 DOI: 10.1016/j.jneuroim.2009.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/19/2009] [Accepted: 05/29/2009] [Indexed: 01/04/2023]
Abstract
We identified a unique antibody gene mutation pattern (i.e. "signature") in cerebrospinal fluid (CSF) B cells from multiple sclerosis (MS) patients not present in control populations. Prevalence of the signature in CSF B cells of patients at risk to develop MS predicted conversion to MS with 91% accuracy in a small cohort of clinically isolated syndrome patients. If confirmed, signature prevalence would be a novel genetic diagnostic tool candidate for patients with early demyelinating disease of the central nervous system.
Collapse
Affiliation(s)
- Elizabeth M Cameron
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX 75154, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
McDonald V, Leandro M. Rituximab in non-haematological disorders of adults and its mode of action. Br J Haematol 2009; 146:233-46. [DOI: 10.1111/j.1365-2141.2009.07718.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
135
|
Owens GP, Bennett JL, Lassmann H, O'Connor KC, Ritchie AM, Shearer A, Lam C, Yu X, Birlea M, DuPree C, Williamson RA, Hafler DA, Burgoon MP, Gilden D. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid. Ann Neurol 2009; 65:639-49. [PMID: 19557869 PMCID: PMC2843543 DOI: 10.1002/ana.21641] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Intrathecal IgG synthesis, persistence of bands of oligoclonal IgG, and memory B-cell clonal expansion are well-characterized features of the humoral response in multiple sclerosis (MS). Nevertheless, the target antigen of this response remains enigmatic. METHODS We produced 53 different human IgG1 monoclonal recombinant antibodies (rAbs) by coexpressing paired heavy- and light-chain variable region sequences of 51 plasma cell clones and 2 B-lymphocyte clones from MS cerebrospinal fluid in human tissue culture cells. Chimeric control rAbs were generated from anti-myelin hybridomas in which murine variable region sequences were fused to human constant region sequences. Purified rAbs were exhaustively assayed for reactivity against myelin basic protein, proteolipid protein, and myelin oligodendrocyte glycoprotein by immunostaining of transfected cells expressing individual myelin proteins, by protein immunoblotting, and by immunostaining of human brain tissue sections. RESULTS Whereas humanized control rAbs derived from anti-myelin hybridomas and anti-myelin monoclonal antibodies readily detected myelin antigens in multiple immunoassays, none of the rAbs derived from MS cerebrospinal fluid displayed immunoreactivity to the three myelin antigens tested. Immunocytochemical analysis of tissue sections from MS and control brain demonstrated only weak staining with a few rAbs against nuclei or cytoplasmic granules in neurons, glia, and inflammatory cells. INTERPRETATION The oligoclonal B-cell response in MS cerebrospinal fluid is not targeted to the well-characterized myelin antigens myelin basic protein, proteolipid protein, or myelin oligodendrocyte glycoprotein.
Collapse
Affiliation(s)
- Gregory P Owens
- Department of Neurology, University of Colorado Denver School of Medicine, Denver, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Skorstad G, Vandvik B, Vartdal F, Holmøy T. MS and clinically isolated syndromes: shared specificity but diverging clonal patterns of virus-specific IgG antibodies produced in vivo and by CSF B cells in vitro. Eur J Neurol 2009; 16:1124-9. [PMID: 19469834 DOI: 10.1111/j.1468-1331.2009.02657.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Intrathecal synthesis of oligoclonal IgG antibodies against measles virus (MeV), varicella zoster virus (VZV) and herpes simplex virus type-1 (HSV-1) is a characteristic feature multiple sclerosis (MS). METHODS We have used isoelectric focusing-immunoblot to define the clonal patterns of IgG and of IgG antibodies to MeV, VZV and HSV-1 in supernatants of in vitro cultures of peripheral blood lymphocytes (PBL) and cerebrospinal fluid (CSF) cells and in sera and CSF from three patients with MS and three patients with clinically isolated syndromes (CIS) suspective of demyelinating disease. RESULTS In vitro synthesis of IgG by PBL was not detected in any patient. In contrast, in vitro synthesis by CSF cells of oligoclonal IgG and oligoclonal IgG antibodies to one or two of the three viruses tested was observed in all six patients. The clonal patterns of the in vitro synthesized IgG and virus specific IgG differed to varying extent from those synthesized intrathecally in vivo. However, in each patient, the in vitro and in vivo intrathecally produced antibodies displayed specificity for the same viruses. The addition of B cell activating factor (BAFF) had no effect on the amounts or clonal patterns of either total IgG or virus-specific IgG produced by CSF cells in vitro. CONCLUSION Virus specific B cells capable of spontaneous IgG synthesis are clonally expanded in the CSF of patients with MS. The B-cell repertoire in CSF samples is only partially representative of the intrathecal B-cell repertoire.
Collapse
Affiliation(s)
- G Skorstad
- Department of Neurology, Oslo University Hospital Ullevål, Oslo, Norway
| | | | | | | |
Collapse
|
137
|
Lünemann JD, Münz C. EBV in MS: guilty by association? Trends Immunol 2009; 30:243-8. [PMID: 19428300 DOI: 10.1016/j.it.2009.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
Epstein-Barr Virus (EBV) is one of the most successful human viruses, infecting more than 90% of the adult population worldwide and persisting for the lifetime of the host. Individuals with a history of symptomatic primary EBV infection, called infectious mononucleosis, carry a moderately higher risk of developing multiple sclerosis (MS). In addition, EBV-specific immune responses, which crucially regulate the host-virus balance in healthy virus carriers, are altered in patients with MS. Although no data so far unequivocally support a direct etiologic role of the virus, recent studies allow for the development of testable hypotheses as to how EBV infection potentially promotes autoimmunity and central nervous system (CNS) tissue damage in MS.
Collapse
Affiliation(s)
- Jan D Lünemann
- Institute of Experimental Immunology, University Hospital Zürich, Switzerland
| | | |
Collapse
|
138
|
Borazanci AP, Harris MK, Schwendimann RN, Gonzalez-Toledo E, Maghzi AH, Etemadifar M, Alekseeva N, Pinkston J, Kelley RE, Minagar A. Multiple sclerosis: clinical features, pathophysiology, neuroimaging and future therapies. FUTURE NEUROLOGY 2009. [DOI: 10.2217/14796708.4.2.229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is a common immune-mediated progressive neurodegenerative disease of the CNS that typically manifests with periods of disease activity followed by intervals of remission. The etiology of MS remains unknown; however, existing evidence indicates that MS is a ‘whole-brain disease’ that is driven by a potent immune response against CNS antigen(s), particularly myelin peptide antigens. The immunopathogenesis of MS includes both the cell- and humorally-mediated arms of the immune system. Genetic and environmental factors play important roles in the development of MS. Application of various neuroimaging techniques to the world of MS have expanded our knowledge concerning its pathogenesis and assist us in the more accurate diagnosis of MS versus its imitators. Current treatments target acute attacks and aim to reduce future clinical relapses. A summary of the potential future therapies for MS is presented.
Collapse
Affiliation(s)
- Aimee Pasqua Borazanci
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Meghan K Harris
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Robert N Schwendimann
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Eduardo Gonzalez-Toledo
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Amir H Maghzi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- School of Medicine, Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nadejda Alekseeva
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - James Pinkston
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Roger E Kelley
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
139
|
Menge T, Weber MS, Hemmer B, Kieseier BC, von Büdingen HC, Warnke C, Zamvil SS, Boster A, Khan O, Hartung HP, Stüve O. Disease-modifying agents for multiple sclerosis: recent advances and future prospects. Drugs 2009; 68:2445-68. [PMID: 19016573 DOI: 10.2165/0003495-200868170-00004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the CNS. Currently, six medications are approved for immunmodulatory and immunosuppressive treatment of the relapsing disease course and secondary-progressive MS. In the first part of this review, the pathogenesis of MS and its current treatment options are discussed. During the last decade, our understanding of autoimmunity and the pathogenesis of MS has advanced substantially. This has led to the development of a number of compounds, several of which are currently undergoing clinical testing in phase II and III studies. While current treatment options are only available for parenteral administration, several oral compounds are now in clinical trials, including the immunosuppressive agents cladribine and laquinimod. A novel mode of action has been described for fingolimod, another orally available agent, which inhibits egress of activated lymphocytes from draining lymph nodes. Dimethylfumarate exhibits immunomodulatory as well as immunosuppressive activity when given orally. All of these compounds have successfully shown efficacy, at least in regards to the surrogate marker contrast-enhancing lesions on magnetic resonance imaging. Another class of agents that is highlighted in this review are biological agents, namely monoclonal antibodies (mAb) and recombinant fusion proteins. The humanized mAb daclizumab inhibits T-lymphocyte activation via blockade of the interleukin-2 receptor. Alemtuzumab and rituximab deplete leukocytes and B cells, respectively; the fusion protein atacicept inhibits specific B-cell growth factors resulting in reductions in B-cells and plasma cells. These compounds are currently being tested in phase II and III studies in patients with relapsing MS. The concept of neuro-protection and -regeneration has not advanced to a level where specific compounds have entered clinical testing. However, several agents approved for conditions other than MS are highlighted. Finally, with the advent of these highly potent novel therapies, rare, but potentially serious adverse effects have been noted, namely infections and malignancies. These are critically reviewed and put into perspective.
Collapse
Affiliation(s)
- Til Menge
- Department of Neurology, Heinrich Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Hestvik ALK, Skorstad G, Vartdal F, Holmøy T. Idiotope-specific CD4(+) T cells induce apoptosis of human oligodendrocytes. J Autoimmun 2009; 32:125-32. [PMID: 19250800 DOI: 10.1016/j.jaut.2009.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/09/2009] [Accepted: 01/26/2009] [Indexed: 12/19/2022]
Abstract
CD4(+) T cells specific for immunologic non-self determinants on self-IgG, idiotopes (Id), can be raised from cerebrospinal fluid (CSF) and blood of patients with multiple sclerosis (MS). To test if Id-specific CD4(+) T cells have the potential to destroy oligodendrocytes (ODCs), we analyzed their ability to induce apoptosis of human ODC cell lines. Id-specific CD4(+) T cells stimulated with either Id-bearing B cells, Id-peptide presented by other antigen presenting cells, or by anti-CD3/anti-CD28 in the absence of accessory cells induced DNA fragmentation and killed ODCs. Killing required contact between the ODCs and the T cells, it did not depend on the cytokine profile of the T cells, it was independent of other cell types, and was inhibited by a general caspase inhibitor and an anti-Fas antibody. Activated CD4(+) T cells specific for glutamic acid decarboxylase 65 also induced apoptosis, showing that killing does not depend on cognate interaction between T cells and target cells but rather on the activation status of the T cells.
Collapse
Affiliation(s)
- Anne Lise Karlsgot Hestvik
- Institute of Immunology, Faculty of Medicine, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | |
Collapse
|
141
|
|
142
|
Menge T, Büdingen HC, Dalakas MC, Kieseier BC, Hartung HP. [Targeting B cells in multiple sclerosis. Current concepts and strategies]. DER NERVENARZT 2009; 80:190-8. [PMID: 19189075 DOI: 10.1007/s00115-008-2664-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating autoimmune disease of the CNS and a leading cause of lasting neurological disability in younger adults. In the last decade our knowledge of its immunopathogenesis expanded vastly. It is now widely appreciated that B cells are key players in the autoreactive immune network. They exert far more functions than merely being the precursors of antibody-producing plasma cells. B cells act as efficient antigen-presenting cells and may stimulate an autoreactive immune response through secretion of proinflammatory cytokines. It is thus only logical to test therapeutic strategies targeting B cells in MS. Rituximab is a depleting chimeric monoclonal antibody directed against CD20 and expressed on developing, naïve, and memory B cells but not stem or plasma cells. Several smaller studies have been conducted that led to a placebo controlled, double blind phase II study on efficacy which was reported recently. The results are very promising, meeting not only the primary endpoint of reduction of the surrogate MRI marker of contrast-enhancing lesions but also showing a reduction in clinical relapse rate of patients treated with rituximab. This review discusses the role of autoreactive B cells in the context of MS, analyzes the B-cell-depleting treatment studies reported, and provides information on planned and future B-cell-directed therapeutic strategies in MS.
Collapse
Affiliation(s)
- T Menge
- Neurologische Klinik, Heinrich-Heine-Universität, Moorenstrasse 5, 40225, Düsseldorf, Deutschland
| | | | | | | | | |
Collapse
|
143
|
Abstract
Experimental autoimmune encephalomyelitis (EAE) is often termed "the" model of human multiple sclerosis (MS). This is, however, an oversimplification. MS is a multifaceted disorder, with no single experimental model representing the entire complexity of the human disease. On the other hand, EAE comes in numerous, distinct variants, which may reflect individual aspects of MS. This presentation reviews EAE variants and their usability as models for human MS. New transgenic models representing mechanisms determining spontaneous initiation, the course of central nervous system (CNS) autoimmunity, the distribution of lesions within the CNS and the cellular composition of the inflammatory infiltrate are discussed. Aspects of the early, inflammatory phase of MS plaque generation, in particular concerning the dynamics of immune cell invasion into the CNS, are also reviewed. Finally, the usability of EAE models for discovery and validation of MS drugs is discussed.
Collapse
Affiliation(s)
- H Wekerle
- Max-Planck-Institute of Neurobiology, Martinsried, Germany.
| |
Collapse
|
144
|
Novel therapeutic strategies for multiple sclerosis--a multifaceted adversary. Nat Rev Drug Discov 2008; 7:909-25. [PMID: 18974749 DOI: 10.1038/nrd2358] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapeutic strategies for multiple sclerosis have radically changed in the past 15 years. Five regulatory-approved immunomodulatory agents are reasonably effective in the treatment of relapsing-remitting multiple sclerosis, and appear to delay the time to progression to disabling stages. Inhibiting disease progression remains the central challenge for the development of improved therapies. As understanding of the immunopathogenesis of multiple sclerosis has advanced, a number of novel potential therapeutics have been identified, and are discussed here. It has also become apparent that traditional views of multiple sclerosis simply as a CD4+ T-cell-mediated disease of the central nervous system are incomplete. The pathogenic role of other immune components such as the innate immune system, regulatory T cells, T helper 17 cells and B cells is reaching centre stage, opening up exciting avenues and novel potential targets to affect the natural course of multiple sclerosis.
Collapse
|
145
|
Meinl E, Krumbholz M, Derfuss T, Junker A, Hohlfeld R. Compartmentalization of inflammation in the CNS: a major mechanism driving progressive multiple sclerosis. J Neurol Sci 2008; 274:42-4. [PMID: 18715571 DOI: 10.1016/j.jns.2008.06.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/02/2008] [Accepted: 06/27/2008] [Indexed: 12/31/2022]
Abstract
In multiple sclerosis (MS) the CNS is not only the target of the pathological immune response, but the CNS itself becomes an immunological compartment during the course of the disease. This comprises (i) inflammation beyond classical white matter lesions, (ii) intrathecal Ig production with oligoclonal bands, (iii) an environment fostering immune cell persistence, (iv) follicle-like aggregates in the meninges, (v) a disruption of the blood-brain barrier also outside of active lesions, which allows influx of autoantibodies possibly promoting demyelination or axonal injury and influx of fibrinogen driving inflammation.
Collapse
Affiliation(s)
- Edgar Meinl
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | | | |
Collapse
|
146
|
Hohlfeld R, Meinl E, Dornmair K. B- and T-cell responses in multiple sclerosis: novel approaches offer new insights. J Neurol Sci 2008; 274:5-8. [PMID: 18707694 DOI: 10.1016/j.jns.2008.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 07/02/2008] [Accepted: 07/04/2008] [Indexed: 11/29/2022]
Abstract
In experimental autoimmune encephalomyelitis (EAE), several target antigens of encephalitogenic T- and B-cell responses have been identified. However, in human multiple sclerosis (MS) the target antigens of pathogenic T and B cells have remained conjectural. Here we discuss how recent methodological advances have offered new insights into the nature of B- and T-cell receptor repertoires expressed in MS tissues, and how novel approaches have helped to identify neurofascin as a target of anti-axonal autoantibodies in MS and EAE.
Collapse
Affiliation(s)
- Reinhard Hohlfeld
- Department of Neuroimmunology, Max Planck Institute for Neurobiology, Am Klopferspitz, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
147
|
Bennett JL, Haubold K, Ritchie AM, Edwards SJ, Burgoon M, Shearer AJ, Gilden DH, Owens GP. CSF IgG heavy-chain bias in patients at the time of a clinically isolated syndrome. J Neuroimmunol 2008; 199:126-32. [PMID: 18547652 PMCID: PMC2572301 DOI: 10.1016/j.jneuroim.2008.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/22/2008] [Accepted: 04/25/2008] [Indexed: 12/30/2022]
Abstract
Using FACS and single cell reverse transcriptase polymerase chain reaction, we examined the cerebrospinal fluid (CSF) IgG VH repertoires from 10 subjects with a clinically isolated demyelinating syndrome (CIS). B and plasma cell repertoires from individual subjects showed similar VH family germline usage, nearly identical levels of post-germinal center somatic hypermutation, and significant overlap in their clonal populations. Repertoires from 7 of 10 CIS subjects demonstrated a biased usage of VH4 and/or VH2 family gene segments in their plasma or B cell repertoires. V-regionbias, however, was not observed in the corresponding peripheral blood CD19+ B cell repertoires from 2 CIS subjects or in normal healthy adults. Clinically, subjects with VH4 or VH2 CSF IgG repertoire bias rapidly progressed to definite MS, whereas individuals without repertoire bias did not develop MS after a minimum of 2 years of follow-up (p=0.01).
Collapse
Affiliation(s)
- Jeffrey L Bennett
- Department of Neurology, University of Colorado Health Sciences Center, Denver, CO, United States.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Kuenz B, Lutterotti A, Ehling R, Gneiss C, Haemmerle M, Rainer C, Deisenhammer F, Schocke M, Berger T, Reindl M. Cerebrospinal fluid B cells correlate with early brain inflammation in multiple sclerosis. PLoS One 2008; 3:e2559. [PMID: 18596942 PMCID: PMC2438478 DOI: 10.1371/journal.pone.0002559] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 05/27/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND There is accumulating evidence from immunological, pathological and therapeutic studies that B cells are key components in the pathophysiology of multiple sclerosis (MS). METHODOLOGY/PRINCIPAL FINDINGS In this prospective study we have for the first time investigated the differences in the inflammatory response between relapsing and progressive MS by comparing cerebrospinal fluid (CSF) cell profiles from patients at the onset of the disease (clinically isolated syndrome, CIS), relapsing-remitting (RR) and chronic progressive (CP) MS by flow cytometry. As controls we have used patients with other neurological diseases. We have found a statistically significant accumulation of CSF mature B cells (CD19+CD138-) and plasma blasts (CD19+CD138+) in CIS and RRMS. Both B cell populations were, however, not significantly increased in CPMS. Further, this accumulation of B cells correlated with acute brain inflammation measured by magnetic resonance imaging and with inflammatory CSF parameters such as the number of CSF leukocytes, intrathecal immunoglobulin M and G synthesis and intrathecal production of matrix metalloproteinase (MMP)-9 and the B cell chemokine CxCL-13. CONCLUSIONS Our data support an important role of CSF B cells in acute brain inflammation in CIS and RRMS.
Collapse
Affiliation(s)
- Bettina Kuenz
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Andreas Lutterotti
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Rainer Ehling
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Claudia Gneiss
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Monika Haemmerle
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Carolyn Rainer
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Deisenhammer
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Schocke
- Department of Radiology I, Innsbruck Medical University, Innsbruck, Austria
| | - Thomas Berger
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
149
|
Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat Med 2008; 14:688-93. [DOI: 10.1038/nm1714] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 12/18/2007] [Indexed: 12/24/2022]
|
150
|
Somers V, Govarts C, Somers K, Hupperts R, Medaer R, Stinissen P. Autoantibody Profiling in Multiple Sclerosis Reveals Novel Antigenic Candidates. THE JOURNAL OF IMMUNOLOGY 2008; 180:3957-63. [DOI: 10.4049/jimmunol.180.6.3957] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|