101
|
Xu R, He Q, Wang Y, Yang Y, Guo ZN. Therapeutic Potential of Remote Ischemic Conditioning in Vascular Cognitive Impairment. Front Cell Neurosci 2021; 15:706759. [PMID: 34413726 PMCID: PMC8370253 DOI: 10.3389/fncel.2021.706759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a heterogeneous disease caused by a variety of cerebrovascular diseases. Patients with VCI often present with slower cognitive processing speed and poor executive function, which affects their independence in daily life, thus increasing social burden. Remote ischemic conditioning (RIC) is a non-invasive and efficient intervention that triggers endogenous protective mechanisms to generate neuroprotection. Over the past decades, evidence from basic and clinical research has shown that RIC is promising for the treatment of VCI. To further our understanding of RIC and improve the management of VCI, we summarize the evidence on the therapeutic potential of RIC in relation to the risk factors and pathobiologies of VCI, including reducing the risk of recurrent stroke, decreasing high blood pressure, improving cerebral blood flow, restoring white matter integrity, protecting the neurovascular unit, attenuating oxidative stress, and inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Rui Xu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Qianyan He
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yan Wang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
102
|
Dewey BE, Xu X, Knutsson L, Jog A, Prince JL, Barker PB, van Zijl PCM, Leigh R, Nyquist P. MTT and Blood-Brain Barrier Disruption within Asymptomatic Vascular WM Lesions. AJNR Am J Neuroradiol 2021; 42:1396-1402. [PMID: 34083262 PMCID: PMC8367617 DOI: 10.3174/ajnr.a7165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/13/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND PURPOSE White matter lesions of presumed ischemic origin are associated with progressive cognitive impairment and impaired BBB function. Studying the longitudinal effects of white matter lesion biomarkers that measure changes in perfusion and BBB patency within white matter lesions is required for long-term studies of lesion progression. We studied perfusion and BBB disruption within white matter lesions in asymptomatic subjects. MATERIALS AND METHODS Anatomic imaging was followed by consecutive dynamic contrast-enhanced and DSC imaging. White matter lesions in 21 asymptomatic individuals were determined using a Subject-Specific Sparse Dictionary Learning algorithm with manual correction. Perfusion-related parameters including CBF, MTT, the BBB leakage parameter, and volume transfer constant were determined. RESULTS MTT was significantly prolonged (7.88 [SD, 1.03] seconds) within white matter lesions compared with normal-appearing white (7.29 [SD, 1.14] seconds) and gray matter (6.67 [SD, 1.35] seconds). The volume transfer constant, measured by dynamic contrast-enhanced imaging, was significantly elevated (0.013 [SD, 0.017] minutes-1) in white matter lesions compared with normal-appearing white matter (0.007 [SD, 0.011] minutes-1). BBB disruption within white matter lesions was detected relative to normal white and gray matter using the DSC-BBB leakage parameter method so that increasing BBB disruption correlated with increasing white matter lesion volume (Spearman correlation coefficient = 0.44; P < .046). CONCLUSIONS A dual-contrast-injection MR imaging protocol combined with a 3D automated segmentation analysis pipeline was used to assess BBB disruption in white matter lesions on the basis of quantitative perfusion measures including the volume transfer constant (dynamic contrast-enhanced imaging), the BBB leakage parameter (DSC), and MTT (DSC). This protocol was able to detect early pathologic changes in otherwise healthy individuals.
Collapse
Affiliation(s)
- B E Dewey
- From the Department of Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
| | - X Xu
- F.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
| | - L Knutsson
- Department of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
- Department of Medical Radiation Physics (L.K.), Lund University, Lund, Sweden
| | - A Jog
- Athinoula A. Martinos Center for Biomedical Imaging (A.J.), Harvard University Medical School, Boston Massachusetts
| | - J L Prince
- From the Department of Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
- Department of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
| | - P B Barker
- F.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
| | - P C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
| | - R Leigh
- Department of Neurology (R.L., P.N.), Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
| | - P Nyquist
- Department of Neurology (R.L., P.N.), Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
103
|
Procter TV, Williams A, Montagne A. Interplay between brain pericytes and endothelial cells in dementia. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1917-1931. [PMID: 34329605 DOI: 10.1016/j.ajpath.2021.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Dementia is becoming an increasingly important disease due to an aging population and limited treatment options. Cerebral small vessel disease (cSVD) and Alzheimer's disease (AD) are the two most common causes of dementia with vascular dysfunction being a large component of both their pathophysiologies. The neurogliovascular unit (NVU), and in particular the blood-brain barrier (BBB) are required for maintaining brain homeostasis. A complex interaction exists between the endothelial cells, which line the blood vessels and pericytes, which surround them in the NVU. Disruption of the BBB occurs in dementia precipitating cognitive decline. In this review, we highlight how dysfunction of the endothelial-pericyte crosstalk contributes to dementia, focusing on cSVD and AD. This review examines how loss of pericyte coverage occurs and subsequent downstream changes. Furthermore, it examines how disruption to intimate crosstalk between endothelial cells and pericytes leads to alterations in cerebral blood flow, transcription, neuroinflammation and transcytosis contributing to breakdown of the BBB. This review illustrates how cumulation of loss of endothelial-pericyte crosstalk is a major driving force in dementia pathology.
Collapse
Affiliation(s)
- Tessa V Procter
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK; UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Axel Montagne
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
104
|
Rastogi A, Weissert R, Bhaskar SMM. Emerging role of white matter lesions in cerebrovascular disease. Eur J Neurosci 2021; 54:5531-5559. [PMID: 34233379 DOI: 10.1111/ejn.15379] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
White matter lesions have been implicated in the setting of stroke, dementia, intracerebral haemorrhage, several other cerebrovascular conditions, migraine, various neuroimmunological diseases like multiple sclerosis, disorders of metabolism, mitochondrial diseases and others. While much is understood vis a vis neuroimmunological conditions, our knowledge of the pathophysiology of these lesions, and their role in, and implications to, management of cerebrovascular diseases or stroke, especially in the elderly, are limited. Several clinical assessment tools are available for delineating white matter lesions in clinical practice. However, their incorporation into clinical decision-making and specifically prognosis and management of patients is suboptimal for use in standards of care. This article sought to provide an overview of the current knowledge and recent advances on pathophysiology, as well as clinical and radiological assessment, of white matter lesions with a focus on its development, progression and clinical implications in cerebrovascular diseases. Key indications for clinical practice and recommendations on future areas of research are also discussed. Finally, a conceptual proposal on putative mechanisms underlying pathogenesis of white matter lesions in cerebrovascular disease has been presented. Understanding of pathophysiology of white matter lesions and how they mediate outcomes is important to develop therapeutic strategies.
Collapse
Affiliation(s)
- Aarushi Rastogi
- South Western Sydney Clinical School, University of New South Wales (UNSW), Liverpool, New South Wales, Australia.,Neurovascular Imaging Laboratory, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Robert Weissert
- Department of Neurology, Regensburg University Hospital, University of Regensburg, Regensburg, Germany
| | - Sonu Menachem Maimonides Bhaskar
- South Western Sydney Clinical School, University of New South Wales (UNSW), Liverpool, New South Wales, Australia.,Neurovascular Imaging Laboratory, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia.,NSW Brain Clot Bank, NSW Health Pathology, Sydney, New South Wales, Australia.,Department of Neurology and Neurophysiology, Liverpool Hospital and South Western Sydney Local Health District, Sydney, New South Wales, Australia
| |
Collapse
|
105
|
Wang Y, Yan X, Zhan J, Zhang P, Zhang G, Ge S, Wen H, Wang L, Xu N, Lu L. Neuroimaging Markers of Cerebral Small Vessel Disease on Hemorrhagic Transformation and Functional Outcome After Intravenous Thrombolysis in Patients With Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2021; 13:692942. [PMID: 34326767 PMCID: PMC8315270 DOI: 10.3389/fnagi.2021.692942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of this study was to perform a systematic review and meta-analysis to assess whether cerebral small vessel disease (CSVD) on neuroimaging of patients with acute ischemic stroke (AIS) treated with intravenous thrombolysis (IVT) is associated with an increased risk of hemorrhagic transformation (HT), symptomatic intracranial hemorrhage (sICH), and poor functional outcome (PFO). Methods: A thorough search of several databases was carried out to identify relevant studies up to December 2020. We included studies of patients with AIS and neuroimaging markers of CSVD treated with IVT. The primary outcome was HT, and the secondary outcomes were sICH and 3-month PFO. The quality of the studies involved was evaluated using the Newcastle-Ottawa Scale (NOS). The meta-analysis with the fixed effects model was performed. Results: Twenty-four eligible studies (n = 9,419) were pooled in the meta-analysis. All included studies were regarded as high quality with the NOS scores of at least 6 points. The meta-analysis revealed associations between the presence of CSVD and HT, sICH, and the 3-month PFO after IVT. Compared with no CSVD, the presence of CSVD was associated with an increased risk of HT (OR: 1.81, 95% CI: 1.52-2.16), sICH (OR: 2.42, 95% CI: 1.76-3.33), and 3-month PFO (OR: 2.15, 95% CI: 1.89-2.44). For patients with AIS complicated with CSVD, compared with a CSVD score of 0-1, a CSVD score of 2-4 was associated with an increased risk of HT (OR: 3.10, 95% CI: 1.67-5.77), sICH (OR: 2.86, 95% CI: 1.26-6.49), and 3-month PFO (OR: 4.58, 95% CI: 2.97-7.06). Conclusion: Patients with AIS complicated with neuroimaging markers of CSVD are at increased risk of HT and 3-month PFO after IVT. However, it is still necessary to clarify the exact role of CSVD in the occurrence, development, and prognosis of AIS. Systematic Review Registration: www.ClinicalTrials.gov, identifier CRD4202123 3900.
Collapse
Affiliation(s)
- Yiqiao Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoting Yan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Zhan
- Postdoctoral Programme, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiming Zhang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangming Zhang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuqi Ge
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Wen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
106
|
Dobrynina LA, Alexandrova EV, Zabitova MR, Kalashnikova LA, Krotenkova MV, Akhmetzyanov BM. Anti-NR2 glutamate receptor antibodies as an early biomarker of cerebral small vessel disease. Clin Biochem 2021; 96:26-32. [PMID: 34245693 DOI: 10.1016/j.clinbiochem.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/09/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Cerebral small vessel disease (SVD) associated with age and vascular risk factors is one of the leading causes of cognitive disorders as well as ischemic and hemorrhagic strokes. The pathogenesis of this disease has not been fully understood yet. The previously established association of the antibodies against the NR2 subunit of the NMDA receptor (NR2ab) with the mechanisms of SVD such as ischemia and blood-brain barrier (BBB) disruption, might suggest their importance in the brain damage. DESIGN & METHODS We studied the NR2ab serum level in 70 patients (45 females, 61.1 ± 6.3 y.o.) with different severity of cognitive impairment and MRI features of SVD and 20 healthy volunteers (12 females, 58.5 ± 6.4 y.o.). RESULTS The elevated level of NR2ab was associated with subjective cognitive impairment (SCI) (p = 0.028) and mild cognitive impairment (MCI) (p = 0.017), Fazekas grade (F) 2 (p = 0,002) and F3 (p = 0,009) of white matter hyperintensities (WMH) and the numbers of lacunes in the cerebral white matter (less than 5) (p = 0,039). CONCLUSION The detected increase in serum NR2ab level in patients with SCI, as well as the minimal amount of white matter lacunes, is most likely caused by hypoxia-induced endothelial damage in the early stage of SVD. Normal NR2ab values in patients with F1 WMH, the increased NR2ab level in patients with F2 and F3 WMH and those with the minimal number of lacunes can indicate that NR2bs are involved in diffuse brain damage due to hypoxia-induced loss of BBB integrity.
Collapse
Affiliation(s)
- Larisa A Dobrynina
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Evgenia V Alexandrova
- Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16 4th Tverskaya-Yamskaya St., Moscow, Russia
| | - Maryam R Zabitova
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia
| | | | - Marina V Krotenkova
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia
| | | |
Collapse
|
107
|
Lee BC, Tsai HH, Huang APH, Lo YL, Tsai LK, Chen YF, Wu WC. Arterial Spin Labeling Imaging Assessment of Cerebrovascular Reactivity in Hypertensive Small Vessel Disease. Front Neurol 2021; 12:640069. [PMID: 34276531 PMCID: PMC8278327 DOI: 10.3389/fneur.2021.640069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: Cerebrovascular reactivity (CVR) represents the phenomenon where cerebral vessels dilate or constrict in response to vasoactive stimuli. CVR impairment may contribute to brain injury due to cerebral small vessel disease (SVD). We aimed to determine the CVR in hypertensive intracerebral hemorrhage (ICH) and to identify its vascular dysfunction. Methods: A total of 21 patients with spontaneous hypertensive ICH (strictly deep or mixed deep and lobar hemorrhages, mean age 62.5 ± 11.3 years) and 10 control subjects (mean age 66.1 ± 6.0 years) were enrolled for CVR measurement at least 3 months after the symptomatic ICH event. Each participant underwent a brain MRI study, and CVR was calculated as the cerebral blood flow (CBF) reduction using arterial spin labeling (ASL) between baseline and 10 min after an intravenous dipyridamole injection (0.57 mg/kg). Traditional MRI markers for SVD were also evaluated, including cerebral microbleed, white matter hyperintensity, lacune, and MRI-visible enlarged perivascular space, which were used to determine the total small vessel disease score. Results: Compared to control subjects, hypertensive ICH patients showed reduced CVR in the basal ganglia (CBF reduction 22.4 ± 22.7% vs. 41.7 ± 18.3, p = 0.026), the frontal lobe (15.1 ± 11.9 vs. 26.6 ± 9.9, p = 0.013), and the temporal lobe (14.7 ± 11.1 vs. 26.2 ± 10.0, p = 0.010). These differences remained significant in multivariable models after adjusting for age and sex. Within ICH groups, the CBF reduction in the basal ganglia was significantly correlated with the total small vessel disease score (R = 0.58, p = 0.006), but not with individual MRI markers. Conclusion: Patients with advanced hypertensive SVD demonstrated impaired vasoconstriction after dipyridamole challenge in the basal ganglia and the frontal and temporal lobes. Our findings provide safe approaches for whole-brain CVR mapping in SVD and identify a potential physiological basis for vascular dysfunction in hypertensive SVD.
Collapse
Affiliation(s)
- Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Abel Po-Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ling Lo
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chau Wu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
108
|
Markus HS, Egle M, Croall ID, Sari H, Khan U, Hassan A, Harkness K, MacKinnon A, O'Brien JT, Morris RG, Barrick TR, Blamire AM, Tozer DJ, Ford GA. PRESERVE: Randomized Trial of Intensive Versus Standard Blood Pressure Control in Small Vessel Disease. Stroke 2021; 52:2484-2493. [PMID: 34044580 DOI: 10.1161/strokeaha.120.032054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hugh S Markus
- Stroke Research Group, Department of Clinical Neuroscience, University of Cambridge (H.S.M., M.E., I.D.C., H.S., D.J.T.)
| | - Marco Egle
- Stroke Research Group, Department of Clinical Neuroscience, University of Cambridge (H.S.M., M.E., I.D.C., H.S., D.J.T.)
| | - Iain D Croall
- Stroke Research Group, Department of Clinical Neuroscience, University of Cambridge (H.S.M., M.E., I.D.C., H.S., D.J.T.)
| | - Hasan Sari
- Stroke Research Group, Department of Clinical Neuroscience, University of Cambridge (H.S.M., M.E., I.D.C., H.S., D.J.T.)
| | - Usman Khan
- Atkinson Morley Neuroscience Centre, St. Georges NHS Healthcare Trust (U.K., A.M.)
| | | | | | - Andrew MacKinnon
- Atkinson Morley Neuroscience Centre, St. Georges NHS Healthcare Trust (U.K., A.M.)
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge (J.T.O.)
| | - Robin G Morris
- Kings College Institute of Psychiatry, Psychology and Neurosciences, London, United Kingdom (R.G.M.)
| | - Thomas R Barrick
- Neurosciences Research Centre, Molecular and Clinical Science Research Institute, St George's University of London, United Kingdom (T.R.B.)
| | - Andrew M Blamire
- Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, United Kingdom (A.M.B.)
| | - Daniel J Tozer
- Stroke Research Group, Department of Clinical Neuroscience, University of Cambridge (H.S.M., M.E., I.D.C., H.S., D.J.T.)
| | - Gary A Ford
- Oxford University Hospitals NHS Foundation Trust, University of Oxford (G.A.F.)
| | | |
Collapse
|
109
|
Manning C, Stringer M, Dickie B, Clancy U, Valdés Hernandez MC, Wiseman SJ, Garcia DJ, Sakka E, Backes WH, Ingrisch M, Chappell F, Doubal F, Buckley C, Parkes LM, Parker GJM, Marshall I, Wardlaw JM, Thrippleton MJ. Sources of systematic error in DCE-MRI estimation of low-level blood-brain barrier leakage. Magn Reson Med 2021; 86:1888-1903. [PMID: 34002894 DOI: 10.1002/mrm.28833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/19/2021] [Accepted: 04/16/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Dynamic contrast-enhanced (DCE) -MRI with Patlak model analysis is increasingly used to quantify low-level blood-brain barrier (BBB) leakage in studies of pathophysiology. We aimed to investigate systematic errors due to physiological, experimental, and modeling factors influencing quantification of the permeability-surface area product PS and blood plasma volume vp , and to propose modifications to reduce the errors so that subtle differences in BBB permeability can be accurately measured. METHODS Simulations were performed to predict the effects of potential sources of systematic error on conventional PS and vp quantification: restricted BBB water exchange, reduced cerebral blood flow, arterial input function (AIF) delay and B 1 + error. The impact of targeted modifications to the acquisition and processing were evaluated, including: assumption of fast versus no BBB water exchange, bolus versus slow injection of contrast agent, exclusion of early data from model fitting and B 1 + correction. The optimal protocol was applied in a cohort of recent mild ischaemic stroke patients. RESULTS Simulation results demonstrated substantial systematic errors due to the factors investigated (absolute PS error ≤ 4.48 × 10-4 min-1 ). However, these were reduced (≤0.56 × 10-4 min-1 ) by applying modifications to the acquisition and processing pipeline. Processing modifications also had substantial effects on in-vivo normal-appearing white matter PS estimation (absolute change ≤ 0.45 × 10-4 min-1 ). CONCLUSION Measuring subtle BBB leakage with DCE-MRI presents unique challenges and is affected by several confounds that should be considered when acquiring or interpreting such data. The evaluated modifications should improve accuracy in studies of neurodegenerative diseases involving subtle BBB breakdown.
Collapse
Affiliation(s)
- Cameron Manning
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Una Clancy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria C Valdés Hernandez
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stewart J Wiseman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniela Jaime Garcia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eleni Sakka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, School for Mental Health & Neuroscience and School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Michael Ingrisch
- Department of Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Francesca Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fergus Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Geoff J M Parker
- Centre for Medical Image Computing and Department of Neuroinflammation, UCL, London, United Kingdom
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
110
|
Stewart CR, Stringer MS, Shi Y, Thrippleton MJ, Wardlaw JM. Associations Between White Matter Hyperintensity Burden, Cerebral Blood Flow and Transit Time in Small Vessel Disease: An Updated Meta-Analysis. Front Neurol 2021; 12:647848. [PMID: 34017302 PMCID: PMC8129542 DOI: 10.3389/fneur.2021.647848] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
Cerebral small vessel disease (SVD) is a major contributor to stroke and dementia, characterized by white matter hyperintensities (WMH) on neuroimaging. WMH are associated with reduced cerebral blood flow (CBF) cross-sectionally, though longitudinal associations remain unclear. We updated a 2016 systematic review, identifying 30 new studies, 27 cross-sectional (n = 2,956) and 3 longitudinal (n = 440). Cross-sectionally, 10/27 new studies (n = 1,019) included sufficient data for meta-analysis, which we meta-analyzed with 24 previously reported studies (n = 1,161), total 34 (n = 2,180). Our meta-analysis showed that patients with lower CBF had worse WMH burden (mean global CBF: standardized mean difference (SMD): −0.45, 95% confidence interval (CI): −0.64, −0.27). Longitudinally, associations between baseline CBF and WMH progression varied: the largest study (5 years, n = 252) found no associations, while another small study (4.5 years, n = 52) found that low CBF in the periventricular WMH penumbra predicted WMH progression. We could not meta-analyse longitudinal studies due to different statistical and methodological approaches. We found that CBF was lower in WMH than in normal-appearing white matter in an additional meta-analysis (5 cross-sectional studies; n = 295; SMD: −1.51, 95% CI: −1.94, −1.07). These findings highlight that relationships between resting CBF and WMH are complex. Further longitudinal studies analyzing regional CBF and subsequent WMH change are required to determine the role of CBF in SVD progression.
Collapse
Affiliation(s)
- Catriona R Stewart
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Edinburgh, United Kingdom
| | - Yulu Shi
- Beijing Tian Tan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
111
|
Pålhaugen L, Sudre CH, Tecelao S, Nakling A, Almdahl IS, Kalheim LF, Cardoso MJ, Johnsen SH, Rongve A, Aarsland D, Bjørnerud A, Selnes P, Fladby T. Brain amyloid and vascular risk are related to distinct white matter hyperintensity patterns. J Cereb Blood Flow Metab 2021; 41:1162-1174. [PMID: 32955960 PMCID: PMC8054718 DOI: 10.1177/0271678x20957604] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
White matter hyperintensities (WMHs) are associated with vascular risk and Alzheimer's disease. In this study, we examined relations between WMH load and distribution, amyloid pathology and vascular risk in 339 controls and cases with either subjective (SCD) or mild cognitive impairment (MCI). Regional deep (DWMH) and periventricular (PWMH) WMH loads were determined using an automated algorithm. We stratified on Aβ1-42 pathology (Aβ+/-) and analyzed group differences, as well as associations with Framingham Risk Score for cardiovascular disease (FRS-CVD) and age. Occipital PWMH (p = 0.001) and occipital DWMH (p = 0.003) loads were increased in SCD-Aβ+ compared with Aβ- controls. In MCI-Aβ+ compared with Aβ- controls, there were differences in global WMH (p = 0.003), as well as occipital DWMH (p = 0.001) and temporal DWMH (p = 0.002) loads. FRS-CVD was associated with frontal PWMHs (p = 0.003) and frontal DWMHs (p = 0.005), after adjusting for age. There were associations between global and all regional WMH loads and age. In summary, posterior WMH loads were increased in SCD-Aβ+ and MCI-Aβ+ cases, whereas frontal WMHs were associated with vascular risk. The differences in WMH topography support the use of regional WMH load as an early-stage marker of etiology.
Collapse
Affiliation(s)
- Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Carole H Sudre
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Dementia Research Centre, Institute of Neurology, University College London, London, UK.,Department of Medical Physics, University College London, London, UK
| | - Sandra Tecelao
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | | | - Ina S Almdahl
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Lisa F Kalheim
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - M Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Dementia Research Centre, Institute of Neurology, University College London, London, UK.,Department of Medical Physics, University College London, London, UK
| | - Stein H Johnsen
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway.,Department of Clinical Medicine, Brain and Circulation Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Arvid Rongve
- Department of Research and Innovation, Haugesund Hospital, Haugesund, Norway.,Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Dag Aarsland
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Center for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Atle Bjørnerud
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
112
|
Hakim AM. A Proposed Hypothesis on Dementia: Inflammation, Small Vessel Disease, and Hypoperfusion Is the Sequence That Links All Harmful Lifestyles to Cognitive Impairment. Front Aging Neurosci 2021; 13:679837. [PMID: 33994998 PMCID: PMC8116506 DOI: 10.3389/fnagi.2021.679837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
There is growing consensus that certain lifestyles can contribute to cognitive impairment and dementia, but the physiological steps that link a harmful lifestyle to its negative impact are not always evident. It is also unclear whether all lifestyles that contribute to dementia do so through the same intermediary steps. This article will focus on three lifestyles known to be risk factors for dementia, namely obesity, sedentary behavior, and insufficient sleep, and offer a unifying hypothesis proposing that lifestyles that negatively impact cognition do so through the same sequence of events: inflammation, small vessel disease, decline in cerebral perfusion, and brain atrophy. The hypothesis will then be tested in a recently identified risk factor for dementia, namely hearing deficit. If further studies confirm this sequence of events leading to dementia, a significant change in our approach to this debilitating and costly condition may be necessary, possible, and beneficial.
Collapse
Affiliation(s)
- Antoine M. Hakim
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
113
|
Sullivan DR, Miller MW, Wolf EJ, Logue MW, Robinson ME, Fortier CB, Fonda JR, Wang DJ, Milberg WP, McGlinchey RE, Salat DH. Cerebral perfusion is associated with blast exposure in military personnel without moderate or severe TBI. J Cereb Blood Flow Metab 2021; 41:886-900. [PMID: 32580671 PMCID: PMC7983507 DOI: 10.1177/0271678x20935190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the use of improvised explosive devices, blast exposure and mild traumatic brain injury (mTBI) have become hallmark injuries of the Iraq and Afghanistan wars. Although the mechanisms of the effects of blast on human neurobiology remain active areas of investigation, research suggests that the cerebrovasculature may be particularly vulnerable to blast via molecular processes that impact cerebral blood flow. Given that recent work suggests that blast exposure, even without a subsequent TBI, may have negative consequences on brain structure and function, the current study sought to further understand the effects of blast exposure on perfusion. One hundred and eighty military personnel underwent pseudo-continuous arterial spin labeling (pCASL) imaging and completed diagnostic and clinical interviews. Whole-brain analyses revealed that with an increasing number of total blast exposures, there was significantly increased perfusion in the right middle/superior frontal gyri, supramarginal gyrus, lateral occipital cortex, and posterior cingulate cortex as well as bilateral anterior cingulate cortex, insulae, middle/superior temporal gyri and occipital poles. Examination of other neurotrauma and clinical variables such as close-range blast exposures, mTBI, and PTSD yielded no significant effects. These results raise the possibility that perfusion may be an important neural marker of brain health in blast exposure.
Collapse
Affiliation(s)
- Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Mark W Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Erika J Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA.,Department of Biostatistics, Boston University School of Medicine, Boston, MA, USA
| | - Meghan E Robinson
- Core for Advanced MRI and Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Fonda
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Danny Jj Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David H Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA.,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
114
|
Mokhber N, Shariatzadeh A, Avan A, Saber H, Babaei GS, Chaimowitz G, Azarpazhooh MR. Cerebral blood flow changes during aging process and in cognitive disorders: A review. Neuroradiol J 2021; 34:300-307. [PMID: 33749402 PMCID: PMC8447819 DOI: 10.1177/19714009211002778] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We aimed to summarize the available evidence on cerebral blood flow (CBF) changes
in normal aging and common cognitive disorders. We searched PubMed for studies
on CBF changes in normal aging and cognitive disorders up to 1 January 2019. We
summarized the milestones in the history of CBF assessment and reviewed the
current evidence on the association between CBF and cognitive changes in normal
aging, vascular cognitive impairment (VCI) and Alzheimer’s disease (AD). There
is promising evidence regarding the utility of CBF studies in cognition
research. Age-related CBF changes could be related to a progressive neuronal
loss or diminished activity and synaptic density of neurons in the brain. While
a similar cause or outcome theory applies to VCI and AD, it is possible that CBF
reduction might precede cognitive decline. Despite the diversity of CBF research
findings, its measurement could help early detection of cognitive disorders and
also understanding their underlying etiology.
Collapse
Affiliation(s)
- Naghmeh Mokhber
- Department of Psychiatry, Western University, Canada.,Department of Psychiatry and Neuropsychiatry, Mashhad University of Medical Sciences, Iran
| | - Aidin Shariatzadeh
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Canada
| | - Abolfazl Avan
- Department of Public Health, Mashhad University of Medical Sciences, Iran
| | - Hamidreza Saber
- Department of Neurology, Wayne State University School of Medicine, USA
| | | | - Gary Chaimowitz
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada
| | - M Reza Azarpazhooh
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Canada.,Department of Clinical Neurological Sciences, Western University, Canada
| |
Collapse
|
115
|
Chen X, Lu D, Guo N, Kang Z, Zhang K, Wang J, Men X, Lu Z, Qiu W. Left ventricular ejection fraction and right atrial diameter are associated with deep regional CBF in arteriosclerotic cerebral small vessel disease. BMC Neurol 2021; 21:67. [PMID: 33573621 PMCID: PMC7877009 DOI: 10.1186/s12883-021-02096-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/04/2021] [Indexed: 02/21/2023] Open
Abstract
Background Systemic cardiac hypoperfusion is a well-acknowledged contributor to ischemic leukoencephalopathy. However, it has remained elusive how atherosclerosis-mediated cardiac remodelling modifies cerebral perfusion homeostasis as well as neuroimaging burden in cerebral small vessel disease (CSVD) development. Methods This retrospective study identified 103 arteriosclerotic CSVD (aCSVD) patients (CSVD burdenlow 0 ~ 1, n = 61 and CSVD burdenhigh 2 ~ 4, n = 42) from Sep. 2017 to Dec. 2019 who underwent transthoracic echocardiography(n = 81), structural magnetic resonance imaging and arterial spin labelling (ASL). Total CSVD burden was graded according to the ordinal “small vessel disease” rating score (0–4). We investigated the univariate and multivariate linear regression of mean deep regional cerebral blood flow (CBF) as well as logistic regression analysis of CSVD burdenhigh. Results Right atrial diameter (B coefficient, − 0.289; 95% CI, − 0.578 to − 0.001; P = 0.049) and left ventricular ejection fraction (B coefficient, 32.555; 95% CI, 7.399 to 57.711; P = 0.012) were independently associated with deep regional CBF in aCSVD patients. Binary logistic regression analysis demonstrated decreased deep regional CBF (OR 0.894; 95% CI 0.811–0.985; P = 0.024) was independently associated with higher CSVD burden after adjusted for clinical confounders. Multivariate receiver operating characteristics curve integrating clinical risk factors, mean deep CBF and echocardiographic parameters showed predictive significance for CSVD burdenhigh diagnosis (area under curve = 84.25, 95% CI 74.86–93.65%, P < 0.0001). Conclusion The interrelationship of “cardiac -deep regional CBF-neuroimaging burden” reinforces the importance and prognostic significance of echocardiographic and cerebral hemodynamic assessment in CSVD early-warning. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02096-w.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Danli Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ning Guo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhuang Kang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ke Zhang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jihui Wang
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuejiao Men
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
116
|
Lower cerebral perfusion is associated with tau-PET in the entorhinal cortex across the Alzheimer's continuum. Neurobiol Aging 2021; 102:111-118. [PMID: 33765424 DOI: 10.1016/j.neurobiolaging.2021.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is associated with reduced temporo-parietal cerebral blood flow (CBF). However, a substantial variability in CBF across the clinical spectrum of AD has been reported, possibly due to differences in primary AD pathologies. Here, we assessed CBF (ASL-MRI), tau (AV1451-PET) and amyloid (AV45/FBB-PET) in 156 subjects across the AD continuum. Using mixed-effect regression analyses, we assessed the local associations between amyloid-PET, tau-PET and CBF in a hypothesis-driven way focusing on each pathology's predilection areas. The contribution of Apolipoprotein E (APOE) genotype, and MRI markers of small vessel disease (SVD) to alterations in CBF were assessed as well. Tau-PET was associated with lower CBF in the entorhinal cortex, independent of Aβ. Amyloid-PET was associated with lower CBF in temporo-parietal regions. No associations between MRI markers of SVD and CBF were observed. These results provide evidence that in addition to Aβ, pathologic tau is a major correlate of CBF in early Braak stages, independent of Aβ, APOE genotype and SVD markers.
Collapse
|
117
|
Jann K, Shao X, Ma SJ, Cen SY, D'Orazio L, Barisano G, Yan L, Casey M, Lamas J, Staffaroni AM, Kramer JH, Ringman JM, Wang DJJ. Evaluation of Cerebral Blood Flow Measured by 3D PCASL as Biomarker of Vascular Cognitive Impairment and Dementia (VCID) in a Cohort of Elderly Latinx Subjects at Risk of Small Vessel Disease. Front Neurosci 2021; 15:627627. [PMID: 33584191 PMCID: PMC7873482 DOI: 10.3389/fnins.2021.627627] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 01/16/2023] Open
Abstract
Cerebral small vessel disease (cSVD) affects arterioles, capillaries, and venules and can lead to cognitive impairments and clinical symptomatology of vascular cognitive impairment and dementia (VCID). VCID symptoms are similar to Alzheimer’s disease (AD) but the neurophysiologic alterations are less well studied, resulting in no established biomarkers. The purpose of this study was to evaluate cerebral blood flow (CBF) measured by 3D pseudo-continuous arterial spin labeling (pCASL) as a potential biomarker of VCID in a cohort of elderly Latinx subjects at risk of cSVD. Forty-five elderly Latinx subjects (12 males, 69 ± 7 years) underwent repeated MRI scans ∼6 weeks apart. CBF was measured using 3D pCASL in the whole brain, white matter and 4 main vascular territories (leptomeningeal anterior, middle, and posterior cerebral artery (leptoACA, leptoMCA, leptoPCA), as well as MCA perforator). The test-retest repeatability of CBF was assessed by intra-class correlation coefficient (ICC) and within-subject coefficient of variation (wsCV). Absolute and relative CBF was correlated with gross cognitive measures and domain specific assessment of executive and memory function, vascular risks, and Fazekas scores and volumes of white matter hyperintensity (WMH). Neurocognitive evaluations were performed using Montreal Cognitive Assessment (MoCA) and neuropsychological test battery in the Uniform Data Set v3 (UDS3). Good to excellent test-retest repeatability was achieved (ICC = 0.77–0.85, wsCV 3–9%) for CBF measurements in the whole brain, white matter, and 4 vascular territories. Relative CBF normalized by global mean CBF in the leptoMCA territory was positively correlated with the executive function composite score, while relative CBF in the leptoMCA and MCA perforator territory was positively correlated with MoCA scores, controlling for age, gender, years of education, and testing language. Relative CBF in WM was negatively correlated with WMH volume and MoCA scores, while relative leptoMCA CBF was positively correlated with WMH volume. Reliable 3D pCASL CBF measurements were achieved in the cohort of elderly Latinx subjects. Relative CBF in the leptomeningeal and perforator MCA territories were the most likely candidate biomarker of VCID. These findings need to be replicated in larger cohorts with greater variability of stages of cSVD.
Collapse
Affiliation(s)
- Kay Jann
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xingfeng Shao
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Samantha J Ma
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Steven Y Cen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lina D'Orazio
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Giuseppe Barisano
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lirong Yan
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Marlena Casey
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jesse Lamas
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Danny J J Wang
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
118
|
Liu H, Pu Y, Wang Y, Zou X, Pan Y, Zhang C, Soo YOY, Leung TWH, Zhao X, Wong KSL, Wang Y, Liu L. Intracranial Atherosclerosis Coexisting With White Matter Hyperintensities May Predict Unfavorable Functional Outcome in Patients With Acute Cerebral Ischemia. Front Neurol 2021; 11:609607. [PMID: 33408689 PMCID: PMC7779614 DOI: 10.3389/fneur.2020.609607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/27/2020] [Indexed: 11/14/2022] Open
Abstract
Background and Purpose: This study aimed to assess the effect of baseline white matter hyperintensities (WMH) on 1-year stroke recurrence and the functional outcome for patients with intracranial atherosclerosis (ICAS). Methods: We analyzed 2,076 patients who were enrolled in the Chinese IntraCranial AtheroSclerosis (CICAS) study. ICAS and WMH were diagnosed by baseline magnetic resonance angiography. The primary outcomes were stroke recurrence and unfavorable functional outcome (modified Rankin Scale score 3–6) at 1 year. Results: Of the 2,076 patients included in this study, 1,370 (65.99%) were men, and the mean age was 61.70 years. In total, 224 (10.79%) patients had no WMH and no ICAS, 922 (44.41%) patients had WMH and no ICAS, 157 (7.56%) patients had ICAS and no WMH, and 773 (37.24%) had both WMH and ICAS. During the follow-up period, 87 patients had a recurrent stroke and 333 had unfavorable outcomes at 1 year. Compared to WMH (–) ICAS (–) group, the adjusted odd ratios and 95% confidence interval for unfavorable functional outcome were 0.791 (0.470–1.332; p = 0.3779) in the WMH (+) ICAS (–) group, 1.920 (1.024–3.600; p = 0.0421) in the WMH (–) ICAS (+) group, and 2.046 (1.230–3.403; p = 0.0058) in the WMH (+) ICAS (+) group. There was no significant difference in stroke recurrence risk among the four groups. Conclusion: ICAS coexisting with WMH may predict an unfavorable functional outcome at 1 year, but not stroke recurrence.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuehua Pu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Changqing Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yannie O Y Soo
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Thomas W H Leung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ka Sing Lawrence Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
119
|
Associations between left ventricular function, vascular function and measures of cerebral small vessel disease: a cross-sectional magnetic resonance imaging study of the UK Biobank. Eur Radiol 2021; 31:5068-5076. [PMID: 33409793 DOI: 10.1007/s00330-020-07567-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Impaired cardiovascular function has been associated with cognitive deterioration; however, to what extent cardiovascular dysfunction plays a role in structural cerebral changes remains unclear. We studied whether vascular and left ventricular (LV) functions are associated with measures of cerebral small vessel disease (cSVD) in the middle-aged general population. METHODS In this cross-sectional analysis of the UK Biobank, 4366 participants (54% female, mean age 61 years) underwent magnetic resonance imaging to assess LV function (ejection fraction [EF] and cardiac index [CI]) and cSVD measures (total brain volume, grey and white matter volumes, hippocampal volume and white matter hyperintensities [WMH]). Augmentation index (AIx) was used as a measure of arterial stiffness. Linear and non-linear associations were evaluated using cardiovascular function measures as determinants and cSVD measures as outcomes. RESULTS EF was non-linearly associated with total brain volume and grey matter volume, with the largest brain volume for an EF between 55 and 60% (both p < 0.001). EF showed a negative linear association with WMH (- 0.23% [- 0.44; - 0.02], p = 0.03), yet no associations were found with white matter or hippocampal volume. CI showed a positive linear association with white matter (β 3194 mm3 [760; 5627], p = 0.01) and hippocampal volume (β 72.5 mm3 [23.0; 122.0], p = 0.004). No associations were found for CI with total brain volume, grey matter volume or WMH. No significant associations were found between AIx and cSVD measures. CONCLUSIONS This study provides novel insights into the complex associations between the heart and the brain, which could potentially guide early interventions aimed at improving cardiovascular function and the prevention of cSVD. KEY POINTS • Ejection fraction is non-linearly and cardiac index is linearly associated with MRI-derived measures of cerebral small vessel disease. • No associations were found for arterial stiffness with cSVD measures.
Collapse
|
120
|
Jacob MA, Cai M, Jansen MG, van Elderen N, Bergkamp M, Claassen JA, de Leeuw FE, Tuladhar AM. Orthostatic hypotension is not associated with small vessel disease progression or cognitive decline. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100032. [PMID: 36324726 PMCID: PMC9616324 DOI: 10.1016/j.cccb.2021.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
INTRODUCTION Cerebral hypoperfusion is thought to play an important role in the etiology of cerebral small vessel disease (SVD). Orthostatic hypotension (OH) is assumed to be a cause of cerebral hypoperfusion by causing recurrent hypoperfusion episodes, and might thus be related to progression of SVD. Here, we investigated whether presence of OH is associated with the progression of SVD MRI-markers and cognitive decline over a time period of 9 years in a cohort of sporadic SVD patients. METHODS This study included SVD patients from the RUN DMC study, a prospective longitudinal single-center cohort study. In total, 503 patients were included at baseline (2006), from whom 351 participated at first follow-up (2011), and 293 at second follow-up (2015). During all visits, patients underwent MRI and cognitive testing. Association between presence of OH at baseline and progression of SVD-markers on MRI and cognitive decline over time was estimated using linear mixed-effects models. RESULTS Of the 503 patients who participated at baseline, 46 patients (9.1%) had OH. Cross-sectional analysis of the baseline data showed that OH was associated with higher white matter hyperintensity (WMH) volume (β = 0.18, p = 0.03), higher mean diffusivity (MD; β = 0.02, p = 0.002), and with presence of microbleeds (OR 2.37 95% CI 1.16-4.68). Longitudinally, OH was however not associated with a progression of total WMH volume (β = -0.17, p = 0.96) or with higher MD (β = -0.001, p = 0.49). There was no association between OH and cognitive performance, both at baseline and over time. CONCLUSION In this longitudinal observational study, there was no evidence that presence of OH is associated with progression of SVD-markers or cognitive decline over time. Our findings indicate that OH may not be causally related to SVD progression over time.
Collapse
Affiliation(s)
- Mina A. Jacob
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Mengfei Cai
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Michelle G. Jansen
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Noortje van Elderen
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Geriatrics, Nijmegen, the Netherlands
| | - Mayra Bergkamp
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Jurgen A.H.R. Claassen
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Geriatrics, Nijmegen, the Netherlands
| | - Frank-Erik de Leeuw
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Anil M. Tuladhar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
- Corresponding author at: Radboud University Medical Center, Department of Neurology (910), Reinier Postlaan 4, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
121
|
Sargurupremraj M, Suzuki H, Jian X, Sarnowski C, Evans TE, Bis JC, Eiriksdottir G, Sakaue S, Terzikhan N, Habes M, Zhao W, Armstrong NJ, Hofer E, Yanek LR, Hagenaars SP, Kumar RB, van den Akker EB, McWhirter RE, Trompet S, Mishra A, Saba Y, Satizabal CL, Beaudet G, Petit L, Tsuchida A, Zago L, Schilling S, Sigurdsson S, Gottesman RF, Lewis CE, Aggarwal NT, Lopez OL, Smith JA, Valdés Hernández MC, van der Grond J, Wright MJ, Knol MJ, Dörr M, Thomson RJ, Bordes C, Le Grand Q, Duperron MG, Smith AV, Knopman DS, Schreiner PJ, Evans DA, Rotter JI, Beiser AS, Maniega SM, Beekman M, Trollor J, Stott DJ, Vernooij MW, Wittfeld K, Niessen WJ, Soumaré A, Boerwinkle E, Sidney S, Turner ST, Davies G, Thalamuthu A, Völker U, van Buchem MA, Bryan RN, Dupuis J, Bastin ME, Ames D, Teumer A, Amouyel P, Kwok JB, Bülow R, Deary IJ, Schofield PR, Brodaty H, Jiang J, Tabara Y, Setoh K, Miyamoto S, Yoshida K, Nagata M, Kamatani Y, Matsuda F, Psaty BM, Bennett DA, De Jager PL, Mosley TH, Sachdev PS, Schmidt R, Warren HR, Evangelou E, Trégouët DA, Ikram MA, Wen W, DeCarli C, Srikanth VK, Jukema JW, Slagboom EP, Kardia SLR, Okada Y, Mazoyer B, Wardlaw JM, Nyquist PA, Mather KA, Grabe HJ, Schmidt H, Van Duijn CM, Gudnason V, Longstreth WT, Launer LJ, Lathrop M, Seshadri S, Tzourio C, Adams HH, Matthews PM, Fornage M, Debette S. Cerebral small vessel disease genomics and its implications across the lifespan. Nat Commun 2020; 11:6285. [PMID: 33293549 PMCID: PMC7722866 DOI: 10.1038/s41467-020-19111-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.
Collapse
Affiliation(s)
- Muralidharan Sargurupremraj
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | - Hideaki Suzuki
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo, Aoba, Sendai, 980-8573, Japan
- Department of Cardiovascular Medicine, Tohoku University Hospital, 1-1, Seiryo, Aoba, Sendai, 980-8574, Japan
- Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
| | - Xueqiu Jian
- University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Tavia E Evans
- Department of Clinical Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | | | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, 8036, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036, Graz, Austria
| | - Lisa R Yanek
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Saskia P Hagenaars
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Rajan B Kumar
- Department of Public Health Sciences, University of California at Davis, Davis, CA, 95616, USA
| | - Erik B van den Akker
- Section of Molecular Epidemiology, Biomedical Sciences, Leiden university Medical Center, 2333 ZA, Leiden, The Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, NL, 2629 HS, USA
- Leiden Computational Biology Centre, Leiden University Medical Centre, 2333 ZA, Leiden, The Netherlands
| | - Rebekah E McWhirter
- Centre for Law and Genetics, Faculty of Law, University of Tasmania, Hobart, TAS, 7005, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Stella Trompet
- Department of Internal Medicine, section of gerontology and geriatrics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | - Yasaman Saba
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, 02215, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Gregory Beaudet
- University of Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
| | - Laurent Petit
- University of Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
| | - Ami Tsuchida
- University of Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
| | - Laure Zago
- University of Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
| | - Sabrina Schilling
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | | | | | - Cora E Lewis
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Neelum T Aggarwal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Maria C Valdés Hernández
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Row Fogo Centre for Ageing and The Brain, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Jeroen van der Grond
- Department of Radiology, Leiden University medical Center, 2333 ZA, Leiden, The Netherlands
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, 17475, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, 17475, Greifswald, Germany
| | - Russell J Thomson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia
- Centre for Research in Mathematics and Data Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Constance Bordes
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | - Quentin Le Grand
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | - Marie-Gabrielle Duperron
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | | | | | - Pamela J Schreiner
- University of Minnesota School of Public Health, Minneapolis, MN, 55455, USA
| | - Denis A Evans
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, 02215, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Marian Beekman
- Section of Molecular Epidemiology, Biomedical Sciences, Leiden university Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Julian Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Meike W Vernooij
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, 17489, Greifswald, Germany
| | - Wiro J Niessen
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Faculty of Applied Sciences, Delft University of Technology, Delft, NL, 2629 HS, USA
| | - Aicha Soumaré
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | - Eric Boerwinkle
- University of Texas Health Science Center at Houston School of Public Health, Houston, TX, 77030, USA
| | - Stephen Sidney
- Kaiser Permanente Division of Research, Oakland, CA, 94612, USA
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gail Davies
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036, Graz, Austria
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Anbupalam Thalamuthu
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Mark A van Buchem
- Row Fogo Centre for Ageing and The Brain, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - R Nick Bryan
- The University of Texas at Austin Dell Medical School, Austin, TX, 78712, USA
| | - Josée Dupuis
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
- Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Mark E Bastin
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036, Graz, Austria
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - David Ames
- National Ageing Research Institute Royal Melbourne Hospital, Parkville, VIC, 3052, Australia
- Academic Unit for Psychiatry of Old Age, University of Melbourne, St George's Hospital, Kew, VIC, 3101, Australia
| | - Alexander Teumer
- Department of Epidemiology, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Department of Internal Medicine B, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Philippe Amouyel
- Inserm U1167, 59000, Lille, France
- Department of Epidemiology and Public Health, Pasteur Institute of Lille, 59000, Lille, France
| | - John B Kwok
- Brain and Mind Centre - The University of Sydney, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Ian J Deary
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036, Graz, Austria
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Peter R Schofield
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
| | - Henry Brodaty
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Dementia Centre for Research Collaboration, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jiyang Jiang
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Kazuya Setoh
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Manabu Nagata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Bruce M Psaty
- Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, 98195, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
- Program in Population and Medical Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Perminder S Sachdev
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
| | - Reinhold Schmidt
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Mpizani, 455 00, Greece
| | - David-Alexandre Trégouët
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | - Mohammad A Ikram
- Department of Epidemiology, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, 95817, USA
| | - Velandai K Srikanth
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Eline P Slagboom
- Section of Molecular Epidemiology, Biomedical Sciences, Leiden university Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Osaka, Japan
| | - Bernard Mazoyer
- University of Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Row Fogo Centre for Ageing and The Brain, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- MRC UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Paul A Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimone, MD, 21205, USA
- General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, 17475, Greifswald, Germany
| | - Helena Schmidt
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria
| | - Cornelia M Van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Vilmundur Gudnason
- Icelandic Heart Association, IS-201, Kópavogur, Iceland
- University of Iceland, Faculty of Medicine, 101, Reykjavík, Iceland
| | - William T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, 98104-2420, USA
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute of Aging, The National Institutes of Health, Bethesda, MD, 20892, USA
- Intramural Research Program/National Institute on Aging/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark Lathrop
- University of McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, 02215, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Christophe Tzourio
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
- CHU de Bordeaux, Pole de santé publique, Service d'information médicale, 33000, Bordeaux, France
| | - Hieab H Adams
- Department of Clinical Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
- UK Dementia Research Institute, London, WC1E 6BT, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
| | - Myriam Fornage
- University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA.
| | - Stéphanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France.
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Neurology, CHU de Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
122
|
Xu Z, Li F, Wang B, Xing D, Pei Y, Yang B, Duan Y. New Insights in Addressing Cerebral Small Vessel Disease: Association With the Deep Medullary Veins. Front Aging Neurosci 2020; 12:597799. [PMID: 33335483 PMCID: PMC7736107 DOI: 10.3389/fnagi.2020.597799] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Objective To assess the suitability of deep medullary vein visibility in susceptibility weighted imaging-magnetic resonance imaging studies as a method for the diagnosis and evaluation of cerebral small vessel disease progression. Methods A total of 92 patients with CSVD were enrolled and baseline clinical and imaging data were reviewed retrospectively. Neuroimaging biomarkers of CSVD including high-grade white matter hyperintensity (HWMH), cerebral microbleed (CMB), enlarged perivascular space (PVS), and lacunar infarct (LI) were identified and CSVD burden was calculated. Cases were grouped accordingly as mild, moderate, or severe. The DMV was divided into six segments according to the regional anatomy. The total DMV score (0-18) was calculated as the sum of the six individual segmental scores, which ranged from 0 to 3, for a semi-quantitative assessment of the DMV based on segmental continuity and visibility. Results The DMV score was independently associated with the presence of HWMH, PVS, and LI (P < 0.05), but not with presence and absence of CMB (P > 0.05). Correlation between the DMV score and the CSVD burden was significant (P < 0.05) [OR 95% C.I., 1.227 (1.096-1.388)]. Conclusion The DMV score was associated with the presence and severity of CSVD.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of Radiology, TongDe Hospital of Zhejiang Province, Hangzhou, China.,Department of Radiology, Center for Neuroimaging, General Hospital of Northern Theater Command, Shenyang, China
| | - Fangfei Li
- Department of Radiology, Center for Neuroimaging, General Hospital of Northern Theater Command, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Dalian Medical University, Shenyang, China
| | - Bing Wang
- Department of Scientific Research, General Hospital of Northern Theater Command, Shenyang, China
| | - Dengxiang Xing
- Center for Medical Data, General Hospital of Northern Theater Command, Shenyang, China
| | - Yusong Pei
- General Hospital of Northern Theater Command Training Base for Graduate, Jinzhou Medical University, Shenyang, China
| | - Benqiang Yang
- Department of Radiology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Duan
- Department of Radiology, Center for Neuroimaging, General Hospital of Northern Theater Command, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Dalian Medical University, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Jinzhou Medical University, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, China Medical University, Shenyang, China
| |
Collapse
|
123
|
Wang F, Hua S, Zhang Y, Yu H, Zhang Z, Zhu J, Liu R, Jiang Z. Association Between Small Vessel Disease Markers, Medial Temporal Lobe Atrophy and Cognitive Impairment After Stroke: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis 2020; 30:105460. [PMID: 33227579 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105460] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Two-thirds of stroke survivors suffer from cognitive impairment, and up to one-third of them progress to dementia. However, the underlying pathogenesis is complex and controversial. Recent evidence has found that cerebral small vessel disease (SVD) markers and the Alzheimer's disease (AD) neuroimaging marker medial temporal lobe atrophy (MTLA), alone or in combination, contribute to the pathogenesis of poststroke cognitive impairment (PSCI). In the present systematic review and meta-analysis, we synthesized proof for these neuroimaging risk factors among stroke patients. MATERIALS AND METHODS PUBMED, MEDLINE, EMBASE and the Cochrane Library were searched for studies investigating imaging predictors of cognitive impairment or dementia following stroke. Meta-analysis was conducted to compute the odds ratios (ORs). RESULTS Thirteen studies were enrolled in the present study, and only ten of them, comprising 2713 stroke patients, were eligible for inclusion in the meta-analysis. MTLA was significantly correlated with PSCI (OR = 1.97, 95% CI: 1.48-2.62, I2 = 0.0%). In addition, white matter hyperintensities (WMH), as a neuroimaging marker of SVD, were associated with PSCI (OR = 1.17, 95% CI: 1.12-1.22, I2 = 0.0%). However, the presence of lacunar infarcts and enlarged perivascular spaces (EPVS) were not associated with the risk of PSCI. CONCLUSIONS The findings of the present study suggest that MTLA and WMH were associated with an increased risk of PSCI.
Collapse
Affiliation(s)
- Furu Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sunyu Hua
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongchang Yu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
124
|
Papanastasiou G, Rodrigues MA, Wang C, Heurling K, Lucatelli C, Salman RAS, Wardlaw JM, van Beek EJR, Thompson G. Pharmacokinetic modelling for the simultaneous assessment of perfusion and 18F-flutemetamol uptake in cerebral amyloid angiopathy using a reduced PET-MR acquisition time: Proof of concept. Neuroimage 2020; 225:117482. [PMID: 33157265 DOI: 10.1016/j.neuroimage.2020.117482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/24/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease associated with perivascular β-amyloid deposition. CAA is also associated with strokes due to lobar intracerebral haemorrhage (ICH). 18F-flutemetamol amyloid ligand PET may improve the early detection of CAA. We performed pharmacokinetic modelling using both full (0-30, 90-120 min) and reduced (30 min) 18F-flutemetamol PET-MR acquisitions, to investigate regional cerebral perfusion and amyloid deposition in ICH patients. METHODS Dynamic18F-flutemetamol PET-MR was performed in a pilot cohort of sixteen ICH participants; eight lobar ICH cases with probable CAA and eight deep ICH patients. A model-based input function (mIF) method was developed for compartmental modelling. mIF 1-tissue (1-TC) and 2-tissue (2-TC) compartmental modelling, reference tissue models and standardized uptake value ratios were assessed in the setting of probable CAA detection. RESULTS The mIF 1-TC model detected perfusion deficits and 18F-flutemetamol uptake in cases with probable CAA versus deep ICH patients, in both full and reduced PET acquisition time (all P < 0.05). In the reduced PET acquisition, mIF 1-TC modelling reached the highest sensitivity and specificity in detecting perfusion deficits (0.87, 0.77) and 18F-flutemetamol uptake (0.83, 0.71) in cases with probable CAA. Overall, 52 and 48 out of the 64 brain areas with 18F-flutemetamol-determined amyloid deposition showed reduced perfusion for 1-TC and 2-TC models, respectively. CONCLUSION Pharmacokinetic (1-TC) modelling using a 30 min PET-MR time frame detected impaired haemodynamics and increased amyloid load in probable CAA. Perfusion deficits and amyloid burden co-existed within cases with CAA, demonstrating a distinct imaging pattern which may have merit in elucidating the pathophysiological process of CAA.
Collapse
Affiliation(s)
- Giorgos Papanastasiou
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Mark A Rodrigues
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Chengjia Wang
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | - Christophe Lucatelli
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | - Joanna M Wardlaw
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Edwin J R van Beek
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Gerard Thompson
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
125
|
Onkenhout L, Appelmans N, Kappelle LJ, Koek D, Exalto L, de Bresser J, Biessels GJ. Cerebral Perfusion and the Burden of Small Vessel Disease in Patients Referred to a Memory Clinic. Cerebrovasc Dis 2020; 49:481-486. [PMID: 33075786 DOI: 10.1159/000510969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/18/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebral small vessel disease (SVD) lesions on MRI are common in patients with cognitive impairment. It has been suggested that cerebral hypoperfusion is involved in the etiology of these lesions. OBJECTIVE The aim of the study was to determine the relationship between cerebral blood flow (CBF) and SVD burden in patients referred to a memory clinic with SVD on MRI. METHOD We included 132 memory clinic patients (mean age 73 ± 10, 56% male) with SVD on MRI. We excluded patients with large non-lacunar cortical infarcts. Global CBF (mL/min per 100 mL of brain tissue) was derived from 2-dimensional phase-contrast MRI focused on the internal carotid arteries and the basilar artery. SVD burden was defined as the sum of (each 1 point): white matter hyperintensities (WMHs) Fazekas 1 or more, lacunes, microbleeds (MBs), or enlarged perivascular spaces (PVS) presence, and each SVD feature separately. Linear regression analyses were performed to study the association between CBF and SVD burden, age- and sex-adjusted. RESULTS Median SVD burden score was 2, 36.4% of patients had MBs, 35.6% lacunar infarcts, 48.4% intermediate to severe enlarged PVS, and 57.6% a WMH Fazekas score 2 or more. Median WMH volume was 21.4 mL (25% quartile: 9.6 mL, 75% quartile: 32.5 mL). Mean CBF ± SD was 44.0 ± 11.9 mL/min per 100 mL brain. There was no relation between CBF and overall SVD burden (CBF difference per burden score point [95% CI]: -0.5 [-2.4; 1.4] mL/min/100 mL brain, p = 0.9). CBF did also not differ according to presence or absence or an high burden of any of the individual SVD features. Moreover, there was no significant relation between WMH volume and CBF (CBF difference per ml increase in WMH [95% CI] -0.6 [-1.5; 0.3] mL/min/100 mL brain p = 0.2). CONCLUSION Global CBF was not related to overall SVD burden or with individual SVD features in this memory clinic cohort, indicating that in this setting these lesions were not primarily due to cerebral hypoperfusion.
Collapse
Affiliation(s)
- Laurien Onkenhout
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,
| | - Nadine Appelmans
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Jaap Kappelle
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dineke Koek
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lieza Exalto
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
126
|
Ganesh A, Barber P, Black SE, Corbett D, Field TS, Frayne R, Hachinski V, Ismail Z, Mai LM, McCreary CR, Sahlas D, Sharma M, Swartz RH, Smith EE. Trial of remote ischaemic preconditioning in vascular cognitive impairment (TRIC-VCI): protocol. BMJ Open 2020; 10:e040466. [PMID: 33055122 PMCID: PMC7559076 DOI: 10.1136/bmjopen-2020-040466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Cerebral small vessel disease (cSVD) accounts for 20%-25% of strokes and is the most common cause of vascular cognitive impairment (VCI). In an animal VCI model, inducing brief periods of limb ischaemia-reperfusion reduces subsequent ischaemic brain injury with remote and local protective effects, with hindlimb remote ischaemic conditioning (RIC) improving cerebral blood flow, decreasing white-matter injury and improving cognition. Small human trials suggest RIC is safe and may prevent recurrent strokes. It remains unclear what doses of chronic daily RIC are tolerable and safe, whether effects persist after treatment cessation, and what parameters are optimal for treatment response. METHODS AND ANALYSIS This prospective, open-label, randomised controlled trial (RCT) with blinded end point assessment and run-in period, will recruit 24 participants, randomised to one of two RIC intensity groups: one arm treated once daily or one arm twice daily for 30 consecutive days. RIC will consistent of 4 cycles of blood pressure cuff inflation to 200 mm Hg for 5 min followed by 5 min deflation (total 35 min). Selection criteria include: age 60-85 years, evidence of cSVD on brain CT/MRI, Montreal Cognitive Assessment (MoCA) score 13-24 and preserved basic activities of living. Outcomes will be assessed at 30 days and 90 days (60 days after ceasing treatment). The primary outcome is adherence (completing ≥80% of sessions). Secondary safety/tolerability outcomes include the per cent of sessions completed and pain/discomfort scores from patient diaries. Efficacy outcomes include changes in cerebral blood flow (per arterial spin-label MRI), white-matter hyperintensity volume, diffusion tensor imaging, MoCA and Trail-Making tests. ETHICS AND DISSEMINATION Research Ethics Board approval has been obtained. The results will provide information on feasibility, dose, adherence, tolerability and outcome measures that will help design a phase IIb RCT of RIC, with the potential to prevent VCI. Results will be disseminated through peer-reviewed publications, organisations and meetings. TRIAL REGISTRATION NUMBER NCT04109963.
Collapse
Affiliation(s)
- Aravind Ganesh
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Philip Barber
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Sandra E Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Dale Corbett
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Thalia S Field
- Department of Medicine (Neurology), University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard Frayne
- Seaman Family MR Centre, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Zahinoor Ismail
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Lauren M Mai
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Cheryl R McCreary
- Department of Clinical Neurosciences and Radiology, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - Demetrios Sahlas
- Department of Medicine (Neurology), McMaster University Population Health Research Institute, Hamilton, Ontario, Canada
| | - Mukul Sharma
- Department of Medicine (Neurology), McMaster University Population Health Research Institute, Hamilton, Ontario, Canada
| | - Richard H Swartz
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Eric E Smith
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
127
|
Marchetta P, Savitska D, Kübler A, Asola G, Manthey M, Möhrle D, Schimmang T, Rüttiger L, Knipper M, Singer W. Age-Dependent Auditory Processing Deficits after Cochlear Synaptopathy Depend on Auditory Nerve Latency and the Ability of the Brain to Recruit LTP/BDNF. Brain Sci 2020; 10:brainsci10100710. [PMID: 33036168 PMCID: PMC7601375 DOI: 10.3390/brainsci10100710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Age-related decoupling of auditory nerve fibers from hair cells (cochlear synaptopathy) has been linked to temporal processing deficits and impaired speech recognition performance. The link between both is elusive. We have previously demonstrated that cochlear synaptopathy, if centrally compensated through enhanced input/output function (neural gain), can prevent age-dependent temporal discrimination loss. It was also found that central neural gain after acoustic trauma was linked to hippocampal long-term potentiation (LTP) and upregulation of brain-derived neurotrophic factor (BDNF). Using middle-aged and old BDNF-live-exon-visualization (BLEV) reporter mice we analyzed the specific recruitment of LTP and the activity-dependent usage of Bdnf exon-IV and -VI promoters relative to cochlear synaptopathy and central (temporal) processing. For both groups, specimens with higher or lower ability to centrally compensate diminished auditory nerve activity were found. Strikingly, low compensating mouse groups differed from high compensators by prolonged auditory nerve latency. Moreover, low compensators exhibited attenuated responses to amplitude-modulated tones, and a reduction of hippocampal LTP and Bdnf transcript levels in comparison to high compensators. These results suggest that latency of auditory nerve processing, recruitment of hippocampal LTP, and Bdnf transcription, are key factors for age-dependent auditory processing deficits, rather than cochlear synaptopathy or aging per se.
Collapse
Affiliation(s)
- Philine Marchetta
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Daria Savitska
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Angelika Kübler
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Giulia Asola
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Marie Manthey
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Dorit Möhrle
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain;
| | - Lukas Rüttiger
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Marlies Knipper
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
- Correspondence: ; Tel.: +49-(0)7071-2988194; Fax: +49-(0)7071-294950
| | - Wibke Singer
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| |
Collapse
|
128
|
Stringer MS, Lee H, Huuskonen MT, MacIntosh BJ, Brown R, Montagne A, Atwi S, Ramirez J, Jansen MA, Marshall I, Black SE, Zlokovic BV, Benveniste H, Wardlaw JM. A Review of Translational Magnetic Resonance Imaging in Human and Rodent Experimental Models of Small Vessel Disease. Transl Stroke Res 2020; 12:15-30. [PMID: 32936435 PMCID: PMC7803876 DOI: 10.1007/s12975-020-00843-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Cerebral small vessel disease (SVD) is a major health burden, yet the pathophysiology remains poorly understood with no effective treatment. Since much of SVD develops silently and insidiously, non-invasive neuroimaging such as MRI is fundamental to detecting and understanding SVD in humans. Several relevant SVD rodent models are established for which MRI can monitor in vivo changes over time prior to histological examination. Here, we critically review the MRI methods pertaining to salient rodent models and evaluate synergies with human SVD MRI methods. We found few relevant publications, but argue there is considerable scope for greater use of MRI in rodent models, and opportunities for harmonisation of the rodent-human methods to increase the translational potential of models to understand SVD in humans. We summarise current MR techniques used in SVD research, provide recommendations and examples and highlight practicalities for use of MRI SVD imaging protocols in pre-selected, relevant rodent models.
Collapse
Affiliation(s)
- Michael S Stringer
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Mikko T Huuskonen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Rosalind Brown
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Atwi
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joel Ramirez
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maurits A Jansen
- Edinburgh Preclinical Imaging, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ian Marshall
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Sandra E Black
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
129
|
Schreiber S, DiFrancesco JC. Impaired occipital cerebrovascular reactivity as a biomarker for vascular β-amyloid. Neurology 2020; 95:415-416. [DOI: 10.1212/wnl.0000000000010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
130
|
Ferro DA, Mutsaerts HJ, Hilal S, Kuijf HJ, Petersen ET, Petr J, van Veluw SJ, Venketasubramanian N, Yeow TB, Biessels GJ, Chen C. Cortical microinfarcts in memory clinic patients are associated with reduced cerebral perfusion. J Cereb Blood Flow Metab 2020; 40:1869-1878. [PMID: 31558107 PMCID: PMC7430096 DOI: 10.1177/0271678x19877403] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cerebral cortical microinfarcts (CMIs) are small ischemic lesions associated with cognitive impairment and dementia. CMIs are frequently observed in cortical watershed areas suggesting that hypoperfusion contributes to their development. We investigated if presence of CMIs was related to a decrease in cerebral perfusion, globally or specifically in cortex surrounding CMIs. In 181 memory clinic patients (mean age 72 ± 9 years, 51% male), CMI presence was rated on 3-T magnetic resonance imaging (MRI). Cerebral perfusion was assessed from cortical gray matter of the anterior circulation using pseudo-continuous arterial spin labeling parameters cerebral blood flow (CBF) (perfusion in mL blood/100 g tissue/min) and spatial coefficient of variation (CoV) (reflecting arterial transit time (ATT)). Patients with CMIs had a 12% lower CBF (beta = -.20) and 22% higher spatial CoV (beta = .20) (both p < .05) without a specific regional pattern on voxel-based CBF analysis. CBF in a 2 cm region-of-interest around the CMIs did not differ from CBF in a reference zone in the contralateral hemisphere. These findings show that CMIs in memory clinic patients are primarily related to global reductions in cerebral perfusion, thus shedding new light on the etiology of vascular brain injury in dementia.
Collapse
Affiliation(s)
- Doeschka A Ferro
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Henri Jjm Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saima Hilal
- Department of Radiology and Nuclear Medicine & Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Esben T Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Jan Petr
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Susanne J van Veluw
- Department of Neurology, J.P.K. Stroke Research Center, Massachusetts General Hospital, Boston, USA
| | | | | | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
131
|
Cardiorespiratory fitness diminishes the effects of age on white matter hyperintensity volume. PLoS One 2020; 15:e0236986. [PMID: 32866198 PMCID: PMC7458283 DOI: 10.1371/journal.pone.0236986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
White matter hyperintensities (WMHs) are among the most commonly observed marker of cerebrovascular disease. Age is a key risk factor for WMH development. Cardiorespiratory fitness (CRF) is associated with increased vessel compliance, but it remains unknown if high CRF affects WMH volume. This study explored the effects of CRF on WMH volume in community-dwelling older adults. We further tested the possibility of an interaction between CRF and age on WMH volume. Participants were 76 adults between the ages of 59 and 77 (mean age = 65.36 years, SD = 3.92) who underwent a maximal graded exercise test and structural brain imaging. Results indicated that age was a predictor of WMH volume (beta = .32, p = .015). However, an age-by-CRF interaction was observed such that higher CRF was associated with lower WMH volume in older participants (beta = -.25, p = .040). Our findings suggest that higher levels of aerobic fitness may protect cerebrovascular health in older adults.
Collapse
|
132
|
Abstract
OBJECTIVES Mild traumatic brain injury (mTBI) is a major public health concern that has generated considerable scientific interest as a complex brain disorder that is associated with long-term neural consequences. This article reviews the literature on cerebrovascular dysfunction in chronic mTBI, with a focus on the long-term neural implications of such dysfunction. METHODS AND RESULTS Evidence is presented from human neuroimaging studies to support cerebrovascular involvement in long-term mTBI pathology. In addition, a pathway between mTBI and neurodegeneration via cerebrovascular dysfunction is explored. CONCLUSIONS Future work focused on identifying the neurobiological mechanisms underlying the neural consequences of mTBI will be important to guide therapeutic interventions and long-term care for patients with mTBI.
Collapse
|
133
|
Goldstein BI, Baune BT, Bond DJ, Chen P, Eyler L, Fagiolini A, Gomes F, Hajek T, Hatch J, McElroy SL, McIntyre RS, Prieto M, Sylvia LG, Tsai S, Kcomt A, Fiedorowicz JG. Call to action regarding the vascular-bipolar link: A report from the Vascular Task Force of the International Society for Bipolar Disorders. Bipolar Disord 2020; 22:440-460. [PMID: 32356562 PMCID: PMC7522687 DOI: 10.1111/bdi.12921] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The association of bipolar disorder with early and excessive cardiovascular disease was identified over a century ago. Nonetheless, the vascular-bipolar link remains underrecognized, particularly with regard to how this link can contribute to our understanding of pathogenesis and treatment. METHODS An international group of experts completed a selective review of the literature, distilling core themes, identifying limitations and gaps in the literature, and highlighting future directions to bridge these gaps. RESULTS The association between bipolar disorder and vascular disease is large in magnitude, consistent across studies, and independent of confounding variables where assessed. The vascular-bipolar link is multifactorial and is difficult to study given the latency between the onset of bipolar disorder, often in adolescence or early adulthood, and subsequent vascular disease, which usually occurs decades later. As a result, studies have often focused on risk factors for vascular disease or intermediate phenotypes, such as structural and functional vascular imaging measures. There is interest in identifying the most relevant mediators of this relationship, including lifestyle (eg, smoking, diet, exercise), medications, and systemic biological mediators (eg, inflammation). Nonetheless, there is a paucity of treatment studies that deliberately engage these mediators, and thus far no treatment studies have focused on engaging vascular imaging targets. CONCLUSIONS Further research focused on the vascular-bipolar link holds promise for gleaning insights regarding the underlying causes of bipolar disorder, identifying novel treatment approaches, and mitigating disparities in cardiovascular outcomes for people with bipolar disorder.
Collapse
Affiliation(s)
- Benjamin I. Goldstein
- Centre for Youth Bipolar DisorderSunnybrook Health Sciences CentreTorontoONCanada,Departments of Psychiatry & PharmacologyFaculty of MedicineUniversity of TorontoTorontoONCanada
| | - Bernhard T. Baune
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany,Department of PsychiatryMelbourne Medical SchoolThe University of MelbourneMelbourneVICAustralia,The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - David J. Bond
- Department of Psychiatry and Behavioral ScienceUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Pao‐Huan Chen
- Department of PsychiatryTaipei Medical University HospitalTaipeiTaiwan,Department of PsychiatrySchool of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Lisa Eyler
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| | | | - Fabiano Gomes
- Department of PsychiatryQueen’s University School of MedicineKingstonONCanada
| | - Tomas Hajek
- Department of PsychiatryDalhousie UniversityHalifaxNSCanada,National Institute of Mental HealthKlecanyCzech Republic
| | - Jessica Hatch
- Centre for Youth Bipolar DisorderSunnybrook Health Sciences CentreTorontoONCanada,Departments of Psychiatry & PharmacologyFaculty of MedicineUniversity of TorontoTorontoONCanada
| | - Susan L. McElroy
- Department of Psychiatry and Behavioral NeuroscienceUniversity of Cincinnati College of MedicineCincinnatiOHUSA,Lindner Center of HOPEMasonOHUSA
| | - Roger S. McIntyre
- Departments of Psychiatry & PharmacologyFaculty of MedicineUniversity of TorontoTorontoONCanada,Mood Disorders Psychopharmacology UnitUniversity Health NetworkTorontoONCanada
| | - Miguel Prieto
- Department of PsychiatryFaculty of MedicineUniversidad de los AndesSantiagoChile,Mental Health ServiceClínica Universidad de los AndesSantiagoChile,Department of Psychiatry and PsychologyMayo Clinic College of Medicine and ScienceRochesterMNUSA
| | - Louisa G. Sylvia
- Department of PsychiatryMassachusetts General HospitalBostonMAUSA,Department of PsychiatryHarvard Medical SchoolCambridgeMAUSA
| | - Shang‐Ying Tsai
- Department of PsychiatryTaipei Medical University HospitalTaipeiTaiwan,Department of PsychiatrySchool of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Andrew Kcomt
- Hope+Me—Mood Disorders Association of OntarioTorontoONCanada
| | - Jess G. Fiedorowicz
- Departments of Psychiatry, Internal Medicine, & EpidemiologyCarver College of MedicineUniversity of IowaIowa CityIAUSA
| |
Collapse
|
134
|
Santisteban MM, Ahn SJ, Lane D, Faraco G, Garcia-Bonilla L, Racchumi G, Poon C, Schaeffer S, Segarra SG, Körbelin J, Anrather J, Iadecola C. Endothelium-Macrophage Crosstalk Mediates Blood-Brain Barrier Dysfunction in Hypertension. Hypertension 2020; 76:795-807. [PMID: 32654560 DOI: 10.1161/hypertensionaha.120.15581] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertension is a leading cause of stroke and dementia, effects attributed to disrupting delivery of blood flow to the brain. Hypertension also alters the blood-brain barrier (BBB), a critical component of brain health. Although endothelial cells are ultimately responsible for the BBB, the development and maintenance of the barrier properties depend on the interaction with other vascular-associated cells. However, it remains unclear if BBB disruption in hypertension requires cooperative interaction with other cells. Perivascular macrophages (PVM), innate immune cells closely associated with cerebral microvessels, have emerged as major contributors to neurovascular dysfunction. Using 2-photon microscopy in vivo and electron microscopy in a mouse model of Ang II (angiotensin II) hypertension, we found that the vascular segments most susceptible to increased BBB permeability are arterioles and venules >10 µm and not capillaries. Brain macrophage depletion with clodronate attenuates, but does not abolish, the increased BBB permeability in these arterioles where PVM are located. Deletion of AT1R (Ang II type-1 receptors) in PVM using bone marrow chimeras partially attenuated the BBB dysfunction through the free radical-producing enzyme Nox2. In contrast, downregulation of AT1R in cerebral endothelial cells using a viral gene transfer-based approach prevented the BBB disruption completely. The results indicate that while endothelial AT1R, mainly in arterioles and venules, initiate the BBB disruption in hypertension, PVM are required for the full expression of the dysfunction. The findings unveil a previously unappreciated contribution of resident brain macrophages to increased BBB permeability of hypertension and identify PVM as a putative therapeutic target in diseases associated with BBB dysfunction.
Collapse
Affiliation(s)
- Monica M Santisteban
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Sung Ji Ahn
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Diane Lane
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Giuseppe Faraco
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Lidia Garcia-Bonilla
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Gianfranco Racchumi
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Carrie Poon
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Samantha Schaeffer
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Steven G Segarra
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.K.)
| | - Josef Anrather
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Costantino Iadecola
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| |
Collapse
|
135
|
Cremers LG, Wolters FJ, de Groot M, Ikram MK, van der Lugt A, Niessen WJ, Vernooij MW, Ikram MA. Structural disconnectivity and the risk of dementia in the general population. Neurology 2020; 95:e1528-e1537. [DOI: 10.1212/wnl.0000000000010231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/18/2020] [Indexed: 11/15/2022] Open
Abstract
ObjectiveThe disconnectivity hypothesis postulates that partial loss of connecting white matter fibers between brain regions contributes to the development of dementia. Using diffusion MRI to quantify global and tract-specific white matter microstructural integrity, we tested this hypothesis in a longitudinal population-based study.MethodsGlobal and tract-specific fractional anisotropy (FA) and mean diffusivity (MD) were obtained in 4,415 people without dementia (mean age 63.9 years, 55.0% women) from the prospective population-based Rotterdam Study with brain MRI between 2005 and 2011. We modeled the association of these diffusion measures with risk of dementia (follow-up until 2016) and with changes on repeated cognitive assessment after on average 5.4 years, adjusting for age, sex, education, macrostructural MRI markers, depressive symptoms, cardiovascular risk factors, and APOE genotype.ResultsDuring a median follow-up of 6.8 years, 101 participants had incident dementia, of whom 83 had clinical Alzheimer disease (AD). Lower global values of FA and higher values of MD were associated with an increased risk of dementia (adjusted hazard ratio [95% confidence interval (CI)] per SD increase for MD 1.79 [1.44–2.23] and FA 0.65 [0.52–0.80]). Similarly, lower global values of FA and higher values of MD related to more cognitive decline in people without dementia (difference in global cognition per SD increase in MD [95% CI] was −0.04 [−0.07 to −0.01]). Associations were most profound in the projection, association, and limbic system tracts.ConclusionsStructural disconnectivity is associated with an increased risk of dementia and more pronounced cognitive decline in the general population.
Collapse
|
136
|
Ni L, Zhou F, Qing Z, Zhang X, Li M, Zhu B, Zhang B, Xu Y. The Asymmetry of White Matter Hyperintensity Burden Between Hemispheres Is Associated With Intracranial Atherosclerotic Plaque Enhancement Grade. Front Aging Neurosci 2020; 12:163. [PMID: 32655391 PMCID: PMC7324557 DOI: 10.3389/fnagi.2020.00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/12/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose The contribution of intracranial atherosclerotic stenosis (ICAS) to the development of white matter hyperintensities (WMHs) has not been fully elucidated. We aimed to retrospectively assess the relationship between WMH burden and unilateral ICAS by combined examination of lumen stenosis, plaque enhancement, and cerebral perfusion. Materials and methods A cross-sectional study of 41 patients with symptomatic unilateral ICAS (mean age 57 ± 10 years; 26 males) was conducted. Detailed clinical data, including vascular risk factors, were obtained. WMH volume was derived from 3D-fluid-attenuated inversion recovery (3D-FLAIR) and was assessed by using a validated semi-automated protocol. Lumen stenosis, plaque enhancement, and cerebral perfusion (assessed on time-to-peak parameter using the Alberta Stroke Program Early CT score (TTP-ASPECTS) scale) were evaluated. The WMH volumes of peri-ventricular (PWMH) and deep (DWMH) white matter were calculated separately and compared between hemispheres. Associations between WMH volume (inter-hemispheric volume difference, ipsilateral and contralateral to the ICAS site separately), unilateral ICAS imaging metrics, and vascular risk factors were assessed by using linear regression. Results The DWMH volume ipsilateral to the ICAS site (ipsilateral DWMH volume) was significantly greater than that of the contralateral site (P < 0.001), while the PWMH volume difference between hemispheres did not reach statistical significance. The inter-hemispheric DWMH volume difference was significantly associated with a higher plaque enhancement grade (β = 0.436, P = 0.005) and inversely associated with cerebral hypoperfusion (lower TTP-ASPECTS) (β = −0.613, P < 0.001). In the between-subject multivariable regression analysis, while older age (β = 0.323, P = 0.025), hypoperfusion (β = −0.394, P = 0.007), and hypertension (β = 0.378, P = 0.011) were independently associated with ipsilateral DWMH volume, plaque enhancement did not show an association with ipsilateral DWMH volume. The association between ipsilateral DWMH volume and lumen stenosis approached statistical significance (β = 0.274, P = 0.084). Conclusion The DWMH was attributed to chronic hypoperfusion secondary to atherosclerotic stenosis. The association between the asymmetry of deep white matter lesions and plaque enhancement might suggest that increased deep white matter lesions are those ischemic lesions, which are more prone to the development of stroke.
Collapse
Affiliation(s)
- Ling Ni
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fei Zhou
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhao Qing
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ming Li
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bin Zhu
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
137
|
Yu C, Lu W, Qiu J, Wang F, Li J, Wang L. Alterations of the Whole Cerebral Blood Flow in Patients With Different Total Cerebral Small Vessel Disease Burden. Front Aging Neurosci 2020; 12:175. [PMID: 32655393 PMCID: PMC7324936 DOI: 10.3389/fnagi.2020.00175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Cerebral small vessel disease (CSVD) is a common age-related vascular disease of the brain associated with slowly accumulating tissue damage. At present, total CSVD burden score is a commonly used method to evaluate the severity of the disease. Purpose To observe whether global and regional cerebral perfusion is related to total CSVD score and to explore global and regional cerebral blood flow (CBF) changes in patients with different degrees of CSVD. Methods We collected 130 subjects with different total burden score of CSVD (0 point: 33 subjects, 1 point: 39 subjects, 2 points: 24 subjects, 3 points: 24 subjects, 4 points: 10 subjects). Total CSVD burden score was evaluated by clinically routine sequences (T2WI, T2-FLAIR, T1WI, DWI, and SWAN sequence). Global and regional CBF were calculated and correlation analysis was used to investigate the relationship between total CSVD score and CBF of the whole brain and several brain regions. Results The analysis results showed that there was a negative correlation between total CSVD burden score and global CBF (r = −0.33, p = 0.001). Total CSVD burden score also had moderately negative correlations with CBF of almost all the brain regions. Conclusion CSVD is a disease that affects the whole brain. With the increase of total CSVD burden score, the global and regional CBF decreased. The CSVD total burden score could be used to evaluate the overall condition of brain perfusion.
Collapse
Affiliation(s)
- Chunyan Yu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Weizhao Lu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Feng Wang
- The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | | | - Liru Wang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| |
Collapse
|
138
|
Cerebral macro- and microcirculatory blood flow dynamics in successfully treated chronic hypertensive patients with and without white mater lesions. Sci Rep 2020; 10:9213. [PMID: 32514031 PMCID: PMC7280202 DOI: 10.1038/s41598-020-66317-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/18/2020] [Indexed: 01/14/2023] Open
Abstract
The mechanisms of high blood pressure (HBP) -related brain pathology progression remain relatively unclear. We investigated whether lowering BP in chronic HBP patients normalizes cerebral perfusion dynamics at resistance vessel and capillary levels. Sixty-seven patients with HBP and 49 age- and sex-matched healthy controls underwent simultaneous recordings of middle cerebral artery blood flow velocity (CBFV), BP, and end-tidal CO2 concentration. Thirty-four controls and 28 patients underwent additional near-infrared spectroscopy recordings (oxygenated [O2Hb] and deoxygenated [HHb] hemoglobin). Degree of microcirculatory white matter lesions was graded by Fazekas scale. Dynamic cerebral autoregulation (dCA) was assessed by transfer function analysis. BP was successfully lowered (patients = 89 ± 15 mm Hg, controls = 87 ± 17), but cerebrovascular resistance was higher in BP patients (p < 0.05). BP-CBFV phase was lower in very low frequency (VLF) (left/right: 48 ± 20°/44 ± 17; controls: 61 ± 20/60 ± 21; p < 0.001) and low frequency (LF) (34 ± 14/35 ± 14; controls: 48 ± 20/44 ± 17; p < 0.05) ranges. Gain was higher in VLF range (in %/ mm Hg 0.56 ± 0.44/0.59 ± 0.49; controls: 0.32 ± 0.29/0.34 ± 0.32; p ≤ 0.005). BP-CBFV phase and gain did not differ across Fazekas groups. Across all patients, the capillary phases and gains (CBFV-[O2Hb], CBFV-[HHb]) were comparable to controls. Successfully treated chronic HBP results in normal brain capillary hemodynamics while the resistance vessel state is disturbed (phase decrease, gain increase).
Collapse
|
139
|
Bernal J, Valdés-Hernández M, Escudero J, Sakka E, Armitage PA, Makin S, Touyz RM, Wardlaw JM. Examining the Relationship between Semiquantitative Methods Analysing Concentration-Time and Enhancement-Time Curves from Dynamic-Contrast Enhanced Magnetic Resonance Imaging and Cerebrovascular Dysfunction in Small Vessel Disease. J Imaging 2020; 6:43. [PMID: 34460589 PMCID: PMC8321077 DOI: 10.3390/jimaging6060043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to examine the distribution of an intravenous contrast agent within the brain. Computational methods have been devised to analyse the contrast uptake/washout over time as reflections of cerebrovascular dysfunction. However, there have been few direct comparisons of their relative strengths and weaknesses. In this paper, we compare five semiquantitative methods comprising the slope and area under the enhancement-time curve, the slope and area under the concentration-time curve ( S l o p e C o n and A U C C o n ), and changes in the power spectrum over time. We studied them in cerebrospinal fluid, normal tissues, stroke lesions, and white matter hyperintensities (WMH) using DCE-MRI scans from a cohort of patients with small vessel disease (SVD) who presented mild stroke. The total SVD score was associated with A U C C o n in WMH ( p < 0.05 ), but not with the other four methods. In WMH, we found higher A U C C o n was associated with younger age ( p < 0.001 ) and fewer WMH ( p < 0.001 ), whereas S l o p e C o n increased with younger age ( p > 0.05 ) and WMH burden ( p > 0.05 ). Our results show the potential of different measures extracted from concentration-time curves extracted from the same DCE examination to demonstrate cerebrovascular dysfunction better than those extracted from enhancement-time curves.
Collapse
Affiliation(s)
- Jose Bernal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (E.S.); (J.M.W.)
| | - María Valdés-Hernández
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (E.S.); (J.M.W.)
| | - Javier Escudero
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK;
| | - Eleni Sakka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (E.S.); (J.M.W.)
| | - Paul A. Armitage
- Academic Unit of Radiology, University of Sheffield, Sheffield S10 2JF, UK;
| | - Stephen Makin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK; (S.M.); (R.M.T.)
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK; (S.M.); (R.M.T.)
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (E.S.); (J.M.W.)
| |
Collapse
|
140
|
Próspero AG, Soares GA, Moretto GM, Quini CC, Bakuzis AF, de Arruda Miranda JR. Dynamic cerebral perfusion parameters and magnetic nanoparticle accumulation assessed by AC biosusceptometry. BIOMED ENG-BIOMED TE 2020; 65:343-351. [PMID: 31714878 DOI: 10.1515/bmt-2019-0089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/30/2019] [Indexed: 01/25/2023]
Abstract
Cerebral blood flow (CBF) assessment is mainly performed by scintigraphy, computed tomography (CT) and magnetic resonance imaging (MRI). New approaches to assess the CBF through the passage of magnetic nanoparticles (MNPs) to blood-brain barrier (BBB) are convenient to help decrease the use of ionizing radiation and unleash the required MRI schedule in clinics. The development of nanomedicine and new biomedical devices, such as the magnetic particle imaging (MPI), enabled new approaches to study dynamic brain blood flow. In this paper, we employed MNPs and the alternating current biosusceptometry (ACB) to study the brain perfusion. We utilized the mannitol, before the MNPs, injection to modulate the BBB permeability and study its effects on the circulation time of the MNPs in the brain of rats. Also, we characterized a new ACB sensor to increase the systems' applicability to study the MNPs' accumulation, especially in the animals' brain. Our data showed that the injection of mannitol increased the circulation time of MNPs in the brain. Also, the mannitol increased the accumulation of MNPs in the brain. This paper suggests the use of the ACB as a tool to study brain perfusion and accumulation of MNPs in studies of new nano agents focused on the brain diagnostics and treatment.
Collapse
Affiliation(s)
- André Gonçalves Próspero
- Department of Physics and Biophysics, UNESP, São Paulo State University, Biosciences Institute of Botucatu, Prof. Antonio Celso Wagner Zanin Street, 18618-689 Botucatu, Brazil
| | - Guilherme Augusto Soares
- Department of Physics and Biophysics, UNESP, São Paulo State University, Biosciences Institute of Botucatu, Botucatu, Brazil
| | - Gustavo Morlin Moretto
- Department of Physics and Biophysics, UNESP, São Paulo State University, Biosciences Institute of Botucatu, Botucatu, Brazil
| | - Caio C Quini
- Department of Physics and Biophysics, UNESP, São Paulo State University, Biosciences Institute of Botucatu, Botucatu, Brazil
| | | | - José Ricardo de Arruda Miranda
- Department of Physics and Biophysics, UNESP, São Paulo State University, Biosciences Institute of Botucatu, Botucatu, Brazil
| |
Collapse
|
141
|
de la Torre JC. Hemodynamic Instability in Heart Failure Intensifies Age-Dependent Cognitive Decline. J Alzheimers Dis 2020; 76:63-84. [PMID: 32444552 DOI: 10.3233/jad-200296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This review attempts to examine two key elements in the evolution of cognitive impairment in the elderly who develop heart failure. First, major left side heart parts can structurally and functionally deteriorate from aging wear and tear to provoke hemodynamic instability where heart failure worsens or is initiated; second, heart failure is a major inducer of cognitive impairment and Alzheimer's disease in the elderly. In heart failure, when the left ventricular myocardium of an elderly person does not properly contract, it cannot pump out adequate blood to the brain, raising the risk of cognitive impairment due to the intensification of chronic brain hypoperfusion. Chronic brain hypoperfusion originates from chronically reduced cardiac output which progresses as heart failure worsens. Other left ventricular heart parts, including atrium, valves, myocardium, and aorta can contribute to the physiological shortfall of cardiac output. It follows that hemodynamic instability and perfusion changes occurring from the aging heart's blood pumping deficiency will, in time, damage vulnerable brain cells linked to specific cognitive regulatory sites, diminishing neuronal energy metabolism to a level where progressive cognitive impairment is the outcome. Could cognitive impairment progress be reversed with a heart transplant? Evidence is presented detailing the errant hemodynamic pathways leading to cognitive impairment during aging as an offshoot of inefficient structural and functional heart parts and their contribution to heart failure.
Collapse
Affiliation(s)
- Jack C de la Torre
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.,University of Valencia, Valencia, Spain
| |
Collapse
|
142
|
Blair GW, Thrippleton MJ, Shi Y, Hamilton I, Stringer M, Chappell F, Dickie DA, Andrews P, Marshall I, Doubal FN, Wardlaw JM. Intracranial hemodynamic relationships in patients with cerebral small vessel disease. Neurology 2020; 94:e2258-e2269. [PMID: 32366534 PMCID: PMC7357294 DOI: 10.1212/wnl.0000000000009483] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Objective To investigate cerebrovascular reactivity (CVR), blood flow, vascular and CSF pulsatility, and their independent relationship with cerebral small vessel disease (SVD) features in patients with minor ischemic stroke and MRI evidence of SVD. Methods We recruited patients with minor ischemic stroke and assessed CVR using blood oxygen level–dependent MRI during a hypercapnic challenge, cerebral blood flow (CBF), vascular and CSF pulsatility using phase-contrast MRI, and structural magnetic resonance brain imaging to quantify white matter hyperintensities (WMHs) and perivascular spaces (PVSs). We used multiple regression to identify parameters associated with SVD features, controlling for patient characteristics. Results Fifty-three of 60 patients completed the study with a full data set (age 68.0% ± 8.8 years, 74% male, 75% hypertensive). After controlling for age, sex, and systolic blood pressure, lower white matter CVR was associated with higher WMH volume (−0.01%/mm Hg per log10 increase in WMH volume, p = 0.02), basal ganglia PVS (−0.01%/mm Hg per point increase in the PVS score, p = 0.02), and higher venous pulsatility (superior sagittal sinus −0.03%/mm Hg, p = 0.02, per unit increase in the pulsatility index) but not with CBF (p = 0.58). Lower foramen magnum CSF stroke volume was associated with worse white matter CVR (0.04%/mm Hg per mL increase in stroke volume, p = 0.04) and more severe basal ganglia PVS (p = 0.09). Conclusions Lower CVR, higher venous pulsatility, and lower foramen magnum CSF stroke volume indicate that dynamic vascular dysfunctions underpin PVS dysfunction and WMH development. Further exploration of microvascular dysfunction and CSF dynamics may uncover new mechanisms and intervention targets to reduce SVD lesion development, cognitive decline, and stroke.
Collapse
Affiliation(s)
- Gordon W Blair
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Michael J Thrippleton
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Yulu Shi
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Iona Hamilton
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Michael Stringer
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Francesca Chappell
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - David Alexander Dickie
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Peter Andrews
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Ian Marshall
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Fergus N Doubal
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- From the Brain Research Imaging Centre (G.W.B., M.J.T., Y.S., I.H., M.S., F.C., P.A., I.M., F.N.D., J.M.W.), Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom; UK Dementia Research Institute at The University of Edinburgh (G.W.B., M.J.T., Y.S., I.H., M.S., F.N.D., J.M.W.), Edinburgh Medical School, United Kingdom; Beijing Tiantan Hospital Affiliated to Capital Medical University (Y.S.), China; Institute of Cardiovascular and Medical Sciences (D.A.D.), University of Glasgow, United Kingdom; and Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.W.), University of Edinburgh, United Kingdom.
| |
Collapse
|
143
|
Bertens AS, Foster-Dingley JC, van der Grond J, Moonen JEF, van der Mast RC, Rius Ottenheim N. Lower Blood Pressure, Small-Vessel Disease, and Apathy in Older Persons With Mild Cognitive Deficits. J Am Geriatr Soc 2020; 68:1811-1817. [PMID: 32353168 PMCID: PMC7496130 DOI: 10.1111/jgs.16465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND In older persons, both high and low blood pressure (BP) levels are associated with symptoms of apathy. Population characteristics, such as burden of cerebral small-vessel disease (CSVD), may underlie these apparently contradictory findings. We aimed to explore, in older persons, whether the burden of CSVD affects the association between BP and apathy. DESIGN Cross-sectional study. SETTING Primary care setting, the Netherlands. PARTICIPANTS Community-dwelling older persons (mean age = 80.7 years; SD = 4.1 years) with mild cognitive deficits and using antihypertensive treatment, participating in the baseline measurement of the magnetic resonance imaging substudy (n = 210) of the Discontinuation of Antihypertensive Treatment in the Elderly Study Leiden. MEASUREMENTS During home visits, BP was measured in a standardized way and apathy was assessed with the Apathy Scale (range = 0-42). Stratified linear regression analyses were performed according to the burden of CSVD. A higher burden of CSVD was defined as 2 or more points on a compound CSVD score (range = 0-3 points), defined as presence of white matter hyperintensities (greater than median), any lacunar infarct, and/or two or more microbleeds. RESULTS In the entire population, those with a lower systolic and those with a lower diastolic BP had more symptoms of apathy (β = -.35 [P = .01] and β = -.66 [P = .02], respectively). In older persons with a higher burden of CSVD (n = 50 [24%]), both lower systolic BP (β = -.64, P = .02) and lower diastolic BP (β = -1.6, P = .01) were associated with more symptoms of apathy, whereas no significant association was found between BP and symptoms of apathy in older persons with a lower burden of CSVD (n = 160). CONCLUSIONS Particularly in older persons with a higher burden of CSVD, lower BP was associated with more symptoms of apathy. Adequate BP levels for optimal psychological functioning may vary across older populations with a different burden of CSVD. J Am Geriatr Soc 68:1811-1817, 2020.
Collapse
Affiliation(s)
- Anne Suzanne Bertens
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Justine E F Moonen
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.,AMC Medical Research B.V., Amsterdam, The Netherlands
| | - Roos C van der Mast
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI)-University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
144
|
Du H, Chen C, Ye C, Lin F, Wei J, Xia P, Chen R, Wu S, Yuan Q, Chen H, Xiao Y, Liu N. Association Between Steno-Occlusive Middle Cerebral Artery and Basal Ganglia Perivascular Spaces. Front Neurol 2020; 11:293. [PMID: 32390930 PMCID: PMC7191059 DOI: 10.3389/fneur.2020.00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives: Enlarged perivascular spaces in the basal ganglia (BG-EPVS) share common vascular risk factors with atherosclerosis. However, little is known about the relationship between steno-occlusive middle cerebral artery (MCA) and BG-EPVS. In this cross-sectional study, we aimed to test the hypothesis that severe MCA stenosis or occlusion is associated with increased MRI-visible BG-EPVS. Methods: We retrospectively reviewed 112 patients with a steno-occlusive MCA from Fujian Medical University Union Hospital between January 2014 and December 2018. We rated BG-EPVS, white matter hyperintensities (WMH), and lacunes as markers of cerebral small vessel disease (CSVD) on magnetic resonance image (MRI). The severity of steno-occlusive MCA was assessed by computed tomography angiography (CTA) and was classified into moderate (50-69%), severe (70-99%), and occlusion (100%). We evaluated the association of steno-occlusive MCA for >10 BG-EPVS using logistic regression model adjusted for age, gender, hypertension, MR-visible WMH, and lacunes. We also compared the number of BG-EPVS between the affected side and unaffected side in patients with only unilateral steno-occlusive MCA. Results: In multivariable logistic regression analysis, age (OR = 1.07, 95%CI: 1.03-1.13, p = 0.003), hypertension (OR = 2.77, 95%CI: 1.02-7.51, p = 0.046), severe MCA stenosis (OR = 3.65, 95%CI: 1.12-11.87, p = 0.032), or occlusion (OR = 3.67, 95%CI: 1.20-11.27, p = 0.023) were significantly associated with >10 BG-EPVS. The number of BG-EPVS in the affected side was higher than the unaffected side in patients with severe MCA stenosis (12 [9-14] vs. 8 [6-11], p = 0.001) or occlusion (11 [7-14] vs. 8 [5-11], p = 0.028). Conclusions: BG-EPVS were more prevalent in patients with severe MCA atherosclerosis. Our findings suggest a biological link between severe steno-occlusive MCA and increased BG-EPVS. These results need confirmation in prospective studies.
Collapse
Affiliation(s)
- Houwei Du
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chao Chen
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Neurology, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Chengbin Ye
- Department of Radiology, The People's Hospital of Fujian Traditional Chinese Medicine University, Fuzhou, China
| | - Feifei Lin
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jin Wei
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China.,School of Health Sciences, College of Health and Medicine, University of Tasmania, Newham, VIC, Australia
| | - Pincang Xia
- Department of STDs and HIV/AIDS Control and Prevention, Fujian Province Center for Disease Control and Prevention, Fuzhou, China
| | - Ronghua Chen
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sangru Wu
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qilin Yuan
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hongbin Chen
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingchun Xiao
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Stroke Research Center, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
145
|
Caballero MÁA, Song Z, Rubinski A, Duering M, Dichgans M, Park DC, Ewers M. Age‐dependent amyloid deposition is associated with white matter alterations in cognitively normal adults during the adult life span. Alzheimers Dement 2020; 16:651-661. [DOI: 10.1002/alz.12062] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
Affiliation(s)
| | - Zhuang Song
- Center for Vital LongevityUniversity of Texas at Dallas Dallas Texas
| | - Anna Rubinski
- Institute for Stroke and Dementia ResearchUniversity HospitalLMU Munich Munich Germany
| | - Marco Duering
- Institute for Stroke and Dementia ResearchUniversity HospitalLMU Munich Munich Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia ResearchUniversity HospitalLMU Munich Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | - Denise C. Park
- Center for Vital LongevityUniversity of Texas at Dallas Dallas Texas
| | - Michael Ewers
- Institute for Stroke and Dementia ResearchUniversity HospitalLMU Munich Munich Germany
| |
Collapse
|
146
|
Abstract
Objective: Whether cerebrovascular regulation is different in patients with controlled high blood pressure (HBP) with and without small vessel disease (SVD). Methods: Sixty-seven healthy controls (mean age ± SD, 45 ± 16 years; 30 women, 37 men) and 40 patients (mean age, 64 ± 13 years; 14 women, 26 men) with HBP and different stages of SVD, underwent simultaneous recordings of the spontaneous fluctuations of BP, blood flow velocity (CBFV) in both middle cerebral arteries (MCA), and of end-tidal CO2 (ETCO2). Coherence and transfer function gain and phase between BP and CBFV were assessed in the frequency ranges of VLF (0.02–0.07 Hz), low frequency (0.07–0.15), and high frequency (>0.15). BP SD indicated BP variability (BPV). Results: In controls (BP, 86 ± 13 mmHg; ETCO2, 39 ± 4 mmHg; BPV, 15 ± 6 mmHg), gain, phase and coherence were not age-dependent in simple or a multiple regression models. BPV correlated significantly in both MCAs with gain in low frequency and high frequency, and with phase in VLF and high frequency. In patients (BP, 91 ± 16 mmHg, ETCO2, 39 ± 4 mmHg, BPV 18 ± 5 mmHg), only gain showed some differences between different SVD groups. Comparing all patients with 25 controls of similar age and sex, patients exhibited significantly (P < 0.05–P < 0.005): increased coherence and gain in VLF, decreased phase in VLF and low frequency, correlations between BPV with phase in low frequency (left) and with gain in VLF (left) and in high frequency (left and right). Conclusion: Phase seems an age independent autoregulatory index. In controlled HBP, CBF regulation is degraded at longlasting CBF changes; BPV effects lose their physiological bilateral distribution.
Collapse
|
147
|
Absence of peripapillary retinal nerve-fiber-layer thinning in combined antiretroviral therapy-treated, well-sustained aviremic persons living with HIV. PLoS One 2020; 15:e0229977. [PMID: 32155200 PMCID: PMC7064175 DOI: 10.1371/journal.pone.0229977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose To compare peripapillary retinal nerve-fiber–layer (pRNFL) thickness, total retina macular volume, and ganglion-cell-layer (GCL) macular volume and thickness between persons living with HIV (PLHIVs) with well-controlled infections and good immune recovery, and sex- and age-matched HIV-uninfected controls (HUCs). Methods This prospective cross-sectional study (www.clinicaltrials.gov identifier: NCT02003989) included 56 PLHIVs, infected for ≥10 [median 20.2] years and with sustained plasma HIV-load suppression on combined antiretroviral therapy (cART) for ≥5 years, and 56 matched HUCs. Participants underwent spectral-domain optical coherence tomography (SD-OCT) with thorough ophthalmological examinations and brain magnetic resonance imaging (MRI). Their overall and quadrant pRNFL thicknesses, total macular volumes, and GCL macular volumes and thicknesses were compared. Cerebral small-vessel diseases (CSVD) complied with STRIVE criteria. Results Median [interquartile range, IQR] ages of PLHIVs and HUCs, respectively, were 52 [46–60] and 52 [44–60] years. Median [IQR] PLHIVs’ nadir CD4+ T-cell count and current CD4/CD8 T-cell ratio were 249/μL [158–350] and 0.95 [0.67–1.10], respectively; HIV-seropositivity duration was 20.2 [15.9–24.5] years; cART duration was 16.8 [12.6–18.6] years; and aviremia duration was 11.4 [7.8–13.6] years. No significant between-group pRNFL thickness, total macular volume, macular GCL-volume and -thickness differences were found. MRI-detected CSVD in 21 (38%) PLHIVs and 14 (25%) HUCs was associated with overall thinner pRNFLs, and smaller total retina and GCL macular volumes, independently of HIV status. Conclusions SD-OCT could not detect pRNFL thinning or macular GCL-volume reduction in well-sustained, aviremic, cART-treated PLHIVs who achieved good immune recovery. However, CSVD was associated with thinner pRNFLs and GCLs, independently of HIV status.
Collapse
|
148
|
Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol 2020; 16:137-153. [PMID: 32094487 DOI: 10.1038/s41582-020-0312-z] [Citation(s) in RCA: 415] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Perivascular spaces include a variety of passageways around arterioles, capillaries and venules in the brain, along which a range of substances can move. Although perivascular spaces were first identified over 150 years ago, they have come to prominence recently owing to advances in knowledge of their roles in clearance of interstitial fluid and waste from the brain, particularly during sleep, and in the pathogenesis of small vessel disease, Alzheimer disease and other neurodegenerative and inflammatory disorders. Experimental advances have facilitated in vivo studies of perivascular space function in intact rodent models during wakefulness and sleep, and MRI in humans has enabled perivascular space morphology to be related to cognitive function, vascular risk factors, vascular and neurodegenerative brain lesions, sleep patterns and cerebral haemodynamics. Many questions about perivascular spaces remain, but what is now clear is that normal perivascular space function is important for maintaining brain health. Here, we review perivascular space anatomy, physiology and pathology, particularly as seen with MRI in humans, and consider translation from models to humans to highlight knowns, unknowns, controversies and clinical relevance.
Collapse
|
149
|
Ölmestig J, Marlet IR, Hansen RH, Rehman S, Krawcyk RS, Rostrup E, Lambertsen KL, Kruuse C. Tadalafil may improve cerebral perfusion in small-vessel occlusion stroke-a pilot study. Brain Commun 2020; 2:fcaa020. [PMID: 33033800 PMCID: PMC7530832 DOI: 10.1093/braincomms/fcaa020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 01/29/2023] Open
Abstract
New treatments for cerebral small-vessel disease are needed to reduce the risk of small-vessel occlusion stroke and vascular cognitive impairment. We investigated an approach targeted to the signalling molecule cyclic guanosine monophosphate, using the phosphodiesterase 5 inhibitor tadalafil, to explore if it improves cerebral blood flow and endothelial function in patients with cerebral small-vessel disease and stroke. In a randomized, double-blinded, placebo-controlled, cross-over pilot trial (NCT02801032), we included patients who had a previous (>6 months) small-vessel occlusion stroke. They received a single dose of either 20 mg tadalafil or placebo on 2 separate days at least 1 week apart. We measured the following: baseline MRI for lesion load, repeated measurements of blood flow velocity in the middle cerebral artery by transcranial Doppler, blood oxygen saturation in the cortical microvasculature by near-infrared spectroscopy, peripheral endothelial response by EndoPAT and endothelial-specific blood biomarkers. Twenty patients with cerebral small-vessel disease stroke (3 women, 17 men), mean age 67.1 ± 9.6, were included. The baseline mean values ± standard deviations were as follows: blood flow velocity in the middle cerebral artery, 57.4 ± 10.8 cm/s; blood oxygen saturation in the cortical microvasculature, 67.0 ± 8.2%; systolic blood pressure, 145.8 ± 19.5 mmHg; and diastolic blood pressure, 81.3 ± 9.1 mmHg. We found that tadalafil significantly increased blood oxygen saturation in the cortical microvasculature at 180 min post-administration with a mean difference of 1.57 ± 3.02%. However, we saw no significant differences in transcranial Doppler measurements over time. Tadalafil had no effects on peripheral endothelial function assessed by EndoPAT and endothelial biomarker results conflicted. Our findings suggest that tadalafil may improve vascular parameters in patients with cerebral small-vessel disease stroke, although the effect size was small. Increased oxygenation of cerebral microvasculature during tadalafil treatment indicated improved perfusion in the cerebral microvasculature, theoretically presenting an attractive new therapeutic target in cerebral small-vessel disease. Future studies of the effect of long-term tadalafil treatment on cerebrovascular reactivity and endothelial function are needed to evaluate general microvascular changes and effects in cerebral small-vessel disease and stroke.
Collapse
Affiliation(s)
- Joakim Ölmestig
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark
| | - Ida R Marlet
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark
| | - Rasmus H Hansen
- Department of Radiology, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Shazia Rehman
- Department of Radiology, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Rikke Steen Krawcyk
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark.,Department of Physiotherapy and Occupational Therapy, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Capital Region Psychiatry, Glostrup 2600, Denmark
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark.,Department of Neurology, Odense University Hospital, Odense 5000, Denmark.,BRIDGE-Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Christina Kruuse
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark.,Institute for Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
150
|
Abstract
Small vessel disease is a very common pathological process, which plays a key role in the development of stroke and cognitive impairment and, at the same time, affects other organs. The search for optimal drugs for prevention and treatment of small vessel disease has been continuing. The results of new studies enable further development of new treatment strategies. Currently, the drugs with neurotrophic properties become more and more important.
Collapse
Affiliation(s)
- M V Putilina
- Pirogov Russian National Research Medical Unversity, Moscow, Russia
| |
Collapse
|