101
|
Haruyama N, Hatakeyama J, Moriyama K, Kulkarni AB. Amelogenins: Multi-Functional Enamel Matrix Proteins and Their Binding Partners. J Oral Biosci 2011. [DOI: 10.1016/s1349-0079(11)80009-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
102
|
Davaadorj P, Tokuyama R, Ide S, Tadokoro S, Kudoh K, Satomura K. Possible involvement of maspin in tooth development. Histochem Cell Biol 2010; 134:603-14. [PMID: 21069375 DOI: 10.1007/s00418-010-0756-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
Maspin is a 42 kDa serine protease inhibitor that possesses tumor suppressive and anti-angiogenic activities. Despite of a huge amount of data concerning the expression pattern of maspin in various tissues and its relevance to the biological properties of a variety of human cancer cells, little is known on the maspin expression in skeletal and tooth tissues. Recently, we reported that maspin may play an important role in extracellular matrix formation in bone by enhancing the accumulation of latent TGF-β in the extracellular matrix. This study was performed to elucidate the possible role of maspin in tooth development. First, an immunohistochemical analysis for human tooth germs at the late bell stage showed the expression of maspin by active ameloblasts and odontoblasts that were forming enamel and dentin, respectively. During rat tooth development, maspin expression was observed for the first time in inner and outer enamel epithelial cells and dental papilla cells at early bell stage. The neutralizing anti-maspin antibody inhibited the proper dental tissue formation in organ cultures of mandibular first molars obtained from 21-day-old rat embryos. In addition, the proliferation of HAT-7 cells, a rat odontogenic epithelial cell line, and human dental papilla cells were suppressed in a dose-dependent manner with anti-maspin antibody. Moreover, RT-PCR analysis showed that the expression of mRNA for tooth-related genes including dentin matrix protein 1, dentin sialophosphoprotein and osteopontin in human dental papilla cells was inhibited when treated with anti-maspin antibody. These findings suggest that maspin expressed in ameloblasts and odontoblasts plays an important physiological role in tooth development through the regulation of matrix formation in dental tissues.
Collapse
Affiliation(s)
- Purevsuren Davaadorj
- Department of Oral and Maxillofacial Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
103
|
Uskoković V. Prospects and Pits on the Path of Biomimetics: The case of tooth enamel. JOURNAL OF BIOMIMETICS, BIOMATERIALS, AND TISSUE ENGINEERING 2010; 8:45-78. [PMID: 26877723 PMCID: PMC4752007 DOI: 10.4028/www.scientific.net/jbbte.8.45] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents a discourse on challenges in understanding and imitating the process of amelogenesis in vitro on the molecular scale. In light of the analysis of imitation of the growth of dental enamel, it also impends on the prospects and potential drawbacks of the biomimetic approach in general. As the formation of enamel proceeds with the protein matrix guiding the crystal growth, while at the same time conducting its own degradation and removal, it is argued that three aspects of amelogenesis need to be induced in parallel: a) crystal growth; b) protein assembly; c) proteolytic degradation. A particular emphasis is therefore placed on ensuring conditions for proteolysis-coupled protein-guided crystallization to occur. Discussed are structural and functional properties of the protein species involved in amelogenesis, mainly amelogenin and enamelysin, the main protein and the protease of the developing enamel matrix, respectively. A model of enamel growth based on controlled delivery of constituent ions or crystalline or amorphous building blocks by means of amelogenin is proposed. The importance of high viscosity of the enamel matrix and a more intricate role that water may play in such a gelatinous medium are also touched upon. The tendency of amelogenin to self-assemble into fibrous and rod-shaped morphologies is considered as potentially important in explaining the formation of elongated apatite crystals. The idea that a preassembling protein matrix serves as a template for the uniaxial growth of apatite crystals in enamel is finally challenged with the one based on co-assembly of the protein and the mineral phases.
Collapse
Affiliation(s)
- Vuk Uskoković
- Division of Biomaterials and Bioengineering, University of California, San Francisco, USA,
| |
Collapse
|
104
|
Uskokovíc V. Major Challenges for the Modern Chemistry in Particular and Science in General. FOUNDATIONS OF SCIENCE 2010; 15:303-344. [PMID: 24465151 PMCID: PMC3898875 DOI: 10.1007/s10699-010-9185-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the past few hundred years, science has exerted an enormous influence on the way the world appears to human observers. Despite phenomenal accomplishments of science, science nowadays faces numerous challenges that threaten its continued success. As scientific inventions become embedded within human societies, the challenges are further multiplied. In this critical review, some of the critical challenges for the field of modern chemistry are discussed, including: (a) interlinking theoretical knowledge and experimental approaches; (b) implementing the principles of sustainability at the roots of the chemical design; (c) defining science from a philosophical perspective that acknowledges both pragmatic and realistic aspects thereof; (d) instigating interdisciplinary research; (e) learning to recognize and appreciate the aesthetic aspects of scientific knowledge and methodology, and promote truly inspiring education in chemistry. In the conclusion, I recapitulate that the evolution of human knowledge inherently depends upon our ability to adopt creative problem-solving attitudes, and that challenges will always be present within the scope of scientific interests.
Collapse
Affiliation(s)
- Vuk Uskokovíc
- Division of Biomaterials and Bioengineering, University of California, 707 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
105
|
Wang X, Suzawa T, Ohtsuka H, Zhao B, Miyamoto Y, Miyauchi T, Nishimura R, Inoue T, Nakamura M, Baba K, Kamijo R. Carbonic anhydrase II regulates differentiation of ameloblasts via intracellular pH-dependent JNK signaling pathway. J Cell Physiol 2010; 225:709-19. [PMID: 20533306 DOI: 10.1002/jcp.22267] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Differentiation of ameloblasts from undifferentiated epithelial cells is controlled by diverse growth factors, as well as interactions between epithelium and mesenchyme. However, there is a considerable lack of knowledge regarding the precise mechanisms that control ameloblast differentiation and enamel biomineralization. We found that the expression level of carbonic anhydrase II (CAII) is strongly up-regulated in parallel with differentiation of enamel epithelium tissues, while the enzyme activity of CA was also increased along with differentiation in ameloblast primary cultures. The expression level of amelogenin, a marker of secretory-stage ameloblasts, was enhanced by ethoxzolamide (EZA), a CA inhibitor, as well as CAII antisense (CAIIAS), whereas the expression of enamel matrix serine proteinase-1 (EMSP-1), a marker for maturation-stage ameloblasts, was suppressed by both. These agents also promoted ameloblast proliferation. In addition, inhibition of ameloblast differentiation by EZA and CAIIAS was confirmed using tooth germ organ cultures. Furthermore, EZA and CAIIAS elevated intracellular pH in ameloblasts, while experimental decreases in intracellular pH abolished the effect of CAIIAS on ameloblasts and triggered the activation of c-Jun N-terminal kinase (JNK). SP600125, a JNK inhibitor, abrogated the response of ameloblasts to an experimental decrease in intracellular pH, while the inhibition of JNK also impaired ameloblast differentiation. These results suggest a novel role for CAII during amelogenesis, that is, controlling the differentiation of ameloblasts. Regulation of intracellular pH, followed by activation of the JNK signaling pathway, may be responsible for the effects of CAII on ameloblasts.
Collapse
Affiliation(s)
- Xiaogu Wang
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Increase of MT1-MMP, TIMP-2 and Ki-67 proteins in the odontogenic region of the rat incisor post-shortening procedure. J Mol Histol 2010; 41:333-41. [DOI: 10.1007/s10735-010-9295-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
107
|
Bartlett JD, Dobeck JM, Tye CE, Perez-Moreno M, Stokes N, Reynolds AB, Fuchs E, Skobe Z. Targeted p120-catenin ablation disrupts dental enamel development. PLoS One 2010; 5. [PMID: 20862276 PMCID: PMC2940824 DOI: 10.1371/journal.pone.0012703] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/21/2010] [Indexed: 11/19/2022] Open
Abstract
Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows.
Collapse
Affiliation(s)
- John D Bartlett
- Department of Cytokine Biology, Forsyth Institute, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey AN, Zheng L, Hu JCC. Regulation of dental enamel shape and hardness. J Dent Res 2010; 89:1024-38. [PMID: 20675598 DOI: 10.1177/0022034510375829] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal interactions guide tooth development through its early stages and establish the morphology of the dentin surface upon which enamel will be deposited. Starting with the onset of amelogenesis beneath the future cusp tips, the shape of the enamel layer covering the crown is determined by five growth parameters: the (1) appositional growth rate, (2) duration of appositional growth (at the cusp tip), (3) ameloblast extension rate, (4) duration of ameloblast extension, and (5) spreading rate of appositional termination. Appositional growth occurs at a mineralization front along the ameloblast distal membrane in which amorphous calcium phosphate (ACP) ribbons form and lengthen. The ACP ribbons convert into hydroxyapatite crystallites as the ribbons elongate. Appositional growth involves a secretory cycle that is reflected in a series of incremental lines. A potentially important function of enamel proteins is to ensure alignment of successive mineral increments on the tips of enamel ribbons deposited in the previous cycle, causing the crystallites to lengthen with each cycle. Enamel hardens in a maturation process that involves mineral deposition onto the sides of existing crystallites until they interlock with adjacent crystallites. Neutralization of acidity generated by hydroxyapatite formation is a key part of the mechanism. Here we review the growth parameters that determine the shape of the enamel crown as well as the mechanisms of enamel appositional growth and maturation.
Collapse
Affiliation(s)
- J P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Sun Z, Carpiaux W, Fan D, Fan Y, Lakshminarayanan R, Moradian-Oldak J. Apatite reduces amelogenin proteolysis by MMP-20 and KLK4 in vitro. J Dent Res 2010; 89:344-8. [PMID: 20160068 DOI: 10.1177/0022034509360660] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two enamel proteases, matrix metalloproteinase-20 (MMP-20) and kallikrein 4 (KLK4), are known to cleave amelogenin and are necessary for proper enamel formation. However, the effect of hydroxyapatite (HAP) on the proteolytic activity of these enzymes remains unclear. To investigate whether apatite affects normal amelogenin proteolysis, we used 2 different isoforms of amelogenin combined with the appropriate enzymes to analyze proteolytic processing rates in the presence or absence of synthetic hydroxyapatite (HAP) crystals (N = 3). We found a distinct dose-dependent relationship between the amount of HAP present in the proteolysis mixture and the rate of rP172 degradation by rpMMP-20, whereas the effect of HAP on proteolysis of either rP172 or rP148 by rhKLK4 was less prominent.
Collapse
Affiliation(s)
- Z Sun
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry, 2250 Alcazar St., Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
110
|
Lacruz RS, Nanci A, Kurtz I, Wright JT, Paine ML. Regulation of pH During Amelogenesis. Calcif Tissue Int 2010; 86:91-103. [PMID: 20016979 PMCID: PMC2809306 DOI: 10.1007/s00223-009-9326-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/24/2009] [Indexed: 12/31/2022]
Abstract
During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.
Collapse
Affiliation(s)
- Rodrigo S. Lacruz
- School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033 USA
| | - Antonio Nanci
- Faculty of Dentistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montreal, QC H3C 3J7 Canada
| | - Ira Kurtz
- David Geffen School Medicine at the University of California at Los Angeles, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095 USA
| | - J. Timothy Wright
- Department of Pediatric Dentistry, School of Dentistry, University of North Carolina at Chapel Hill, CB No. 7450 Brauer Hall, Chapel Hill, NC 27599 USA
| | - Michael L. Paine
- School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033 USA
| |
Collapse
|
111
|
Uskokovic V, Castiglione Z, Cubas P, Zhu L, Li W, Habelitz S. Zeta-potential and particle size analysis of human amelogenins. J Dent Res 2009; 89:149-53. [PMID: 20040742 DOI: 10.1177/0022034509354455] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The developing enamel matrix is a highly dynamic system mainly composed of the full-length amelogenin and its proteolytic cleavage products. In this study, size, zeta-potential, and the isoelectric points of nanoparticles of the recombinant full-length human amelogenin (rH174) and two proteolytic products (rH163 and rH146) were analyzed by dynamic light-scattering and electrokinetic measurements. We tested the hypothesis that zeta-potential may be used as a control parameter in directing the self-assembly of amelogenins. Extensive aggregation of amelogenin molecules with the particle size reaching about one micron occurred at a mildly acidic to neutral pH, and coincided with the red shift of the internal fluorescence. Zeta-potential was between +/- 15 mV in the same pH range, indicating that amelogenin aggregation occurred when surface potentials were minimal. This suggests that electrostatic interactions may be another crucial factor, aside from hydrophobic interaction, in the aggregation and hierarchical assembly of spherical particles of amelogenins into supramolecular structures of a higher order.
Collapse
Affiliation(s)
- V Uskokovic
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, 94143, USA.
| | | | | | | | | | | |
Collapse
|
112
|
Rat forming incisor requires a rigorous ECM remodeling modulated by MMP/RECK balance. J Mol Histol 2009; 40:201-7. [PMID: 19838811 DOI: 10.1007/s10735-009-9231-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
Reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is a single membrane-anchored MMP-regulator and regulates matrix metalloproteinases (MMP) 2, 9 and 14. In turn, MMPs are endopeptidases that play a pivotal role in remodeling ECM. In this work, we decided to evaluate expression pattern of RECK in growing rat incisor during, specifically focusing out amelogenesis process. Based on different kinds of ameloblasts, our results showed that RECK expression was conducted by secretory and post-secretory ameloblasts. At the secretory phase, RECK was localized in the infra-nuclear region of the ameloblast, outer epithelium, near blood vessels, and in the stellate reticulum. From the transition to the maturation phases, RECK was strongly expressed by non-epithelial immuno-competent cells (macrophages and/or dendritic-like cells) in the papillary layer. From the transition to the maturation stage, RECK expression was increased. RECK mRNA was amplified by RT-PCR from whole enamel organ. Here, we verified the presence of RECK mRNA during all stages of amelogenesis. These events were governed by ameloblasts and by non-epithelial cells residents in the enamel organ. Concluding, we found differential expression of MMPs-2, -9 and RECK in the different phases of amelogenesis, suggesting that the tissue remodeling is rigorously controlled during dental mineralization.
Collapse
|
113
|
Nagano T, Kakegawa A, Yamakoshi Y, Tsuchiya S, Hu JCC, Gomi K, Arai T, Bartlett JD, Simmer JP. Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. J Dent Res 2009; 88:823-8. [PMID: 19767579 DOI: 10.1177/0022034509342694] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mmp-20 and Klk4 are the two key enamel proteases. Can both enzymes process amelogenin to generate the major cleavage products that accumulate during the secretory stage of amelogenesis? We isolated Mmp-20 and Klk4 from developing pig teeth and used them to digest the tyrosine-rich amelogenin polypeptide (TRAP), the leucine-rich amelogenin protein (LRAP), and 5 fluorescence peptides. We characterized the digestion products by LC-MSMS, SDS-PAGE, and C18 RP-HPLC monitored with fluorescence and UV detectors. Mmp-20 cleaves amelogenin sequences after Pro(162), Ser(148), His(62), Ala(63), and Trp(45). These cleavages generate all of the major cleavage products that accumulate in porcine secretory-stage enamel: the 23-kDa, 20-kDa, 13-kDa, 11-kDa, and 6-kDa (TRAP) amelogenins. Mmp-20 cleaves LRAP after Pro(45) and Pro(40), producing the two LRAP products previously identified in tooth extracts. Among these key cleavage sites, Klk4 was able to cleave only after His(62). We propose that Mmp-20 alone processes amelogenin during the secretory stage.
Collapse
Affiliation(s)
- T Nagano
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Marie B, Marin F, Marie A, Bédouet L, Dubost L, Alcaraz G, Milet C, Luquet G. Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus. Chembiochem 2009; 10:1495-506. [PMID: 19472248 DOI: 10.1002/cbic.200900009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mollusks, one of the most widely studied shell textures is nacre, the lustrous aragonitic layer that constitutes the internal components of the shells of several bivalves, a few gastropods,and one cephalopod: the nautilus. Nacre contains a minor organic fraction, which displays a wide range of functions in relation to the biomineralization process. Here, we have biochemically characterized the nacre matrix of the cephalopod Nautilus macromphalus. The acid-soluble matrix contains a mixture of polydisperse and discrete proteins and glycoproteins, which interact with the formation of calcite crystals. In addition, a few bind calcium ions. Furthermore, we have used a proteomic approach,which was applied to the acetic acid-soluble and -insoluble shell matrices, as well as to spots obtained after 2D gel electrophoresis. Our data demonstrate that the insoluble and soluble matrices, although different in their bulk monosaccharide and amino acid compositions, contain numerous shared peptides. Strikingly, most of the obtained partial sequences are entirely new. A few only partly match with bivalvian nacre proteins.Our findings have implications for knowledge of the long-term evolution of molluskan nacre matrices.
Collapse
Affiliation(s)
- Benjamin Marie
- UMR CNRS 5561 Biogéosciences, Université de Bourgogne, 6 Bd Gabriel, 21000 Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Tsuchiya M, Sharma R, Tye CE, Sugiyama T, Bartlett JD. Transforming growth factor-beta1 expression is up-regulated in maturation-stage enamel organ and may induce ameloblast apoptosis. Eur J Oral Sci 2009; 117:105-12. [PMID: 19320718 DOI: 10.1111/j.1600-0722.2009.00612.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) regulates a variety of cellular responses that are dependent on the developmental stage and on the origins of the cell or the tissue. In mature tissues, and especially in tissues of epithelial origin, TGF-beta1 is generally considered to be a growth inhibitor that may also promote apoptosis. The ameloblast cells of the enamel organ epithelium are adjacent to and responsible for the developing enamel layer on unerupted teeth. Once the enamel layer reaches its full thickness, the tall columnar secretory-stage ameloblasts shorten, and a portion of these maturation-stage ameloblasts become apoptotic. Here we investigate whether TGF-beta1 plays a role in apoptosis of the maturation-stage ameloblasts. We demonstrate in vitro that ameloblast lineage cells are highly susceptible to TGF-beta1-mediated growth arrest and are prone to TGF-beta1-mediated cell death/apoptosis. We also demonstrate in vivo that TGF-beta1 is expressed in the maturation-stage enamel organ at significantly higher levels than in the earlier secretory-stage enamel organ. This increased expression of TGF-beta1 correlates with an increase in expression of the enamel organ immediate-early stress-response gene and with a decrease in the anti-apoptotic Bcl2 : Bax expression ratio. We conclude that TGF-beta1 may play an important role in ameloblast apoptosis during the maturation stage of enamel development.
Collapse
Affiliation(s)
- Masahiro Tsuchiya
- Department of Cytokine Biology, Forsyth Institute, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
116
|
Lee MJ, Lee SK, Lee KE, Kang HY, Jung HS, Kim JW. Expression patterns of the Fam83h gene during murine tooth development. Arch Oral Biol 2009; 54:846-50. [PMID: 19545854 DOI: 10.1016/j.archoralbio.2009.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/19/2009] [Accepted: 05/25/2009] [Indexed: 11/25/2022]
Abstract
AIM Recently a novel gene, FAM83H, was identified by a genetic linkage study in the hypocalcified form of the amelogenesis imperfecta family with an autosomal dominant hereditary pattern. Little is known about this novel gene, and so we investigated the expression pattern of Fam83h in murine tooth development using serial sectional in situ hybridisation. METHODS AND MATERIALS Using mandibles of ICR mouse at specific developmental stages, in situ hybridisation was performed by DIG-labeled RNA probe. RESULTS Faint expression was detected in limited cells at embryonic day 14 (E14) in the molar. At the bell stage, E16, Fam83h was localised in the outer and inner enamel epithelium, as well as dental papilla. Fam83h expression begins on E15 in the developing incisor. At E18, Fam83h was expressed in the inner enamel epithelium of the apical bud, ameloblasts and odontoblasts. The expression was stronger in the presecretory stages than the secretory stages. CONCLUSION Fam83h was detected in the ameloblasts from the presecretory to the secretory stage, and also the odontoblasts layer and surrounding alveolar bone.
Collapse
Affiliation(s)
- Min-Jung Lee
- Department of Oral Biology, Research Center for Orofacial Hard Tissue Regeneration, Brain Korea 21 project, Oral Science Research Center, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
117
|
Simmer JP, Hu Y, Lertlam R, Yamakoshi Y, Hu JCC. Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J Biol Chem 2009; 284:19110-21. [PMID: 19578120 DOI: 10.1074/jbc.m109.013623] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kallikrein 4 (Klk4) is believed to play an essential role in enamel biomineralization, because defects in KLK4 cause hypomaturation amelogenesis imperfecta. We used gene targeting to generate a knockin mouse that replaces the Klk4 gene sequence, starting at the translation initiation site, with a lacZ reporter gene. Correct targeting of the transgene was confirmed by Southern blot and PCR analyses. Histochemical X-gal (5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside) staining demonstrated expression of beta-galactosidase in maturation stage ameloblasts. No X-gal staining was observed in secretory stage ameloblasts or in odontoblasts. Retained enamel proteins were observed in the maturation stage enamel of the Klk4 null mouse, but not in the Klk4 heterozygous or wild-type mice. The enamel layer in the Klk4 null mouse was normal in thickness and contained decussating enamel rods but was rapidly abraded following weaning, despite the mice being maintained on soft chow. In function the enamel readily fractured within the initial rod and interrod enamel above the parallel enamel covering the dentino-enamel junction. Despite the lack of Klk4 and the retention of enamel proteins, significant levels of crystal maturation occurred (although delayed), and the enamel achieved a mineral density in some places greater than that detected in bone and dentin. An important finding was that individual enamel crystallites of erupted teeth failed to grow together, interlock, and function as a unit. Instead, individual crystallites seemed to spill out of the enamel when fractured. These results demonstrate that Klk4 is essential for the removal of enamel proteins and the proper maturation of enamel crystals.
Collapse
Affiliation(s)
- James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108, USA.
| | | | | | | | | |
Collapse
|
118
|
Fukae M. Enamel Formation —Biochemical Aspect—. J Oral Biosci 2009. [DOI: 10.1016/s1349-0079(09)80019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
119
|
Lehmann N, Debret R, Roméas A, Magloire H, Degrange M, Bleicher F, Sommer P, Seux D. Self-etching Increases Matrix Metalloproteinase Expression in the Dentin-Pulp Complex. J Dent Res 2009; 88:77-82. [DOI: 10.1177/0022034508327925] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In adhesive restorations, one major problem is hybrid layer degradation. At present, this deterioration is explained by the activation of the endogenous matrix metalloproteinases (MMPs) present in dentin due to the acidic property of adhesive systems. We hypothesized that self-etching adhesive should also stimulate the expression of MMPs in odontoblasts. In cultured tooth slices, we evaluated the changes in MMP-2 and proMMP-9 expression in the dentin-pulp complex after self-etching adhesive treatment on dentin cavities in immunochemistry and by zymography. The treatment resulted in increased MMP-2 expression in odontoblasts, as shown by immunohistochemistry. Zymography showed increased proMMP-9 and MMP-2 in dentin under self-etching treatment when pulp was present. These results showed that self-etching adhesive stimulates the secretion of MMPs from the dentin-pulp complex and, more precisely, by odontoblasts, suggesting that odontoblasts participate in hybrid layer degradation.
Collapse
Affiliation(s)
- N. Lehmann
- University of Lyon, F-69000, Lyon, France
- University of Lyon 1, F-69100, Villeurbanne, France
- ENSL, F-69007, Lyon, France
- CNRS UMR 5242, IGFL, F-69007, Lyon, France
- INRA UMR 1288, F-69007, Lyon, France
| | - R. Debret
- University of Lyon, F-69000, Lyon, France
- University of Lyon 1, F-69100, Villeurbanne, France
- ENSL, F-69007, Lyon, France
- CNRS UMR 5242, IGFL, F-69007, Lyon, France
- INRA UMR 1288, F-69007, Lyon, France
| | - A. Roméas
- University of Lyon, F-69000, Lyon, France
- University of Lyon 1, F-69100, Villeurbanne, France
- ENSL, F-69007, Lyon, France
- CNRS UMR 5242, IGFL, F-69007, Lyon, France
- INRA UMR 1288, F-69007, Lyon, France
| | - H. Magloire
- University of Lyon, F-69000, Lyon, France
- University of Lyon 1, F-69100, Villeurbanne, France
- ENSL, F-69007, Lyon, France
- CNRS UMR 5242, IGFL, F-69007, Lyon, France
- INRA UMR 1288, F-69007, Lyon, France
| | - M. Degrange
- University of Lyon, F-69000, Lyon, France
- University of Lyon 1, F-69100, Villeurbanne, France
- ENSL, F-69007, Lyon, France
- CNRS UMR 5242, IGFL, F-69007, Lyon, France
- INRA UMR 1288, F-69007, Lyon, France
| | - F. Bleicher
- University of Lyon, F-69000, Lyon, France
- University of Lyon 1, F-69100, Villeurbanne, France
- ENSL, F-69007, Lyon, France
- CNRS UMR 5242, IGFL, F-69007, Lyon, France
- INRA UMR 1288, F-69007, Lyon, France
| | - P. Sommer
- University of Lyon, F-69000, Lyon, France
- University of Lyon 1, F-69100, Villeurbanne, France
- ENSL, F-69007, Lyon, France
- CNRS UMR 5242, IGFL, F-69007, Lyon, France
- INRA UMR 1288, F-69007, Lyon, France
| | - D. Seux
- University of Lyon, F-69000, Lyon, France
- University of Lyon 1, F-69100, Villeurbanne, France
- ENSL, F-69007, Lyon, France
- CNRS UMR 5242, IGFL, F-69007, Lyon, France
- INRA UMR 1288, F-69007, Lyon, France
| |
Collapse
|
120
|
Tsuchiya M, Tye CE, Sharma R, Smith CE, Bartlett JD. XBP1 may determine the size of the ameloblast endoplasmic reticulum. J Dent Res 2008; 87:1058-62. [PMID: 18946015 DOI: 10.1177/154405910808701115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ameloblasts progress through defined stages of development as enamel forms on teeth. Pre-secretory ameloblasts give rise to tall columnar secretory ameloblasts that direct the enamel to achieve its full thickness. During the maturation stage, the ameloblasts shorten and direct the enamel to achieve its final hardened form. Here we ask how the volume of selected ameloblast organelles changes (percent volume per ameloblast) as ameloblasts progress through six defined developmental stages. We demonstrate that mitochondria volume peaks during late maturation, indicating that maturation-stage ameloblasts maintain a high level of metabolic activity. Also, the endoplasmic reticulum (ER) volume changes significantly as a function of developmental stage. This prompted us to ask if X-box-binding protein-1 (XBP1) plays a role in regulating ameloblast ER volume, as has been previously demonstrated for secretory acinar cells and for plasma cell differentiation. We demonstrate that Xbp1 expression correlates positively with percent volume of ameloblast ER.
Collapse
Affiliation(s)
- M Tsuchiya
- Department of Cytokine Biology, The Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
121
|
Uskoković V, Kim MK, Li W, Habelitz S. Enzymatic Processing of Amelogenin during Continuous Crystallization of Apatite. JOURNAL OF MATERIALS RESEARCH 2008; 23:3184-3195. [PMID: 19177182 PMCID: PMC2631549 DOI: 10.1557/jmr.2008.0387] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Dental enamel forms through a protein-controlled mineralization and enzymatic degradation with a nanoscale precision that new engineering technologies may be able to mimic. Recombinant full-length human amelogenin (rH174) and a matrix-metalloprotease (MMP-20) were employed in a pH-stat titration system that enabled a continuous supply of calcium and phosphate ions over several days, mimicking the initial stages of matrix processing and crystallization in enamel in-vitro. Effects on the self-assembly and crystal growth from a saturated aqueous solution containing 0.4 mg/ml rH174 and MMP-20 with the weight ratio of 1:1000 with respect to rH174 were investigated. A transition from nanospheres to fibrous amelogenin assemblies was facilitated under conditions that involved an interaction between rH174 and the proteolytic cleavage products. Despite continuous titration, the levels of calcium exhibited a consistent trend of decreasing, thereby indicating its possible role in the protein self-assembly. This study suggests that mimicking enamel formation in-vitro requires the synergy between the aspects of matrix self-assembly, proteolysis and crystallization.
Collapse
Affiliation(s)
- V Uskoković
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco
| | | | | | | |
Collapse
|
122
|
Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 2008; 108:4754-83. [PMID: 19006400 PMCID: PMC2593885 DOI: 10.1021/cr8004422] [Citation(s) in RCA: 647] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liam C Palmer
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
123
|
Clements JA, Willemsen NM, Myers SA, Dong Y. The Tissue Kallikrein Family of Serine Proteases: Functional Roles in Human Disease and Potential as Clinical Biomarkers. Crit Rev Clin Lab Sci 2008; 41:265-312. [PMID: 15307634 DOI: 10.1080/10408360490471931] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate specific antigen (PSA) or human kallikrein 3 (hK3) has long been an effective biomarker for prostate cancer. Now, other members of the tissue kallikrein (KLK) gene family are fast becoming of clinical interest due to their potential as prognostic biomarkers. particularly for hormone dependent cancers. The tissue kallikreins are serine proteases that are encoded by highly conserved multi-gene family clusters in rodents and humans. The rat and mouse loci contain 10 and 25 functional genes, respectively, while the human locus at 19q 13.4 contains 15 genes. The structural organization and size of these genes are similar across species; all genes have 5 coding exons that encode a prepro-enzyme. Although the physiological activators of these zymogens have not been described, in vitro biochemical studies show that some kallikreins can auto-activate and others can activate each other, suggesting that the kallikreins may participate in an enzymatic cascade similar to that of the coagulation cascade. These genes are expressed, to varying degrees, in a wide range of tissues suggesting a functional involvement in a diverse range of physiological and pathophysiological processes. These include roles in normal skin desquamation and psoriatic lesions, tooth development, neural plasticity, and Alzheimer's disease (AD). Of particular interest is the expression of many kallikreins in prostate, ovarian, and breast cancers where they are emerging as useful prognostic indicators of disease progression.
Collapse
Affiliation(s)
- Judith A Clements
- Hormone Dependent Cancer Program, Cluster for Molecular Biotechnology, School of Life Sciences & Science Research Centre, Queensland University of Technology, Brisbane, Australia.
| | | | | | | |
Collapse
|
124
|
Lu Y, Papagerakis P, Yamakoshi Y, Hu JCC, Bartlett JD, Simmer JP. Functions of KLK4 and MMP-20 in dental enamel formation. Biol Chem 2008; 389:695-700. [PMID: 18627287 DOI: 10.1515/bc.2008.080] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two proteases are secreted into the enamel matrix of developing teeth. The early protease is enamelysin (MMP-20). The late protease is kallikrein 4 (KLK4). Mutations in MMP20 and KLK4 both cause autosomal recessive amelogenesis imperfecta, a condition featuring soft, porous enamel containing residual protein. MMP-20 is secreted along with enamel proteins by secretory-stage ameloblasts. Enamel protein-cleavage products accumulate in the space between the crystal ribbons, helping to support them. MMP-20 steadily cleaves accumulated enamel proteins, so their concentration decreases with depth. KLK4 is secreted by transition- and maturation-stage ameloblasts. KLK4 aggressively degrades the retained organic matrix following the termination of enamel protein secretion. The principle functions of MMP-20 and KLK4 in dental enamel formation are to facilitate the orderly replacement of organic matrix with mineral, generating an enamel layer that is harder, less porous, and unstained by retained enamel proteins.
Collapse
Affiliation(s)
- Yuhe Lu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | |
Collapse
|
125
|
He X, Li W, Habelitz S. The cooperative self-assembly of 25 and 23kDa amelogenins. J Struct Biol 2008; 164:314-21. [PMID: 18845261 DOI: 10.1016/j.jsb.2008.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 11/29/2022]
Abstract
Self-assembly of the extracellular matrix protein amelogenin is believed to play an essential role in regulating the growth and organization of enamel crystals during enamel formation. The full-length amelogenin uniquely regulates the growth, shape, and arrangement of enamel crystals. Protein hydrolysis will ultimately facilitate a tissue with high mineral content. Protein processing is however highly specific suggesting a functional role of the cleaved amelogenins in enamel maturation. Here we hypothesize that the cooperative self-assembly of the recombinant full-length amelogenin 25kDa and the 23kDa proteolytic cleavage product is a function of pH, mixing ratio and incubation time and is associated with the isoelectric point of the protein. Self-assembly of amelogenin into nanospheres which increased in size with increasing pH was observed by atomic force microscopy. Elongated structures of about 100nm length and 25nm width formed over several days for amelogenin 25 and 23kDa predominantly at pH-values of 6.5 and 7.5, respectively. When both proteins 25 and 23kDa were mixed, self-assembled nanostrings of 200-300nm length consisting of fused nanospheres were obtained at pH around 7.0 within 24h. The protein nanostrings formed links over time and a continuous mesh was obtained after 7 days. Electrical conductivity data also showed gradual changes when both amelogenins were mixed in solutions supporting the idea that elongated structures form over extended periods of time. We propose that due to the difference in the isoelectric point, self-assembled nanospheres composed of 23 or 25kDa amelogenin have opposite ionic charges at pH-values around 7.0 and thus experience ionic attraction that enables cooperative self-assembly.
Collapse
Affiliation(s)
- Xiaodong He
- Department of Preventive and Restorative Dental Sciences, 707 Parnassus Ave., University of California, San Francisco, CA 94143-0758, USA
| | | | | |
Collapse
|
126
|
Abstract
Many genes critical to vertebrate skeletal mineralization are members of the secretory calcium-binding phosphoprotein (SCPP) gene family, which has evolved by gene duplication from a single ancestral gene. In humans, mutations in some of these SCPP genes have been associated with various diseases related to dentin or enamel hypoplasia. Recently, systematic searches for SCPP genes of various species have allowed us to investigate the history of phylogenetically variable dental tissues as a whole. One important conclusion is that not all disease-associated SCPP genes are present in tetrapods, and teleost fish probably have none, even in toothed species, having acquired their complement of SCPP genes through an independent duplication history. Here, we review comparative analyses of mineralized dental tissues, with particular emphasis on the use of SCPPs, within and between tetrapods and teleosts. Current knowledge suggests a close relationship among bone, dentin, teleost fish enameloid (enamel-like hard tissue), and tetrapod enamel. These tissues thus form a mineralized-tissue continuum. Contemporary dental tissues have evolved from an ancestral continuum through lineage-specific modifications.
Collapse
Affiliation(s)
- K Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
127
|
Loguercio AD, Moura SK, Pellizzaro A, Dal-Bianco K, Patzlaff RT, Grande RHM, Reis A. Durability of enamel bonding using two-step self-etch systems on ground and unground enamel. Oper Dent 2008; 33:79-88. [PMID: 18335737 DOI: 10.2341/07-42] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study examined the early and long-term microtensile bond strengths (MTBS) and interfacial enamel gap formation (IGW) of two-step self-etch systems to unground and ground enamel. Resin composite (Filtek Z250) buildups were bonded to proximal enamel surfaces (unground, bur-cut or SiC-treated enamel) of third molars after the application of four self-etch adhesives: a mild (Clearfil SE Bond [SE]), two moderate (Optibond Solo Plus Self-Etch Primer [SO] and AdheSE [AD]) and a strong adhesive (Tyrian Self Priming Etchant + One Step Plus [TY]) and two etch-and-rinse adhesive systems (Single Bond [SB] and Scotchbond Multi-Purpose Plus [SBMP]). Ten tooth halves were assigned for each adhesive. After storage in water (24 hours/37 degrees C), the bonded specimens were sectioned into beams (0.9 mm2) and subjected to microTBS (0.5 mm/minute) or interfacial gap width measurement (stereomicroscope at 400x) either immediately (IM) or after 12 months (12M) of water storage. The data were analyzed by three-way repeated measures ANOVA and Tukey's test (alpha=0.05). No gap formation was observed in any experimental condition. The microTBS in the Si-C paper and diamond bur groups were similar and greater than the unground group only for the moderate self-etch systems (SO and AD). No reductions in bond strength values were observed after 12 months of water storage, regardless of the adhesive evaluated.
Collapse
Affiliation(s)
- Alessandro Dourado Loguercio
- Department of Operative Dentistry and Dental Materials, School of Dentistry, University of Oeste de Santa Catarina, Joaçaba/SC, Brazil.
| | | | | | | | | | | | | |
Collapse
|
128
|
Zou Y, Wang H, Shapiro J, Okamoto C, Brookes S, Lyngstadaas S, Snead M, Paine M. Determination of protein regions responsible for interactions of amelogenin with CD63 and LAMP1. Biochem J 2007; 408:347-54. [PMID: 17708745 PMCID: PMC2267358 DOI: 10.1042/bj20070881] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/10/2007] [Accepted: 08/21/2007] [Indexed: 01/13/2023]
Abstract
The enamel matrix protein amelogenin is secreted by ameloblasts into the extracellular space to guide the formation of highly ordered hydroxyapatite mineral crystallites, and, subsequently, is almost completely removed during mineral maturation. Amelogenin interacts with the transmembrane proteins CD63 and LAMP (lysosome-associated membrane protein) 1, which are involved in endocytosis. Exogenously added amelogenin has been observed to move rapidly into CD63/LAMP1-positive vesicles in cultured cells. In the present study, we demonstrate the protein region defined by amino acid residues 103-205 for CD63 interacts not only with amelogenin, but also with other enamel matrix proteins (ameloblastin and enamelin). A detailed characterization of binding regions in amelogenin, CD63 and LAMP1 reveals that the amelogenin region defined by residues PLSPILPELPLEAW is responsible for the interaction with CD63 through residues 165-205, with LAMP1 through residues 226-251, and with the related LAMP2 protein through residues 227-259. We predict that the amelogenin binding region is: (i) hydrophobic; (ii) largely disordered; and (iii) accessible to the external environment. In contrast, the binding region of CD63 is likely to be organized in a '7' shape within the mushroom-like structure of CD63 EC2 (extracellular domain 2). In vivo, the protein interactions between the secreted enamel matrix proteins with the membrane-bound proteins are likely to occur at the specialized secretory surfaces of ameloblast cells called Tomes' processes. Such protein-protein interactions may be required to establish short-term order of the forming matrix and/or to mediate feedback signals to the transcriptional machinery of ameloblasts and/or to remove matrix protein debris during enamel biomineralization.
Collapse
Affiliation(s)
- YanMing Zou
- *University of Southern California School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033-1004, U.S.A
| | - HongJun Wang
- *University of Southern California School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033-1004, U.S.A
| | - Jason L. Shapiro
- *University of Southern California School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033-1004, U.S.A
| | - Curtis T. Okamoto
- †University of Southern California School of Pharmacy, Department of Pharmacology and Pharmaceutical Sciences, Los Angeles, CA 90089-9121, U.S.A
| | - Steven J. Brookes
- ‡Department of Oral Biology, Leeds Dental Institute, University of Leeds, Clarendon Way, Leeds LS2 9LU, U.K
| | - S. Petter Lyngstadaas
- §Department of Biomaterials, Faculty of Dentistry, University of Oslo, P.O. Box 1109 Blindern, N-0317 Oslo, Norway
| | - Malcolm L. Snead
- *University of Southern California School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033-1004, U.S.A
| | - Michael L. Paine
- *University of Southern California School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033-1004, U.S.A
| |
Collapse
|
129
|
Kobayashi K, Yamakoshi Y, Hu JCC, Gomi K, Arai T, Fukae M, Krebsbach PH, Simmer JP. Splicing determines the glycosylation state of ameloblastin. J Dent Res 2007; 86:962-7. [PMID: 17890672 DOI: 10.1177/154405910708601009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In developing porcine enamel, the space between enamel rods selectively binds lectins and ameloblastin (Ambn) N-terminal antibodies. We tested the hypothesis that ameloblastin N-terminal cleavage products are glycosylated. Assorted Ambn cleavage products showed positive lectin staining by peanut agglutinin (PNA), Maclura pomifera agglutinin (MPA), and Limulus polyphemus agglutinin (LPA), suggesting the presence of an O-linked glycosylation containing galactose (Gal), N-acetylgalactosamine (GalNAc), and sialic acid. Edman sequencing of the lectin-positive bands gave the Ambn N-terminal sequence: VPAFPRQPGTXGVASLXLE. The blank cycles for Pro(11) and Ser(17) confirmed that these residues are hydroxylated and phosphorylated, respectively. The O-glycosylation site was determined by Edman sequencing of pronase-digested Ambn, which gave HPPPLPXQPS, indicating that Ser(86) is the site of the O-linked glycosylation. This modification is within the 15-amino-acid segment (73-YEYSLPVHPPPLPSQ-87) deleted by splicing in the mRNA encoding the 380-amino-acid Ambn isoform. We conclude that only the N-terminal Ambn products derived from the 395-Ambn isoform are glycosylated.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Biologic and Materials Sciences, Dental Research Lab, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Lyaruu DM, Bronckers ALJJ, Mulder L, Mardones P, Medina JF, Kellokumpu S, Oude Elferink RPJ, Everts V. The anion exchanger Ae2 is required for enamel maturation in mouse teeth. Matrix Biol 2007; 27:119-27. [PMID: 18042363 DOI: 10.1016/j.matbio.2007.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/20/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
One of the mechanisms by which epithelial cells regulate intracellular pH is exchanging bicarbonate for Cl(-). We tested the hypothesis that in ameloblasts the anion exchanger-2 (Ae2) is involved in pH regulation during maturation stage amelogenesis. Quantitative X-ray microprobe mineral content analysis, scanning electron microscopy, histology, micro-computed tomography and Ae2 immuno-localisation analyses were applied to Ae2-deficient and wild-type mouse mandibles. Immuno-localisation of Ae2 in wild-type mouse incisors showed a very strong expression of Ae2 in the basolateral membranes of the maturation stage ameloblasts. Strikingly, zones of contiguous ameloblasts were found within the maturation stage in which Ae2 expression was extremely low as opposed to neighbouring cells. Maturation stage ameloblasts of the Ae2(a,b)(-/-) mice failed to stain for Ae2 and showed progressive disorganisation as enamel development advanced. Maturation stage enamel of the Ae2(a,b)(-/-) mice contained substantially less mineral and more protein than wild-type enamel as determined by quantitative X-ray microanalysis. Incisor enamel was more severely affected than molar enamel. Scanning electron microscopy revealed that the rod-inter-rod structures of the Ae2(a,b)(-/-) mice incisor enamel were absent. Mineral content of dentine and bone of Ae2(a,b)(-/-) mice was not significantly different from wild-type mice. The enamel from knockout mouse teeth wore down much faster than that from wild-type litter mates. Basolateral bicarbonate secretion via the anionic exchanger Ae2 is essential for mineral growth in the maturation stage enamel. The observed zonal expression of Ae2 in the maturation stage ameloblasts is in line with a model for cyclic proton secretion during maturation stage amelogenesis.
Collapse
Affiliation(s)
- D M Lyaruu
- Department Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Fukae M, Yamamoto R, Karakida T, Shimoda S, Tanabe T. Micelle structure of amelogenin in porcine secretory enamel. J Dent Res 2007; 86:758-63. [PMID: 17652206 DOI: 10.1177/154405910708600814] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Even during the secretory stage of amelogenesis, enamel crystals thicken as amelogenins (the major protein component) decrease. To explain this phenomenon, we propose a model for amelogenin structure and function based upon the hypothesis that amelogenin forms micelles. Solubility and hydrophobicity analyses suggest that all but the hydrophilic amelogenin C-terminal regions aggregate via hydrophobic bonds to form a micelle core. Amelogenin micelles may form super-assemblies via their C-termini (KTKREEVD), which contain complementary positive (KTKR) and negative (EEVD) elements. Disassembly of the micelles through controlled proteolysis provides space for crystal growth. Initial cleavage (by enamelysin) removes the surface-accessible amelogenin C-terminus, exposing the middle portion to cleavage (by EMSP1). As a result, the 13-kDa amelogenin, a rod-shaped domain based upon ultrafiltration and transmission electron microscopy studies, is released. This model explains how amelogenin is able to 'space' and support the ribbon-like crystals and continuously yield space as the crystals thicken, until they are sufficiently mature to support themselves.
Collapse
Affiliation(s)
- M Fukae
- Department of Biochemistry and Anatomy, Tsurumi University, Yokhama, Japan.
| | | | | | | | | |
Collapse
|
132
|
Arnold WH, Gaengler P. Quantitative analysis of the calcium and phosphorus content of developing and permanent human teeth. Ann Anat 2007; 189:183-90. [PMID: 17419551 DOI: 10.1016/j.aanat.2006.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It was the aim of this study to investigate the distribution of Ca, P and C in predentin, dentin and enamel in human tooth buds and permanent teeth by EDX element analysis. The mandible of a 16-week-old human fetus containing eight mineralizing tooth buds and three human permanent molars were fixed in formaldehyde and embedded in Technovit 9100. Serial sections of 80 microm thickness of the mandible were cut in the frontal-dorsal direction, and polarized light micrographs were taken of these sections. The permanent teeth were cut in mesio-distal direction. The sections were investigated with scanning electron microscopy and EDX element analysis with a Philips XL 30 FEG scanning microscope and an EDAX energy-dispersive X-ray system using spot measurements, EDX line-scans and element mapping. Quantitative measurements were made in predentin, mineralizing dentin adjacent to predentin, mature dentin, mineralizing enamel and young enamel of developing teeth and mature enamel of permanent teeth. In developing teeth the Ca and P content increased rapidly from outer predentin towards mineralizing dentin. In enamel prisms of developing teeth the Ca and P content increased linearly from the surface towards the enamel-dentin junction. In permanent teeth only a small layer of predentin was found. The Ca and P content in enamel and circumpulpal dentin of permanent teeth was higher than in developing teeth. The Ca/P ratio differed between predentin and dentin areas reflecting different calcium phosphate compositions, but it was the same in mineralizing and young enamel. The differences in the distribution of Ca and P reflect different mineralizing patterns of the enamel and dentin matrices.
Collapse
Affiliation(s)
- W H Arnold
- Department of Anatomy, University of Witten/Herdecke, 58448 Witten, Germany.
| | | |
Collapse
|
133
|
Iwata T, Yamakoshi Y, Hu JCC, Ishikawa I, Bartlett JD, Krebsbach PH, Simmer JP. Processing of ameloblastin by MMP-20. J Dent Res 2007; 86:153-7. [PMID: 17251515 DOI: 10.1177/154405910708600209] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ameloblastin (AMBN) cleavage products are the most abundant non-amelogenin proteins in the enamel matrix of developing teeth. AMBN N-terminal cleavage products accumulate in the sheath space between enamel rods, while AMBN C-terminal products localize within rods. We tested the hypothesis that MMP-20 is the protease that cleaves AMBN. Glycosylated recombinant porcine AMBN (rpAMBN) was expressed in human kidney 293F cells, and recombinant porcine enamelysin (rpMMP-20) was expressed in bacteria. The purified proteins were incubated together at an enzyme:substrate ratio of 1:100. N-terminal sequencing of AMBN digestion products determined that rpMMP-20 cleaved rpAMBN after Pro(2), Gln(130), Gln(139), Arg(170), and Ala(222). This shows that MMP-20 generates the 23-kDa AMBN starting at Tyr(223), as well as the 17-kDa (Val(1)-Arg(170)) and 15-kDa (Val(1)-Gln(130)) AMBN cleavage products that concentrate in the sheath space during the secretory stage. We conclude that MMP-20 processes ameloblastin in vitro and in vivo.
Collapse
Affiliation(s)
- T Iwata
- Department of Biologic and Materials Sciences, Dental Research Lab, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Davit-Béal T, Chisaka H, Delgado S, Sire JY. Amphibian teeth: current knowledge, unanswered questions, and some directions for future research. Biol Rev Camb Philos Soc 2007; 82:49-81. [PMID: 17313524 DOI: 10.1111/j.1469-185x.2006.00003.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elucidation of the mechanisms controlling early development and organogenesis is currently progressing in several model species and a new field of research, evolutionary developmental biology, which integrates developmental and comparative approaches, has emerged. Although the expression pattern of many genes during tooth development in mammals is known, data on other lineages are virtually non-existent. Comparison of tooth development, and particularly of gene expression (and function) during tooth morphogenesis and differentiation, in representative species of various vertebrate lineages is a prerequisite to understand what makes one tooth different from another. Amphibians appear to be good candidates for such research for several reasons: tooth structure is similar to that in mammals, teeth are renewed continuously during life (=polyphyodonty), some species are easy to breed in the laboratory, and a large amount of morphological data are already available on diverse aspects of tooth biology in various species. The aim of this review is to evaluate current knowledge on amphibian teeth, principally concerning tooth development and replacement (including resorption), and changes in morphology and structure during ontogeny and metamorphosis. Throughout this review we highlight important questions which remain to be answered and that could be addressed using comparative morphological studies and molecular techniques. We illustrate several aspects of amphibian tooth biology using data obtained for the caudate Pleurodeles waltl. This salamander has been used extensively in experimental embryology research during the past century and appears to be one of the most favourable amphibian species to use as a model in studies of tooth development.
Collapse
Affiliation(s)
- Tiphaine Davit-Béal
- UMR 7138-Systématique, Adaptation, Evolution, Université Pierre & Marie Curie-Paris 6 Case 7077, 7 Quai St-Bernard, Paris 75005, France
| | | | | | | |
Collapse
|
135
|
Santos MCLG, Hart PS, Ramaswami M, Kanno CM, Hart TC, Line SRP. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta. Head Face Med 2007; 3:8. [PMID: 17266769 PMCID: PMC1800839 DOI: 10.1186/1746-160x-3-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 01/31/2007] [Indexed: 11/10/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.
Collapse
Affiliation(s)
- Maria CLG Santos
- PHD student, Department of Morphology, Dental School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | - P Suzanne Hart
- PHD, National Human Genome Research Institute, NIH Bethesda MD, USA
| | - Mukundhan Ramaswami
- student, National Institute for Dental and Craniofacial Research, Bethesda, MD, USA
| | - Cláudia M Kanno
- School of Dentistry of Aracatuba, University of the State of Sao Paulo, UNESP, Brazil
| | - Thomas C Hart
- PHD, National Institute for Dental and Craniofacial Research, Bethesda, MD, USA
| | - Sergio RP Line
- PHD, Department of Morphology, Dental School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
136
|
Espírito Santo AR, Bartlett JD, Gibson CW, Li Y, Kulkarni AB, Line SRP. Amelogenin- and enamelysin (Mmp-20)-deficient mice display altered birefringence in the secretory-stage enamel organic extracellular matrix. Connect Tissue Res 2007; 48:39-45. [PMID: 17364666 DOI: 10.1080/03008200601059175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dental enamel is the most mineralized tissue of vertebrate organisms. Enamel biosynthesis is initiated by the secretion, processing, and self-assembly of a complex mixture of proteins. The formation of an ordered enamel organic extracellular matrix (ECM) seems be a crucial step for the proper formation of mineral phase. Polarizing microscopy demonstrates that the ordered supramolecular structure of the secretory-stage enamel organic ECM is strongly birefringent. In the present work we analyzed the birefringence of secretory-stage enamel organic ECM in amelogenin (Amelx)- and enamelysin (Mmp20)-deficient mice. Female Amelx+/- animals showed significant reduction in optical retardation values when compared with the Amelx+/+ subgroup (p=0.0029). The secretory-stage enamel organic ECM of the Amelx-/- subgroup did not exhibit birefringence. The secretory-stage enamel organic ECM of Mmp20-/- mice showed a significant decrease in optical retardation as compared with Mmp20+/+ and Mmp20+/- mice (p=0.0000). Mmp20+/- and Mmp20+/+ mice exhibited similar birefringence (p=1.0000). The results presented here support growing evidence for the idea that the birefringence of secretory-stage enamel organic ECM is influenced by the ordered supramolecular organization of its components.
Collapse
Affiliation(s)
- Alexandre R Espírito Santo
- Department of Morphology, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | | | | | | | | | | |
Collapse
|
137
|
Davit-Béal T, Allizard F, Sire JY. Enameloid/enamel transition through successive tooth replacements in Pleurodeles waltl (Lissamphibia, Caudata). Cell Tissue Res 2006; 328:167-83. [PMID: 17180599 DOI: 10.1007/s00441-006-0306-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 07/13/2006] [Indexed: 10/23/2022]
Abstract
Study of the evolutionary enameloid/enamel transition suffers from discontinuous data in the fossil record, although a developmental enameloid/enamel transition exists in living caudates, salamanders and newts. The timing and manner in which the enameloid/enamel transition is achieved during caudate ontogeny is of great interest, because the caudate situation could reflect events that have occurred during evolution. Using light and transmission electron microscopy, we have monitored the formation of the upper tooth region in six successive teeth of a tooth family (position I) in Pleurodeles waltl from late embryos to young adult. Enameloid has only been identified in embryonic tooth I(1) and in larval teeth I(2) and I(3). A thin layer of enamel is deposited later by ameloblasts on the enameloid surface of these teeth. From post-metamorphic juvenile onwards, teeth are covered with enamel only. The collagen-rich enameloid matrix is deposited by odontoblasts, which subsequently form dentin. Enameloid, like enamel, mineralizes and then matures but ameloblast participation in enameloid matrix deposition has not been established. From tooth I(1) to tooth I(3), the enameloid matrix becomes ever more dense and increasingly comes to resemble the dentin matrix, although it is still subjected to maturation. Our data suggest the absence of an enameloid/enamel transition and, instead, the occurrence of an enameloid/dentin transition, which seems to result from a progressive slowing down of odontoblast activity. As a consequence, the ameloblasts in post-metamorphic teeth appear to synthesize the enamel matrix earlier than in larval teeth.
Collapse
Affiliation(s)
- T Davit-Béal
- Equipe Evolution and Développement du Squelette, UMR 7138, Systématique, Adaptations, Evolution, UPMC-CNRS-MNHN-IRD, Université Paris 6, Paris Cedex 05, France
| | | | | |
Collapse
|
138
|
Bartlett JD, Ball RL, Kawai T, Tye CE, Tsuchiya M, Simmer JP. Origin, splicing, and expression of rodent amelogenin exon 8. J Dent Res 2006; 85:894-9. [PMID: 16998127 PMCID: PMC2229627 DOI: 10.1177/154405910608501004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amelogenin RNA transcripts undergo extensive alternative splicing, and MMP-20 processes the isoforms following their secretion. Since amelogenins have been ascribed cell-signaling activities, we asked if a lack of proteolytic processing by MMP-20 affects amelogenin signaling and consequently alters amelogenin splice site selection. RT-PCR analyses of amelogenin mRNA between control and Mmp20(-/-)mice revealed no differences in the splicing pattern. We characterized 3 previously unidentified amelogenin alternatively spliced transcripts and demonstrated that exon-8-encoded amelogenin isoforms are processed by MMP-20. Transcripts with exon 8 were expressed approximately five-fold less than those with exon 7. Analyses of the mouse and rat amelogenin gene structures confirmed that exon 8 arose in a duplication of exons 4 through 5, with translocation of the copy downstream of exon 7. No downstream genomic sequences homologous to exons 4-5 were present in the bovine or human amelogenin genes, suggesting that this translocation occurred only in rodents.
Collapse
Affiliation(s)
- J D Bartlett
- Department of Cytokine Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
139
|
Abstract
The amelogenesis imperfectas (AIs) are a clinically and genetically diverse group of conditions that are caused by mutations in a variety of genes that are critical for normal enamel formation. To date, mutations have been identified in four genes (AMELX, ENAM, KLK4, MMP20) known to be involved in enamel formation. Additional yet to be identified genes also are implicated in the etiology of AI based on linkage studies. The diverse and often unique phenotypes resulting from the different allelic and non-allelic mutations in these genes provide an opportunity to better understand the role of these genes and their related proteins in enamel formation. Understanding the AI phenotypes also provides an aid to clinicians in directing molecular studies aimed at delineating the genetic basis underlying these diverse clinical conditions. Our current knowledge of the known mutations and associated phenotypes of the different AI subtypes are reviewed.
Collapse
Affiliation(s)
- J Timothy Wright
- Department of Pediatric Dentistry, School of Dentistry, The University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
140
|
Takano Y, Nakano Y, Yamamoto-Shuda Y, Baba O, Terashima T. Proteolysis on maturing enamel surface, as shown by gel-coating methods. Eur J Oral Sci 2006; 114 Suppl 1:52-8; discussion 93-5, 379-80. [PMID: 16674663 DOI: 10.1111/j.1600-0722.2006.00295.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Degradation of enamel matrix proteins, and their removal during early maturation, is critical for the growth of large enamel crystals in the subsequent processes of enamel maturation. In this study, we sought to demonstrate, using in vivo zymography, the exact sites of proteolysis in maturing enamel and its relationship to the overlying ameloblasts. The maturing enamel surfaces of rat and bovine incisors were exposed and painted either with pre-exposed autoradiographic emulsion or with densely fluorescein-conjugated (DQ) gelatin. After a few hours, photographic development of the emulsion revealed alternate black and white banding patterns over the maturing enamel surface. DQ gelatin also revealed similar banding patterns of fluorescent and non-fluorescent regions. White, powdery areas of emulsion and fluorescent bands of DQ gelatin both corresponded to the areas of ruffle-ended ameloblasts, at least up to the mid stages of enamel maturation, implicating a predominant contribution of ruffle-ended ameloblasts in the degradation of enamel matrix proteins. Powdery white bands in autoradiographic emulsion shifted from the areas of ruffle-ended to smooth-ended ameloblasts in late maturation in both bovine and rat incisors and were not influenced by proteinase inhibitors or heat inactivation, implicating non-enzymatic interactions. DQ gelatin, in fact, did not generate any fluorescence in such smooth-ended ameloblast regions.
Collapse
Affiliation(s)
- Yoshiro Takano
- Biostructural Science, Department of Hard Tissue Engineering, Tokyo Medical and Dental University Graduate School, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
141
|
Zeichner-David M, Chen LS, Hsu Z, Reyna J, Caton J, Bringas P. Amelogenin and ameloblastin show growth-factor like activity in periodontal ligament cells. Eur J Oral Sci 2006; 114 Suppl 1:244-53; discussion 254-6, 381-2. [PMID: 16674693 DOI: 10.1111/j.1600-0722.2006.00322.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enamel proteins, particularly amelogenin, have been associated with other functions in addition to regulating enamel biomineralization. Extracts of enamel proteins are currently being used to regenerate periodontal tissues, and new studies suggest that enamel proteins might have chondrogenic and osteogenic properties. In this study, we wanted to determine the effect, if any, of purified recombinant amelogenin and ameloblastin on the adhesion, proliferation, and differentiation of periodontal ligament cells in vitro. Immortomouse-derived periodontal ligament (PDL) cells were grown under permissive and differentiation conditions in the presence of different concentrations of mouse recombinant amelogenin, recombinant ameloblastin, or both. Cells were collected after 4 h to determine attachment, after 24 h to determine proliferation, and after 7, 14, 21 and 28 d to determine differentiation using reverse transcription-polymerase chain reaction (RT-PCR). Both amelogenin and ameloblastin had a small, but statistically significant, effect on increasing the cell attachment and proliferation of PDL cells. Both amelogenin and ameloblastin modulated bone morphogenetic protein (BMP) expression, down-regulated the expression of collagen type I, and induced the de novo expression of osteocalcin. Amelogenin also induced the expression of bone sialoprotein. These results suggest that amelogenin, as well as ameloblastin, might have some 'growth factor' activity during periodontium development and regeneration.
Collapse
Affiliation(s)
- Maggie Zeichner-David
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, CA 90033, USA.
| | | | | | | | | | | |
Collapse
|
142
|
Zhang Y, Yan Q, Li W, DenBesten PK. Fluoride down-regulates the expression of matrix metalloproteinase-20 in human fetal tooth ameloblast-lineage cells in vitro. Eur J Oral Sci 2006; 114 Suppl 1:105-10; discussion 127-9, 380. [PMID: 16674670 DOI: 10.1111/j.1600-0722.2006.00303.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fluoride is associated with a decrease in the incidence of dental caries, but excessive fluoride intake during tooth enamel formation can result in enamel fluorosis. Fluorosed enamel has increased porosity, which has been related to a delay in the removal of amelogenin proteins as the enamel matures. This delay in protein removal suggests that fluoride may affect either the amount or the activity of enamel matrix proteinases. In this study, we investigated the role of fluoride in the synthesis and secretion of matrix metalloproteinase-20 (MMP-20), the proteinase primarily responsible for the initial hydrolysis of amelogenin during the secretory stage of enamel formation. Cultured human fetus tooth organ ameloblast-lineage cells were exposed to 10 microM fluoride and analyzed for synthesis of MMP-20. Immunoblotting showed that 10 microM NaF down-regulated the synthesis of MMP-20 by 21% compared with control cells, but did not alter the amount of amelogenin or kalikrein-4 (KLK-4) synthesized by the cells. Real-time polymerase chain reaction (PCR) showed that 10 microM NaF down-regulated MMP-20 mRNA expression to 28% of the levels found in the non-treated cells. These in vitro results suggest that fluoride can alter the expression of MMP-20 by ameloblasts, resulting in a disturbance of the balance between MMP-20 and its substrate that may contribute to the retention of amelogenins in the formation of fluorosed enamel.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Orofacial Sciences, University of California at San Francisco, San Francisco, CA 94143-0422, USA
| | | | | | | |
Collapse
|
143
|
Sun Z, Ahsan MM, Wang H, Du C, Abbott C, Moradian-Oldak J. Assembly and processing of an engineered amelogenin proteolytic product (rP148). Eur J Oral Sci 2006; 114 Suppl 1:59-63; discussion 93-5, 379-80. [PMID: 16674664 DOI: 10.1111/j.1600-0722.2006.00296.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to express, characterize, and investigate the self-assembly of a recombinant porcine amelogenin lacking the hydrophilic 24 C-terminal amino acids (rP148). To gain further insight into the function of amelogenin processing during enamel mineralization, this protein was also used as a substrate to examine the action of matrix metalloproteinase-20 (MMP-20). The assembly properties of rP148 were monitored by dynamic light scattering (DLS). In general, rP148 molecules assemble into monomers, dimers, oligomers, and some nanosphere-like particles. Depending on the solution conditions, large aggregates were also observed. Matrix metalloproteinase-20 cleaved the rP148 molecule at a few sites, creating a number of different products, including the tyrosine-rich amelogenin polypeptide (TRAP). Our data suggest that although rP148 self-assembles into small particles, its assembly properties are different from those of the full-length rP172, indicating that the C-terminal 24 amino acids play a critical role in nanosphere assembly. We further demonstrate that MMP-20 digests rP148 in a manner that generates a similar proteolytic pattern, as would be expected to occur in vivo.
Collapse
Affiliation(s)
- Zhi Sun
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
144
|
Bartlett JD, Skobe Z, Lee DH, Wright JT, Li Y, Kulkarni AB, Gibson CW. A developmental comparison of matrix metalloproteinase-20 and amelogenin null mouse enamel. Eur J Oral Sci 2006; 114 Suppl 1:18-23; discussion 39-41, 379. [PMID: 16674657 DOI: 10.1111/j.1600-0722.2006.00292.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in both the human amelogenin and human matrix metalloproteinase-20 (MMP20, enamelysin) genes cause amelogenesis imperfecta. Both genes have also been individually deleted from the mouse and each deletion results in defective dental enamel. Here, we compare the stage-specific progression of enamel development in continuously erupting mouse incisors from amelogenin null and MMP-20 null mice. Our goal was to closely examine differences in enamel and enamel organ structure between these mice that would allow a better understanding of each protein's function. The predominant feature of the amelogenin null incisors was the late onset of mineral deposition, with little or no protein present within the forming mineral. Conversely, the developing MMP-20 null incisors had a layer of protein between the apical surface of the ameloblasts and the forming enamel. Furthermore, the protein present within the enamel matrix was disorganized. An analysis of crystal structure demonstrated that the thin amelogenin null enamel was plate-like, while the MMP-20 null enamel had a disrupted prism pattern. These results suggest that amelogenin is essential for appositional crystal growth during the early to mid-secretory stage and for the maintenance of the crystal ribbon structure. They also suggest that MMP-20 is responsible for enamel matrix organization and for subsequent efficient reabsorption of enamel matrix proteins. Both genes are essential for the generation of full-thickness enamel containing the characteristic decussating prism pattern.
Collapse
Affiliation(s)
- John D Bartlett
- Department of Cytokine Biology, Forsyth Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
145
|
Yamakoshi Y, Hu JCC, Fukae M, Yamakoshi F, Simmer JP. How do enamelysin and kallikrein 4 process the 32-kDa enamelin? Eur J Oral Sci 2006; 114 Suppl 1:45-51; discussion 93-5, 379-80. [PMID: 16674662 DOI: 10.1111/j.1600-0722.2006.00281.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activities of two proteases--enamelysin (MMP-20) and kallikrein 4 (KLK4)--are necessary for dental enamel to achieve its high degree of mineralization. We hypothesize that the selected enamel protein cleavage products which accumulate in the secretory-stage enamel matrix do so because they are resistant to further cleavage by MMP-20. Later, they are degraded by KLK4. The 32-kDa enamelin is the only domain of the parent protein that accumulates in the deeper enamel. Our objective was to identify the cleavage sites of 32-kDa enamelin that are generated by proteolysis with MMP-20 and KLK4. Enamelysin, KLK4, the major amelogenin isoform (P173), and the 32-kDa enamelin were isolated from developing porcine enamel. P173 and the 32-kDa enamelin were incubated with MMP-20 or KLK4 for up to 48 h. Then, the 32-kDa enamelin digestion products were fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by Edman sequencing, amino acid analysis, and mass spectrometry. Enamelysin cleaved the 32-kDa enamelin only after it was deglycosylated. Kallikrein 4 digestion of the 32-kDa enamelin generated nine major cleavage products, six of which were successfully characterized. After 12 h of digestion with KLK4, all of the 32-kDa enamelin had been cleaved, but some cleavage products persisted after 48 h of digestion.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- University of Michigan Dental Research Laboratory, Ann Arbor, MI 48108, USA
| | | | | | | | | |
Collapse
|
146
|
Svensson J, Andersson C, Reseland JE, Lyngstadaas P, Bülow L. Histidine tag fusion increases expression levels of active recombinant amelogenin in Escherichia coli. Protein Expr Purif 2006; 48:134-41. [PMID: 16495078 DOI: 10.1016/j.pep.2006.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/05/2006] [Accepted: 01/05/2006] [Indexed: 11/19/2022]
Abstract
Amelogenin is a dental enamel matrix protein involved in formation of dental enamel. In this study, we have expressed two different recombinant murine amelogenins in Escherichia coli: the untagged rM179, and the histidine tagged rp(H)M180, identical to rM179 except that it carries the additional N-terminal sequence MRGSHHHHHHGS. The effects of the histidine tag on expression levels, and on growth properties of the amelogenin expressing cells were studied. Purification of a crude protein extract containing rp(H)M180 was also carried out using IMAC and reverse-phase HPLC. The results of this study showed clearly that both growth properties and amelogenin expression levels were improved for E. coli cells expressing the histidine tagged amelogenin rp(H)M180, compared to cells expressing the untagged amelogenin rM179. The positive effect of the histidine tag on amelogenin expression is proposed to be due to the hydrophilic nature of the histidine tag, generating a more hydrophilic amelogenin, which is more compatible with the host cell. Human osteoblasts treated with the purified rp(H)M180 showed increased levels of secreted osteocalcin, compared to untreated cells. This response was similar to cells treated with enamel matrix derivate, mainly composed by amelogenin, suggesting that the recombinant protein is biologically active. Thus, the histidine tag favors expression and purification of biologically active recombinant amelogenin.
Collapse
Affiliation(s)
- Johan Svensson
- Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
147
|
Gibson CW, Kulkarni AB, Wright JT. The use of animal models to explore amelogenin variants in amelogenesis imperfecta. Cells Tissues Organs 2006; 181:196-201. [PMID: 16612085 DOI: 10.1159/000091381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amelogenin proteins are secreted by ameloblast cells during tooth development. Because of extensive alternative splicing of the amelogenin primary RNA transcript, and because systematic proteolysis results in many additional peptides during enamel maturation, it has been difficult to assign function to individual amelogenins. Targeted deletions and transgenic mice have been generated in order to better understand amelogenin protein function in vivo. From these murine models, we have determined that amelogenins are responsible for normal enamel thickness and structure, but not for initiation of enamel mineral formation at the dentin-enamel junction. Although it is now clear that the amelogenin (AmelX) gene exists in a nested orientation and that AmelX is expressed at a low level in various developing tissues, the significance of these findings is incompletely understood. Future studies are expected to answer remaining questions concerning structure/function relationships among these 'enamel proteins'.
Collapse
Affiliation(s)
- Carolyn W Gibson
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
148
|
Hu JCC, Yamakoshi Y, Yamakoshi F, Krebsbach PH, Simmer JP. Proteomics and genetics of dental enamel. Cells Tissues Organs 2006; 181:219-31. [PMID: 16612087 DOI: 10.1159/000091383] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The initiation of enamel crystals at the dentino-enamel junction is associated with the expression of dentin sialophosphoprotein (DSPP, a gene normally linked with dentin formation), three 'structural' enamel proteins--amelogenin (AMELX), enamelin (ENAM), and ameloblastin (AMBN)--and a matrix metalloproteinase, enamelysin (MMP20). Enamel formation proceeds with the steady elongation of the enamel crystals at a mineralization front just beneath the ameloblast distal membrane, where these proteins are secreted. As the crystal ribbons lengthen, enamelysin processes the secreted proteins. Some of the cleavage products accumulate in the matrix, others are reabsorbed back into the ameloblast. Once crystal elongation is complete and the enamel layer reaches its final thickness, kallikrein 4 (KLK4) facilitates the breakdown and reabsorption of accumulated enamel matrix proteins. The importance of the extracellular matrix proteins to proper tooth development is best illustrated by the dramatic dental phenotypes observed in the targeted knockouts of enamel matrix genes in mice (Dspp, Amelx, Ambn, Mmp20) and in human kindreds with defined mutations in the genes (DSPP, AMELX, ENAM, MMP20, KLK4) encoding these matrix proteins. However, ablation studies alone cannot give specific mechanistic information on how enamel matrix proteins combine to catalyze the formation of enamel crystals. The best approach for determining the molecular mechanism of dental enamel formation is to reconstitute the matrix and synthesize enamel crystals in vitro. Here, we report refinements to the procedures used to isolate porcine enamel and dentin proteins, recent advances in the characterization of enamel matrix protein posttranslational modifications, and summarize the results of human genetic studies that associate specific mutations in the genes encoding matrix proteins with a range of dental phenotypes.
Collapse
Affiliation(s)
- Jan C-C Hu
- University of Michigan Dental Research Lab, Ann Arbor, Mich. 48108, USA
| | | | | | | | | |
Collapse
|
149
|
Murray PE, García-Godoy F. The outlook for implants and endodontics: a review of the tissue engineering strategies to create replacement teeth for patients. Dent Clin North Am 2006; 50:299-315, x. [PMID: 16530064 DOI: 10.1016/j.cden.2005.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ideally, root canal therapy involves the removal of diseased pulp tissues and permanent replacement with healthy pulp to revitalize teeth. Rather than placing implants, the ideal solution is to grow new replacement teeth. Success rates of implants and endodontic treatments can exceed 90%, which presents a formidable challenge to tissue engineering researchers to ensure that future dental treatments are even more successful. The purpose of this article is to explain how tissue engineering can be used to create replacement teeth. The science of tissue engineering has evolved from growing simple tissues in cell culture incubators to a multistep process. Although the problems of introducing tissue engineering therapies as part of routine dental treatments are substantial, the potential benefits are equally ground breaking.
Collapse
Affiliation(s)
- Peter E Murray
- College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| | | |
Collapse
|
150
|
Turk BE, Lee DH, Yamakoshi Y, Klingenhoff A, Reichenberger E, Wright JT, Simmer JP, Komisarof JA, Cantley LC, Bartlett JD. MMP-20 is predominately a tooth-specific enzyme with a deep catalytic pocket that hydrolyzes type V collagen. Biochemistry 2006; 45:3863-74. [PMID: 16548514 PMCID: PMC2536712 DOI: 10.1021/bi052252o] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Matrix metalloproteinase-20 (MMP-20, enamelysin) has a highly restricted pattern of expression. In healthy tissues, MMP-20 is observed in the enamel organ and pulp organ of developing teeth and is present only as an activated enzyme. To identify other tissues that may express MMP-20, we performed a systematic mouse tissue expression screen. Among the non-tooth tissues assayed, MMP-20 transcripts were identified only in minute quantities within the large intestine. The murine Mmp20 promoter was cloned, sequenced, and assessed for potential tooth-specific regulatory elements. In silico analysis identified four promoter modules that were common to Mmp20 and at least two of three coregulated predominantly tooth-specific genes that encode ameloblastin, amelogenin, and enamelin. We asked if the highly restricted MMP-20 expression pattern was associated with a broad substrate specificity that might preclude its expression in other tissues. An iterative mixture-based random doedecamer peptide library screen with Edman sequencing of MMP-20 cleavage products revealed that, among MMPs previously screened, MMP-20 had unique substrate preferences. These preferences indicate that MMP-20 has a deep and wide catalytic pocket that can accommodate substrates with large aromatic residues in the P1' position. On the basis of matrices derived from the peptide library data, we identified and then confirmed that type V collagen is an MMP-20 substrate. Since type V collagen is not present in dental enamel but is an otherwise widely distributed collagen, and since only active MMP-20 has been observed in teeth, our data suggest that control of MMP-20 activity is primarily regulated by transcriptional means.
Collapse
Affiliation(s)
- Benjamin E. Turk
- Department of Pharmacology, Yale University, New Haven, CT 06520
| | - Daniel H. Lee
- Department of Cytokine Biology, Forsyth Institute, Boston, MA 02115
| | - Yasuo Yamakoshi
- University of Michigan Dental Research Laboratory, Ann Arbor, MI 48108
| | | | - Ernst Reichenberger
- Müchen, Germany Center for Restorative Medicine and Skeletal Development, Department for Oral Rehabilitation, Biomaterials and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT 06030
| | - J. Timothy Wright
- Department of Pediatric Dentistry, University of North Carolina, Chapel Hill, NC 27599
| | - James P. Simmer
- University of Michigan Dental Research Laboratory, Ann Arbor, MI 48108
| | | | - Lewis C. Cantley
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - John D. Bartlett
- Department of Cytokine Biology, Forsyth Institute, Boston, MA 02115
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
- To whom correspondence should be addressed: Telephone: 617-262-5200 (ext 8388), Fax: 617-892-8303. E-mail:
| |
Collapse
|