101
|
Lebar N, Danna J, Moré S, Mouchnino L, Blouin J. On the neural basis of sensory weighting: Alpha, beta and gamma modulations during complex movements. Neuroimage 2017; 150:200-212. [DOI: 10.1016/j.neuroimage.2017.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/26/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022] Open
|
102
|
Langbour N, Michel V, Dilharreguy B, Guehl D, Allard M, Burbaud P. The Cortical Processing of Sensorimotor Sequences is Disrupted in Writer's Cramp. Cereb Cortex 2017; 27:2544-2559. [PMID: 27114174 DOI: 10.1093/cercor/bhw108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evidence for pre-existing abnormalities in the sensory and motor systems has been previously reported in writer's cramp (WC). However, the processing of somatosensory information during motor planning has received little attention. We hypothesized that sensorimotor integration processes might be impaired partly due to a disruption in the parieto-premotor network. To test this assumption, we designed 2 nonwriting motor tasks in which subjects had to perform a 4-finger motor sequence either on the basis of sensory stimuli previously memorized (SM task) or freely generated (SG task). Brain activity was measured by combining event-related functional magnetic resonance imaging and coherency electroencephalography in 15 WC patients and 15 normal controls. The bold signal was decreased in patients in both tasks during sensory stimulation but not during movement execution. However, the EEG study showed that coherency was decreased in patients compared with controls, during the delay of the SM task and during the execution of the SG task, on both the whole network and for specific couples of electrodes. Overall, these results demonstrate an endophenotypic impairment in the synchronization of cortical areas within the parieto-premotor network during somatosensory processing and motor planning in WC patients.
Collapse
Affiliation(s)
- N Langbour
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - V Michel
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,Service de Neurophysiologie Clinique, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
| | - B Dilharreguy
- Université de Bordeaux, INCIA, UMR 5287, F-33400 Talence, France.,CNRS, INCIA, UMR 5287, F-33400 Talence, France
| | - D Guehl
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,Service de Neurophysiologie Clinique, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
| | - M Allard
- Université de Bordeaux, INCIA, UMR 5287, F-33400 Talence, France.,CNRS, INCIA, UMR 5287, F-33400 Talence, France.,Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
| | - P Burbaud
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,Service de Neurophysiologie Clinique, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
103
|
Rădulescu AR, Hannon ER. Applying fMRI complexity analyses to the single subject: a case study for proposed neurodiagnostics. Neurocase 2017; 23:120-137. [PMID: 28562172 DOI: 10.1080/13554794.2017.1316410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nonlinear dynamic tools have been statistically validated at the group level to identify subtle differences in system wide regulation of brain meso-circuits, often increasing clinical sensitivity over conventional analyses alone. We explored the feasibility of extracting information at the single-subject level, illustrating two pairs of healthy individuals with psychological differences in stress reactivity. We applied statistical and nonlinear dynamic tools to capture key characteristics of the prefrontal-limbic loop. We compared single subject results with statistical results for the larger group. We concluded that complexity analyses may identify important differences at the single-subject level, supporting their potential towards neurodiagnostic applications.
Collapse
Affiliation(s)
| | - Emily R Hannon
- b Department of Ecology and Evolutionary Biology , University of Colorado at Boulder , Boulder , CO , USA
| |
Collapse
|
104
|
Disentangling the neural correlates of corticobasal syndrome and corticobasal degeneration with systematic and quantitative ALE meta-analyses. NPJ PARKINSONS DISEASE 2017. [PMID: 28649612 PMCID: PMC5459811 DOI: 10.1038/s41531-017-0012-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Corticobasal degeneration is a scarce neurodegenerative disease, which can only be confirmed by histopathological examination. Reported to be associated with various clinical syndromes, its classical clinical phenotype is corticobasal syndrome. Due to the rareness of corticobasal syndrome/corticobasal degeneration and low numbers of patients included in single studies, meta-analyses are particularly suited to disentangle features of the clinical syndrome and histopathology. Using PubMed, we identified 11 magnetic resonance imaging studies measuring atrophy in 22 independent cohorts with 200 patients contrasted to 318 healthy controls. The anatomic likelihood estimation method was applied to reveal affected brain regions across studies. Corticobasal syndrome was related to gray matter loss in the basal ganglia/thalamus, frontal, parietal, and temporal lobes. In corticobasal degeneration patients, atrophy in the thalamus, frontal, temporal, and occipital lobes were found. Finally, in a conjunction analysis, the bilateral thalamus, the bilateral posterior frontomedian cortex, posterior midcingulate cortex and premotor area/supplementary motor area, and the left posterior superior and middle frontal gyrus/precentral gyrus were identified as areas associated with both, corticobasal syndrome and corticobasal degeneration. Remarkably, atrophy in the premotor area/supplementary motor area and posterior midcingulate/frontomedian cortex seems to be specific for corticobasal syndrome/corticobasal degeneration, whereas atrophy in the thalamus and the left posterior superior and middle frontal gyrus/precentral gyrus are also associated with other neurodegenerative diseases according to anatomic likelihood estimation method meta-analyses. Our study creates a new conceptual framework to understand, and distinguish between clinical features (corticobasal syndrome) and histopathological findings (corticobasal degeneration) by powerful data-driven meta-analytic approaches. Furthermore, it proposes regional-specific atrophy as an imaging biomarker for diagnosis of corticobasal syndrome/corticobasal degeneration ante-mortem. Brain imaging could be used to distinguish between patients with corticobasal degeneration (CBD) and Parkinson's disease (PD). CBD is a rare condition caused by the gradual loss of brain cells in areas of the brain that link thinking to movement. The clinical features of CBD, referred to as corticobasal syndrome (CBS), are similar to those of patients with PD, but they progress differently. To aid earlier and more accurate diagnosis, Franziska Albrecht, at the Max Planck Institute for Human Cognitive and Brain Sciences, Germany, and colleagues reviewed 11 magnetic resonance imaging studies to find brain areas that are specifically affected in CBS/CBD patients. They show that cell loss in specific regions of the motor areas and frontomedian cortex is a hallmark of CBS/CBD, whereas cell loss in the thalamus and parts of the frontal/precentral gyrus were associated with other neurodegenerative diseases.
Collapse
|
105
|
How specialized are writing-specific brain regions? An fMRI study of writing, drawing and oral spelling. Cortex 2017; 88:66-80. [DOI: 10.1016/j.cortex.2016.11.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/21/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
|
106
|
Minzenberg MJ, Lesh T, Niendam T, Yoon JH, Cheng Y, Rhoades RN, Carter CS. Frontal Motor Cortex Activity During Reactive Control Is Associated With Past Suicidal Behavior in Recent-Onset Schizophrenia. CRISIS 2016; 36:363-70. [PMID: 26502787 DOI: 10.1027/0227-5910/a000335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Suicide is prevalent in schizophrenia (SZ), yet the neural system functions that confer suicide risk remain obscure. Circuits operated by the prefrontal cortex (PFC) are altered in SZ, including those that support reactive control, and PFC changes are observed in postmortem studies of heterogeneous suicide victims. AIMS We tested whether history of suicide attempt is associated with altered frontal motor cortex activity during reactive control processes. METHOD We evaluated 17 patients with recent onset of DSM-IV-TR-defined SZ using the Columbia Suicide Severity Rating Scale and functional magnetic resonance imaging during Stroop task performance. Group-level regression models relating past suicidal behavior to frontal activation controlled for depression, psychosis, and impulsivity. RESULTS Past suicidal behavior was associated with relatively higher activation in the left-hemisphere supplementary motor area (SMA), pre-SMA, premotor cortex, and dorsolateral PFC, all ipsilateral to the active primary motor cortex. CONCLUSION This study provides unique evidence that suicidal behavior in patients with recent-onset SZ directly relates to frontal motor cortex activity during reactive control, in a pattern reciprocal to the relationship with proactive control found previously. Further work should address how frontal-based control functions change with risk over time, and their potential utility as a biomarker for interventions to mitigate suicide risk in SZ.
Collapse
Affiliation(s)
- Michael J Minzenberg
- 1 Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Tyler Lesh
- 2 Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Tara Niendam
- 2 Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Jong H Yoon
- 4 Department of Psychiatry, Stanford School of Medicine, Palo Alto, CA, USA
| | - Yaoan Cheng
- 1 Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Remy N Rhoades
- 4 Department of Psychiatry, Stanford School of Medicine, Palo Alto, CA, USA
| | - Cameron S Carter
- 2 Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA.,3 Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
107
|
Turesky TK, Turkeltaub PE, Eden GF. An Activation Likelihood Estimation Meta-Analysis Study of Simple Motor Movements in Older and Young Adults. Front Aging Neurosci 2016; 8:238. [PMID: 27799910 PMCID: PMC5065996 DOI: 10.3389/fnagi.2016.00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
The functional neuroanatomy of finger movements has been characterized with neuroimaging in young adults. However, less is known about the aging motor system. Several studies have contrasted movement-related activity in older versus young adults, but there is inconsistency among their findings. To address this, we conducted an activation likelihood estimation (ALE) meta-analysis on within-group data from older adults and young adults performing regularly paced right-hand finger movement tasks in response to external stimuli. We hypothesized that older adults would show a greater likelihood of activation in right cortical motor areas (i.e., ipsilateral to the side of movement) compared to young adults. ALE maps were examined for conjunction and between-group differences. Older adults showed overlapping likelihoods of activation with young adults in left primary sensorimotor cortex (SM1), bilateral supplementary motor area, bilateral insula, left thalamus, and right anterior cerebellum. Their ALE map differed from that of the young adults in right SM1 (extending into dorsal premotor cortex), right supramarginal gyrus, medial premotor cortex, and right posterior cerebellum. The finding that older adults uniquely use ipsilateral regions for right-hand finger movements and show age-dependent modulations in regions recruited by both age groups provides a foundation by which to understand age-related motor decline and motor disorders.
Collapse
Affiliation(s)
- Ted K Turesky
- Center for the Study of Learning, Georgetown University Medical Center, WashingtonDC, USA; Interdisciplinary Program in Neuroscience, Georgetown University, WashingtonDC, USA
| | - Peter E Turkeltaub
- Center for the Study of Learning, Georgetown University Medical Center, WashingtonDC, USA; Neurology Department, Georgetown University Medical Center, WashingtonDC, USA; Research Division, MedStar National Rehabilitation Hospital, WashingtonDC, USA
| | - Guinevere F Eden
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
108
|
Neocortical grey matter distribution underlying voluntary, flexible vocalizations in chimpanzees. Sci Rep 2016; 6:34733. [PMID: 27703216 PMCID: PMC5050423 DOI: 10.1038/srep34733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
Vocal learning is a key property of spoken language, which might also be present in nonhuman primate species, such as chimpanzees (Pan troglodytes), to a limited degree. While understanding the origins of vocal learning in the primate brain may help shed light on the evolution of speech and language, little is still known regarding the neurobiological correlates of vocal flexibility in nonhuman primates. The current study used voxel-based morphometry (VBM) to assess whether the cerebral cortex of captive chimpanzees that learned to voluntarily produce sounds to attract the attention of a human experimenter (attention-getting sounds) differs in grey matter distribution compared to chimpanzees that do not exhibit this behavior. It was found that chimpanzees that produce attention-getting sounds were characterized by increased grey matter in the ventrolateral prefrontal and dorsal premotor cortices. These findings suggest that the evolution of the capacity to flexibly modulate vocal output may be associated with reorganization of regions for motor control, including orofacial movements, in the primate brain.
Collapse
|
109
|
Pijnenburg M, Hosseini SMH, Brumagne S, Janssens L, Goossens N, Caeyenberghs K. Structural Brain Connectivity and the Sit-to-Stand-to-Sit Performance in Individuals with Nonspecific Low Back Pain: A Diffusion Magnetic Resonance Imaging-Based Network Analysis. Brain Connect 2016; 6:795-803. [PMID: 27421840 DOI: 10.1089/brain.2015.0401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Individuals with nonspecific low back pain (NSLBP) show an impaired sensorimotor control. They need significantly more time to perform five consecutive sit-to-stand-to-sit (STSTS) movements compared with healthy controls. Optimal sensorimotor control depends on the coactivation of many brain regions, which have to operate as a coordinated network to achieve correct motor output. Therefore, the examination of brain connectivity from a network perspective is crucial for understanding the factors that drive sensorimotor control. In the current study, potential alterations in structural brain networks of individuals with NSLBP and the correlation with the performance of the STSTS task were investigated. Seventeen individuals with NSLBP and 17 healthy controls were instructed to perform five consecutive STSTS movements as fast as possible. In addition, data of diffusion magnetic resonance imaging were acquired and analyzed using a graph theoretical approach. Results showed that individuals with NSLBP needed significantly more time to perform the STSTS task compared with healthy controls (p < 0.05). Both groups exhibited small-world properties in their structural networks. However, local efficiency was significantly decreased in the patients with NSLBP compared with controls (p < 0.05, false discovery rate [FDR] corrected). Moreover, global efficiency was significantly correlated with the sensorimotor task performance within the NSLBP group (r = -0.73, p = 0.002). Our data show disrupted network organization of white matter networks in patients with NSLBP, which may contribute to their persistent pain and sensorimotor disabilities.
Collapse
Affiliation(s)
- Madelon Pijnenburg
- 1 Department of Rehabilitation Sciences, KU Leuven-University of Leuven , Leuven, Belgium .,2 Department of Allied Health Professions, Fontys University of Applied Sciences , Eindhoven, The Netherlands
| | - S M Hadi Hosseini
- 3 Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University , Stanford, California
| | - Simon Brumagne
- 1 Department of Rehabilitation Sciences, KU Leuven-University of Leuven , Leuven, Belgium
| | - Lotte Janssens
- 1 Department of Rehabilitation Sciences, KU Leuven-University of Leuven , Leuven, Belgium .,4 Biomedical Research Institute, Hasselt University , Diepenbeek, Belgium
| | - Nina Goossens
- 1 Department of Rehabilitation Sciences, KU Leuven-University of Leuven , Leuven, Belgium
| | - Karen Caeyenberghs
- 5 Faculty of Health Sciences, School of Psychology, Australian Catholic University , Melbourne, Australia
| |
Collapse
|
110
|
Vinci-Booher S, James TW, James KH. Visual-motor functional connectivity in preschool children emerges after handwriting experience. Trends Neurosci Educ 2016. [DOI: 10.1016/j.tine.2016.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
111
|
Pieterman K, Batalle D, Dudink J, Tournier JD, Hughes EJ, Barnett M, Benders MJ, Edwards AD, Hoebeek FE, Counsell SJ. Cerebello-cerebral connectivity in the developing brain. Brain Struct Funct 2016; 222:1625-1634. [PMID: 27573027 PMCID: PMC5406415 DOI: 10.1007/s00429-016-1296-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/22/2016] [Indexed: 01/28/2023]
Abstract
Disrupted cerebellar development and injury is associated with impairments in both motor and non-motor domains. Methods to non-invasively characterize cerebellar afferent and efferent connections during early development are lacking. The aim of this study was to assess the feasibility of delineating cortico-ponto-cerebellar (CPC) and cerebello-thalamo-cortical (CTC) white matter tracts during brain development using high angular resolution diffusion imaging (HARDI). HARDI data were obtained in 24 infants born between 24+6 and 39 weeks gestational age (median 33+4 weeks) and scanned between 29+1 and 44 weeks postmenstrual age (PMA) (median 37+1 weeks). Probabilistic tractography of CPC and CTC fibers was performed using constrained spherical deconvolution. Connections between cerebellum and contralateral cerebral hemisphere were identified in all infants studied. Fractional anisotropy (FA) values of CTC and CPC pathways increased with increasing PMA at scan (p < 0.001). The supratentorial regions connecting to contralateral cerebellum in most subjects, irrespective of PMA at scan, included the precentral cortex, superior frontal cortex, supplementary motor area, insula, postcentral cortex, precuneus, and paracentral lobule. This study demonstrates the feasibility of assessing CTC and CPC white matter connectivity in vivo during the early stages of development. The ability to assess cerebellar connectivity during this critical developmental period may help improve our understanding of the role of the cerebellum in a wide range of neuromotor and neurocognitive disorders.
Collapse
Affiliation(s)
- Kay Pieterman
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK.,Department of Neonatology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Radiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Dafnis Batalle
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Jeroen Dudink
- Department of Neonatology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Radiology, Erasmus Medical Centre, Rotterdam, The Netherlands.,Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - J-Donald Tournier
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK.,Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, King's College London, London, SE1 7EH, UK
| | - Emer J Hughes
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Madeleine Barnett
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Manon J Benders
- Department of Perinatology, Wilhelmina Children's Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A David Edwards
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | - Serena J Counsell
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| |
Collapse
|
112
|
Functional near infrared spectroscopy as a probe of brain function in people with prolonged disorders of consciousness. NEUROIMAGE-CLINICAL 2016; 12:312-9. [PMID: 27547728 PMCID: PMC4983150 DOI: 10.1016/j.nicl.2016.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
Abstract
Near infrared spectroscopy (NIRS) is a non-invasive technique which measures changes in brain tissue oxygenation. NIRS has been used for continuous monitoring of brain oxygenation during medical procedures carrying high risk of iatrogenic brain ischemia and also has been adopted by cognitive neuroscience for studies on executive and cognitive functions. Until now, NIRS has not been used to detect residual cognitive functions in patients with prolonged disorders of consciousness (pDOC). In this study we aimed to evaluate the brain function of patients with pDOC by using a motor imagery task while recording NIRS. We also collected data from a group of age and gender matched healthy controls while they carried out both real and imagined motor movements to command. We studied 16 pDOC patients in total, split into two groups: five had a diagnosis of Vegetative state/Unresponsive Wakefulness State, and eleven had a diagnosis of Minimally Conscious State. In the control subjects we found a greater oxy-haemoglobin (oxyHb) response during real movement compared with imagined movement. For the between group comparison, we found a main effect of hemisphere, with greater depression of oxyHb signal in the right > left hemisphere compared with rest period for all three groups. A post-hoc analysis including only the two pDOC patient groups was also significant suggesting that this effect was not just being driven by the control subjects. This study demonstrates for the first time the feasibility of using NIRS for the assessment of brain function in pDOC patients using a motor imagery task.
Collapse
Key Words
- (Prolonged) disorders of consciousness
- Brain function assessment in disorders of consciousness
- Functional near infrared spectroscopy
- M1, primary motor cortex
- MCS, minimally conscious state
- MI, motor imagery
- MM, motor movement
- SMA, supplementary motor area
- SMART, Sensory Modality Assessment for Rehabilitation Technique
- UWS, unresponsive wakefulness state
- VS, vegetative state
- fNIRS, functional near infrared spectroscopy
- pDOC, prolonged disorders of consciousness
Collapse
|
113
|
The neuroanatomical delineation of agentic and affiliative extraversion. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 15:321-34. [PMID: 25712871 DOI: 10.3758/s13415-014-0331-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extraversion is a fascinating personality dimension that consists of two major components, agentic extraversion and affiliative extraversion. Agentic extraversion involves incentive motivation and is expressed as a tendency toward assertiveness, persistence, and achievement. Affiliative extraversion involves the positive emotion of social warmth and is expressed as a tendency toward amicability, gregariousness, and affection. Here we investigate the neuroanatomical correlates of the personality traits of agentic and affiliative extraversion using the Multidimensional Personality Questionnaire Brief Form, structural magnetic resonance imaging, and voxel-based morphometry in a sample of 83 healthy adult volunteers. We found that trait agentic extraversion and trait affiliative extraversion were each positively associated with the volume of the medial orbitofrontal cortex bilaterally (t's ≥ 2.03, r's ≥ .23, p's < .05). Agentic extraversion was specifically and positively related to the volume of the left parahippocampal gyrus (t = 4.08, r = .21, p < .05), left cingulate gyrus (t = 4.75, r = .28, p < .05), left caudate (t = 4.29, r = .24, p < .05), and left precentral gyrus (t = 4.00, r = .18, p < .05) in males and females, and the volume of the right nucleus accumbens in males (t = 2.92, r = .20, p < .05). Trait affiliative extraversion was not found to be associated with additional regions beyond the medial orbitofrontal cortex. The findings provide the first evidence of a neuroanatomical dissociation between the personality traits of agentic and affiliative extraversion in healthy adults.
Collapse
|
114
|
Brown MJ, Staines WR. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input. Neuroimage 2016; 127:97-109. [DOI: 10.1016/j.neuroimage.2015.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
|
115
|
Bologna M, Suppa A, Conte A, Latorre A, Rothwell JC, Berardelli A. Are studies of motor cortex plasticity relevant in human patients with Parkinson’s disease? Clin Neurophysiol 2016; 127:50-59. [DOI: 10.1016/j.clinph.2015.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/08/2015] [Accepted: 02/11/2015] [Indexed: 10/23/2022]
|
116
|
Gleichgerrcht E, Fridriksson J, Rorden C, Nesland T, Desai R, Bonilha L. Separate neural systems support representations for actions and objects during narrative speech in post-stroke aphasia. NEUROIMAGE-CLINICAL 2015; 10:140-5. [PMID: 26759789 PMCID: PMC4683458 DOI: 10.1016/j.nicl.2015.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/13/2015] [Accepted: 11/16/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Representations of objects and actions in everyday speech are usually materialized as nouns and verbs, two grammatical classes that constitute the core elements of language. Given their very distinct roles in singling out objects (nouns) or referring to transformative actions (verbs), they likely rely on distinct brain circuits. METHOD We tested this hypothesis by conducting network-based lesion-symptom mapping in 38 patients with chronic stroke to the left hemisphere. We reconstructed the individual brain connectomes from probabilistic tractography applied to magnetic resonance imaging and obtained measures of production of words referring to objects and actions from narrative discourse elicited by picture naming tasks. RESULTS Words for actions were associated with a frontal network strongly engaging structures involved in motor control and programming. Words for objects, instead, were related to a posterior network spreading across the occipital, posterior inferior temporal, and parietal regions, likely related with visual processing and imagery, object recognition, and spatial attention/scanning. Thus, each of these networks engaged brain areas typically involved in cognitive and sensorimotor experiences equivalent to the function served by each grammatical class (e.g. motor areas for verbs, perception areas for nouns). CONCLUSIONS The finding that the two major grammatical classes in human speech rely on two dissociable networks has both important theoretical implications for the neurobiology of language and clinical implications for the assessment and potential rehabilitation and treatment of patients with chronic aphasia due to stroke.
Collapse
Affiliation(s)
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Travis Nesland
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Rutvik Desai
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
117
|
Cropley VL, Scarr E, Fornito A, Klauser P, Bousman CA, Scott R, Cairns MJ, Tooney PA, Pantelis C, Dean B. The effect of a muscarinic receptor 1 gene variant on grey matter volume in schizophrenia. Psychiatry Res 2015; 234:182-7. [PMID: 26481978 DOI: 10.1016/j.pscychresns.2015.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/20/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022]
Abstract
Previous research has demonstrated that individuals with schizophrenia who are homozygous at the c.267C>A single nucleotide polymorphism (rs2067477) within the cholinergic muscarinic M1 receptor (CHRM1) perform less well on the Wisconsin Card Sorting Test (WCST) than those who are heterozygous. This study sought to determine whether variation in the rs2067477 genotype was associated with differential changes in brain structure. Data from 227 patients with established schizophrenia or schizoaffective disorder were obtained from the Australian Schizophrenia Research Bank. Whole-brain voxel-based morphometry was performed to compare regional grey matter volume (GMV) between the 267C/C (N=191) and 267C/A (N=36) groups. Secondary analyses tested for an effect of genotype on cognition (the WCST was not available). Individuals who were homozygous (267C/C) demonstrated significantly reduced GMV in the right precentral gyrus compared to those who were heterozygous (267C/A). These preliminary results suggest that the rs2067477 genotype is associated with brain structure in the right precentral gyrus in individuals with schizophrenia/schizoaffective disorder. Future studies are required to replicate these results and directly link the volumetric reductions with specific cognitive processes.
Collapse
Affiliation(s)
- Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Elizabeth Scarr
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia; Molecular Psychiatry Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Alex Fornito
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Brain and Mental Health Laboratory, Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria 3168, Australia
| | - Paul Klauser
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Brain and Mental Health Laboratory, Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria 3168, Australia
| | - Chad A Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Rodney Scott
- The School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, New South Wales 3208, Australia; Neurobehavioural Genetics Unit, Hunter Medical Research Institute, New Lambton, New South Wales 2305, Australia
| | - Murray J Cairns
- The School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, New South Wales 3208, Australia; Neurobehavioural Genetics Unit, Hunter Medical Research Institute, New Lambton, New South Wales 2305, Australia
| | - Paul A Tooney
- The School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, New South Wales 3208, Australia; Neurobehavioural Genetics Unit, Hunter Medical Research Institute, New Lambton, New South Wales 2305, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Brian Dean
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia; Molecular Psychiatry Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| |
Collapse
|
118
|
Enders H, Cortese F, Maurer C, Baltich J, Protzner AB, Nigg BM. Changes in cortical activity measured with EEG during a high-intensity cycling exercise. J Neurophysiol 2015; 115:379-88. [PMID: 26538604 DOI: 10.1152/jn.00497.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effects of a high-intensity cycling exercise on changes in spectral and temporal aspects of electroencephalography (EEG) measured from 10 experienced cyclists. Cyclists performed a maximum aerobic power test on the first testing day followed by a time-to-exhaustion trial at 85% of their maximum power output on 2 subsequent days that were separated by ∼48 h. EEG was recorded using a 64-channel system at 500 Hz. Independent component (IC) analysis parsed the EEG scalp data into maximal ICs. An equivalent current dipole model was calculated for each IC, and results were clustered across subjects. A time-frequency analysis of the identified electrocortical clusters was performed to investigate the magnitude and timing of event-related spectral perturbations. Significant changes (P < 0.05) in electrocortical activity were found in frontal, supplementary motor and parietal areas of the cortex. Overall, there was a significant increase in EEG power as fatigue developed throughout the exercise. The strongest increase was found in the frontal area of the cortex. The timing of event-related desynchronization within the supplementary motor area corresponds with the onset of force production and the transition from flexion to extension in the pedaling cycle. The results indicate an involvement of the cerebral cortex during the pedaling task that most likely involves executive control function, as well as motor planning and execution.
Collapse
Affiliation(s)
- Hendrik Enders
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada;
| | - Filomeno Cortese
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Jennifer Baltich
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Andrea B Protzner
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
119
|
Suppa A, Rocchi L, Li Voti P, Papazachariadis O, Casciato S, Di Bonaventura C, Giallonardo A, Berardelli A. The Photoparoxysmal Response Reflects Abnormal Early Visuomotor Integration in the Human Motor Cortex. Brain Stimul 2015; 8:1151-61. [DOI: 10.1016/j.brs.2015.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/23/2015] [Accepted: 05/22/2015] [Indexed: 11/29/2022] Open
|
120
|
Drenckhahn C, Koch SP, Dümmler J, Kohl-Bareis M, Steinbrink J, Dreier JP. A validation study of the use of near-infrared spectroscopy imaging in primary and secondary motor areas of the human brain. Epilepsy Behav 2015; 49:118-25. [PMID: 25976181 DOI: 10.1016/j.yebeh.2015.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
The electroencephalographically measured Bereitschafts (readiness)-potential in the supplementary motor area (SMA) serves as a signature of the preparation of motor activity. Using a multichannel, noninvasive near-infrared spectroscopy (NIRS) imager, we studied the vascular correlate of the readiness potential. Sixteen healthy subjects performed a self-paced or externally triggered motor task in a single or repetitive pattern, while NIRS simultaneously recorded the task-related responses of deoxygenated hemoglobin (HbR) in the primary motor area (M1) and the SMA. Right-hand movements in the repetitive sequence trial elicited a significantly greater HbR response in both the SMA and the left M1 compared to left-hand movements. During the single sequence condition, the HbR response in the SMA, but not in the M1, was significantly greater for self-paced than for externally cued movements. Nonetheless, an unequivocal temporal delay was not found between the SMA and M1. Near-infrared spectroscopy is a promising, noninvasive bedside tool for the neuromonitoring of epileptic seizures or cortical spreading depolarizations (CSDs) in patients with epilepsy, stroke, or brain trauma because these pathological events are associated with typical spatial and temporal changes in HbR. Propagation is a characteristic feature of these events which importantly supports their identification and characterization in invasive recordings. Unfortunately, the present noninvasive study failed to show a temporal delay during self-paced movements between the SMA and M1 as a vascular correlate of the readiness potential. Although this result does not exclude, in principle, the possibility that scalp-NIRS can detect a temporal delay between different regions during epileptic seizures or CSDs, it strongly suggests that further technological development of NIRS should focus on both improved spatial and temporal resolution. This article is part of a Special Issue entitled Status Epilepticus.
Collapse
Affiliation(s)
- Christoph Drenckhahn
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany; Department of Neurology, Charité University Medicine Berlin, Berlin, Germany; Berlin Neuroimaging Center, Charité University Medicine Berlin, Berlin, Germany
| | - Stefan P Koch
- Berlin Neuroimaging Center, Charité University Medicine Berlin, Berlin, Germany
| | - Johannes Dümmler
- Department of Anaesthesiology and Intensive Care Medicine, Christian-Albrechts University, Kiel, Germany
| | | | - Jens Steinbrink
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany; Berlin Neuroimaging Center, Charité University Medicine Berlin, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany; Department of Neurology, Charité University Medicine Berlin, Berlin, Germany; Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany; Berlin Neuroimaging Center, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
121
|
Somatosensory input to non-primary motor areas is enhanced during preparation of cued contraterlateral finger sequence movements. Behav Brain Res 2015; 286:166-74. [DOI: 10.1016/j.bbr.2015.02.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/31/2022]
|
122
|
Oka N, Yoshino K, Yamamoto K, Takahashi H, Li S, Sugimachi T, Nakano K, Suda Y, Kato T. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving. PLoS One 2015; 10:e0127594. [PMID: 25993263 PMCID: PMC4438050 DOI: 10.1371/journal.pone.0127594] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). RESEARCH DESIGN AND METHODS The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. RESULTS Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p < 0.05) in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05) only in the right frontal eye field. CONCLUSIONS Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.
Collapse
Affiliation(s)
- Noriyuki Oka
- Department of Brain Environmental Research, KatoBrain Co., Ltd., Tokyo, Japan
| | - Kayoko Yoshino
- Department of Brain Environmental Research, KatoBrain Co., Ltd., Tokyo, Japan
| | - Kouji Yamamoto
- Department of Environment/Engineering, Tokyo Branch, Central Nippon Expressway Co., Ltd, Tokyo, Japan
| | - Hideki Takahashi
- Department of Environment/Engineering, Central Nippon Expressway Co., Ltd., Nagoya, Japan
| | - Shuguang Li
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
| | | | - Kimihiko Nakano
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
| | - Yoshihiro Suda
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
| | - Toshinori Kato
- Department of Brain Environmental Research, KatoBrain Co., Ltd., Tokyo, Japan
| |
Collapse
|
123
|
The "Motor Band Sign:" Susceptibility-Weighted Imaging in Amyotrophic Lateral Sclerosis. Can J Neurol Sci 2015; 42:260-3. [PMID: 25971894 DOI: 10.1017/cjn.2015.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
124
|
Wade S, Hammond G. Anodal transcranial direct current stimulation over premotor cortex facilitates observational learning of a motor sequence. Eur J Neurosci 2015; 41:1597-602. [DOI: 10.1111/ejn.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Stephanie Wade
- School of Psychology; The University of Western Australia; Mailbag M304 35 Stirling Hwy Crawley 6009 WA USA
| | - Geoff Hammond
- School of Psychology; The University of Western Australia; Mailbag M304 35 Stirling Hwy Crawley 6009 WA USA
| |
Collapse
|
125
|
Potgieser ARE, van der Hoorn A, de Jong BM. Cerebral activations related to writing and drawing with each hand. PLoS One 2015; 10:e0126723. [PMID: 25955655 PMCID: PMC4425548 DOI: 10.1371/journal.pone.0126723] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/07/2015] [Indexed: 12/02/2022] Open
Abstract
Background Writing is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing. Methods Sixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM). Results Writing and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca’s area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation. Discussion The audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a common mechanism by which such visually formatted information is used for subsequent sensorimotor integration along a dorsal visuomotor pathway. In this, the left posterior middle temporal gyrus subserves phonological-orthographical conversion, dissociating dorsal parietal-premotor circuitry from perisylvian circuitry including Broca's area.
Collapse
Affiliation(s)
- Adriaan R. E. Potgieser
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Neuroimaging center, University Medical Center, University of Groningen, Groningen, The Netherlands
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anouk van der Hoorn
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Neuroimaging center, University Medical Center, University of Groningen, Groningen, The Netherlands
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bauke M. de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Neuroimaging center, University Medical Center, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
126
|
Li H, Chen Y, Li Y, Yin B, Tang W, Yu X, Huang W, Geng D, Zhang B. Altered cortical activation during action observation in amyotrophic lateral sclerosis patients: a parametric functional MRI study. Eur Radiol 2015; 25:2584-92. [DOI: 10.1007/s00330-015-3671-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/19/2015] [Accepted: 02/13/2015] [Indexed: 11/30/2022]
|
127
|
Song S, Gotts SJ, Dayan E, Cohen LG. Practice structure improves unconscious transitional memories by increasing synchrony in a premotor network. J Cogn Neurosci 2015; 27:1503-12. [PMID: 25761004 DOI: 10.1162/jocn_a_00796] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Sequence learning relies on formation of unconscious transitional and conscious ordinal memories. The influence of practice type on formation of these memories that compose skill and systems level neural substrates is not known. Here, we studied learning of transitional and ordinal memories in participants trained on motor sequences while scanned using fMRI. Practice structure was varied or grouped (mixing or grouping sequences during training, respectively). Memory was assessed 30 min and 1 week later. Varied practice improved transitional memory and enhanced coupling of the dorsal premotor cortex with thalamus, cerebellum, and lingual and cingulate regions and greater transitional memory correlated with this coupling. Thus, varied practice improves unconscious transitional memories in proportion to coupling within a cortico-subcortical network linked to premotor cortex. This result indicates that practice structure influences unconscious transitional memory formation and identifies underlying systems level mechanisms.
Collapse
Affiliation(s)
| | | | - Eran Dayan
- National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
128
|
Bauer R, Fels M, Vukelić M, Ziemann U, Gharabaghi A. Bridging the gap between motor imagery and motor execution with a brain–robot interface. Neuroimage 2015; 108:319-27. [DOI: 10.1016/j.neuroimage.2014.12.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/31/2014] [Accepted: 12/09/2014] [Indexed: 01/29/2023] Open
|
129
|
Bauer R, Gharabaghi A. Estimating cognitive load during self-regulation of brain activity and neurofeedback with therapeutic brain-computer interfaces. Front Behav Neurosci 2015; 9:21. [PMID: 25762908 PMCID: PMC4329795 DOI: 10.3389/fnbeh.2015.00021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/20/2015] [Indexed: 01/30/2023] Open
Abstract
Neurofeedback (NFB) training with brain-computer interfaces (BCIs) is currently being studied in a variety of neurological and neuropsychiatric conditions in an aim to reduce disorder-specific symptoms. For this purpose, a range of classification algorithms has been explored to identify different brain states. These neural states, e.g., self-regulated brain activity vs. rest, are separated by setting a threshold parameter. Measures such as the maximum classification accuracy (CA) have been introduced to evaluate the performance of these algorithms. Interestingly enough, precisely these measures are often used to estimate the subject's ability to perform brain self-regulation. This is surprising, given that the goal of improving the tool that differentiates between brain states is different from the aim of optimizing NFB for the subject performing brain self-regulation. For the latter, knowledge about mental resources and work load is essential in order to adapt the difficulty of the intervention accordingly. In this context, we apply an analytical method and provide empirical data to determine the zone of proximal development (ZPD) as a measure of a subject's cognitive resources and the instructional efficacy of NFB. This approach is based on a reconsideration of item-response theory (IRT) and cognitive load theory for instructional design, and combines them with the CA curve to provide a measure of BCI performance.
Collapse
Affiliation(s)
- Robert Bauer
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University TuebingenTuebingen, Germany
- Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University TuebingenTuebingen, Germany
- Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTuebingen, Germany
| |
Collapse
|
130
|
Kennis M, Rademaker AR, van Rooij SJ, Kahn RS, Geuze E. Resting state functional connectivity of the anterior cingulate cortex in veterans with and without post-traumatic stress disorder. Hum Brain Mapp 2015; 36:99-109. [PMID: 25137414 PMCID: PMC6869264 DOI: 10.1002/hbm.22615] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/10/2014] [Accepted: 08/11/2014] [Indexed: 01/01/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is an anxiety disorder that is associated with structural and functional alterations in several brain areas, including the anterior cingulate cortex (ACC). Here, we examine resting state functional connectivity of ACC subdivisions in PTSD, using a seed-based approach. Resting state magnetic resonance images were obtained from male veterans with (n = 31) and without (n = 25) PTSD, and healthy male civilian controls (n = 25). Veterans with and without PTSD (combat controls) had reduced functional connectivity compared to healthy controls between the caudal ACC and the precentral gyrus, and between the perigenual ACC and the superior medial gyrus and middle temporal gyrus. Combat controls had increased connectivity between the rostral ACC and precentral/middle frontal gyrus compared to PTSD patients and healthy civilian controls. The resting state functional connectivity differences in the perigenual ACC network reported here indicate that veterans differ from healthy controls, potentially due to military training, deployment, and/or trauma exposure. In addition, specific alterations in the combat controls may potentially be related to resilience. These results underline the importance of distinguishing trauma-exposed (combat) controls from healthy civilian controls when studying PTSD.
Collapse
Affiliation(s)
- Mitzy Kennis
- Research Centre‐Military Mental Healthcare, Ministry of DefenceCXUtrechtThe Netherlands
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center UtrechtCXUtrechtThe Netherlands
| | - Arthur R. Rademaker
- Research Centre‐Military Mental Healthcare, Ministry of DefenceCXUtrechtThe Netherlands
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center UtrechtCXUtrechtThe Netherlands
| | - Sanne J.H. van Rooij
- Research Centre‐Military Mental Healthcare, Ministry of DefenceCXUtrechtThe Netherlands
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center UtrechtCXUtrechtThe Netherlands
| | - René S. Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center UtrechtCXUtrechtThe Netherlands
| | - Elbert Geuze
- Research Centre‐Military Mental Healthcare, Ministry of DefenceCXUtrechtThe Netherlands
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center UtrechtCXUtrechtThe Netherlands
| |
Collapse
|
131
|
The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2014; 15:381-94. [DOI: 10.3758/s13415-014-0329-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
132
|
Aupperle RL, Melrose AJ, Francisco A, Paulus MP, Stein MB. Neural substrates of approach-avoidance conflict decision-making. Hum Brain Mapp 2014; 36:449-62. [PMID: 25224633 DOI: 10.1002/hbm.22639] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/30/2014] [Accepted: 09/08/2014] [Indexed: 11/09/2022] Open
Abstract
Animal approach-avoidance conflict paradigms have been used extensively to operationalize anxiety, quantify the effects of anxiolytic agents, and probe the neural basis of fear and anxiety. Results from human neuroimaging studies support that a frontal-striatal-amygdala neural circuitry is important for approach-avoidance learning. However, the neural basis of decision-making is much less clear in this context. Thus, we combined a recently developed human approach-avoidance paradigm with functional magnetic resonance imaging (fMRI) to identify neural substrates underlying approach-avoidance conflict decision-making. Fifteen healthy adults completed the approach-avoidance conflict (AAC) paradigm during fMRI. Analyses of variance were used to compare conflict to nonconflict (avoid-threat and approach-reward) conditions and to compare level of reward points offered during the decision phase. Trial-by-trial amplitude modulation analyses were used to delineate brain areas underlying decision-making in the context of approach/avoidance behavior. Conflict trials as compared to the nonconflict trials elicited greater activation within bilateral anterior cingulate cortex, anterior insula, and caudate, as well as right dorsolateral prefrontal cortex (PFC). Right caudate and lateral PFC activation was modulated by level of reward offered. Individuals who showed greater caudate activation exhibited less approach behavior. On a trial-by-trial basis, greater right lateral PFC activation related to less approach behavior. Taken together, results suggest that the degree of activation within prefrontal-striatal-insula circuitry determines the degree of approach versus avoidance decision-making. Moreover, the degree of caudate and lateral PFC activation related to individual differences in approach-avoidance decision-making. Therefore, the approach-avoidance conflict paradigm is ideally suited to probe anxiety-related processing differences during approach-avoidance decision-making.
Collapse
Affiliation(s)
- Robin L Aupperle
- Department of Psychiatry, University of California - San Diego, La Jolla, California; Psychiatry Service, VA San Diego Healthcare System, San Diego, California; Department of Psychology, University of Missouri - Kansas City, Kansas City, Missouri
| | | | | | | | | |
Collapse
|
133
|
Burman KJ, Bakola S, Richardson KE, Reser DH, Rosa MGP. Patterns of cortical input to the primary motor area in the marmoset monkey. J Comp Neurol 2014; 522:811-43. [PMID: 23939531 DOI: 10.1002/cne.23447] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 01/25/2023]
Abstract
In primates the primary motor cortex (M1) forms a topographic map of the body, whereby neurons in the medial part of this area control movements involving trunk and hindlimb muscles, those in the intermediate part control movements involving forelimb muscles, and those in the lateral part control movements of facial and other head muscles. This topography is accompanied by changes in cytoarchitectural characteristics, raising the question of whether the anatomical connections also vary between different parts of M1. To address this issue, we compared the patterns of cortical afferents revealed by retrograde tracer injections in different locations within M1 of marmoset monkeys. We found that the entire extent of this area is unified by projections from the dorsocaudal and medial subdivisions of premotor cortex (areas 6DC and 6M), from somatosensory areas 3a, 3b, 1/2, and S2, and from posterior parietal area PE. While cingulate areas projected to all subdivisions, they preferentially targeted the medial part of M1. Conversely, the ventral premotor areas were preferentially connected with the lateral part of M1. Smaller but consistent inputs originated in frontal area 6DR, ventral posterior parietal cortex, the retroinsular cortex, and area TPt. Connections with intraparietal, prefrontal, and temporal areas were very sparse, and variable. Our results demonstrate that M1 is unified by a consistent pattern of major connections, but also shows regional variations in terms of minor inputs. These differences likely reflect requirements for control of voluntary movement involving different body parts.
Collapse
Affiliation(s)
- Kathleen J Burman
- Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | | | | |
Collapse
|
134
|
Ni Z, Isayama R, Castillo G, Gunraj C, Saha U, Chen R. Reduced dorsal premotor cortex and primary motor cortex connectivity in older adults. Neurobiol Aging 2014; 36:301-3. [PMID: 25216584 DOI: 10.1016/j.neurobiolaging.2014.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 07/12/2014] [Accepted: 08/13/2014] [Indexed: 11/17/2022]
Abstract
Motor functions decline with increasing age. The underlying mechanisms are still unclear and are likely to be multifactorial. There is evidence for disruption of white matter integrity with age, which affects cortico-cortical connectivity. Studies with transcranial magnetic stimulation found both inhibitory and facilitatory connections from dorsal premotor cortex (PMd) to the ipsilateral primary motor cortex (M1) in young adults. We investigated whether aging affects this connectivity in 15 older and 15 young healthy adults. Transcranial magnetic stimulation in a paired-pulse paradigm was used to test the connectivity between left PMd and M1. Motor evoked potential in the right first dorsal interosseous muscle was recorded. We found that both the inhibitory effect with low intensity PMd stimulation and the facilitatory effect with high intensity PMd stimulation observed in young adults were decreased in older adults. We conclude that the connectivity between PMd and ipsilateral M1 is reduced in older adults.
Collapse
Affiliation(s)
- Zhen Ni
- Division of Neurology, Krembil Neuroscience Centre, Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Reina Isayama
- Division of Neurology, Krembil Neuroscience Centre, Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Gabriel Castillo
- Division of Neurology, Krembil Neuroscience Centre, Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Carolyn Gunraj
- Division of Neurology, Krembil Neuroscience Centre, Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Utpal Saha
- Division of Neurology, Krembil Neuroscience Centre, Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, Krembil Neuroscience Centre, Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
135
|
Minzenberg MJ, Lesh TA, Niendam TA, Yoon JH, Rhoades RN, Carter CS. Frontal cortex control dysfunction related to long-term suicide risk in recent-onset schizophrenia. Schizophr Res 2014; 157:19-25. [PMID: 24972755 DOI: 10.1016/j.schres.2014.05.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Suicide is highly-prevalent and the most serious outcome in schizophrenia, yet the disturbances in neural system functions that confer suicide risk remain obscure. Circuits operated by the prefrontal cortex (PFC) are altered in psychotic disorders, and various PFC changes are observed in post-mortem studies of completed suicide. We tested whether PFC activity during goal-representation (an important component of cognitive control) relates to long-term suicide risk in recent-onset schizophrenia. METHOD 35 patients with recent-onset of DSM-IV-TR-defined schizophrenia (SZ) were evaluated for long-term suicide risk (using the Columbia Suicide Severity Rating Scale) and functional MRI during cognitive control task performance. Group-level regression models associating control-related brain activation with suicide risk controlled for depression, psychosis and impulsivity. RESULTS Within this group, past suicidal ideation was associated with lower activation with goal-representation demands in multiple PFC sectors. Among those with past suicidal ideation (n=18), reported suicidal behavior was associated with lower control-related activation in premotor cortex ipsilateral to the active primary motor cortex. CONCLUSIONS This study provides unique evidence that suicide risk directly relates to PFC-based circuit dysfunction during goal-representation, in a major mental illness with significant suicide rates. Among those with suicidal ideation, the overt expression in suicidal behavior may stem from impairments in premotor cortex support of action-planning as an expression of control. Further work should address how PFC-based control function changes with risk over time, whether this brain-behavior relationship is specific to schizophrenia, and address its potential utility as a biomarker for interventions to mitigate suicide risk.
Collapse
Affiliation(s)
- Michael J Minzenberg
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, United States; Veterans Affairs Medical Center, San Francisco, CA, United States.
| | - Tyler A Lesh
- Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, United States
| | - Tara A Niendam
- Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, United States
| | - Jong H Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Palo Alto, CA, United States; VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Remy N Rhoades
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, United States; Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Cameron S Carter
- Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, United States; Center for Neuroscience, University of California, Davis, CA, United States
| |
Collapse
|
136
|
Vansteensel MJ, Bleichner MG, Freudenburg ZV, Hermes D, Aarnoutse EJ, Leijten FSS, Ferrier CH, Jansma JM, Ramsey NF. Spatiotemporal characteristics of electrocortical brain activity during mental calculation. Hum Brain Mapp 2014; 35:5903-20. [PMID: 25044370 DOI: 10.1002/hbm.22593] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 06/16/2014] [Accepted: 07/14/2014] [Indexed: 11/08/2022] Open
Abstract
Mental calculation is a complex mental procedure involving a frontoparietal network of brain regions. Functional MRI (fMRI) studies have revealed interesting characteristics of these regions, but the precise function of some areas remains elusive. In the present study, we used electrocorticographic (ECoG) recordings to chronometrically assess the neuronal processes during mental arithmetic. A calculation task was performed during presurgical 3T fMRI scanning and subsequent ECoG monitoring. Mental calculation induced an increase in fMRI blood oxygen level dependent signal in prefrontal, parietal and lower temporo-occipital regions. The group-fMRI result was subsequently used to cluster the implanted electrodes into anatomically defined regions of interest (ROIs). We observed remarkable differences in high frequency power profiles between ROIs, some of which were closely associated with stimulus presentation and others with the response. Upon stimulus presentation, occipital areas were the first to respond, followed by parietal and frontal areas, and finally by motor areas. Notably, we demonstrate that the fMRI activation in the middle frontal gyrus/precentral gyrus is associated with two subfunctions during mental calculation. This finding reveals the significance of the temporal dynamics of neural ensembles within regions with an apparent uniform function. In conclusion, our results shed more light on the spatiotemporal aspects of brain activation during a mental calculation task, and demonstrate that the use of fMRI data to cluster ECoG electrodes is a useful approach for ECoG group analysis.
Collapse
Affiliation(s)
- Mariska J Vansteensel
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Kim EH, Thu DCV, Tippett LJ, Oorschot DE, Hogg VM, Roxburgh R, Synek BJ, Waldvogel HJ, Faull RLM. Cortical interneuron loss and symptom heterogeneity in Huntington disease. Ann Neurol 2014; 75:717-27. [DOI: 10.1002/ana.24162] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Eric H. Kim
- Department of Anatomy with Radiology; University of Auckland; Auckland New Zealand
- Centre for Brain Research; University of Auckland; Auckland New Zealand
| | - Doris C. V. Thu
- Centre for Brain Research; University of Auckland; Auckland New Zealand
- Brain Mind Institute, Lausanne Federal Polytechnic School; Lausanne Switzerland
| | - Lynette J. Tippett
- Centre for Brain Research; University of Auckland; Auckland New Zealand
- Department of Psychology; University of Auckland; Auckland New Zealand
| | - Dorothy E. Oorschot
- Department of Anatomy; University of Otago; Dunedin New Zealand
- Brain Health Research Centre; University of Otago; Dunedin New Zealand
| | - Virginia M. Hogg
- Centre for Brain Research; University of Auckland; Auckland New Zealand
- Department of Psychology; University of Auckland; Auckland New Zealand
| | - Richard Roxburgh
- Centre for Brain Research; University of Auckland; Auckland New Zealand
- Neurology; Auckland City Hospital; Auckland New Zealand
| | - Beth J. Synek
- Centre for Brain Research; University of Auckland; Auckland New Zealand
- Forensic Pathology; Auckland City Hospital; Auckland New Zealand
| | - Henry J. Waldvogel
- Department of Anatomy with Radiology; University of Auckland; Auckland New Zealand
- Centre for Brain Research; University of Auckland; Auckland New Zealand
| | - Richard L. M. Faull
- Department of Anatomy with Radiology; University of Auckland; Auckland New Zealand
- Centre for Brain Research; University of Auckland; Auckland New Zealand
| |
Collapse
|
138
|
Pirio Richardson S, Beck S, Bliem B, Hallett M. Abnormal dorsal premotor-motor inhibition in writer's cramp. Mov Disord 2014; 29:797-803. [PMID: 24710852 DOI: 10.1002/mds.25878] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/13/2014] [Accepted: 02/13/2014] [Indexed: 12/16/2022] Open
Abstract
The authors hypothesized that a deficient premotor-motor inhibitory network contributes to the unwanted involuntary movements in dystonia. The authors studied nine controls and nine patients with writer's cramp (WC). Dorsal premotor-motor cortical inhibition (dPMI) was tested by applying conditioning transcranial magnetic stimulation (TMS) to the dorsal premotor cortex and then a test pulse to the ipsilateral motor cortex at an interval of 6 ms. The authors used an H-reflex in flexor carpi radialis paired with TMS over the premotor cortex to assess for spinal cord excitability change. Finally, the authors interrupted a choice reaction time task with TMS over dorsal premotor cortex to assess performance in a nondystonic task. The results showed that WC patients exhibited dPMI at rest (88.5%, the ratio of conditioned to unconditioned test pulse), in contrast to controls, who did not show dPMI (109.6%) (P = 0.0198). This difference between patients and controls persisted during contraction (100% vs. 112%) and pen-holding (95.6% vs. 111%). The H-reflex in the arm was not modulated by the premotor cortex stimulation. The WC patients made more errors, and the error rate improved with TMS over the premotor cortex. These results suggest that abnormal premotor-motor interactions may play a role in the pathophysiology of focal dystonia. The dPMI was not modulated by task in either group, but was constantly greater in the patients. The significance of the increased inhibition is likely to be compensatory. It appears to be a robust finding and, in combination with other features, could be further explored as a biomarker.
Collapse
Affiliation(s)
- Sarah Pirio Richardson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA; Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
139
|
Pinal D, Zurrón M, Díaz F. Effects of load and maintenance duration on the time course of information encoding and retrieval in working memory: from perceptual analysis to post-categorization processes. Front Hum Neurosci 2014; 8:165. [PMID: 24744715 PMCID: PMC3978287 DOI: 10.3389/fnhum.2014.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/05/2014] [Indexed: 11/13/2022] Open
Abstract
WORKING MEMORY (WM) INVOLVES THREE COGNITIVE EVENTS information encoding, maintenance, and retrieval; these are supported by brain activity in a network of frontal, parietal and temporal regions. Manipulation of WM load and duration of the maintenance period can modulate this activity. Although such modulations have been widely studied using the event-related potentials (ERP) technique, a precise description of the time course of brain activity during encoding and retrieval is still required. Here, we used this technique and principal component analysis to assess the time course of brain activity during encoding and retrieval in a delayed match to sample task. We also investigated the effects of memory load and duration of the maintenance period on ERP activity. Brain activity was similar during information encoding and retrieval and comprised six temporal factors, which closely matched the latency and scalp distribution of some ERP components: P1, N1, P2, N2, P300, and a slow wave. Changes in memory load modulated task performance and yielded variations in frontal lobe activation. Moreover, the P300 amplitude was smaller in the high than in the low load condition during encoding and retrieval. Conversely, the slow wave amplitude was higher in the high than in the low load condition during encoding, and the same was true for the N2 amplitude during retrieval. Thus, during encoding, memory load appears to modulate the processing resources for context updating and post-categorization processes, and during retrieval it modulates resources for stimulus classification and context updating. Besides, despite the lack of differences in task performance related to duration of the maintenance period, larger N2 amplitude and stronger activation of the left temporal lobe after long than after short maintenance periods were found during information retrieval. Thus, results regarding the duration of maintenance period were complex, and future work is required to test the time-based decay theory predictions.
Collapse
Affiliation(s)
- Diego Pinal
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Montserrat Zurrón
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Fernando Díaz
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
140
|
van Wegen EEH, Hirsch MA, Huiskamp M, Kwakkel G. Harnessing Cueing Training for Neuroplasticity in Parkinson Disease. TOPICS IN GERIATRIC REHABILITATION 2014. [DOI: 10.1097/tgr.0000000000000005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
141
|
Shaw DJ, Czekóová K. Exploring the development of the mirror neuron system: finding the right paradigm. Dev Neuropsychol 2013; 38:256-71. [PMID: 23682665 DOI: 10.1080/87565641.2013.783832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Due to its ability to map an observed action onto the observer's own cortical motor circuits, the mirror neuron system (MNS) has been implicated in many facets of social cognition. As such, achieving an understanding of the typical development of this intriguing brain system seems obvious. Only now, however, are studies attempting to explore the processes and principles behind the emergence of the MNS. This article critically reviews a number of experimental paradigms employed in this endeavor. We conclude by suggesting that future neuroscientific investigations should incorporate a response-stimulus procedure, whereby action execution results in, not from, novel sensory stimuli.
Collapse
Affiliation(s)
- Daniel J Shaw
- Behavioral and Social Neuroscience Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
142
|
Abstract
Humans typically rely upon vision to identify object shape, but we can also recognize shape via touch (haptics). Our haptic shape recognition ability raises an intriguing question: To what extent do visual cortical shape recognition mechanisms support haptic object recognition? We addressed this question using a haptic fMRI repetition design, which allowed us to identify neuronal populations sensitive to the shape of objects that were touched but not seen. In addition to the expected shape-selective fMRI responses in dorsal frontoparietal areas, we observed widespread shape-selective responses in the ventral visual cortical pathway, including primary visual cortex. Our results indicate that shape processing via touch engages many of the same neural mechanisms as visual object recognition. The shape-specific repetition effects we observed in primary visual cortex show that visual sensory areas are engaged during the haptic exploration of object shape, even in the absence of concurrent shape-related visual input. Our results complement related findings in visually deprived individuals and highlight the fundamental role of the visual system in the processing of object shape.
Collapse
|
143
|
Shou H, Eloyan A, Lee S, Zipunnikov V, Crainiceanu AN, Nebel NB, Caffo B, Lindquist MA, Crainiceanu CM. Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2). COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2013; 13:714-24. [PMID: 24022791 PMCID: PMC3869880 DOI: 10.3758/s13415-013-0196-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article proposes the image intraclass correlation (I2C2) coefficient as a global measure of reliability for imaging studies. The I2C2 generalizes the classic intraclass correlation (ICC) coefficient to the case when the data of interest are images, thereby providing a measure that is both intuitive and convenient. Drawing a connection with classical measurement error models for replication experiments, the I2C2 can be computed quickly, even in high-dimensional imaging studies. A nonparametric bootstrap procedure is introduced to quantify the variability of the I2C2 estimator. Furthermore, a Monte Carlo permutation is utilized to test reproducibility versus a zero I2C2, representing complete lack of reproducibility. Methodologies are applied to three replication studies arising from different brain imaging modalities and settings: regional analysis of volumes in normalized space imaging for characterizing brain morphology, seed-voxel brain activation maps based on resting-state functional magnetic resonance imaging (fMRI), and fractional anisotropy in an area surrounding the corpus callosum via diffusion tensor imaging. Notably, resting-state fMRI brain activation maps are found to have low reliability, ranging from .2 to .4. Software and data are available to provide easy access to the proposed methods.
Collapse
|
144
|
Berman BD, Hallett M, Herscovitch P, Simonyan K. Striatal dopaminergic dysfunction at rest and during task performance in writer's cramp. ACTA ACUST UNITED AC 2013; 136:3645-58. [PMID: 24148273 DOI: 10.1093/brain/awt282] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Writer's cramp is a task-specific focal hand dystonia characterized by involuntary excessive muscle contractions during writing. Although abnormal striatal dopamine receptor binding has been implicated in the pathophysiology of writer's cramp and other primary dystonias, endogenous dopamine release during task performance has not been previously investigated in writer's cramp. Using positron emission tomography imaging with the D2/D3 antagonist 11C-raclopride, we analysed striatal D2/D3 availability at rest and endogenous dopamine release during sequential finger tapping and speech production tasks in 15 patients with writer's cramp and 15 matched healthy control subjects. Compared with control subjects, patients had reduced 11C-raclopride binding to D2/D3 receptors at rest in the bilateral striatum, consistent with findings in previous studies. During the tapping task, patients had decreased dopamine release in the left striatum as assessed by reduced change in 11C-raclopride binding compared with control subjects. One cluster of reduced dopamine release in the left putamen during tapping overlapped with a region of reduced 11C-raclopride binding to D2/D3 receptors at rest. During the sentence production task, patients showed increased dopamine release in the left striatum. No overlap between altered dopamine release during speech production and reduced 11C-raclopride binding to D2/D3 receptors at rest was seen. Striatal regions where D2/D3 availability at rest positively correlated with disease duration were lateral and non-overlapping with striatal regions showing reduced D2/D3 receptor availability, except for a cluster in the left nucleus accumbens, which showed a negative correlation with disease duration and overlapped with striatal regions showing reduced D2/D3 availability. Our findings suggest that patients with writer's cramp may have divergent responses in striatal dopamine release during an asymptomatic motor task involving the dystonic hand and an unrelated asymptomatic task, sentence production. Our voxel-based results also suggest that writer's cramp may be associated with reduced striatal dopamine release occuring in the setting of reduced D2/D3 receptor availability and raise the possibility that basal ganglia circuits associated with premotor cortices and those associated with primary motor cortex are differentially affected in primary focal dystonias.
Collapse
Affiliation(s)
- Brian D Berman
- 1 Department of Neurology, University of Colorado Anschutz Medical Campus, Denver, CO USA
| | | | | | | |
Collapse
|
145
|
Vukelić M, Bauer R, Naros G, Naros I, Braun C, Gharabaghi A. Lateralized alpha-band cortical networks regulate volitional modulation of beta-band sensorimotor oscillations. Neuroimage 2013; 87:147-53. [PMID: 24121086 DOI: 10.1016/j.neuroimage.2013.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 01/21/2023] Open
Abstract
Sensorimotor rhythms (SMRs) are oscillatory brain activities in the α- and β-bands across the sensorimotor regions of the brain. Each frequency band has its own specific function. The α-band oscillations are closely related to intrinsic cortical networks, whereas oscillations in the β-band are relevant for the information transfer between the cortex and periphery, as well as for visual and proprioceptive feedback. This study aimed to investigate the interaction between these two frequency bands, under the premise that the regional modulation of β-band power is linked to a cortical network in the α-band. We therefore designed a procedure to maximize the modulation of β-band activity over the sensorimotor cortex by combining kinesthetic motor-imagery with closed-loop haptic feedback. The cortical network activity during this procedure was estimated via the phase slope index in electroencephalographic recordings. Analysis of effective connectivity within the α-band network revealed an information flow between the precentral (premotor and primary motor), postcentral (primary somatosensory) and parietal cortical areas. The range of β-modulation was connected to a reduction of an ipsilateral sensorimotor and parietal α-network and, consequently, to a lateralization of this network to the contralateral side. These results showed that regional sensorimotor oscillatory activity in the β-band was regulated by cortical coupling of distant areas in the α-band.
Collapse
Affiliation(s)
- Mathias Vukelić
- Division of Translational Neurosurgery and Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany.
| | - Robert Bauer
- Division of Translational Neurosurgery and Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany.
| | - Georgios Naros
- Division of Translational Neurosurgery and Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany.
| | - Ilias Naros
- Division of Translational Neurosurgery and Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany.
| | - Christoph Braun
- MEG Center, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany.
| | - Alireza Gharabaghi
- Division of Translational Neurosurgery and Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany.
| |
Collapse
|
146
|
Abstract
We hypothesized that motor retardation in bipolar depression is mediated by disruption of the pre-executive stages of motor production. We used functional magnetic resonance imaging to investigate neural activity during motor imagery and motor execution to elucidate whether brain regions that mediate planning, preparation, and control of movement are activated differently in subjects with bipolar depression (n = 9) compared with healthy controls (n = 12). We found significant between-group differences. During motor imagery, the patients activated the posterior medial parietal cortex, the posterior cingulate cortex, the premotor cortex, the prefrontal cortex, and the frontal poles more than the controls did. Activation in the brain areas involved in motor selection, planning, and preparation was altered. In addition, limbic and prefrontal regions associated with self-reference and the default mode network were altered during motor imagery in bipolar depression with motor retardation.
Collapse
|
147
|
Suppa A, Li Voti P, Rocchi L, Papazachariadis O, Berardelli A. Early Visuomotor Integration Processes Induce LTP/LTD-Like Plasticity in the Human Motor Cortex. Cereb Cortex 2013; 25:703-12. [PMID: 24057659 DOI: 10.1093/cercor/bht264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A Suppa
- IRCCS Neuromed Institute, Pozzilli (IS), Italy
| | - P Li Voti
- IRCCS Neuromed Institute, Pozzilli (IS), Italy
| | - L Rocchi
- Department of Neurology and Psychiatry
| | - O Papazachariadis
- Department of Physiology and Pharmacology, "Sapienza" University of Rome, 00185 Rome, Italy
| | - A Berardelli
- IRCCS Neuromed Institute, Pozzilli (IS), Italy Department of Neurology and Psychiatry
| |
Collapse
|
148
|
Vogt T, Schneider S, Anneken V, Strüder HK. Moderate cycling exercise enhances neurocognitive processing in adolescents with intellectual and developmental disabilities. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:2708-2716. [PMID: 23770890 DOI: 10.1016/j.ridd.2013.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Research has shown that physical exercise enhances cognitive performance in individuals with intact cognition as well as in individuals diagnosed with intellectual and developmental disabilities. Although well identified in the field of health (for example, the transient hypofrontality theory), the underlying neurocognitive processes in intellectual and developmental disabilities remain widely unclear and thus characterize the primary aim of this research. Eleven adolescents with intellectual and developmental disabilities performed moderate cycling exercise and common relaxation. Cross-over designed, both 10-min meetings were randomly allocated at the same time of day with 24-h time lags in between. Conditions were embedded in ability-modified cognitive performance (decision-making processes). Participants' reaction times and their equivalent neurophysiological parameters were recorded using standard EEG and analyzed (spatial activity, N2). Exercise revealed a decrease in frontal electrocortical activity, most pronounced in the medial frontal gyrus (10%). To that effect, reaction time (p<0.01) was decreased and mirrored in decreased N2 latency (p<0.01) after exercise. In contrast, relaxation revealed no significant changes. Results of this research suggest exercise temporarily enhances neuronal activity in relation to cognitive performance for adolescents with intellectual and developmental disabilities; further research is needed to explore possible future effects on enhancing neurocognitive development.
Collapse
Affiliation(s)
- Tobias Vogt
- Department of Exercise Neuroscience, Institute of Movement and Neurosciences, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| | | | | | | |
Collapse
|
149
|
Shon J, Lee D, Seo E, Sohn B, Kim J, Park S, Kim S, Jhoo J, Woo J. Functional neuroanatomical correlates of the executive clock drawing task (CLOX) performance in Alzheimer’s disease: A FDG-PET study. Neuroscience 2013; 246:271-80. [DOI: 10.1016/j.neuroscience.2013.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 10/26/2022]
|
150
|
Barbas H, García-Cabezas MÁ, Zikopoulos B. Frontal-thalamic circuits associated with language. BRAIN AND LANGUAGE 2013; 126:49-61. [PMID: 23211411 PMCID: PMC3615046 DOI: 10.1016/j.bandl.2012.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 09/20/2012] [Accepted: 10/18/2012] [Indexed: 05/20/2023]
Abstract
Thalamic nuclei associated with language including the ventral lateral, ventral anterior, intralaminar and mediodorsal form a hub that uniquely receives the output of the basal ganglia and cerebellum, and is connected with frontal (premotor and prefrontal) cortices through two parallel circuits: a thalamic pathway targets the middle frontal cortical layers focally, and the other innervates widely cortical layer 1, poised to recruit other cortices and thalamic nuclei for complex cognitive operations. Return frontal pathways to the thalamus originate from cortical layers 6 and 5. Information through this integrated thalamo-cortical system is gated by the inhibitory thalamic reticular nucleus and modulated by dopamine, representing a specialization in primates. The intricate dialogue of distinct thalamic nuclei with the basal ganglia, cerebellum, and specific dorsolateral prefrontal and premotor cortices associated with language, suggests synergistic roles in the complex but seemingly effortless sequential transformation of cognitive operations for speech production in humans.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|