101
|
Han X, Zhang J, Xue X, Zhao Y, Lu L, Cui M, Miao W, Fan S. Theaflavin ameliorates ionizing radiation-induced hematopoietic injury via the NRF2 pathway. Free Radic Biol Med 2017; 113:59-70. [PMID: 28939421 DOI: 10.1016/j.freeradbiomed.2017.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/08/2017] [Accepted: 09/17/2017] [Indexed: 12/24/2022]
Abstract
It has been well established that reactive oxygen species (ROS) play a critical role in ionizing radiation (IR)-induced hematopoietic injury. Theaflavin (TF), a polyphenolic compound from black tea, has been implicated in the regulation of endogenous cellular antioxidant systems. However, it remains unclear whether TF could ameliorate IR-induced hematopoietic injury, particularly the hematopoietic stem cell (HSC) injury. In this study, we explored the potential role of TF in IR-induced HSC injury and the underlying mechanism in a total body irradiation (TBI) mouse model. Our results showed that TF improved survival of irradiated wild-type mice and ameliorated TBI-induced hematopoietic injury by attenuating myelosuppression and myeloid skewing, increasing HSC frequency, and promoting reconstitution of irradiated HSCs. Furthermore, TF inhibited TBI-induced HSC senescence. These effects of TF were associated with a decline in ROS levels and DNA damage in irradiated HSCs. TF reduced oxidative stress mainly by up-regulating nuclear factor erythroid 2-related factor 2 (NRF2) and its downstream targets in irradiated Lineage-c-kit+ positive cells. However, TF failed to improve the survival, to increase HSC frequency and to reduce ROS levels of HSCs in irradiated Nrf2-/- mice. These findings suggest that TF ameliorates IR-induced HSC injury via the NRF2 pathway. Therefore, TF has the potential to be used as a radioprotective agent to ameliorate IR-induced hematopoietic injury.
Collapse
Affiliation(s)
- Xiaodan Han
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Xiaolei Xue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Weimin Miao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300041,China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| |
Collapse
|
102
|
Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice. Stem Cell Res Ther 2017; 8:263. [PMID: 29141658 PMCID: PMC5688691 DOI: 10.1186/s13287-017-0711-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/03/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
Background Radiation exposure poses a significant threat to public health. Hematopoietic injury is one of the major manifestations of acute radiation sickness. Protection and/or mitigation of hematopoietic stem cells (HSCs) from radiation injury is an important goal in the development of medical countermeasure agents (MCM). We recently identified thioredoxin (TXN) as a novel molecule that has marked protective and proliferative effects on HSCs. In the current study, we investigated the effectiveness of TXN in rescuing mice from a lethal dose of total body radiation (TBI) and in enhancing hematopoietic reconstitution following a lethal dose of irradiation. Methods We used in-vivo and in-vitro methods to understand the biological and molecular mechanisms of TXN on radiation mitigation. BABL/c mice were used for the survival study and a flow cytometer was used to quantify the HSC population and cell senescence. A hematology analyzer was used for the peripheral blood cell count, including white blood cells (WBCs), red blood cells (RBCs), hemoglobin, and platelets. Colony forming unit (CFU) assay was used to study the colongenic function of HSCs. Hematoxylin and eosin staining was used to determine the bone marrow cellularity. Senescence-associated β-galactosidase assay was used for cell senescence. Western blot analysis was used to evaluate the DNA damage and senescence protein expression. Immunofluorescence staining was used to measure the expression of γ-H2AX foci for DNA damage. Results We found that administration of TXN 24 h following irradiation significantly mitigates BALB/c mice from TBI-induced death: 70% of TXN-treated mice survived, whereas only 25% of saline-treated mice survived. TXN administration led to enhanced recovery of peripheral blood cell counts, bone marrow cellularity, and HSC population as measured by c-Kit+Sca-1+Lin– (KSL) cells, SLAM + KSL cells and CFUs. TXN treatment reduced cell senescence and radiation-induced double-strand DNA breaks in both murine bone marrow lineage-negative (Lin–) cells and primary fibroblasts. Furthermore, TXN decreased the expression of p16 and phosphorylated p38. Our data suggest that TXN modulates diverse cellular processes of HSCs. Conclusions Administration of TXN 24 h following irradiation mitigates radiation-induced lethality. To the best of our knowledge, this is the first report demonstrating that TXN reduces radiation-induced lethality. TXN shows potential utility in the mitigation of radiation-induced hematopoietic injury.
Collapse
|
103
|
Zhang J, Wang Z, Wu A, Nie J, Pei H, Hu W, Wang B, Shang P, Li B, Zhou G. Differences in responses to X-ray exposure between osteoclast and osteoblast cells. JOURNAL OF RADIATION RESEARCH 2017; 58:791-802. [PMID: 28541506 PMCID: PMC5710662 DOI: 10.1093/jrr/rrx026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 05/07/2023]
Abstract
Radiation-induced bone loss is a potential health concern for cancer patients undergoing radiotherapy. Enhanced bone resorption by osteoclasts and decreased bone formation by osteoblasts were thought to be the main reasons. In this study, we showed that both pre-differentiating and differentiating osteoclasts were relatively sensitive to X-rays compared with osteoblasts. X-rays decreased cell viability to a greater degree in RAW264.7 cells and in differentiating cells than than in osteoblastic MC3T3-E1 cells. X-rays at up to 8 Gy had little effects on osteoblast mineralization. In contrast, X-rays at 1 Gy induced enhanced osteoclastogenesis by enhanced cell fusion, but had no effects on bone resorption. A higher dose of X-rays at 8 Gy, however, had an inhibitory effect on bone resorption. In addition, actin ring formation was disrupted by 8 Gy of X-rays and reorganized into clusters. An increased activity of Caspase 3 was found after X-ray exposure. Actin disorganization and increased apoptosis may be the potential effects of X-rays at high doses, by inhibiting osteoclast differentiation. Taken together, our data indicate high radiosensitivity of osteoclasts. X-ray irradiation at relatively low doses can activate osteoclastogenesis, but not osteogenic differentiation. The radiosensitive osteoclasts are the potentially responsive cells for X-ray-induced bone loss.
Collapse
Affiliation(s)
- Jian Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou 215123, China
| | - Ziyang Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou 215123, China
| | - Anqing Wu
- School of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou 215123, China
| | - Jing Nie
- School of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou 215123, China
| | - Hailong Pei
- School of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou 215123, China
| | - Wentao Hu
- School of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou 215123, China
| | - Bing Wang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-555, Japan
| | - Peng Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou 215123, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Guangming Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou 215123, China
- Corresponding author. School of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China. Tel: +86-512-6588-4829; Fax: +86-512-6588-4830;
| |
Collapse
|
104
|
Xiao S, Shterev ID, Zhang W, Young L, Shieh JH, Moore M, van den Brink M, Sempowski GD, Manley NR. Sublethal Total Body Irradiation Causes Long-Term Deficits in Thymus Function by Reducing Lymphoid Progenitors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2701-2712. [PMID: 28931604 PMCID: PMC5659725 DOI: 10.4049/jimmunol.1600934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/08/2017] [Indexed: 12/17/2022]
Abstract
Total body irradiation (TBI) damages hematopoietic cells in the bone marrow and thymus; however, the long-term effects of irradiation with aging remain unclear. In this study, we found that the impact of radiation on thymopoiesis in mice varied by sex and dose but, overall, thymopoiesis remained suppressed for ≥12 mo after a single exposure. Male and female mice showed a long-term dose-dependent reduction in thymic cKit+ lymphoid progenitors that was maintained throughout life. Damage to hematopoietic stem cells (HSCs) in the bone marrow was dose dependent, with as little as 0.5 Gy causing a significant long-term reduction. In addition, the potential for T lineage commitment was radiation sensitive with aging. Overall, the impact of irradiation on the hematopoietic lineage was more severe in females. In contrast, the rate of decline in thymic epithelial cell numbers with age was radiation-sensitive only in males, and other characteristics including Ccl25 transcription were unaffected. Taken together, these data suggest that long-term suppression of thymopoiesis after sublethal irradiation was primarily due to fewer progenitors in the BM combined with reduced potential for T lineage commitment. A single irradiation dose also caused synchronization of thymopoiesis, with a periodic thymocyte differentiation profile persisting for at least 12 mo postirradiation. This study suggests that the number and capability of HSCs for T cell production can be dramatically and permanently damaged after a single relatively low TBI dose, accelerating aging-associated thymic involution. Our findings may impact evaluation and therapeutic intervention of human TBI events.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602;
| | - Ivo D Shterev
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Wen Zhang
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602
| | - Lauren Young
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jae-Hung Shieh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
| | - Malcolm Moore
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Marcel van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Nancy R Manley
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602;
| |
Collapse
|
105
|
Ali MAE, Fuse K, Tadokoro Y, Hoshii T, Ueno M, Kobayashi M, Nomura N, Vu HT, Peng H, Hegazy AM, Masuko M, Sone H, Arai F, Tajima A, Hirao A. Functional dissection of hematopoietic stem cell populations with a stemness-monitoring system based on NS-GFP transgene expression. Sci Rep 2017; 7:11442. [PMID: 28900302 PMCID: PMC5596002 DOI: 10.1038/s41598-017-11909-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cells (HSCs) in a steady state can be efficiently purified by selecting for a combination of several cell surface markers; however, such markers do not consistently reflect HSC activity. In this study, we successfully enriched HSCs with a unique stemness-monitoring system using a transgenic mouse in which green florescence protein (GFP) is driven by the promoter/enhancer region of the nucleostemin (NS) gene. We found that the phenotypically defined long-term (LT)-HSC population exhibited the highest level of NS-GFP intensity, whereas NS-GFP intensity was strongly downregulated during differentiation in vitro and in vivo. Within the LT-HSC population, NS-GFPhigh cells exhibited significantly higher repopulating capacity than NS-GFPlow cells. Gene expression analysis revealed that nine genes, including Vwf and Cdkn1c (p57), are highly expressed in NS-GFPhigh cells and may represent a signature of HSCs, i.e., a stemness signature. When LT-HSCs suffered from remarkable stress, such as transplantation or irradiation, NS-GFP intensity was downregulated. Finally, we found that high levels of NS-GFP identified HSC-like cells even among CD34+ cells, which have been considered progenitor cells without long-term reconstitution ability. Thus, high NS-GFP expression represents stem cell characteristics in hematopoietic cells, making this system useful for identifying previously uncharacterized HSCs.
Collapse
Affiliation(s)
- Mohamed A E Ali
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kyoko Fuse
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Yuko Tadokoro
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takayuki Hoshii
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masaya Ueno
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Naho Nomura
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Ha Thi Vu
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hui Peng
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Ahmed M Hegazy
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masayoshi Masuko
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Faculty of Medical Sciences, Kyushu University, Kyushu, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
106
|
Chang J, Wang Y, Pathak R, Sridharan V, Jones T, Mao XW, Nelson G, Boerma M, Hauer-Jensen M, Zhou D, Shao L. Whole body proton irradiation causes acute damage to bone marrow hematopoietic progenitor and stem cells in mice. Int J Radiat Biol 2017; 93:1312-1320. [PMID: 28782442 DOI: 10.1080/09553002.2017.1356941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. MATERIALS AND METHODS We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. RESULTS 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. CONCLUSION Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.
Collapse
Affiliation(s)
- Jianhui Chang
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Yingying Wang
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Rupak Pathak
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Vijayalakshmi Sridharan
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Tamako Jones
- b Department of Basic Sciences, Division of Radiation Research, School of Medicine , Loma Linda University , Loma Linda , CA , U.S.A
| | - Xiao Wen Mao
- b Department of Basic Sciences, Division of Radiation Research, School of Medicine , Loma Linda University , Loma Linda , CA , U.S.A
| | - Gregory Nelson
- b Department of Basic Sciences, Division of Radiation Research, School of Medicine , Loma Linda University , Loma Linda , CA , U.S.A
| | - Marjan Boerma
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Martin Hauer-Jensen
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Daohong Zhou
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Lijian Shao
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| |
Collapse
|
107
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
108
|
He X, Yang A, McDonald DG, Riemer EC, Vanek KN, Schulte BA, Wang GY. MiR-34a modulates ionizing radiation-induced senescence in lung cancer cells. Oncotarget 2017; 8:69797-69807. [PMID: 29050242 PMCID: PMC5642517 DOI: 10.18632/oncotarget.19267] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/09/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are a new class of gene expression regulators that have been implicated in tumorigenesis and modulation of the responses to cancer treatment including that of human non-small cell lung cancer (NSCLC). However, the role of miR-34a in ionizing radiation (IR)-induced senescence in NSCLC cells remains poorly understood. Here we report that IR-induced premature senescence correlates with upregulation of miR-34a expression in NSCLC cells. Ectopic overexpression of miR-34a by transfection with synthetic miR-34a mimics markedly enhances IR-induced senescence, whereas inhibition of miR-34a by transfection with a synthetic miR-34a inhibitor attenuates IR-induced senescence. Clonogenic assays reveal that treatment with miR-34a mimics augments IR-induced cell killing in human NSCLC cells. Mechanistically, we found that the senescence-promoting effect of miR-34a is associated with a dramatic down-regulation of c-Myc (Myc) expression, suggesting that miR-34a may promote IR-induced senescence via targeting Myc. In agreement with this suggestion, knockdown of Myc expression by RNAi recapitulates the senescence-promoting effect of miR-34a and enhances IR-induced cell killing in NSCLC cells. Collectively, these results demonstrate a previously unrecognized role for miR-34a in modulating IR-induced senescence in human NSCLC cells and suggest that pharmacological intervention of miR-34a expression may represent a new therapeutic strategy for improving the efficacy of lung cancer radiotherapy.
Collapse
Affiliation(s)
- Xiaoyuan He
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Aimin Yang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel G McDonald
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ellen C Riemer
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kenneth N Vanek
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Cancer Genes and Molecular Regulation Program of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
109
|
Murine mesenchymal cells that express elevated levels of the CDK inhibitor p16(Ink4a) in vivo are not necessarily senescent. Cell Cycle 2017. [PMID: 28650766 DOI: 10.1080/15384101.2017.1339850] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Age-related health decline has been attributed to the accumulation of senescent cells recognized in vivo by p16(Ink4a) expression. The pharmacological elimination of p16(Ink4a)-positive cells from the tissues of mice was shown to extend a healthy lifespan. Here, we describe a population of mesenchymal cells isolated from mice that are highly p16(INK4a)-positive are proficient in proliferation but lack other properties of cellular senescence. These data, along with earlier reports on p16(Ink4a)-positive macrophages, indicate that p16(Ink4a)-positive and senescent cell populations only partially intersect, therefore, extending the list of potential cellular targets for anti- aging therapies.
Collapse
|
110
|
Diegeler S, Hellweg CE. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities. Front Immunol 2017. [PMID: 28638385 PMCID: PMC5461334 DOI: 10.3389/fimmu.2017.00664] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.
Collapse
Affiliation(s)
- Sebastian Diegeler
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | - Christine E Hellweg
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| |
Collapse
|
111
|
Chang J, Feng W, Wang Y, Allen AR, Turner J, Stewart B, Raber J, Hauer-Jensen M, Zhou D, Shao L. 28Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis. LIFE SCIENCES IN SPACE RESEARCH 2017; 13:39-44. [PMID: 28554508 PMCID: PMC6711775 DOI: 10.1016/j.lssr.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Long-term space mission exposes astronauts to a radiation environment with potential health hazards. High-energy charged particles (HZE), including 28Si nuclei in space, have deleterious effects on cells due to their characteristics with high linear energy transfer and dense ionization. The influence of 28Si ions contributes more than 10% to the radiation dose equivalent in the space environment. Understanding the biological effects of 28Si irradiation is important to assess the potential health hazards of long-term space missions. The hematopoietic system is highly sensitive to radiation injury and bone marrow (BM) suppression is the primary life-threatening injuries after exposure to a moderate dose of radiation. Therefore, in the present study we investigated the acute effects of low doses of 28Si irradiation on the hematopoietic system in a mouse model. Specifically, 6-month-old C57BL/6J mice were exposed to 0.3, 0.6 and 0.9Gy 28Si (600MeV) total body irradiation (TBI). The effects of 28Si TBI on BM hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were examined four weeks after the exposure. The results showed that exposure to 28Si TBI dramatically reduced the frequencies and numbers of HSCs in irradiated mice, compared to non-irradiated controls, in a radiation dose-dependent manner. In contrast, no significant changes were observed in BM HPCs regardless of radiation doses. Furthermore, irradiated HSCs exhibited a significant impairment in clonogenic ability. These acute effects of 28Si irradiation on HSCs may be attributable to radiation-induced apoptosis of HSCs, because HSCs, but not HPCs, from irradiated mice exhibited a significant increase in apoptosis in a radiation dose-dependent manner. However, exposure to low doses of 28Si did not result in an increased production of reactive oxygen species and DNA damage in HSCs and HPCs. These findings indicate that exposure to 28Si irradiation leads to acute HSC damage.
Collapse
Affiliation(s)
- Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wei Feng
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yingying Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jennifer Turner
- Departments of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Blair Stewart
- Departments of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA; Departments of Neurology, and Radiation Medicine, ONPRC, Oregon Health and Science University, Portland, OR, USA; Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
112
|
Han X, Xue X, Zhao Y, Li Y, Liu W, Zhang J, Fan S. Rutin-Enriched Extract from Coriandrum sativum L. Ameliorates Ionizing Radiation-Induced Hematopoietic Injury. Int J Mol Sci 2017; 18:ijms18050942. [PMID: 28468251 PMCID: PMC5454855 DOI: 10.3390/ijms18050942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic injury is a major cause of mortality in radiation accidents and a primary side effect in patients undergoing radiotherapy. Ionizing radiation (IR)-induced myelosuppression is largely attributed to the injury of hematopoietic stem and progenitor cells (HSPCs). Coriander is a culinary herb with multiple pharmacological effects and has been widely used in traditional medicine. In this study, flavonoids were identified as the main component of coriander extract with rutin being the leading compound (rutin-enriched coriander extract; RE-CE). We evaluated the radioprotective effect of RE-CE against IR-induced HSPCs injury. Results showed that RE-CE treatment markedly improved survival, ameliorated organ injuries and myelosuppression, elevated HSPCs frequency, and promoted differentiation and proliferation of HSPCs in irradiated mice. The protective role of RE-CE in hematopoietic injury is probably attributed to its anti-apoptotic and anti-DNA damage effect in irradiated HSPCs. Moreover, these changes were associated with reduced reactive oxygen species (ROS) and enhanced antioxidant enzymatic activities in irradiated HSPCs. Collectively, these findings demonstrate that RE-CE is able to ameliorate IR-induced hematopoietic injury partly by reducing IR-induced oxidative stress.
Collapse
Affiliation(s)
- Xiaodan Han
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Xiaolei Xue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Weili Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| |
Collapse
|
113
|
Pan J, Li D, Xu Y, Zhang J, Wang Y, Chen M, Lin S, Huang L, Chung EJ, Citrin DE, Wang Y, Hauer-Jensen M, Zhou D, Meng A. Inhibition of Bcl-2/xl With ABT-263 Selectively Kills Senescent Type II Pneumocytes and Reverses Persistent Pulmonary Fibrosis Induced by Ionizing Radiation in Mice. Int J Radiat Oncol Biol Phys 2017; 99:353-361. [PMID: 28479002 DOI: 10.1016/j.ijrobp.2017.02.216] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/14/2017] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Ionizing radiation (IR)-induced pulmonary fibrosis (PF) is an irreversible and severe late effect of thoracic radiation therapy. The goal of this study was to determine whether clearance of senescent cells with ABT-263, a senolytic drug that can selectively kill senescent cells, can reverse PF. METHODS AND MATERIALS C57BL/6J mice were exposed to a single dose of 17 Gy on the right side of the thorax. Sixteen weeks after IR, they were treated with 2 cycles of vehicle or ABT-263 (50 mg/kg per day for 5 days per cycle) by gavage. The effects of ABT-263 on IR-induced increases in senescent cells; elevation in the expression of selective inflammatory cytokines, matrix metalloproteinases, and tissue inhibitors of matrix metalloproteinases; and the severity of the tissue injury and fibrosis in the irradiated lungs were evaluated 3 weeks after the last treatment, in comparison with the changes observed in the irradiated lungs before treatment or after vehicle treatment. RESULTS At 16 weeks after exposure of C57BL/6 mice to a single dose of 17 Gy, thoracic irradiation resulted in persistent PF associated with a significant increase in senescent cells. Treatment of the irradiated mice with ABT-263 after persistent PF had developed reduced senescent cells and reversed the disease. CONCLUSIONS To our knowledge, this is the first study to demonstrate that PF can be reversed by a senolytic drug such as ABT-263 after it becomes a progressive disease. Therefore, ABT-263 has the potential to be developed as a new treatment for PF.
Collapse
Affiliation(s)
- Jin Pan
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Yanfeng Xu
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Yueying Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Mengyi Chen
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuai Lin
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lan Huang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Eun Joo Chung
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yingying Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Aimin Meng
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
114
|
Kook SH, Cheon SR, Kim JH, Choi KC, Kim MK, Lee JC. Dietary hydroxycinnamates prevent oxidative damages to liver, spleen, and bone marrow cells in irradiation-exposed mice. Food Sci Biotechnol 2017; 26:279-285. [PMID: 30263539 DOI: 10.1007/s10068-017-0037-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 01/29/2023] Open
Abstract
Dietary hydroxycinnamates are considered as attractive materials for radioprotection. This study explores whether hydroxycinnamates protect against γ-radiation-induced cellular damages and hematopoietic stem cell senescence. C57BL/6 mice were orally administered with each of caffeic acid, p-coumaric acid, and ferulic acid (20mg/kg body weight) once per three days for five times before exposure to total body radiation (5 Gy). Irradiation increased the activities of alanine amino transaminase and aspartate aminotransferase in blood serum but decreased the anti-oxidant defense enzyme activities in the liver and spleen tissues. Oral administration of the compounds almost completely prevented irradiation-mediated changes in these enzyme activities. The hydroxycinnamates also inhibited the irradiation-mediated increases in the mitochondrial superoxide anions of Lin-Sca-1+c-Kit+ (LSK) cells and CD150+CD48- LSK cells in the bone marrow. These results suggest that dietary hydroxycinnamates protect against irradiation-mediated oxidative damages of tissues and bone marrow progenitor cells.
Collapse
Affiliation(s)
- Sung-Ho Kook
- 1Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, Jeonbuk, 54896 Korea
- 2Department of Bioactive Material Sciences and Research Center of Bioactives Materials, Chonbuk National University, Jeonju, Jeonbuk, 54896 Korea
| | - Sa-Ra Cheon
- 2Department of Bioactive Material Sciences and Research Center of Bioactives Materials, Chonbuk National University, Jeonju, Jeonbuk, 54896 Korea
| | - Jae-Hwan Kim
- 3Chonnam National University Dental Hospital, Kwangju, 61186 Korea
| | - Ki-Choon Choi
- Grassland and Forages Research Center, National Institute of Animal Science, Cheonan, Chungnam, 31002 Korea
| | - Min-Kook Kim
- 1Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, Jeonbuk, 54896 Korea
| | - Jeong-Chae Lee
- 1Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, Jeonbuk, 54896 Korea
- 2Department of Bioactive Material Sciences and Research Center of Bioactives Materials, Chonbuk National University, Jeonju, Jeonbuk, 54896 Korea
| |
Collapse
|
115
|
Xue XL, Han XD, Li Y, Chu XF, Miao WM, Zhang JL, Fan SJ. Astaxanthin attenuates total body irradiation-induced hematopoietic system injury in mice via inhibition of oxidative stress and apoptosis. Stem Cell Res Ther 2017; 8:7. [PMID: 28115023 PMCID: PMC5260077 DOI: 10.1186/s13287-016-0464-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 01/24/2023] Open
Abstract
Background The hematopoietic system is especially sensitive to total body irradiation (TBI), and myelosuppression is one of the major effects of TBI. Astaxanthin (ATX) is a powerful natural anti-oxidant with low toxicity. In this study, the effect of ATX on hematopoietic system injury after TBI was investigated. Methods Flow cytometry was used to detect the proportion of hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs), the level of intracellular reactive oxygen species (ROS), expression of cytochrome C, cell apoptosis, and NRF2-related proteins. Immunofluorescence staining was used to detect Nrf2 translocation. Western blot analysis was used to evaluate the expression of apoptotic-related proteins. Enzymatic activities assay kits were used to analyze SOD2, CAT, and GPX1 activities. Results Compared with the TBI group, ATX can improve radiation-induced skewed differentiation of peripheral blood cells and accelerate hematopoietic self-renewal and regeneration. The radio-protective effect of ATX is probably attributable to the scavenging of ROS and the reduction of cell apoptosis. These changes were associated with increased activation of Nrf2 and downstream anti-oxidative proteins, and regulation of apoptotic-related proteins. Conclusions This study suggests that ATX could be used as a potent therapeutic agent to protect the hematopoietic system against TBI-induced bone marrow suppression.
Collapse
Affiliation(s)
- Xiao-Lei Xue
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Xiao-Dan Han
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Yuan Li
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Xiao-Fei Chu
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Wei-Min Miao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, 300020, China
| | - Jun-Ling Zhang
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| | - Sai-Jun Fan
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| |
Collapse
|
116
|
Oben KZ, Gachuki BW, Alhakeem SS, McKenna MK, Liang Y, St. Clair DK, Rangnekar VM, Bondada S. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1). PLoS One 2017; 12:e0169767. [PMID: 28081176 PMCID: PMC5230770 DOI: 10.1371/journal.pone.0169767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/14/2016] [Indexed: 12/03/2022] Open
Abstract
An understanding of how each individual 5q chromosome critical deleted region (CDR) gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs). Early Growth Response 1 (EGR1) is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell) quiescence as well as the master regulator of apoptosis—p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which myeloid malignancies arise. We evaluated radiation induced apoptosis of Egr1+/+ and Egr1-/- bone marrow cells in vitro and in vivo. EGR1 is not required for radiation induced apoptosis of murine bone marrow cells. Neither p53 mRNA (messenger RNA) nor protein expression is regulated by EGR1 in these cells. Radiation induced apoptosis of bone marrow cells by double strand DNA breaks induced p53 activation. These results suggest EGR1 dependent signaling mechanisms do not contribute to aberrant apoptosis of malignant cells in myeloid malignancies.
Collapse
Affiliation(s)
- Karine Z. Oben
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Beth W. Gachuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sara S. Alhakeem
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Mary K. McKenna
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ying Liang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Vivek M. Rangnekar
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Subbarao Bondada
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
117
|
He X, Long W, Dong H, Wang C, Chu X, Zheng Q, Fan S. Evaluation of the protective effects of 13 traditional Chinese medicine compounds on ionizing radiation injury: bupleurum, shenmai, and breviscapine as candidate radioprotectors. RSC Adv 2017. [DOI: 10.1039/c7ra01108c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drugs are being sought that are effective as radioprotection for use in both planned and unplanned radiation exposure.
Collapse
Affiliation(s)
- Xin He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Tianjin 300192
- China
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Tianjin 300192
- China
| | - Hui Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Tianjin 300192
- China
| | - Chunhua Wang
- Tianjin Key Laboratory of Modern Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Xiaofei Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Tianjin 300192
- China
| | - Qisheng Zheng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Tianjin 300192
- China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Tianjin 300192
- China
| |
Collapse
|
118
|
Zhang J, Li H, Lu L, Yan L, Yang X, Shi Z, Li D. The Yiqi and Yangyin Formula ameliorates injury to the hematopoietic system induced by total body irradiation. JOURNAL OF RADIATION RESEARCH 2017; 58:1-7. [PMID: 27422936 PMCID: PMC5321178 DOI: 10.1093/jrr/rrw056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/08/2016] [Accepted: 04/11/2016] [Indexed: 05/02/2023]
Abstract
In this study, we examined whether the Yiqi and Yangyin Formula (YYF), used in traditional Chinese medicine, could ameliorate damage to the hematopoietic system induced by total body irradiation (TBI). Treatment with 15 g/kg of YYF increased the survival rate of Institute of Cancer Research (ICR) mice exposed to 7.5 Gy TBI. Furthermore, YYF treatment increased the white blood cell (WBC), red blood cell (RBC), hemoglobin (HGB) and hematocrit (HCT) counts in ICR mice exposed to 2 Gy or 4 Gy TBI. Treatment with YYF also increased the number of bone marrow cells, hematopoietic progenitor cells (HPCs), hematopoietic stem cells (HSCs) and the colony-forming ability of granulocyte-macrophage cells. YYF alleviated TBI-induced suppression of the differentiation ability of HPCs and HSCs and decreased the reactive oxygen species (ROS) levels in bone marrow mononuclear cells (BMMNCs), HPCs and HSCs from mice exposed to 2 Gy or 4 Gy TBI. Overall, our data suggest that YYF can ameliorate myelosuppression by reducing the intracellular ROS levels in hematopoietic cells after TBI at doses of 2 Gy and 4 Gy.
Collapse
Affiliation(s)
- Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Hongyu Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
- Department of Hematology and Oncology, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Lixiang Yan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
- Department of Hematology and Oncology, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiangdong Yang
- Department of Hematology and Oncology, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhexin Shi
- Department of Hematology and Oncology, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
119
|
Zhang J, Han X, Huang S, Lu L, Li D, Meng A. The combined effect of resveratrol and diphenyleneiodonium on irradiation-induced injury to the hematopoietic system. Int Immunopharmacol 2016; 43:33-39. [PMID: 27939823 DOI: 10.1016/j.intimp.2016.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Both resveratrol(Res) and diphenyleneiodonium(DPI) have been shown to have radioprotective effects on hematopoietic system injury. However, the cooperative effect of Res and DPI are unknown. In this study, we explored the radioprotective effect of the combination of Res and DPI both in vitro and in vivo. Our results showed that the combined treatment of Res and DPI was more effective in protecting irradiated BMMNCs in terms of cell viability, colony-forming ability, and reconstitution ability in vitro compared with Res or DPI treatment alone. However, in mice, the combination of Res and DPI had no enhanced protection on 4Gy total body irradiation (TBI)-induced hematopoietic system injury, including TBI-induced myelosuppression, induction of the splenic index, and increases in HSC/HPC numbers and the colony-forming ability of BMCs,compared to Res or DPI alone. An exception was the number of BMCs. These studies illustrated the inconsistency between experiments carried out in vitro and in vivo and suggest an interaction between Res or DPI in vivo.
Collapse
Affiliation(s)
- Junling Zhang
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Tianjin 300192, China
| | - Xiaodan Han
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Tianjin 300192, China
| | - Song Huang
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Tianjin 300192, China
| | - Lu Lu
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Tianjin 300192, China
| | - Aimin Meng
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Tianjin 300192, China; Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100021, China.
| |
Collapse
|
120
|
An oral Hemokine TM, α-methylhydrocinnamate, enhances myeloid and neutrophil recovery following irradiation in vivo. Blood Cells Mol Dis 2016; 63:1-8. [PMID: 27888688 DOI: 10.1016/j.bcmd.2016.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/29/2016] [Indexed: 01/12/2023]
Abstract
An oral therapeutic which reduces duration of cytopenias and is active following accidental radiation exposures is an unmet need in radiation countermeasures. Alpha methylhydrocinnamate (ST7) prolongs STAT-5 phosphorylation, reduces growth-factor dependency of multi-lineage cell lines, and stimulates erythropoiesis. Here, ST7 and its isomers were studied for their effects on myeloid progenitors and hematopoietic stem cells (HSCs) following radiation, in nonhuman primates, and murine irradiation models. Addition of ST7 or ST7-S increased CFU-GM production by 1.7-fold (p<0.001), reduced neutrophil apoptosis comparable to G-CSF, and enhanced HSC survival post-radiation by 2-fold, (p=0.028). ST7 and ST7-S administered in normal baboons increased ANC and platelet counts by 50-400%. In sub-lethally-irradiated mice, ANC nadir remained >200/mm3 and neutropenia recovered in 6days with ST7 treatment and 18days in controls (p<0.05). In lethally-irradiated mice, marrow pathology at 15days was hypocellular (10% cellularity) in controls, but normal (55-75% cellularity) with complete neutrophil maturation with ST7-S treatment. Following lethal irradiation, ST7, given orally for 4days, reduced mortality, with 30% survival in ST7-animals vs 8% in controls, (p<0.05). Collectively, the studies indicate that ST7 and ST7-S enhance myeloid recovery post-radiation and merit further evaluation to accelerate hematologic recovery in conditions of radiation-related and other marrow hypoplasias.
Collapse
|
121
|
Lu L, Dong J, Li D, Zhang J, Fan S. 3,3'-diindolylmethane mitigates total body irradiation-induced hematopoietic injury in mice. Free Radic Biol Med 2016; 99:463-471. [PMID: 27609226 DOI: 10.1016/j.freeradbiomed.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/26/2016] [Accepted: 09/04/2016] [Indexed: 01/28/2023]
Abstract
We have reported that hematopoietic system injury induced by total body irradiation (TBI) leads to generation of intracellular reactive oxygen species (ROS) and DNA damage, which are ameliorated by antioxidant agents. In the present study, we reported that administration of DIM, a potent antioxidant agent, not only protected mice against TBI-induced lethality, also ameliorated TBI-induced hematopoietic injury. The latter effect was probably attributable to DIM's inhibition of TBI-induced increases in ROS production in hematopoietic stem cells (HSCs) and the phosphorylation of histone H2AX (γ-H2AX). In particular, DIM led to significant improvements in bone marrow (BM) HSC frequency, hematopoietic progenitor cell (HPC) clonogenic function, and multilineage engraftment after transplantation. A downregulation of NADPH oxidase 4 (NOX4) and an upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression were observed following DIM treatment. Notably, the anti-apoptotic potential of DIM was correlated with increased expression of the anti-apoptotic protein Bcl-2 and decreased expression of the pro-apoptotic protein Bax. These findings suggest that DIM attenuates TBI-induced hematopoietic injury through the inhibition of both oxidative stress in HSCs and hematopoietic cell apoptosis. Furthermore, we demonstrated that DIM protected BM hematopoietic cells against ionizing radiation and led to increased clonogenicity in vitro. Therefore, DIM has the potential to be used as an effective radioprotectant to ameliorate TBI-induced hematopoietic injury.
Collapse
Affiliation(s)
- Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
122
|
Palacio L, Krishnan V, Le NLO, Sharpless NE, Beauséjour CM. Sustained p16 INK4a expression is required to prevent IR-induced tumorigenesis in mice. Oncogene 2016; 36:1309-1314. [PMID: 27568978 PMCID: PMC5336385 DOI: 10.1038/onc.2016.298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/29/2016] [Accepted: 07/17/2016] [Indexed: 12/17/2022]
Abstract
Exposure of murine and human tissues to ionizing radiation (IR) induces the expression of p16INK4a, a tumor suppressor gene and senescence/aging biomarker. Increased p16INK4a expression is often delayed several weeks post exposure to IR. In this context, it remains unclear if it occurs to suppress aberrant cellular growth of potentially transformed cells or is simply a result of IR-induced loss of tissue homeostasis. To address this question, we used a conditional p16INK4a null mouse model and determined the impact of p16INK4a inactivation long-term post exposure to IR. We found that, in vitro, bone marrow stromal cells exposed to IR enter DNA replication following p16INK4a inactivation. However, these cells did not resume growth; instead, they mostly underwent cell cycle arrest in G2. Similarly, delayed inactivation of p16INK4a in mice several weeks post exposure to IR resulted in increased BrdU incorporation and cancer incidence. In fact, we found that the onset of tumorigenesis was similar whether p16INK4a was inactivated before or after exposure to IR. Overall, our results suggest that IR-induced p16INK4a dependent growth arrest is reversible in mice and that sustained p16INK4a expression is necessary to protect against tumorigenesis.
Collapse
Affiliation(s)
- L Palacio
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine, Montréal, Canada.,Département de Pharmacologie, Université de Montréal, Montréal, Canada
| | - V Krishnan
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine, Montréal, Canada.,Département de Pharmacologie, Université de Montréal, Montréal, Canada
| | - N L O Le
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine, Montréal, Canada
| | - N E Sharpless
- Departments of Medicine and Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - C M Beauséjour
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine, Montréal, Canada.,Département de Pharmacologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
123
|
Wang Y, Boerma M, Zhou D. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases. Radiat Res 2016; 186:153-61. [PMID: 27387862 DOI: 10.1667/rr14445.1] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells.
Collapse
Affiliation(s)
- Yingying Wang
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| | - Marjan Boerma
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| | - Daohong Zhou
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
124
|
Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice. PLoS One 2016; 11:e0158097. [PMID: 27367604 PMCID: PMC4930193 DOI: 10.1371/journal.pone.0158097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/11/2016] [Indexed: 12/29/2022] Open
Abstract
One of the major health risks to astronauts is radiation on long-duration space missions. Space radiation from sun and galactic cosmic rays consists primarily of 85% protons, 14% helium nuclei and 1% high-energy high-charge (HZE) particles, such as oxygen (16O), carbon, silicon, and iron ions. HZE particles exhibit dense linear tracks of ionization associated with clustered DNA damage and often high relative biological effectiveness (RBE). Therefore, new knowledge of risks from HZE particle exposures must be obtained. In the present study, we investigated the acute effects of low doses of 16O irradiation on the hematopoietic system. Specifically, we exposed C57BL/6J mice to 0.1, 0.25 and 1.0 Gy whole body 16O (600 MeV/n) irradiation and examined the effects on peripheral blood (PB) cells, and bone marrow (BM) hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) at two weeks after the exposure. The results showed that the numbers of white blood cells, lymphocytes, monocytes, neutrophils and platelets were significantly decreased in PB after exposure to 1.0 Gy, but not to 0.1 or 0.25 Gy. However, both the frequency and number of HPCs and HSCs were reduced in a radiation dose-dependent manner in comparison to un-irradiated controls. Furthermore, HPCs and HSCs from irradiated mice exhibited a significant reduction in clonogenic function determined by the colony-forming and cobblestone area-forming cell assays. These acute adverse effects of 16O irradiation on HSCs coincided with an increased production of reactive oxygen species (ROS), enhanced cell cycle entry of quiescent HSCs, and increased DNA damage. However, none of the 16O exposures induced apoptosis in HSCs. These data suggest that exposure to low doses of 16O irradiation induces acute BM injury in a dose-dependent manner primarily via increasing ROS production, cell cycling, and DNA damage in HSCs. This finding may aid in developing novel strategies in the protection of the hematopoietic system from space radiation.
Collapse
|
125
|
Ojima M, Iwashita K, Kashino G, Kobashigawa S, Sasano N, Takeshita A, Ban N, Kai M. Early and Delayed Induction of DSBs by Nontargeted Effects in ICR Mouse Lymphocytes after In Vivo X Irradiation. Radiat Res 2016; 186:65-70. [PMID: 27351761 DOI: 10.1667/rr14053.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The goal of this study was to determine whether in vivo X irradiation induces nontargeted effects, such as delayed effects and bystander effects in ICR mouse lymphocytes. We first examined the generation of DNA double-strand breaks (DSBs) in lymphocytes, isolated from ICR mice exposed to 1 Gy X irradiation, by enumeration of p53 binding protein 1 (53BP1) foci, and observed that the number of 53BP1 foci reached their maximum 3 days postirradiation and decreased to background level 30 days postirradiation. However, the number of 53BP1 foci was significantly increased in lymphocytes isolated from ICR mice 90-365 days postirradiation. This result indicates that in vivo X irradiation induced delayed DSBs in ICR mouse lymphocytes. We next counted the number of 53BP1 foci in lymphocytes isolated from sham-irradiated ICR mice that had been co-cultured with lymphocytes isolated from 1 Gy X-irradiated ICR mice, and observed a significant increase in the number of 53BP1 foci 1-7 days postirradiation. This result indicates that in vivo X irradiation induced bystander effects in ICR mouse lymphocytes. These findings suggest that in vivo X irradiation induces early and delayed nontargeted effects in ICR mouse lymphocytes.
Collapse
Affiliation(s)
- Mitsuaki Ojima
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Keiko Iwashita
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Genro Kashino
- b Advanced Molecular Center, Faculty of Medicine, Oita University, Yufu 879-5593, Japan
| | - Shinko Kobashigawa
- b Advanced Molecular Center, Faculty of Medicine, Oita University, Yufu 879-5593, Japan
| | - Noriko Sasano
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Akiko Takeshita
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Nobuhiko Ban
- c Tokyo Healthcare University, Tokyo 152-8558, Japan
| | - Michiaki Kai
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| |
Collapse
|
126
|
Li J, Wei Y, Yan L, Wang R, Zhang Y, Su Y, Yang Z, Hu M, Qi R, Tan H, Wu Q, Yin X, Pan X. Multiplacenta derived stem cell/cytokine treatment increases survival time in a mouse model with radiation-induced bone marrow damage. Cytotechnology 2016; 68:2677-2686. [PMID: 27318496 DOI: 10.1007/s10616-016-9993-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/06/2016] [Indexed: 02/02/2023] Open
Abstract
Nuclear Warfare and nuclear leakage can result in a large number of patients with radiation-induced bone marrow damage. Based on the fact that hematopoietic stem cells and hematopoietic growth factors are characterized as a novel strategy for therapy, the aim of this study was to explore a safe and routine stem cell/cytokine therapeutic strategy. Allogeneic multiplacenta derived hematopoietic and mesenchymal stem cells/cytokines were intraperitoneally injected into a moderate dose of total body irradiation-induced mouse bone marrow damage model a single time. Then, the mouse posttransplantation survival time, peripheral blood hemoglobin count, bone marrow architecture, and donor cell engraftment were assessed. Each mouse that received placenta-derived stem cells exhibited positive donor hematopoietic and mesenchymal stem cell engraftment both in the bone marrow and peripheral blood after transplantation. The peripheral blood hemoglobin count and survival time were greater in the group with the combined treatment of multiplacenta-derived stem cells and cytokines, compared with model-only controls (both P < 0.001). The blood smear mesenchymal/hematopoietic stem cell count was significantly higher in the combined treatment group than in the mice treated only with placenta-derived cells (28.08 ± 5.824 vs. 20.40 ± 5.989, P < 0.001; 7.74 ± 2.153 vs. 4.23 ± 1.608, P < 0.001, respectively). However, there was no marked change on the bone marrow pathology of any of the experimental mice after the transplantation. These results indicate that for radiation-induced bone marrow damage treatment, multiplacenta-derived stem cells and cytokines can increase the life span of model mice and delay but not abrogate the disease progression. Intraperitoneally transplanted stem cells can survive and engraft into the host body through the blood circulation. Improvement of peripheral blood hemoglobin levels, but not the bone marrow architecture response, probably explains the increase in survival time observed in this study.
Collapse
Affiliation(s)
- Jun Li
- Medical School of Kunming University, Kunming, 650214, China
- State Local Joint Engineering Laboratory of Stem Cell and Immunocyte Biomedical Technology, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China
| | - Yunfang Wei
- Medical School of Kunming University, Kunming, 650214, China
| | - Lei Yan
- Anesthesiology Department, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Rui Wang
- Medical School of Kunming University, Kunming, 650214, China
| | - Ying Zhang
- Medical School of Kunming University, Kunming, 650214, China
| | - Yingzhen Su
- Medical School of Kunming University, Kunming, 650214, China
| | - Zhaoyu Yang
- Medical School of Kunming University, Kunming, 650214, China
| | - Min Hu
- Research Center for Molecular Medicine, Kunming University, Kunming, 650214, China
| | - Rui Qi
- Medical School of Kunming University, Kunming, 650214, China
| | - Hongbo Tan
- Orthopedics Department, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming, 650214, China
| | - Xudong Yin
- Department of Life Science and Technology, Kunming University, Kunming, 650214, China
| | - Xinghua Pan
- State Local Joint Engineering Laboratory of Stem Cell and Immunocyte Biomedical Technology, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.
| |
Collapse
|
127
|
p38 MAPK Inhibitor Insufficiently Attenuates HSC Senescence Administered Long-Term after 6 Gy Total Body Irradiation in Mice. Int J Mol Sci 2016; 17:ijms17060905. [PMID: 27338355 PMCID: PMC4926439 DOI: 10.3390/ijms17060905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/16/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022] Open
Abstract
Senescent hematopoietic stem cells (HSCs) accumulate with age and exposure to stress, such as total-body irradiation (TBI), which may cause long-term myelosuppression in the clinic. However, the methods available for long-term myelosuppression remain limited. Previous studies have demonstrated that sustained p38 mitogen-activated protein kinases (p38 MAPK) activation in HSCs following exposure to TBI in mice and the administration of its inhibitor twenty-four hours after TBI may partially prevent long-term myelosuppression. However, long-term myelosuppression is latent and identified long after the administration of radiation. In this study, we investigated the effects of SB203580 (a small molecule inhibitor of p38 MAPK) on long-term myelosuppression induced by TBI. Mice with hematopoietic injury were injected intraperitoneally with SB203580 every other day five times beginning 70 days after 6 Gy of 137Cs γ ray TBI. Our results at 80 days demonstrated that SB203580 did not significantly improve the TBI-induced long-term reduction of peripheral blood cell and bone marrow nucleated cell (BMNC) counts, or defects in hematopoietic progenitor cells (HPCs) and HSC clonogenic function. SB203580 reduced reactive oxygen species (ROS) production and p-p38 expression; however, SB203580 had no effect on p16 expression in the HSCs of mice. In conclusion, these findings suggest that treatment with SB203580 70 days after TBI in mice inhibits the ROS-p38 oxidative stress pathway; however, it has no therapeutic effect on long-term myelosuppression induced by TBI.
Collapse
|
128
|
DNA Damage Response in Hematopoietic Stem Cell Ageing. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:147-154. [PMID: 27221660 PMCID: PMC4936660 DOI: 10.1016/j.gpb.2016.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/20/2016] [Accepted: 04/24/2016] [Indexed: 12/30/2022]
Abstract
Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.
Collapse
|
129
|
Chen JJ, Gao XT, Yang L, Fu W, Liang L, Li JC, Hu B, Sun ZJ, Huang SY, Zhang YZ, Liang YM, Qin HY, Han H. Disruption of Notch signaling aggravates irradiation-induced bone marrow injury, which is ameliorated by a soluble Dll1 ligand through Csf2rb2 upregulation. Sci Rep 2016; 6:26003. [PMID: 27188577 PMCID: PMC4870557 DOI: 10.1038/srep26003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/25/2016] [Indexed: 01/12/2023] Open
Abstract
Physical and chemical insult-induced bone marrow (BM) damage often leads to lethality resulting from the depletion of hematopoietic stem and progenitor cells (HSPCs) and/or a deteriorated BM stroma. Notch signaling plays an important role in hematopoiesis, but whether it is involved in BM damage remains unclear. In this study, we found that conditional disruption of RBP-J, the transcription factor of canonical Notch signaling, increased irradiation sensitivity in mice. Activation of Notch signaling with the endothelial cell (EC)-targeted soluble Dll1 Notch ligand mD1R promoted BM recovery after irradiation. mD1R treatment resulted in a significant increase in myeloid progenitors and monocytes in the BM, spleen and peripheral blood after irradiation. mD1R also enhanced hematopoiesis in mice treated with cyclophosphamide, a chemotherapeutic drug that induces BM suppression. Mechanistically, mD1R increased the proliferation and reduced the apoptosis of myeloid cells in the BM after irradiation. The β chain cytokine receptor Csf2rb2 was identified as a downstream molecule of Notch signaling in hematopoietic cells. mD1R improved hematopoietic recovery through up-regulation of the hematopoietic expression of Csf2rb2. Our findings reveal the role of Notch signaling in irradiation- and drug-induced BM suppression and establish a new potential therapy of BM- and myelo-suppression induced by radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Juan-Juan Chen
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Tong Gao
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lan Yang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Fu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun-Chang Li
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Hu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zhi-Jian Sun
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Si-Yong Huang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yi-Zhe Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Min Liang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hong-Yan Qin
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hua Han
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
130
|
Dou DR, Calvanese V, Sierra MI, Nguyen AT, Minasian A, Saarikoski P, Sasidharan R, Ramirez CM, Zack JA, Crooks GM, Galic Z, Mikkola HKA. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat Cell Biol 2016; 18:595-606. [PMID: 27183470 PMCID: PMC4981340 DOI: 10.1038/ncb3354] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/08/2016] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells (PSC) may provide a potential source of haematopoietic stem/progenitor cells (HSPCs) for transplantation; however, unknown molecular barriers prevent the self-renewal of PSC-HSPCs. Using two-step differentiation, human embryonic stem cells (hESCs) differentiated in vitro into multipotent haematopoietic cells that had CD34+CD38−/loCD90+CD45+GPI-80+ foetal liver (FL) HSC immunophenotype, but displayed poor expansion potential and engraftment ability. Transcriptome analysis of immunophenotypic hESC-HSPCs revealed that, despite their molecular resemblance to FL-HSPCs, medial HOXA genes remained suppressed. Knockdown of HOXA7 disrupted FL-HSPC function and caused transcriptome dysregulation that resembled hESC-derived progenitors. Overexpression of medial HOXA genes prolonged FL-HSPC maintenance but was insufficient to confer self-renewal to hESC-HSPCs. Stimulation of retinoic acid signalling during endothelial-to-haematopoietic transition induced the HOXA cluster and other HSC/definitive haemogenic endothelium genes, and prolonged HSPC maintenance in culture. Thus, retinoic acid signalling-induced medial HOXA gene expression marks the establishment of the definitive HSC fate and controls HSC identity and function.
Collapse
Affiliation(s)
- Diana R Dou
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Maria I Sierra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Andrew T Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Arazin Minasian
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Pamela Saarikoski
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Rajkumar Sasidharan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Christina M Ramirez
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Jerome A Zack
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Gay M Crooks
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Zoran Galic
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
131
|
Li H, Wang Z, Xu Y, Sun G. Pine polyphenols from Pinus koraiensis prevent injuries induced by gamma radiation in mice. PeerJ 2016; 4:e1870. [PMID: 27069807 PMCID: PMC4824883 DOI: 10.7717/peerj.1870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022] Open
Abstract
Pine polyphenols (PPs) are bioactive dietary constituents that enhance health and help prevent diseases through antioxidants. Antioxidants reduce the level of oxidative damages caused by ionizing radiation (IR). The main purpose of this paper is to study the protective effect of PPs on peripheral blood, liver and spleen injuries in mice induced by IR. ICR (Institute of Cancer Research) male mice were administered orally with PPs (200 mg/kg b.wt.) once daily for 14 consecutive days prior to 7 Gy γ-radiations. PPs showed strong antioxidant activities. PPs significantly increased white blood cells, red blood cells and platelets counts. PPs also significantly reduced lipid peroxidation and increased the activities of superoxide dismutase, catalase and glutathione peroxidases, and the level of glutathione. PPs reduced the spleen morphologic injury. In addition, PPs inhibited mitochondria-dependent apoptosis pathways in splenocytes induced by IR. These results indicate that PPs are radioprotective promising reagents.
Collapse
Affiliation(s)
- Hui Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin, Heilongjiang , China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin, Heilongjiang , China
| | - Yier Xu
- Department of Pharmacology, Pharmaceutical Academy of Harbin Pharmaceutical Group , Harbin, Heilongjiang , China
| | - Guicai Sun
- Department of Orthopaedics, The Fourth Hospital Affiliated to Nanchang University , Nanchang, Jiangxi , China
| |
Collapse
|
132
|
Pfau SJ, Amon A. A System to Study Aneuploidy In Vivo. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:93-101. [PMID: 26936868 DOI: 10.1101/sqb.2015.80.027193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aneuploidy, an imbalanced chromosome number, is associated with both cancer and developmental disorders such as Down syndrome (DS). To determine how aneuploidy affects cellular and organismal physiology, we have developed a system to evaluate aneuploid cell fitness in vivo. By transplanting hematopoietic stem cells (HSCs) into recipient mice after ablation of recipient hematopoiesis by lethal irradiation, we can directly compare the fitness of HSCs derived from a range of aneuploid mouse models with that of euploid HSCs. This experimental system can also be adapted to assess the interplay between aneuploidy and tumorigenesis. We hope that further characterization of aneuploid cells in vivo will provide insight both into the origins of hematopoietic phenotypes observed in DS individuals as well as the role of different types of aneuploid cells in the genesis of cancers of the blood.
Collapse
Affiliation(s)
- Sarah J Pfau
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
133
|
Liu HD, Zhang AJ, Xu JJ, Chen Y, Zhu YC. H2S protects against fatal myelosuppression by promoting the generation of megakaryocytes/platelets. J Hematol Oncol 2016; 9:13. [PMID: 26912146 PMCID: PMC4766725 DOI: 10.1186/s13045-016-0244-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 12/13/2022] Open
Abstract
Background Our previous pilot studies aimed to examine the role of hydrogen sulfide (H2S) in the generation of endothelial progenitor cells led to an unexpected result, i.e., H2S promoted the differentiation of certain hematopoietic stem/progenitor cells in the bone marrow. This gave rise to an idea that H2S might promote hematopoiesis. Methods To test this idea, a mice model of myelosuppression and cultured fetal liver cells were used to examine the role of H2S in hematopoiesis. Results H2S promoted the generation of megakaryocytes, increased platelet levels, ameliorate entorrhagia, and improved survival. These H2S effects were blocked in both in vivo and in vitro models with thrombopoietin (TPO) receptor knockout mice (c-mpl−/− mice). In contrast, H2S promoted megakaryocytes/platelets generation in both in vivo and in vitro models with TPO knockout mice (TPO−/− mice). Conclusions H2S is a novel promoter for megakaryopoiesis by acting on the TPO receptors but not TPO to generate megakaryocytes/platelets. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0244-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan-Di Liu
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, 138 Yi Xue Yuan Road, Shanghai, 200032, China.,Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine in Henan Province, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ai-Jie Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Jing-Jing Xu
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, 138 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
134
|
Acharya SS, Fendler W, Watson J, Hamilton A, Pan Y, Gaudiano E, Moskwa P, Bhanja P, Saha S, Guha C, Parmar K, Chowdhury D. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury. Sci Transl Med 2016; 7:287ra69. [PMID: 25972001 DOI: 10.1126/scitranslmed.aaa6593] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after a radiation accident. We have identified serum microRNA (miRNA) signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure. Impact of TBI on the hematopoietic system was systematically assessed to determine a correlation of residual hematopoietic stem cells (HSCs) with increasing doses of radiation. Serum miRNA signatures distinguished untreated mice from animals exposed to radiation and correlated with the impact of radiation on HSCs. Mice exposed to sublethal (6.5 Gy) and lethal (8 Gy) doses of radiation were indistinguishable for 3 to 4 weeks after exposure. A serum miRNA signature detectable 24 hours after radiation exposure consistently segregated these two cohorts. Furthermore, using either a radioprotective agent before, or radiation mitigation after, lethal radiation, we determined that the serum miRNA signature correlated with the impact of radiation on animal health rather than the radiation dose. Last, using humanized mice that had been engrafted with human CD34(+) HSCs, we determined that the serum miRNA signature indicated radiation-induced injury to the human bone marrow cells. Our data suggest that serum miRNAs can serve as functional dosimeters of radiation, representing a potential breakthrough in early assessment of radiation-induced hematopoietic damage and timely use of medical countermeasures to mitigate the long-term impact of radiation.
Collapse
Affiliation(s)
- Sanket S Acharya
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Wojciech Fendler
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz 91-738, Poland
| | - Jacqueline Watson
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Abigail Hamilton
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yunfeng Pan
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emily Gaudiano
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Patryk Moskwa
- Department of Internal Medicine A, Medical University of Greifswald, Ferdinand-Sauerbruchstrasse, Greifswald 17475, Germany
| | - Payel Bhanja
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Subhrajit Saha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA. Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
135
|
Fleenor CJ, Rozhok AI, Zaberezhnyy V, Mathew D, Kim J, Tan AC, Bernstein ID, DeGregori J. Contrasting roles for C/EBPα and Notch in irradiation-induced multipotent hematopoietic progenitor cell defects. Stem Cells 2016; 33:1345-58. [PMID: 25546133 DOI: 10.1002/stem.1936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 12/17/2022]
Abstract
Ionizing radiation (IR) is associated with reduced hematopoietic function and increased risk of hematopoietic malignancies, although the mechanisms behind these relationships remain poorly understood. Both effects of IR have been commonly attributed to the direct induction of DNA mutations, but evidence supporting these hypotheses is largely lacking. Here we demonstrate that IR causes long-term, somatically heritable, cell-intrinsic reductions in hematopoietic stem cell (HSC) and multipotent hematopoietic progenitor cell (mHPC) self-renewal that are mediated by C/EBPα and reversed by Notch. mHPC from previously irradiated (>9 weeks prior), homeostatically restored mice exhibit gene expression profiles consistent with their precocious differentiation phenotype, including decreased expression of HSC-specific genes and increased expression of myeloid program genes (including C/EBPα). These gene expression changes are reversed by ligand-mediated activation of Notch. Loss of C/EBPα expression is selected for within previously irradiated HSC and mHPC pools and is associated with reversal of IR-dependent precocious differentiation and restoration of self-renewal. Remarkably, restoration of mHPC self-renewal by ligand-mediated activation of Notch prevents selection for C/EBPα loss of function in previously irradiated mHPC pools. We propose that environmental insults prompt HSC to initiate a program limiting their self-renewal, leading to loss of the damaged HSC from the pool while allowing this HSC to temporarily contribute to differentiated cell pools. This "programmed mediocrity" is advantageous for the sporadic genotoxic insults animals have evolved to deal with but becomes tumor promoting when the entire HSC compartment is damaged, such as during total body irradiation, by increasing selective pressure for adaptive oncogenic mutations.
Collapse
|
136
|
[Rapamycin decreases irradiation-induced hematopoietic system damage]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 36:321-5. [PMID: 25916296 PMCID: PMC7342622 DOI: 10.3760/cma.j.issn.0253-2727.2015.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
目的 探讨雷帕霉素对60Co辐照小鼠造血系统损伤的保护作用。 方法 6~8周龄C57BL/6J小鼠分为未辐照组与辐照组,每组再分为雷帕霉素预处理组和对照组。雷帕霉素预处理组小鼠给予雷帕霉素4 mg/kg,隔日腹腔注射,共5次,辐照组小鼠于末次注射后第2天接受60Co全身照射(5 Gy)。辐照后第0.5、1、2、3、5、7、40、70天取外周血检测白细胞计数(WBC)、淋巴细胞计数(LYM)、红细胞计数(RBC)、血红蛋白含量(HGB)及血小板计数(PLT),辐照后第5天观察小鼠胸骨骨髓有核细胞数量及内源性脾集落情况。 结果 ①未辐照组:雷帕霉素预处理组WBC和LYM低于对照组(P值均<0.01),RBC和HGB高于对照组(P值均<0.05),PLT差异无统计学意义;两组小鼠骨髓有核细胞分布无差异。②辐照组:辐照后第0.5~7天雷帕霉素预处理组和对照组小鼠WBC、LYM均降低,两组比较差异无统计学意义,辐照后第40、70天均恢复,雷帕霉素预处理组均高于对照组(P<0.05);辐照后第3~7天RBC和HGB均降低,但雷帕霉素预处理组均高于单独辐照组(P<0.05),在辐照后第40、70天两组之间差异无统计学意义;PLT变化无明显规律。辐照后第5天,对照组小鼠骨髓有核细胞显著减少,但雷帕霉素预处理组有核细胞减少程度较对照组轻;雷帕霉素预处理组小鼠内源性脾集落数多于对照组(40.00±12.86对13.20±2.31,P=0.035)。 结论 雷帕霉素预处理可以减轻60Co辐照引起的小鼠外周血细胞和骨髓有核细胞的减少,促进造血系统恢复,保护脾造血单位。
Collapse
|
137
|
Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 2015; 22:78-83. [PMID: 26657143 DOI: 10.1038/nm.4010] [Citation(s) in RCA: 1278] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022]
Abstract
Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI). Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a 'senolytic' pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type- and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents.
Collapse
|
138
|
Li C, Lu L, Zhang J, Huang S, Xing Y, Zhao M, Zhou D, Li D, Meng A. Granulocyte colony-stimulating factor exacerbates hematopoietic stem cell injury after irradiation. Cell Biosci 2015; 5:65. [PMID: 26609358 PMCID: PMC4659162 DOI: 10.1186/s13578-015-0057-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
Background Exposure to a moderate to high dose of ionizing radiation (IR) not only causes acute radiation syndrome but also induces long-term (LT) bone marrow (BM) injury. The latter effect of IR is primarily attributed to the induction of hematopoietic stem cell (HSC) senescence. Granulocyte colony-stimulating factor (G-CSF) is the only treatment recommended to be given to radiation victims soon after IR. However, clinical studies have shown that G-CSF used to treat the leukopenia induced by radiotherapy or chemotherapy in patients can cause sustained low white blood cell counts in peripheral blood. It has been suggested that this adverse effect is caused by HSC and hematopoietic progenitor cell (HPC) proliferation and differentiation stimulated by G-CSF, which impairs HSC self-renewal and may exhaust the BM capacity to exacerbate IR-induced LT-BM injury. Methods C57BL/6 mice were exposed to 4 Gy γ-rays of total body irradiation (TBI) at a dose-rate of 1.08 Gy per minute, and the mice were treated with G-CSF (1 μg/each by ip) or vehicle at 2 and 6 h after TBI on the first day and then twice every day for 6 days. All mice were killed one month after TBI for analysis of peripheral blood cell counts, bone marrow cellularity and long-term HSC (CD34-lineage-sca1+c-kit+) frequency. The colony-forming unit-granulocyte and macrophage (CFU-GM) ability of HPC was measured by colony-forming cell (CFC) assay, and the HSC self-renewal capacity was analyzed by BM transplantation. The levels of ROS production, the expression of phospho-p38 mitogen-activated protein kinase (p-p38) and p16INK4a (p16) mRNA in HSCs were measured by flow cytometry and RT-PCR, respectively. Results The results of our studies show that G-CSF administration mitigated TBI-induced decreases in WBC and the suppression of HPC function (CFU-GM) (p < 0.05), whereas G-CSF exacerbated the suppression of long-term HSC engraftment after transplantation one month after TBI (p < 0.05); The increase in HSC damage was associated with increased ROS production, activation of p38 mitogen-activated protein kinase (p38), induction of senescence in HSCs. Conclusion Our findings suggest that although G-CSF administration can reduce ARS, it can also exacerbate TBI-induced LT-BM injury in part by promoting HSC senescence via the ROS-p38-p16 pathway.
Collapse
Affiliation(s)
- Chengcheng Li
- Institute of Laboratory Animal Science, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China ; Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China ; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
| | - Lu Lu
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China ; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
| | - Junling Zhang
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China ; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
| | - Song Huang
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China ; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
| | - Yonghua Xing
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China ; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
| | - Mingfeng Zhao
- The First Central Clinical College of Tianjin Medical University, Tianjin First Central Hospital, Tianjin, China
| | - Daohong Zhou
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China ; Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Deguan Li
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China ; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
| | - Aimin Meng
- Institute of Laboratory Animal Science, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China ; Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China ; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
| |
Collapse
|
139
|
Murakami S, Yoshino H, Ishikawa J, Yamaguchi M, Tsujiguchi T, Nishiyama A, Yokoyama K, Kashiwakura I. Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells. JOURNAL OF RADIATION RESEARCH 2015; 56:865-871. [PMID: 26453633 PMCID: PMC4628224 DOI: 10.1093/jrr/rrv061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/06/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Mast cells, immune effector cells produced from bone marrow cells, play a major role in immunoglobulin E-mediated allergic responses. Ionizing radiation affects the functions of mast cells, which are involved in radiation-induced tissue damage. However, whether ionizing radiation affects the differential induction of mast cells is unknown. Here we investigated whether bone marrow cells of X-irradiated mice differentiated into mast cells. To induce mast cells, bone marrow cells from X-irradiated and unirradiated mice were cultured in the presence of cytokines required for mast cell induction. Although irradiation at 0.5 Gy and 2 Gy decreased the number of bone marrow cells 1 day post-irradiation, the cultured bone marrow cells of X-irradiated and unirradiated mice both expressed mast cell-related cell-surface antigens. However, the percentage of mast cells in the irradiated group was lower than in the unirradiated group. Similar decreases in the percentage of mast cells induced in the presence of X-irradiation were observed 10 days post irradiation, although the number of bone marrow cells in irradiated mice had recovered by this time. Analysis of mast cell function showed that degranulation of mast cells after immunoglobulin E-mediated allergen recognition was significantly higher in the X-irradiated group compared with in the unirradiated group. In conclusion, bone marrow cells of X-irradiated mice differentiated into mast cells, but ionizing radiation affected the differentiation efficiency and function of mast cells.
Collapse
Affiliation(s)
- Sho Murakami
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Hironori Yoshino
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Junya Ishikawa
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan Department of Health Sciences, Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita-City, Oita Prefecture, 870-1201, Japan
| | - Masaru Yamaguchi
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Takakiyo Tsujiguchi
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Ayaka Nishiyama
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Kouki Yokoyama
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Ikuo Kashiwakura
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
140
|
Wang C, Zhou M, Li T, Wang Y, Xing B, Kong T, Dong W. Effects of Scorpion venom peptide B5 on hematopoietic recovery in irradiated mice and the primary mechanisms. Sci Rep 2015; 5:15363. [PMID: 26482294 PMCID: PMC4611173 DOI: 10.1038/srep15363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022] Open
Abstract
Scorpion venom peptide B5 (SVP-B5) stimulates recovery of hematopoiesis after exposure to radiation. However, its radioprotective effects and mechanisms are still unclear. The aim of this study was to investigate the effects of SVP-B5 on hematopoietic recovery in mice after total body irradiation (TBI) at a dose of 7.5 Gy and 6 Gy and to explore the possible primary mechanisms. SVP-B5 at a dose of 2.63 μg/kg significantly reduced the mortality rate of mice after TBI (p < 0.05). It showed markedly protective effects against radiation injury. SVP-B5 also significantly increased the number of bone marrow nucleated cells (BMNCs) and increased the colony forming unit (CFU) number in irradiated mice, accelerated the post-irradiation recovery of peripheral blood leukocytes and platelets in mice. SVP-B5 treatment markedly reduced the Reactive Oxygen Species (ROS) levels in BMNCs after TBI, reduced γH2AX levels, and decreased the relative expression levels of p16 and p21 mRNA at day 14 (d14) after irradiation. Our study indicated that SVP-B5 could partially mitigate radiation-induced DNA damage, enhance the post-radiation hematopoietic recovery, and improve the survival rate probably through the ROS-p16/p21 pathway.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical university, Guangzhou, Guangdong 510182, PR China
| | - Meixun Zhou
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Ting Li
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Yan Wang
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Baiqian Xing
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Tianhan Kong
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Weihua Dong
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| |
Collapse
|
141
|
Xu G, Wu H, Zhang J, Li D, Wang Y, Wang Y, Zhang H, Lu L, Li C, Huang S, Xing Y, Zhou D, Meng A. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med 2015; 87:15-25. [PMID: 26086617 PMCID: PMC4707049 DOI: 10.1016/j.freeradbiomed.2015.05.045] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
Exposure to ionizing radiation (IR) increases the production of reactive oxygen species (ROS) not only by the radiolysis of water but also through IR-induced perturbation of the cellular metabolism and disturbance of the balance of reduction/oxidation reactions. Our recent studies showed that the increased production of intracellular ROS induced by IR contributes to IR-induced late effects, particularly in the hematopoietic system, because inhibition of ROS production with an antioxidant after IR exposure can mitigate IR-induced long-term bone marrow (BM) injury. Metformin is a widely used drug for the treatment of type 2 diabetes. Metformin also has the ability to regulate cellular metabolism and ROS production by activating AMP-activated protein kinase. Therefore, we examined whether metformin can ameliorate IR-induced long-term BM injury in a total-body irradiation (TBI) mouse model. Our results showed that the administration of metformin significantly attenuated TBI-induced increases in ROS production and DNA damage and upregulation of NADPH oxidase 4 expression in BM hematopoietic stem cells (HSCs). These changes were associated with a significant increase in BM HSC frequency, a considerable improvement in in vitro and in vivo HSC function, and complete inhibition of upregulation of p16(Ink4a) in HSCs after TBI. These findings demonstrate that metformin can attenuate TBI-induced long-term BM injury at least in part by inhibiting the induction of chronic oxidative stress in HSCs and HSC senescence. Therefore, metformin has the potential to be used as a novel radioprotectant to ameliorate TBI-induced long-term BM injury.
Collapse
Affiliation(s)
- Guoshun Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hongying Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China.
| | - Yueying Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yingying Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China; Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Heng Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Chengcheng Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China; Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Song Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yonghua Xing
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Daohong Zhou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China; Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Aimin Meng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, China; Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
142
|
Fleenor CJ, Higa K, Weil MM, DeGregori J. Evolved Cellular Mechanisms to Respond to Genotoxic Insults: Implications for Radiation-Induced Hematologic Malignancies. Radiat Res 2015; 184:341-51. [PMID: 26414506 DOI: 10.1667/rr14147.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human exposure to ionizing radiation is highly associated with adverse health effects, including reduced hematopoietic cell function and increased risk of carcinogenesis. The hematopoietic deficits manifest across blood cell types and persist for years after radiation exposure, suggesting a long-lived and multi-potent cellular reservoir for radiation-induced effects. As such, research has focused on identifying both the immediate and latent hematopoietic stem cell responses to radiation exposure. Radiation-associated effects on hematopoietic function and malignancy development have generally been attributed to the direct induction of mutations resulting from radiation-induced DNA damage. Other studies have illuminated the role of cellular programs that both limit and enhance radiation-induced tissue phenotypes and carcinogenesis. In this review, distinct but collaborative cellular responses to genotoxic insults are highlighted, with an emphasis on how these programmed responses impact hematopoietic cellular fitness and competition. These radiation-induced cellular programs include apoptosis, senescence and impaired self-renewal within the hematopoietic stem cell (HSC) pool. In the context of sporadic DNA damage to a cell, these cellular responses act in concert to restore tissue function and prevent selection for adaptive oncogenic mutations. But in the contexts of whole-tissue exposure or whole-body exposure to genotoxins, such as radiotherapy or chemotherapy, we propose that these programs can contribute to long-lasting tissue impairment and increased carcinogenesis.
Collapse
Affiliation(s)
| | | | - Michael M Weil
- d Department of Environmental and Radiological Health Sciences, Colorado State University; Fort Collins, Colorado
| | - James DeGregori
- Departments of a Immunology.,b Biochemistry and Molecular Genetics and.,c Medicine, School of Medicine, University of Colorado, Aurora, Colorado; and
| |
Collapse
|
143
|
Wang B, Tanaka K, Katsube T, Ninomiya Y, Vares G, Liu Q, Morita A, Nakajima T, Nenoi M. Chronic restraint-induced stress has little modifying effect on radiation hematopoietic toxicity in mice. JOURNAL OF RADIATION RESEARCH 2015; 56:760-7. [PMID: 26045492 PMCID: PMC4576999 DOI: 10.1093/jrr/rrv030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/01/2015] [Indexed: 05/16/2023]
Abstract
Both radiation and stresses cause detrimental effects on humans. Besides possible health effects resulting directly from radiation exposure, the nuclear plant accident is a cause of social psychological stresses. A recent study showed that chronic restraint-induced stresses (CRIS) attenuated Trp53 functions and increased carcinogenesis susceptibility of Trp53-heterozygous mice to total-body X-irradiation (TBXI), having a big impact on the academic world and a sensational effect on the public, especially the residents living in radioactively contaminated areas. It is important to investigate the possible modification effects from CRIS on radiation-induced health consequences in Trp53 wild-type (Trp53wt) animals. Prior to a carcinogenesis study, effects of TBXI on the hematopoietic system under CRIS were investigated in terms of hematological abnormality in the peripheral blood and residual damage in the bone marrow erythrocytes using a mouse restraint model. Five-week-old male Trp53wt C57BL/6J mice were restrained 6 h per day for 28 consecutive days, and TBXI (4 Gy) was given on the 8th day. Results showed that CRIS alone induced a marked decrease in the red blood cell (RBC) and the white blood cell (WBC) count, while TBXI caused significantly lower counts of RBCs, WBCs and blood platelets, and a lower concentration of hemoglobin regardless of CRIS. CRIS alone did not show any significant effect on erythrocyte proliferation and on induction of micronucleated erythrocytes, whereas TBXI markedly inhibited erythrocyte proliferation and induced a significant increase in the incidences of micronucleated erythrocytes, regardless of CRIS. These findings suggest that CRIS does not have a significant impact on radiation-induced detrimental effects on the hematopoietic system in Trp53wt mice.
Collapse
Affiliation(s)
- Bing Wang
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Kaoru Tanaka
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Takanori Katsube
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yasuharu Ninomiya
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Guillaume Vares
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Akinori Morita
- Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8509, Japan
| | - Tetsuo Nakajima
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Mitsuru Nenoi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
144
|
Jiang C, Hu X, Wang L, Cheng H, Lin Y, Pang Y, Yuan W, Cheng T, Wang J. Excessive proliferation and impaired function of primitive hematopoietic cells in bone marrow due to senescence post chemotherapy in a T cell acute lymphoblastic leukemia model. J Transl Med 2015; 13:234. [PMID: 26183432 PMCID: PMC4504405 DOI: 10.1186/s12967-015-0543-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/18/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND In clinic settings, rel apsed leukemic patients are found to be more fragile to chemotherapy due to delayed or incomplete hematopoietic recovery, and hematopoiesis of these patients seem to be impaired. METHODS We established a leukemia therapy model with a non-irradiated T cell acute lymphoblastic leukemia mouse model combined with cytarabine and cyclophosphamide. Dynamic kinetics and functional status of both primitive hematopoietic cells and leukemic cells in a leukemia host under the chemotherapy stress were comprehensively investigated. RESULTS We successfully established the leukemia therapy model with T lymphoblastic phenotype. After treatment with cytarabine and cyclophosphamide, the frequency of L(-)K(+)S(+) hematopoietic cells tides with the therapy, and stabled when the disease remission, then reduced when relapsed, while leukemic cells showed a delayed but consistent regeneration. Combination of chemotherapy significantly promote an early and transient entrance of L(-)K(+)S(+) hematopoietic cells into active proliferation and induction of apoptosis on L(-)K(+)S(+) cells in vivo. Moreover, in the competitive bone marrow transplantation assays, hematopoietic cells showed gradually diminished regenerative capacity. Testing of senescence-associated beta-galactosidase (SA-β gal) status showed higher levels in L(-)K(+)S(+) hematopoietic cells post therapy when compared with the control. Gene expression analysis of hematopoietic primitive cells revealed up-regulated p16, p21, and down-regulated egr1 and fos. CONCLUSION We conclude that primitive hematopoietic cells in bone marrow enter proliferation earlier than leukemic cells after chemotherapy, and gradually lost their regenerative capacity partly by senescence due to accelerated cycling.
Collapse
Affiliation(s)
- Chuanhe Jiang
- Institute of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Xiaoxia Hu
- Institute of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Libing Wang
- Institute of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Yan Lin
- Institute of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Yakun Pang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Jianmin Wang
- Institute of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
145
|
Ibrahim M, Widjajanto E, Widodo MA, Sumitro SB. EMSA Eritin Drives Expansion of Regulatory T Cells and Promotes T Cells Differentiation in Irradiated Mice. J Evid Based Complementary Altern Med 2015; 21:171-6. [PMID: 26170134 DOI: 10.1177/2156587215595146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/14/2015] [Indexed: 01/30/2023] Open
Abstract
Sublethal irradiation therapy in cancer treatment causes generalized immunosuppression, which results in a range of DNA damage. We examined the significance of a polyherbal medicine called "EMSA Eritin" on immunological responses in sublethally irradiated mice focusing on the involvement of Treg, naïve T cell, and also the development and differentiation of T cells in thymus. Normal BALB/c mice were sublethally irradiated with dose of 600 rad. The irradiated mice were then orally administered by EMSA Eritin once a day at different doses: 1.04, 3.12, 9.37 mg/g body weight. The treatment was performed for 14 days. On day 15, immunological responses were observed by analyzing the status of Treg and differentiation of T cells in thymus. The administration of EMSA Eritin to irradiated mice resulted in a significant increase of pre T cells, Treg cells, and naïve T cells, which in general could maintain and normalize healthy condition in mice.
Collapse
|
146
|
Abstract
Abnormal activation of the mammalian target of rapamycin (mTOR) signaling pathway has been observed in a variety of human cancers. Therefore, targeting of the mTOR pathway is an attractive strategy for cancer treatment and several mTOR inhibitors, including AZD8055 (AZD), a novel dual mTORC1/2 inhibitor, are currently in clinical trials. Although bone marrow (BM) suppression is one of the primary side effects of anticancer drugs, it is not known if pharmacological inhibition of dual mTORC1/2 affects BM hematopoietic stem and progenitor cells (HSPCs) function and plasticity. Here we report that dual inhibition of mTORC1/2 by AZD or its analogue (KU-63794) depletes mouse BM Lin−Sca-1+c-Kit+ cells in cultures via the induction of apoptotic cell death. Subsequent colony-forming unit (CFU) assays revealed that inhibition of mTORC1/2 suppresses the clonogenic function of hematopoietic progenitor cells (HPCs) in a dose-dependent manner. Surprisingly, we found that dual inhibition of mTORC1/2 markedly inhibits the growth of day-14 cobblestone area-forming cells (CAFCs) but enhances the generation of day-35 CAFCs. Given the fact that day-14 and day-35 CAFCs are functional surrogates of HPCs and hematopoietic stem cells (HSCs), respectively, these results suggest that dual inhibition of mTORC1/2 may have distinct effects on HPCs versus HSCs.
Collapse
|
147
|
Standard sub-thermoneutral caging temperature influences radiosensitivity of hematopoietic stem and progenitor cells. PLoS One 2015; 10:e0120078. [PMID: 25793392 PMCID: PMC4368554 DOI: 10.1371/journal.pone.0120078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
The production of new blood cells relies on a hierarchical network of hematopoietic stem and progenitor cells (HSPCs). To maintain lifelong hematopoiesis, HSPCs must be protected from ionizing radiation or other cytotoxic agents. For many years, murine models have been a valuable source of information regarding factors that either enhance or reduce the survival of HSPCs after exposure of marrow to ionizing radiation. In a recent series of studies, however, it has become clear that housing-related factors such as the cool room temperature required for laboratory mice can exert a surprising influence on the outcome of experiments. Here we report that the mild, but chronic cold-stress endured by mice housed under these conditions exerts a protective effect on HSPCs after both non-lethal and lethal doses of total body irradiation (TBI). Alleviation of this cold-stress by housing mice at a thermoneutral temperature (30°C) resulted in significantly greater baseline radiosensitivity to a lethal dose of TBI with more HSPCs from mice housed at thermoneutral temperature undergoing apoptosis following non-lethal TBI. Cold-stressed mice have elevated levels of norepinephrine, a key molecule of the sympathetic nervous system that binds to β-adrenergic receptors. We show that blocking this signaling pathway in vivo through use of the β-blocker propanolol completely mitigates the protective effect of cold-stress on HSPC apoptosis. Collectively this study demonstrates that chronic stress endured by the standard housing conditions of laboratory mice increases the resistance of HSPCs to TBI-induced apoptosis through a mechanism that depends upon β-adrenergic signaling. Since β-blockers are commonly prescribed to a wide variety of patients, this information could be important when predicting the clinical impact of HSPC sensitivity to TBI.
Collapse
|
148
|
Gao W, Liang JX, Liu S, Liu C, Liu XF, Wang XQ, Yan Q. Oxidative damage of DNA induced by X-irradiation decreases the uterine endometrial receptivity which involves mitochondrial and lysosomal dysfunction. Int J Clin Exp Med 2015; 8:3401-3410. [PMID: 26064230 PMCID: PMC4443064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
X irradiation may lead to female infertility and the mechanism is still not clear. After X irradiation exposure, significantly morphological changes and functional decline in endometrial epithelial cells were observed. The mitochondrial and lysosomal dysfunction and oxidative DNA damage were noticed after X irradiation. In addition, pretreatment with NAC, NH4Cl or Pep A reduced the X irradiation induced damages. These studies demonstrate that the oxidative DNA damage which involved dysfunctional lysosomal and mitochondrial contribute to X irradiation-induced impaired receptive state of uterine endometrium and proper protective reagents can be helpful in improving endometrial function.
Collapse
Affiliation(s)
- Wei Gao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and GlycoengineeringDalian, PRC
| | - Jin-Xiao Liang
- Department of Surgery, First Affiliated Hospital of Dalian Medical UniversityDalian, PRC
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and GlycoengineeringDalian, PRC
| | - Chang Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and GlycoengineeringDalian, PRC
| | - Xiao-Fang Liu
- Department of Public Health, Dalian Medical UniversityDalian, PRC
| | - Xiao-Qi Wang
- Department of Dermatology, Northwestern University’s Feinberg School of MedicineChicago, IL 60611, USA
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and GlycoengineeringDalian, PRC
| |
Collapse
|
149
|
Xiao X, Luo H, Vanek KN, LaRue AC, Schulte BA, Wang GY. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells. Stem Cells Dev 2015; 24:1342-51. [PMID: 25603016 DOI: 10.1089/scd.2014.0402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.
Collapse
Affiliation(s)
- Xia Xiao
- 1Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,2Department of Hematology, Tianjin First Center Hospital, Tianjin, People's Republic of China
| | - Hongmei Luo
- 1Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,3Department of Histology and Embryology, University of South China, Hengyang City, Hunan Province, People's Republic of China
| | - Kenneth N Vanek
- 4Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - Amanda C LaRue
- 1Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,5Research Services, Ralph H. Johnson VAMC, Charleston, South Carolina.,6Cancer Genes and Molecular Regulation Program of the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Bradley A Schulte
- 1Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Gavin Y Wang
- 1Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,6Cancer Genes and Molecular Regulation Program of the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
150
|
Chang J, Feng W, Wang Y, Luo Y, Allen AR, Koturbash I, Turner J, Stewart B, Raber J, Hauer-Jensen M, Zhou D, Shao L. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiat Res 2015; 183:240-8. [PMID: 25635345 DOI: 10.1667/rr13887.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH oxidase 4 (NOX4) mRNA expression and reactive oxygen species (ROS) production. In addition, the increased production of ROS in HSCs was associated with a significant reduction in HSC quiescence and an increase in DNA damage. These findings indicate that exposure to proton radiation can lead to long-term HSC injury, probably in part by radiation-induced oxidative stress.
Collapse
|