101
|
Ljung K, Grönlund A, Felldin U, Rodin S, Corbascio M, Österholm C, Grinnemo KH. Human Fetal Cardiac Mesenchymal Stromal Cells Differentiate In Vivo into Endothelial Cells and Contribute to Vasculogenesis in Immunocompetent Mice. Stem Cells Dev 2019; 28:310-318. [PMID: 30618344 DOI: 10.1089/scd.2018.0198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have shown great potential as a treatment for systemic inflammatory diseases, but their local regenerative properties are highly tissue- and site specific. Previous studies have demonstrated that adult human MSCs respond to inflammatory cytokines through the release of paracrine factors that stimulate angiogenesis, but they do not themselves differentiate into vascular structures in vivo. In this study, we used human fetal cardiac MSCs (hfcMSCs) harvested during the first trimester of heart development and injected them into the subcutaneous tissue of normal immunocompetent mice treated with short-term costimulation blockade for tolerance induction. When hfcMSCs were transplanted subcutaneously together with Matrigel matrix, they contributed to vasculogenesis through differentiation into endothelial cells and generation of the basal membrane protein Laminin α4. These characteristics of hfcMSCs are similar to the mesodermal progenitors giving rise to the developing heart and they may be useful for treatment of ischemic injuries.
Collapse
Affiliation(s)
- Karin Ljung
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,2 Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Grönlund
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Felldin
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sergey Rodin
- 3 Division of Cardiothoracic Surgery and Anaesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Matthias Corbascio
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,2 Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Österholm
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Karl-Henrik Grinnemo
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,3 Division of Cardiothoracic Surgery and Anaesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| |
Collapse
|
102
|
Abu-El-Rub E, Sequiera GL, Sareen N, Yan W, Moudgil M, Sabbir MG, Dhingra S. Hypoxia-induced 26S proteasome dysfunction increases immunogenicity of mesenchymal stem cells. Cell Death Dis 2019; 10:90. [PMID: 30692516 PMCID: PMC6349874 DOI: 10.1038/s41419-019-1359-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Bone marrow-derived allogeneic (donor derived) mesenchymal stem cells (MSCs) are immunoprivileged and are considered to be prominent candidates for regenerative therapy for numerous degenerative diseases. Even though the outcome of initial allogeneic MSCs based clinical trials was encouraging, the overall enthusiasm, of late, has dimmed down. This is due to failure of long-term survival of transplanted cells in the recipient. In fact, recent analyses of allogeneic MSC-based studies demonstrated that cells after transplantation turned immunogenic and were subsequently rejected by host immune system. The current study reveals a novel mechanism of immune switch in MSCs. We demonstrate that hypoxia, a common denominator of ischemic tissues, induces an immune shift in MSCs from immunoprivileged to immunogenic state. The immunoprivilege of MSCs is preserved by downregulation or the absence of major histocompatibility complex class II (MHC-II) molecules. We found that 26S proteasome-mediated intracellular degradation of MHC-II helps maintain the absence of MHC-II expression on cell surface in normoxic MSCs and preserves their immunoprivilege. The exposure to hypoxia leads to dissociation of 19S and 20S subunits, and inactivation of 26S proteasome. This prevented the degradation of MHC-II and, as a result, the MSCs became immunogenic. Furthermore, we found that hypoxia-induced decrease in the levels of a chaperon protein HSP90α is responsible for inactivation of 26S proteasome. Maintaining HSP90α levels in hypoxic MSCs preserved the immunoprivilege of MSCs. Therefore, hypoxia-induced inactivation of 26S proteasome assembly instigates loss of immunoprivilege of allogeneic mesenchymal stem cells. Maintaining 26S proteasome activity in mesenchymal stem cells preserves their immunoprivilege.
Collapse
Affiliation(s)
- Ejlal Abu-El-Rub
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Glen Lester Sequiera
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Niketa Sareen
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Weiang Yan
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Meenal Moudgil
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Mohammad Golam Sabbir
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, University of Manitoba, Winnipeg, MB, Canada
| | - Sanjiv Dhingra
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada. .,St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.
| |
Collapse
|
103
|
Mahmoud M, Abu-Shahba N, Azmy O, El-Badri N. Impact of Diabetes Mellitus on Human Mesenchymal Stromal Cell Biology and Functionality: Implications for Autologous Transplantation. Stem Cell Rev Rep 2019; 15:194-217. [DOI: 10.1007/s12015-018-9869-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
104
|
Intraarticular injection of allogenic chondroprogenitors for treatment of osteoarthritis in rabbit knee model. J Clin Orthop Trauma 2019; 10:16-23. [PMID: 30705526 PMCID: PMC6349637 DOI: 10.1016/j.jcot.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/03/2018] [Indexed: 01/08/2023] Open
|
105
|
Burgess JK, Heijink IH. The Safety and Efficiency of Addressing ARDS Using Stem Cell Therapies in Clinical Trials. STEM CELL-BASED THERAPY FOR LUNG DISEASE 2019. [PMCID: PMC7121814 DOI: 10.1007/978-3-030-29403-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Janette K. Burgess
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Irene H. Heijink
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|
106
|
Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang XN. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Dendritic Cell Maturation and Function. Front Immunol 2018; 9:2538. [PMID: 30473695 PMCID: PMC6237916 DOI: 10.3389/fimmu.2018.02538] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are potent regulators of immune responses largely through paracrine signaling. MSC secreted extracellular vesicles (MSC-EVs) are increasingly recognized as the key paracrine factors responsible for the biological and therapeutic function of MSCs. We report the first comprehensive study demonstrating the immunomodulatory effect of MSC-EVs on dendritic cell (DC) maturation and function. MSC-EVs were isolated from MSC conditioned media using differential ultracentrifugation. Human monocyte-derived DCs were generated in the absence or presence of MSC-EVs (20 ug/ml) then subjected to phenotypic and functional analysis in vitro. MSC-EV treatment impaired antigen uptake by immature DCs and halted DC maturation resulting in reduced expression of the maturation and activation markers CD83, CD38, and CD80, decreased secretion of pro-inflammatory cytokines IL-6 and IL-12p70 and increased production of anti-inflammatory cytokine TGF-β. MSC-EV treated DCs also demonstrated a diminished CCR 7 expression after LPS stimulation, coupled with a significantly reduced ability to migrate toward the CCR7-ligand CCL21, although they were still able to stimulate allogeneic T cell proliferation in vitro. Through microRNA profiling we have identified 49 microRNAs, which were significantly enriched in MSC-EVs compared to their parent MSCs. MicroRNAs with known effect on DC maturation and functions, including miR-21-5p, miR-142-3p, miR-223-3p, and miR-126-3p, were detected within the top 10 most enriched miRNAs in MSC-EVs, with MiR-21-5p as the third highest expressed miRNA in MSC-EVs. In silico analysis revealed that miR-21-5p targets the CCR7 gene for degradation. To verify these observations, DCs were transfected with miR-21-5p mimics and analyzed for their ability to migrate toward the CCR7-ligand CCL21 in vitro. MiR-21-5p mimic transfected DCs showed a clear trend of reduced CCR7 expression and a significantly decreased migratory ability toward the CCL21. Our findings suggest that MSC-EVs are able to recapitulate MSC mediated DC modulation and MSC-EV enclosed microRNAs may represent a novel mechanism through which MSCs modulate DC functions. As MSCs are currently used in clinical trials to treat numerous diseases associated with immune dysregulation, such as graft-versus-host disease and inflammatory bowel disease, our data provide novel evidence to inform potential future application of MSC-EVs as a cell-free therapeutic agent.
Collapse
Affiliation(s)
- Monica Reis
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Mavin
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lindsay Nicholson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kile Green
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne M Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Xiao-Nong Wang
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
107
|
Rowland AL, Xu JJ, Joswig AJ, Gregory CA, Antczak DF, Cummings KJ, Watts AE. In vitro MSC function is related to clinical reaction in vivo. Stem Cell Res Ther 2018; 9:295. [PMID: 30409211 PMCID: PMC6225557 DOI: 10.1186/s13287-018-1037-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 12/17/2022] Open
Abstract
Background We recently demonstrated that intracellular xenogen-contaminated autologous MSCs (FBS) and non-xenogen-contaminated allogeneic (ALLO) MSCs caused an adverse clinical response after repeated intra-articular injection in horses, whereas autologous (AUTO) MSCs did not. Our current objective was to use clinical data from the previous study to compare MSC stemness against adverse response indicated by synovial total nucleated cell count (TNCC) following intra-articular MSC injection. Methods Stemness, quantified by a trilineage differentiation (TLD) score; immunomodulation, quantified by mixed lymphocyte reactions (MLRs); and degree of MHCI expression, quantified by mean fluorescent intensity (MFI); were correlated to the synovial TNCC 24 h after naïve and primed injection. Results There was a trend of a negative correlation (p = 0.21, r = − 0.44) between TLD score and TNCC after primed injection in the ALLO group. Within the ALLO group only, there was a significant positive correlation (p = 0.05, r = 0.77) between MHCI MFI and TNCC after naïve injection and a trend (p = 0.16, r = 0.49) of a positive association of MHCI MFI to TNCC after primed injection. Within the FBS group only, there was a positive correlation (p = 0.04, r = 1) between TNCC and lymphocyte proliferation after both injections. Conclusions The trend of a negative correlation of TLD score and TNCC in the ALLO, but not the FBS group, together with the association of MHCI expression and TNCC in the ALLO group, indicates that improved stemness is associated with reduced MSC immunogenicity. When inflammation was incited by xenogen, there was a strong correlation of lymphocyte activation in vitro to adverse response in vivo, confirming that MLRs in vitro reflect MSC immunomodulatory activity in vivo. The relationship of stemness in vitro, suppression of lymphocyte activation in vitro, MHCI expression in vitro, and clinical response in vivo should be further investigated.
Collapse
Affiliation(s)
- Aileen L Rowland
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jiajie Jessica Xu
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Amanda Jo Joswig
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Douglas F Antczak
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Kevin J Cummings
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Ashlee E Watts
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
108
|
Marcheque J, Bussolati B, Csete M, Perin L. Concise Reviews: Stem Cells and Kidney Regeneration: An Update. Stem Cells Transl Med 2018; 8:82-92. [PMID: 30302937 PMCID: PMC6312445 DOI: 10.1002/sctm.18-0115] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Significant progress has been made to advance stem cell products as potential therapies for kidney diseases: various kinds of stem cells can restore renal function in preclinical models of acute and chronic kidney injury. Nonetheless this literature contains contradictory results, and for this reason, we focus this review on reasons for apparent discrepancies in the literature, because they contribute to difficulty in translating renal regenerative therapies. Differences in methodologies used to derive and culture stem cells, even those from the same source, in addition to the lack of standardized renal disease animal models (both acute and chronic), are important considerations underlying contradictory results in the literature. We propose that harmonized rigorous protocols for characterization, handling, and delivery of stem cells in vivo could significantly advance the field, and present details of some suggested approaches to foster translation in the field of renal regeneration. Our goal is to encourage coordination of methodologies (standardization) and long‐lasting collaborations to improve protocols and models to lead to reproducible, interpretable, high‐quality preclinical data. This approach will certainly increase our chance to 1 day offer stem cell therapeutic options for patients with all‐too‐common renal diseases. Stem Cells Translational Medicine2019;8:82–92
Collapse
Affiliation(s)
- Julia Marcheque
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, California
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Marie Csete
- Medical Engineering, California Institute of Technology, Los Angeles, California.,Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, California
| |
Collapse
|
109
|
Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor. Sci Rep 2018; 8:13351. [PMID: 30190508 PMCID: PMC6127326 DOI: 10.1038/s41598-018-31569-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiosphere-derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2 under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2.
Collapse
|
110
|
Pieróg J, Tamo L, Fakin R, Kocher G, Gugger M, Grodzki T, Geiser T, Gazdhar A, Schmid RA. Bone marrow stem cells modified with human interleukin 10 attenuate acute rejection in rat lung allotransplantation. Eur J Cardiothorac Surg 2018; 53:194-200. [PMID: 28950337 DOI: 10.1093/ejcts/ezx257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate new therapeutic options to attenuate acute rejection in a rat lung allograft model. Cell-based gene therapies have recently been reported as a novel curative option in acute and chronic diseases for which conventional treatments are not available. We studied the effect of human interleukin 10 (hIL-10) on expressing bone marrow-derived mesenchymal stem cells (BMSCs) in combination with cyclosporine A (CsA) on acute rejection of lung allografts in the rat. METHODS Lung allotransplantation was performed from male Brown Norway donor to male Fisher (F344) rats. Rat BMSCs were transfected with hIL-10 in vitro and introduced in the graft prior to implantation. Group A (n = 5) received CsA intraperitoneally (2.5 mg/kg body weight) for 5 days post-transplant; Group B (n = 5) received BMSC and CsA and Group C (n = 5) received hIL-10-BMSC before implantation and CsA. Graft function was assessed by blood gas levels only from the graft on day 5; tissue was sampled for histological grading of rejection and measurement of the wet-to-dry ratio. RESULTS All Group A control animals showed severe signs of rejection. On Day 5, all grafts in Group C showed improved gas exchange (mean arterial partial pressure of oxygen 222.2 ± 40.38 mmHg vs 92.36 ± 20.92 mmHg in Group B and 42.72 ± 18.07 mmHg in Group A). Histological examination revealed moderate-to-severe rejection in all animals in Group A [International Society for Heart and Lung Transplantation Level III B (ISHLT)] in contrast to low-to-moderate rejection in Group B (II-IIIA) and much improved histological grade in Group C (I-IIA). Moreover, the wet-to-dry ratio was also reduced in Group C (4.8 ± 1.19 compared with 4.78 ± 0.62 in Group B and 9.36 ± 0.90 in Group A). CONCLUSIONS The hIL-10 BMSC represent a promising novel method for localized cell-based gene therapy for acute rejection in a rat lung allograft model.
Collapse
Affiliation(s)
- Jaroslaw Pieróg
- Department of General Thoracic Surgery, University Hospital Bern, Bern, Switzerland.,Department of General Thoracic Surgery and Lung Transplantation, Pomeranian Medical University, Szczecin, Poland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Luca Tamo
- Department of General Thoracic Surgery, University Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland.,Graduate School, University of Bern, Bern, Switzerland
| | - Richard Fakin
- Department of General Thoracic Surgery, University Hospital Bern, Bern, Switzerland
| | - Gregor Kocher
- Department of General Thoracic Surgery, University Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Tomasz Grodzki
- Department of General Thoracic Surgery and Lung Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Thomas Geiser
- Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland
| | - Amiq Gazdhar
- Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland
| | - Ralph A Schmid
- Department of General Thoracic Surgery, University Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
111
|
Xu X, Gao D, Wang P, Chen J, Ruan J, Xu J, Xia X. Efficient homology-directed gene editing by CRISPR/Cas9 in human stem and primary cells using tube electroporation. Sci Rep 2018; 8:11649. [PMID: 30076383 PMCID: PMC6076306 DOI: 10.1038/s41598-018-30227-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
CRISPR/Cas9 efficiently generates gene knock-out via nonhomologous end joining (NHEJ), but the efficiency of precise homology-directed repair (HDR) is substantially lower, especially in the hard-to-transfect human stem cells and primary cells. Herein we report a tube electroporation method that can effectively transfect human stem cells and primary cells with minimal cytotoxicity. When applied to genome editing using CRISPR/Cas9 along with single stranded DNA oligonucleotide (ssODN) template in human induced pluripotent stem cells (iPSCs), up to 42.1% HDR rate was achieved, drastically higher than many reported before. We demonstrated that the high HDR efficiency can be utilized to increase the gene ablation rate in cells relevant to clinical applications, by knocking-out β2-microglobulin (B2M) in primary human mesenchymal stem cells (MSCs, 37.3% to 80.2%), and programmed death-1 (PD-1) in primary human T cells (42.6% to 58.6%). Given the generality and efficiency, we expect that the method will have immediate impacts in cell research as well as immuno- and transplantation therapies.
Collapse
Affiliation(s)
- Xiaoyun Xu
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Houston, Texas, USA
| | - Dongbing Gao
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Houston, Texas, USA
| | - Ping Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jian Chen
- Celetrix Biotechnologies, Manassas, Virginia, USA
| | - Jinxue Ruan
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109-2800, USA
| | - Jie Xu
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109-2800, USA.
| | - Xiaofeng Xia
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Houston, Texas, USA.
- Weill Cornell Medical College, Cornell University, New York, New York, USA.
| |
Collapse
|
112
|
Liew A, Baustian C, Thomas D, Vaughan E, Sanz-Nogués C, Creane M, Chen X, Alagesan S, Owens P, Horan J, Dockery P, Griffin MD, Duffy A, O'Brien T. Allogeneic Mesenchymal Stromal Cells (MSCs) are of Comparable Efficacy to Syngeneic MSCs for Therapeutic Revascularization in C57BKSdb/db Mice Despite the Induction of Alloantibody. Cell Transplant 2018; 27:1210-1221. [PMID: 30016879 PMCID: PMC6434464 DOI: 10.1177/0963689718784862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Intramuscular administration of mesenchymal stromal cells (MSCs) represents a therapeutic option for diabetic critical limb ischemia. Autologous or allogeneic approaches may be used but disease-induced cell dysfunction may limit therapeutic efficacy in the former. Our aim was to compare the efficacy of allogeneic and autologous MSC transplantation in a model of hindlimb ischemia in diabetes mellitus and to determine whether allogeneic transplantation would result in the activation of an immune response. MSCs were isolated from C57BL/6 (B6) and diabetic obese C57BKSdb/db mice. Phosphate-buffered saline (control group), and MSCs (1 × 106) from B6 (allogeneic group) or C57BKSdb/db (syngeneic group) were administered intramuscularly into the ischemic thigh of C57BKSdb/db mice following the induction of hindlimb ischemia. MSCs derived from both mouse strains secrete several angiogenic factors, suggesting that the potential therapeutic effect is due to paracrine signaling. Administration of allogeneic MSCs significantly improved blood perfusion as compared with the control group on week 2 and 3, post-operatively. In comparison with the control group, syngeneic MSCs significantly improved blood perfusion at week 2 only. There was no statistical difference in blood perfusion between allogeneic and syngeneic MSC groups at any stages. There was no statistical difference in ambulatory and necrosis score among the three groups. Amputation of toes was only observed in the control group (one out of seven animals). Alloantibody was detected in three out of the eight mice that received allogeneic MSCs but was not observed in the other groups. In summary, we demonstrated comparable efficacy after transplantation of autologous and allogeneic MSCs in a diabetic animal model despite generation of an immune response.
Collapse
Affiliation(s)
- A Liew
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - C Baustian
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - D Thomas
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland.,2 Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, Centre for Research in Medical Devices (CÚRAM), Galway, Ireland
| | - E Vaughan
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - C Sanz-Nogués
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - M Creane
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - X Chen
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - S Alagesan
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - P Owens
- 3 National Centre for Biomedical Engineering Science (NCBES), and Centre for Microscopy & Imaging and National Biophotonic & Imaging Platform Ireland, Galway, Ireland
| | - J Horan
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - P Dockery
- 4 College of Engineering, National University of Ireland, Galway (NUIG) and Medtronic, Galway, Ireland
| | - M D Griffin
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - A Duffy
- 4 College of Engineering, National University of Ireland, Galway (NUIG) and Medtronic, Galway, Ireland
| | - T O'Brien
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| |
Collapse
|
113
|
Langrzyk A, Nowak WN, Stępniewski J, Jaźwa A, Florczyk-Soluch U, Józkowicz A, Dulak J. Critical View on Mesenchymal Stromal Cells in Regenerative Medicine. Antioxid Redox Signal 2018; 29:169-190. [PMID: 28874054 DOI: 10.1089/ars.2017.7159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE The belief in the potency of stem cells has resulted in the medical applications of numerous cell types for organ repair, often with the low adherence to methodological stringency. Such uncritical enthusiasm is mainly presented in the approaches employing so-called mesenchymal stem cells (MSC), for the treatment of numerous, unrelated conditions. However, it should be stressed that such broad clinical applications of MSC are mostly based on the belief that MSC can efficiently differentiate into multiple cell types, not only osteoblasts, chondrocytes and adipose cells. Recent Advances: Studies employing lineage tracing established more promising markers to characterize MSC identity and localization in vivo and confirmed the differences between MSC isolated from various organs. Furthermore, preclinical and clinical experiments proved that transdifferentiation of MSC is unlikely to contribute to repair of numerous tissues, including the heart. Therefore, the salvage hypotheses, like MSC fusion with cells in target organs or the paracrine mechanisms, were proposed to justify the widespread application of MSC and to explain transient, if any, effects. CRITICAL ISSUES The lack of standardization concerning the cells markers, their origin and particularly the absence of stringent functional characterization of MSC, leads to propagation of the worrying hype despite the lack of convincing therapeutic efficiency of MSC. FUTURE DIRECTIONS The adherence to rigorous methodological rules is necessary to prevent the application of procedures which can be dangerous for patients and scientific research on the medical application of stem cells. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
| | - Witold N Nowak
- 2 Cardiovascular Division, King's College London , London, United Kingdom .,3 Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Jacek Stępniewski
- 3 Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Agnieszka Jaźwa
- 3 Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Urszula Florczyk-Soluch
- 3 Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Alicja Józkowicz
- 3 Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Józef Dulak
- 1 Kardio-Med Silesia , Zabrze, Poland .,3 Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| |
Collapse
|
114
|
Torres Crigna A, Daniele C, Gamez C, Medina Balbuena S, Pastene DO, Nardozi D, Brenna C, Yard B, Gretz N, Bieback K. Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Front Med (Lausanne) 2018; 5:179. [PMID: 29963554 PMCID: PMC6013716 DOI: 10.3389/fmed.2018.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Within the last years, the use of stem cells (embryonic, induced pluripotent stem cells, or hematopoietic stem cells), Progenitor cells (e.g., endothelial progenitor cells), and most intensely mesenchymal stromal cells (MSC) has emerged as a promising cell-based therapy for several diseases including nephropathy. For patients with end-stage renal disease (ESRD), dialysis or finally organ transplantation are the only therapeutic modalities available. Since ESRD is associated with a high healthcare expenditure, MSC therapy represents an innovative approach. In a variety of preclinical and clinical studies, MSC have shown to exert renoprotective properties, mediated mainly by paracrine effects, immunomodulation, regulation of inflammation, secretion of several trophic factors, and possibly differentiation to renal precursors. However, studies are highly diverse; thus, knowledge is still limited regarding the exact mode of action, source of MSC in comparison to other stem cell types, administration route and dose, tracking of cells and documentation of therapeutic efficacy by new imaging techniques and tissue visualization. The aim of this review is to provide a summary of published studies of stem cell therapy in acute and chronic kidney injury, diabetic nephropathy, polycystic kidney disease, and kidney transplantation. Preclinical studies with allogeneic or xenogeneic cell therapy were first addressed, followed by a summary of clinical trials carried out with autologous or allogeneic hMSC. Studies were analyzed with respect to source of cell type, mechanism of action etc.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Cristina Daniele
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Carolina Gamez
- Department for Experimental Orthopaedics and Trauma Surgery, Medical Faculty Mannheim, Orthopaedic and Trauma Surgery Centre (OUZ), Heidelberg University, Mannheim, Germany
| | - Sara Medina Balbuena
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Diego O. Pastene
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniela Nardozi
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Cinzia Brenna
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Karen Bieback
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| |
Collapse
|
115
|
Abstract
Mesenchymal stromal cells (MSCs) have been the subject of clinical trials for more than a generation, and the outcomes of advanced clinical trials have fallen short of expectations raised by encouraging pre-clinical animal data in a wide array of disease models. In this Perspective, important biological and pharmacological disparities in pre-clinical research and human translational studies are highlighted, and analyses of clinical trial failures and recent successes provide a rational pathway to MSC regulatory approval and deployment for disorders with unmet medical needs.
Collapse
Affiliation(s)
- Jacques Galipeau
- Department of Medicine and Carbone Cancer Center, University of Wisconsin in Madison, Madison, WI, USA.
| | - Luc Sensébé
- UMR5273 STROMALab CNRS/EFS/UPS - INSERM U1031, Toulouse, France.
| |
Collapse
|
116
|
Iohara K, Utsunomiya S, Kohara S, Nakashima M. Allogeneic transplantation of mobilized dental pulp stem cells with the mismatched dog leukocyte antigen type is safe and efficacious for total pulp regeneration. Stem Cell Res Ther 2018; 9:116. [PMID: 29703239 PMCID: PMC5921747 DOI: 10.1186/s13287-018-0855-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
Background We recently demonstrated that autologous transplantation of mobilized dental pulp stem cells (MDPSCs) was a safe and efficacious potential therapy for total pulp regeneration in a clinical study. The autologous MDPSCs, however, have some limitations to overcome, such as limited availability of discarded teeth from older patients. In the present study, we investigated whether MDPSCs can be used for allogeneic applications to expand their therapeutic use. Methods Analysis of dog leukocyte antigen (DLA) was performed using polymerase chain reaction from blood. Canine allogeneic MDPSCs with the matched and mismatched DLA were transplanted with granulocyte-colony stimulating factor in collagen into pulpectomized teeth respectively (n = 7, each). Results were evaluated by hematoxylin and eosin staining, Masson trichrome staining, PGP9.5 immunostaining, and BS-1 lectin immunostaining performed 12 weeks after transplantation. The MDPSCs of the same DLA used in the first transplantation were further transplanted into another pulpectomized tooth and evaluated 12 weeks after transplantation. Results There was no evidence of toxicity or adverse events of the allogeneic transplantation of the MDPSCs with the mismatched DLA. No adverse event of dual transplantation of the MDPSCs with the matched and mismatched DLA was observed. Regenerated pulp tissues including neovascularization and neuronal extension were quantitatively and qualitatively similar at 12 weeks in both matched and mismatched DLA transplants. Regenerated pulp tissue was similarly observed in the dual transplantation as in the single transplantation of MDPSCs both with the matched and mismatched DLA. Conclusions Dual allogeneic transplantation of MDPSCs with the mismatched DLA is a safe and efficacious method for total pulp regeneration. Electronic supplementary material The online version of this article (10.1186/s13287-018-0855-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koichiro Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka, Obu, Aichi, 474-8511, Japan
| | - Shinji Utsunomiya
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories Ltd, Kagoshima, Japan
| | - Sakae Kohara
- Preclinical Research Support Division, Shin Nippon Biomedical Laboratories Ltd, Kainan, Japan
| | - Misako Nakashima
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka, Obu, Aichi, 474-8511, Japan.
| |
Collapse
|
117
|
Barberini DJ, Aleman M, Aristizabal F, Spriet M, Clark KC, Walker NJ, Galuppo LD, Amorim RM, Woolard KD, Borjesson DL. Safety and tracking of intrathecal allogeneic mesenchymal stem cell transplantation in healthy and diseased horses. Stem Cell Res Ther 2018; 9:96. [PMID: 29631634 PMCID: PMC5891950 DOI: 10.1186/s13287-018-0849-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
Background It is currently unknown if the intrathecal administration of a high dose of allogeneic mesenchymal stem cells (MSCs) is safe, how MSCs migrate throughout the vertebral canal after intrathecal administration, and whether MSCs are able to home to a site of injury. The aims of the study were: 1) to evaluate the safety of intrathecal injection of 100 million allogeneic adipose-derived MSCs (ASCs); 2) to assess the distribution of ASCs after atlanto-occipital (AO) and lumbosacral (LS) injection in healthy horses; and 3) to determine if ASCs homed to the site of injury in neurologically diseased horses. Methods Six healthy horses received 100 × 106 allogeneic ASCs via AO (n = 3) or LS injection (n = 3). For two of these horses, ASCs were radiolabeled with technetium and injected AO (n = 1) or LS (n = 1). Neurological examinations were performed daily, and blood and cerebrospinal fluid (CSF) were evaluated prior to and at 30 days after injection. Scintigraphic images were obtained immediately postinjection and at 30 mins, 1 h, 5 h, and 24 h after injection. Three horses with cervical vertebral compressive myelopathy (CVCM) received 100 × 106 allogeneic ASCs labeled with green fluorescent protein (GFP) via AO injection and were euthanized 1–2 weeks after injection for a full nervous system necropsy. CSF parameters were compared using a paired student’s t test. Results There were no significant alterations in blood, CSF, or neurological examinations at any point after either AO or LS ASC injections into healthy horses. The radioactive signal could be identified all the way to the lumbar area after AO ASC injection. After LS injection, the signal extended caudally but only a minimal radioactive signal extended further cranially. GFP-labeled ASCs were not present at the site of disease at either 1 or 2 weeks following intrathecal administration. Conclusions The intrathecal injection of allogeneic ASCs was safe and easy to perform in horses. The AO administration of ASCs resulted in better distribution within the entire subarachnoid space in healthy horses. ASCs could not be found after 7 or 15 days of injection at the site of injury in horses with CVCM. Electronic supplementary material The online version of this article (10.1186/s13287-018-0849-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danielle Jaqueta Barberini
- Veterinary Institute for Regenerative Cures and the Department of Pathology, Microbiology & Immunology, University of California, Davis, USA
| | - Monica Aleman
- Department of Medicine & Epidemiology, University of California, Davis, USA
| | - Fabio Aristizabal
- Department of Surgical & Radiological Sciences, University of California, Davis, USA
| | - Mathieu Spriet
- Department of Surgical & Radiological Sciences, University of California, Davis, USA
| | - Kaitlin C Clark
- Veterinary Institute for Regenerative Cures and the Department of Pathology, Microbiology & Immunology, University of California, Davis, USA
| | - Naomi J Walker
- Veterinary Institute for Regenerative Cures and the Department of Pathology, Microbiology & Immunology, University of California, Davis, USA
| | - Larry D Galuppo
- Department of Surgical & Radiological Sciences, University of California, Davis, USA
| | - Rogério Martins Amorim
- Department of Veterinary Clinics, São Paulo State University "Julio de Mesquita Filho" - UNESP, Botucatu, SP, Brazil
| | - Kevin D Woolard
- Veterinary Institute for Regenerative Cures and the Department of Pathology, Microbiology & Immunology, University of California, Davis, USA
| | - Dori L Borjesson
- Veterinary Institute for Regenerative Cures and the Department of Pathology, Microbiology & Immunology, University of California, Davis, USA.
| |
Collapse
|
118
|
Levinson Y, Beri RG, Holderness K, Ben-Nun IF, Shi Y, Abraham E. Bespoke cell therapy manufacturing platforms. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
119
|
Ibraheim H, Giacomini C, Kassam Z, Dazzi F, Powell N. Advances in mesenchymal stromal cell therapy in the management of Crohn's disease. Expert Rev Gastroenterol Hepatol 2018; 12:141-153. [PMID: 29096549 DOI: 10.1080/17474124.2018.1393332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of therapy in Crohn's disease (CD) is induction and maintenance of remission, promotion of mucosal healing and restoration of quality of life. Even the best treatment regimes, including combinations of biologics and immunomodulators lack durable efficacy and have well documented side effects. Accordingly, there is an unmet need for novel therapies. Mesenchymal stromal cells (MSCs) are a subset of non-hematopoietic stem cells that home to sites of inflammation where they exert potent immunomodulatory effects and contribute to tissue repair. Their utility is being explored in several inflammatory and immune mediated disorders including CD, where they have demonstrated favourable safety, feasibility and efficacy profiles. Areas covered: This review highlights current knowledge on MSC therapy and critically evaluates their safety, efficacy and potential mechanisms of action in CD. Expert commentary: Building on positive early phase clinical trials and a recent phase 3 trial in perianal CD, there is considerable optimism for the possibility of MSCs changing the treatment landscape in complicated CD. Although important questions remain unanswered, including the safety and durability of MSC therapy, optimal adjunctive therapies and their sourcing and manufacturing, it is anticipated that MSCs are likely to enter mainstream treatment algorithms in the near future.
Collapse
Affiliation(s)
- Hajir Ibraheim
- a Department of Gastroenterology , Guy's and St Thomas' Hospital , London , UK
| | - Chiara Giacomini
- b School of Immunology and Microbial Sciences , King's College London , London , UK
| | - Zain Kassam
- b School of Immunology and Microbial Sciences , King's College London , London , UK
| | - Francesco Dazzi
- b School of Immunology and Microbial Sciences , King's College London , London , UK
| | - Nick Powell
- a Department of Gastroenterology , Guy's and St Thomas' Hospital , London , UK.,b School of Immunology and Microbial Sciences , King's College London , London , UK
| |
Collapse
|
120
|
Seifert M, Lubitz A, Trommer J, Könnig D, Korus G, Marx U, Volk HD, Duda G, Kasper G, Lehmann K, Stolk M, Giese C. Crosstalk between Immune Cells and Mesenchymal Stromal Cells in a 3D Bioreactor System. Int J Artif Organs 2018. [DOI: 10.1177/039139881203501104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Martina Seifert
- Institute of Medical Immunology, Charité-Medical University Berlin, Berlin - Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
| | | | - Jeanne Trommer
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
| | - Darja Könnig
- Julius Wolff Institute and Center of Musculoskeletal Surgery, Charité-Medical University Berlin, Berlin - Germany
| | - Gabriela Korus
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
- Julius Wolff Institute and Center of Musculoskeletal Surgery, Charité-Medical University Berlin, Berlin - Germany
| | - Uwe Marx
- Technical University Berlin, Berlin - Germany
| | - Hans-Dieter Volk
- Institute of Medical Immunology, Charité-Medical University Berlin, Berlin - Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
| | - Georg Duda
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
- Julius Wolff Institute and Center of Musculoskeletal Surgery, Charité-Medical University Berlin, Berlin - Germany
| | - Grit Kasper
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
- Julius Wolff Institute and Center of Musculoskeletal Surgery, Charité-Medical University Berlin, Berlin - Germany
| | - Kerstin Lehmann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
- Julius Wolff Institute and Center of Musculoskeletal Surgery, Charité-Medical University Berlin, Berlin - Germany
- Intendis GmbH, Berlin - Germany
| | - Meaghan Stolk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
| | | |
Collapse
|
121
|
Affiliation(s)
- Sang Youn Jung
- Division of Rheumatology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
122
|
Galipeau J. Mesenchymal Stromal Cells. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
123
|
Wu X, Xu L, Shen Y, Yu N, Zhang Y, Guo T. MALP-2, an agonist of TLR6, promotes the immune status without affecting the differentiation capacity of umbilical cord mesenchymal stem cells. Exp Ther Med 2017; 14:5540-5546. [PMID: 29285089 DOI: 10.3892/etm.2017.5262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are increasingly used in cell-based therapy due to their multiple differentiation capacity, low expression of co-stimulatory factors and immunosuppressive effect. However, accumulating studies reported the recognition and rejection of engrafted MSCs, which eventually led to the fail of clinical trials. Toll-like receptors (TLRs) are important in mediating the immune response. In the present study, macrophage-activated lipopeptide-2 (MALP-2) was introduced to activate the TLR6 pathway in umbilical cord MSCs (UCMSCs). PBLs isolated from healthy volunteers were co-cultured with UCMSCs to measure whether activation of TLR6 of UCMSCs could stimulate immune responses. Reverse transcription-quantitative polymerase chain reaction and immunohistochemistry were performed to detect pro-inflammatory molecules and differentiation status of UCMSCs, respectively. The results indicated that activation of TLR6 in UCMSCs increased the proliferation of peripheral blood leukocytes (PBLs) and enhanced the release of lactate dehydrogenase in damaged UCMSCs, which confirmed the role of TLR6 in promoting the immunogenicity of UCMSCs. Furthermore, quantitative polymerase chain reaction demonstrated that the expression of proinflammatory molecules (including IL-1β, IL-6, IL-8, IL-10, CCL1 and CCL4) was induced, whereas the expression of stem cell markers (Klf4 and Nanog) was inhibited. The differentiation results indicated that activation of TLR6 had no effect on the differentiation capacity of UCMSCs. All these findings suggest that stimulation of TLR6 pathway may increase the immunogenicity of UCMSCs in in vitro detections. In conclusion, the results of the current study indicated a new role of TLR6 in regulating the biological function of UCMSCs.
Collapse
Affiliation(s)
- Xiuli Wu
- Department of Laboratory Medicine, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Beijing 100816, P.R. China
| | - Lian Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Beijing 100816, P.R. China.,Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yangmei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Beijing 100816, P.R. China.,Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Na Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Beijing 100816, P.R. China.,Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Beijing 100816, P.R. China.,Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tao Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Beijing 100816, P.R. China.,Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
124
|
Berglund AK, Fortier LA, Antczak DF, Schnabel LV. Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Res Ther 2017; 8:288. [PMID: 29273086 PMCID: PMC5741939 DOI: 10.1186/s13287-017-0742-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Autologous and allogeneic adult mesenchymal stem/stromal cells (MSCs) are increasingly being investigated for treating a wide range of clinical diseases. Allogeneic MSCs are especially attractive due to their potential to provide immediate care at the time of tissue injury or disease diagnosis. The prevailing dogma has been that allogeneic MSCs are immune privileged, but there have been very few studies that control for matched or mismatched major histocompatibility complex (MHC) molecule expression and that examine immunogenicity in vivo. Studies that control for MHC expression have reported both cell-mediated and humoral immune responses to MHC-mismatched MSCs. The clinical implications of immune responses to MHC-mismatched MSCs are still unknown. Pre-clinical and clinical studies that document the MHC haplotype of donors and recipients and measure immune responses following MSC treatment are necessary to answer this critical question. Conclusions This review details what is currently known about the immunogenicity of allogeneic MSCs and suggests contemporary assays that could be utilized in future studies to appropriately identify and measure immune responses to MHC-mismatched MSCs.
Collapse
Affiliation(s)
- Alix K Berglund
- Department of Clinical Sciences, College of Veterinary Medicine and the Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine and the Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
125
|
Bernardo ME, Locatelli F. Mesenchymal Stromal Cells in Hematopoietic Stem Cell Transplantation. Methods Mol Biol 2017; 1416:3-20. [PMID: 27236663 DOI: 10.1007/978-1-4939-3584-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and cultured ex vivo for clinical use. Thanks to their secretion of growth factors, immunomodulatory properties and cell-to-cell interactions, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to prevent/treat graft rejection and to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe; moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials. This chapter focuses on recent advances in MSC therapy by reporting on the most important relevant studies in the field of HSCT.
Collapse
Affiliation(s)
- Maria Ester Bernardo
- Dipartimento di Emato-Oncologia e Medicina Trasfusionale, IRCCS Ospedale Pediatrico Bambino Gesù, P.le S. Onofrio, 00165, Rome, Italy.
| | - Franco Locatelli
- Dipartimento di Emato-Oncologia e Medicina Trasfusionale, IRCCS Ospedale Pediatrico Bambino Gesù, P.le S. Onofrio, 00165, Rome, Italy.,Dipartimento di Scienze Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
126
|
(Mesenchymal) Stem Cell-Based Therapy in Cisplatin-Induced Acute Kidney Injury Animal Model: Risk of Immunogenicity and Tumorigenicity. Stem Cells Int 2017; 2017:7304643. [PMID: 29379525 PMCID: PMC5742889 DOI: 10.1155/2017/7304643] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/12/2017] [Indexed: 12/16/2022] Open
Abstract
Pathogenesis of AKI is complex and involves both local events in the kidney as well as systemic effects in the body that are interconnected and interdependent. Despite intensive investigations there is still no pharmacological agent that could provide complete protection against cisplatin nephrotoxicity. In the last decade mesenchymal stem cells (MSCs) have been proposed as a potentially useful therapeutic strategy in various diseases, including acute kidney injury. Although MSCs have potent immunosuppressive properties, animal studies also suggest that transplanted MSCs may elicit immune response. Interestingly, tumorigenicity of transplanted MSCs in animal studies has been rarely studied. Since the risk of tumorigenicity of particular therapy as well as the immune response to solid or cell grafts is a major issue in clinical trials, the aim of the present paper is to critically summarize the results of MSC transplantation on animal models of AKI, particularly cisplatin-induced animal models, and to expose results and main concerns about immunogenicity and tumorigenicity of transplanted MSCs, two important issues that need to be addressed in future studies.
Collapse
|
127
|
Wang H, Kuang W. Optimization of MSC therapeutic strategies for improved GVHD treatment. INFECTION INTERNATIONAL 2017. [DOI: 10.1515/ii-2017-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Mesenchymal stem cells (MSCs) have a powerful immunosuppressive capacity, and they have been used to treat numerous immune diseases, such as refractory graft-versus-host disease. Nevertheless, there are conflicting clinical data. To our knowledge, MSCs from different donors do not share the same qualities and have different immunosuppressive capacities. Infused MSCs are cleared by the recipient’s immune cells or macrophages. Therefore, the MSC therapeutic strategy might be the most important factor that determines treatment success. Repeated infusions would lead to a relatively stable MSC concentration, which would benefit a sustained therapeutic effect. In this review, we focus on the quality of MSCs and the associated therapeutic strategy, as well as other potential variables affecting their utility as a cellular pharmaceutical.
Collapse
|
128
|
Lohan P, Treacy O, Griffin MD, Ritter T, Ryan AE. Anti-Donor Immune Responses Elicited by Allogeneic Mesenchymal Stem Cells and Their Extracellular Vesicles: Are We Still Learning? Front Immunol 2017; 8:1626. [PMID: 29225601 PMCID: PMC5705547 DOI: 10.3389/fimmu.2017.01626] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have been used to treat a broad range of disease indications such as acute and chronic inflammatory disorders, autoimmune diseases, and transplant rejection due to their potent immunosuppressive/anti-inflammatory properties. The breadth of their usage is due in no small part to the vast quantity of published studies showing their ability to modulate multiple immune cell types of both the innate and adaptive immune response. While patient-derived (autologous) MSC may be the safer choice in terms of avoiding unwanted immune responses, factors including donor comorbidities may preclude these cells from use. In these situations, allogeneic MSC derived from genetically unrelated individuals must be used. While allogeneic MSC were initially believed to be immune-privileged, substantial evidence now exists to prove otherwise with multiple studies documenting specific cellular and humoral immune responses against donor antigens following administration of these cells. In this article, we will review recent published studies using non-manipulated, inflammatory molecule-activated (licensed) and differentiated allogeneic MSC, as well as MSC extracellular vesicles focusing on the immune responses to these cells and whether or not such responses have an impact on allogeneic MSC-mediated safety and efficacy.
Collapse
Affiliation(s)
- Paul Lohan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Oliver Treacy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.,CURAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.,CURAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
129
|
Gu Z, Tan W, Ji J, Feng G, Meng Y, Da Z, Guo G, Xia Y, Zhu X, Shi G, Cheng C. Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging (Albany NY) 2017; 8:1102-14. [PMID: 27048648 PMCID: PMC4931856 DOI: 10.18632/aging.100925] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/13/2016] [Indexed: 12/22/2022]
Abstract
We have shown that bone marrow (BM)-derived mesenchymal stem cells (BM-MSCs) from SLE patients exhibit senescent behavior and are involved in the pathogenesis of SLE. The aim of this study was to investigate the effects of rapamycin (RAPA) on the senescences and immunoregulatory ability of MSCs of MRL/lpr mice and SLE patients and the underlying mechanisms. Cell morphology, senescence associated β-galactosidase (SA-β-gal) staining, F-actin staining were used to detect the senescence of cells. BM-MSCs and purified CD4+ T cells were co-cultured indirectly. Flow cytometry was used to inspect the proportion of regulatory T (Treg) /T helper type 17 (Th17). We used small interfering RNA (siRNA) to interfere the expression of mTOR, and detect the effects by RT-PCR, WB and immunofluorescence. Finally, 1×106 of SLE BM-MSCs treated with RAPA were transplanted to cure the 8 MRL/lpr mice aged 16 weeks for 12 weeks. We demonstrated that RAPA alleviated the clinical symptoms of lupus nephritis and prolonged survival in MRL/lpr mice. RAPA reversed the senescent phenotype and improved immunoregulation of MSCs from MRL/lpr mice and SLE patients through inhibition of the mTOR signaling pathway. Marked therapeutic effects were observed in MRL/lpr mice following transplantation of BM-MSCs from SLE patients pretreated with RAPA.
Collapse
Affiliation(s)
- Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Wei Tan
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Department of Emergency Medicine, The Yangzhou First People's Hospital, Yangzhou, Jiangsu Province 225001, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Guijian Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Meng
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Zhanyun Da
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Genkai Guo
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yunfei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xinhang Zhu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Guixiu Shi
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Department of Rheumatology, Affiliated First Hospital of Xiamen University, Xiamen, Fujian Province 361000, China
| | - Chun Cheng
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
130
|
Galleu A, Riffo-Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS, von Bonin M, Barbieri L, Halai K, Ward S, Weng L, Chakraverty R, Lombardi G, Watt FM, Orchard K, Marks DI, Apperley J, Bornhauser M, Walczak H, Bennett C, Dazzi F. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 2017; 9:eaam7828. [PMID: 29141887 DOI: 10.1126/scitranslmed.aam7828] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/23/2017] [Accepted: 08/16/2017] [Indexed: 08/30/2023]
Abstract
The immunosuppressive activity of mesenchymal stromal cells (MSCs) is well documented. However, the therapeutic benefit is completely unpredictable, thus raising concerns about MSC efficacy. One of the affecting factors is the unresolved conundrum that, despite being immunosuppressive, MSCs are undetectable after administration. Therefore, understanding the fate of infused MSCs could help predict clinical responses. Using a murine model of graft-versus-host disease (GvHD), we demonstrate that MSCs are actively induced to undergo perforin-dependent apoptosis by recipient cytotoxic cells and that this process is essential to initiate MSC-induced immunosuppression. When examining patients with GvHD who received MSCs, we found a striking parallel, whereby only those with high cytotoxic activity against MSCs responded to MSC infusion, whereas those with low activity did not. The need for recipient cytotoxic cell activity could be replaced by the infusion of apoptotic MSCs generated ex vivo. After infusion, recipient phagocytes engulf apoptotic MSCs and produce indoleamine 2,3-dioxygenase, which is ultimately necessary for effecting immunosuppression. Therefore, we propose the innovative concept that patients should be stratified for MSC treatment according to their ability to kill MSCs or that all patients could be treated with ex vivo apoptotic MSCs.
Collapse
Affiliation(s)
- Antonio Galleu
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London SE5 9NU, UK
| | | | - Cristina Trento
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London SE5 9NU, UK
| | - Cara Lomas
- Institute of Immunity and Transplantation, University College London, London NW3 2QG, UK
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Luigi Dolcetti
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London SE5 9NU, UK
| | - Tik Shing Cheung
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London SE5 9NU, UK
| | - Malte von Bonin
- University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Laura Barbieri
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London SE5 9NU, UK
| | - Krishma Halai
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London SE5 9NU, UK
| | - Sophie Ward
- Institute of Immunity and Transplantation, University College London, London NW3 2QG, UK
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Ling Weng
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London SE5 9NU, UK
| | - Ronjon Chakraverty
- Institute of Immunity and Transplantation, University College London, London NW3 2QG, UK
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Giovanna Lombardi
- Medical Research Council Centre for Transplantation, King's College London, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Kim Orchard
- University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - David I Marks
- Bristol Haematology and Oncology Centre, Bristol BS2 8ED, UK
| | - Jane Apperley
- Centre for Haematology, Imperial College London, London W12 0NN, UK
| | - Martin Bornhauser
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London SE5 9NU, UK
- University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Henning Walczak
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Clare Bennett
- Institute of Immunity and Transplantation, University College London, London NW3 2QG, UK
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Francesco Dazzi
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London SE5 9NU, UK.
- Centre for Haematology, Imperial College London, London W12 0NN, UK
| |
Collapse
|
131
|
Li X, Hacker M. Molecular imaging in stem cell-based therapies of cardiac diseases. Adv Drug Deliv Rev 2017; 120:71-88. [PMID: 28734900 DOI: 10.1016/j.addr.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 12/26/2022]
Abstract
In the past 15years, despite that regenerative medicine has shown great potential for cardiovascular diseases, the outcome and safety of stem cell transplantation has shown controversial results in the published literature. Medical imaging might be useful for monitoring and quantifying transplanted cells within the heart and to serially characterize the effects of stem cell therapy of the myocardium. From the multiple available noninvasive imaging techniques, magnetic resonance imaging and nuclear imaging by positron (PET) or single photon emission computer tomography (SPECT) are the most used clinical approaches to follow the fate of transplanted stem cells in vivo. In this article, we provide a review on the role of different noninvasive imaging modalities and discuss their advantages and disadvantages. We focus on the different in-vivo labeling and reporter gene imaging strategies for stem cell tracking as well as the concept and reliability to use imaging parameters as noninvasive surrogate endpoints for the evaluation of the post-therapeutic outcome.
Collapse
Affiliation(s)
- Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
132
|
Retinoic acid-mediated anti-inflammatory responses in equine immune cells stimulated by LPS and allogeneic mesenchymal stem cells. Res Vet Sci 2017; 114:225-232. [DOI: 10.1016/j.rvsc.2017.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/05/2017] [Indexed: 01/08/2023]
|
133
|
Stem Cell Technology for (Epi)genetic Brain Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:443-475. [PMID: 28523560 DOI: 10.1007/978-3-319-53889-1_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).
Collapse
|
134
|
Singleton A, Khong D, Chin LY, Mukundan S, Li M, Parekkadan B. An engineered biomarker system to monitor and modulate immune clearance of cell therapies. Cytotherapy 2017; 19:1537-1545. [PMID: 28917628 DOI: 10.1016/j.jcyt.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AIMS Cell transplants offer a new opportunity to deliver therapies with novel and complex mechanisms of action. Understanding the pharmacology of cell transplants is important to deliver this new therapy effectively. Currently, however, there are limited techniques to easily track cells after intravenous administration due to the dispersion of the graft throughout the entire body. METHODS We herein developed an engineered cell system that secretes a luciferase enzyme to sensitively detect cell transplants independent of their locale by a simple blood test. We specifically studied a unique feature of cell transplant pharmacology-namely, immune clearance-using mesenchymal stromal cells (MSCs) as a proof-of-concept cell therapy. MSCs are a clinically relevant cell therapy that has been explored in several disease indications due to their innate properties of altering an immune response. RESULTS Using this engineered reporter, we observed specific sensitivity of cell therapy exposure to the preparation of cells, cytolysis of MSCs in an allogeneic setting and a NK cell-mediated destruction of MSCs in an autologous setting. CONCLUSIONS Our cellular tracking method has broader implications at large for assessing in vivo kinetics of various other cell therapies.
Collapse
Affiliation(s)
- Amy Singleton
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Danika Khong
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Ling-Yee Chin
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Shilpaa Mukundan
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Matthew Li
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Biju Parekkadan
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA; Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA.
| |
Collapse
|
135
|
Mahmoud EE, Tanaka Y, Kamei N, Harada Y, Ohdan H, Adachi N, Ochi M. Monitoring immune response after allogeneic transplantation of mesenchymal stem cells for osteochondral repair. J Tissue Eng Regen Med 2017; 12:e275-e286. [DOI: 10.1002/term.2413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Elhussein Elbadry Mahmoud
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
- Department of Surgery, Faculty of Veterinary Medicine; South Valley University; Qena Egypt
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
- Medical Center for Translational and Clinical Research; Hiroshima University Hospital; Hiroshima Japan
| | - Yohei Harada
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Integrated Health Sciences; Institute of Biomedical & Health Sciences, Hiroshima University; Hiroshima Japan
| |
Collapse
|
136
|
Daltro PS, Barreto BC, Silva PG, Neto PC, Sousa Filho PHF, Santana Neta D, Carvalho GB, Silva DN, Paredes BD, de Alcantara AC, Freitas LAR, Couto RD, Santos RR, Souza BSF, Soares MBP, Macambira SG. Therapy with mesenchymal stromal cells or conditioned medium reverse cardiac alterations in a high-fat diet-induced obesity model. Cytotherapy 2017; 19:1176-1188. [PMID: 28801055 DOI: 10.1016/j.jcyt.2017.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/13/2017] [Accepted: 07/04/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Obesity is associated with numerous cardiac complications, including arrhythmias, cardiac fibrosis, remodeling and heart failure. Here we evaluated the therapeutic potential of mesenchymal stromal cells (MSCs) and their conditioned medium (CM) to treat cardiac complications in a mouse model of high-fat diet (HFD)-induced obesity. METHODS After obesity induction and HFD withdrawal, obese mice were treated with MSCs, CM or vehicle. Cardiac function was assessed using electrocardiography, echocardiography and treadmill test. Body weight and biochemical parameters were evaluated. Cardiac tissue was used for real time (RT)-polymerase chain reaction (PCR) and histopathologic analysis. RESULTS/DISCUSSION Characterization of CM by protein array showed the presence of different cytokines and growth factors, including chemokines, osteopontin, cystatin C, Serpin E1 and Gas 6. HFD-fed mice presented cardiac arrhythmias, altered cardiac gene expression and fibrosis reflected in physical exercise incapacity associated with obesity and diabetes. Administration of MSCs or CM improved arrhythmias and exercise capacity. This functional improvement correlated with normalization of GATA4 gene expression in the hearts of MSC- or CM-treated mice. The gene expression of connexin 43, troponin I, adiponectin, transforming growth factor (TGF) β, peroxisome proliferator activated receptor gamma (PPARγ), insulin-like growth factor 1 (IGF-1), matrix metalloproteinase-9 (MMP9) and tissue inhibitor of metalloproteinases 1 (TIMP1) were significantly reduced in MSCs, but not in CM-treated mice. Moreover, MSC or CM administration reduced the intensity of cardiac fibrosis. CONCLUSION Our results suggest that MSCs and CM have a recovery effect on cardiac disturbances due to obesity and corroborate to the paracrine action of MSCs in heart disease models.
Collapse
Affiliation(s)
- P S Daltro
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; Multicentric Program in Biochemistry and Molecular Biology, Federal University of Bahia, Salvador, BA, Brazil
| | - B C Barreto
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; Faculty of Biology, Federal University of Bahia, Salvador, BA, Brazil
| | - P G Silva
- Faculty of Medicine, Federal University of Bahia, Salvador, BA, Brazil
| | - P Chenaud Neto
- Faculty of Medicine, Federal University of Bahia, Salvador, BA, Brazil
| | - P H F Sousa Filho
- Faculty of Medicine, Federal University of Bahia, Salvador, BA, Brazil
| | - D Santana Neta
- Faculty of Medicine, Federal University of Bahia, Salvador, BA, Brazil
| | - G B Carvalho
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil
| | - D N Silva
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil
| | - B D Paredes
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil
| | | | - L A R Freitas
- Faculty of Medicine, Federal University of Bahia, Salvador, BA, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil
| | - R D Couto
- Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - R R Santos
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - B S F Souza
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - M B P Soares
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - S G Macambira
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil; Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
137
|
Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both? Curr Opin Rheumatol 2017; 29:201-207. [PMID: 27941390 DOI: 10.1097/bor.0000000000000370] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Mesenchymal stromal/stem cells (MSCs) have potent anti-inflammatory and immunomodulatory properties, in addition to their ability to form cartilage and bone. The purpose of this review is to highlight recent developments and current knowledge gaps in our understanding of the protective effects of MSCs against inflammatory arthritis, and to discuss their clinical exploitation for the treatment of rheumatoid arthritis (RA). RECENT FINDINGS The weight of evidence for protective mechanisms of exogenously administered MSCs is on immunomodulatory effects, including inhibition of dendritic cell maturation, polarization of macrophages to an anti-inflammatory phenotype, and activation of regulatory T cells, thereby dampening inflammation and preventing joint damage. Evidence for direct effects on tissue repair is scant. Recent studies have identified MSC subsets in vivo and an important question is whether MSCs in their native tissues have similar immunoregulatory functions. Recent proof-of-concept clinical studies have shown a satisfactory safety profile of allogeneic MSC therapy in RA patients with promising trends for clinical efficacy. SUMMARY Allogeneic MSCs could be effective in RA. Larger, multicentre clinical studies are needed to provide robust evidence, and MSC treatment at early stages of RA should be explored to 'reset' the immune system.
Collapse
|
138
|
Yang Y, Wang Y, Li L, Chen F, Zhang P. Activation of the Toll-like receptor 8 pathway increases the immunogenicity of mesenchymal stem cells from umbilical cord. Mol Med Rep 2017; 16:2061-2068. [PMID: 28656222 DOI: 10.3892/mmr.2017.6806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/21/2017] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are now widely used in clinical cell‑based therapy due to their characteristics of low immunogenicity, multiple differentiation potency and the capability to modulate immune responses. However, accumulated research has indicated the absence of engrafted MSCs because of the increased immunogenicity of MSCs. Toll‑like receptors (TLRs) are essential for the innate immune response and regulating the biological function of MSCs. The present study used human umbilical cord‑derived MSCs (UCMSCs) and activated the TLR8 pathway of UCMSCs to study the role of TLR8 in mediating the immune status of UCMSCs. The results demonstrated that the activation of TLR8 increased both the proliferation of peripheral blood mononuclear cells (PBMCs) isolated from healthy human volunteers and the release of lactate dehydrogenase (LDH) in supernatant from the PBMC‑UCMSCs co‑culture system. Reverse transcription-quantitative polymerase chain reaction indicated that the TLR8 agonist increased the expression of many co‑stimulatory molecules and pro‑inflammatory genes, and flow cytometry indicated that activation of the TLR8 agonist increased co‑stimulation protein levels but reduced specific surface markers, as confirmed by the part loss of stemness of UCMSCs. Finally, TLR8 increased osteocyte differentiation but had no effect on chondrocyte and adipocyte differentiation. The current study indicated the implication to TLR8 as regulators of the immunogenicity of UCMSCs.
Collapse
Affiliation(s)
- Yu Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanwen Wang
- Laboratory of Pathology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Li
- Laboratory of Pathology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fei Chen
- Laboratory of Pathology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Peng Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
139
|
de Mayo T, Conget P, Becerra-Bayona S, Sossa CL, Galvis V, Arango-Rodríguez ML. The role of bone marrow mesenchymal stromal cell derivatives in skin wound healing in diabetic mice. PLoS One 2017; 12:e0177533. [PMID: 28594903 PMCID: PMC5464535 DOI: 10.1371/journal.pone.0177533] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have shown to be a promising tool in cell therapies to treat different conditions. Several pre-clinical and clinical studies have proved that the transplantation of MSCs improves wound healing. Here, we compare the beneficial effects of mouse bone marrow-derived allogeneic MSCs (allo-mBM-MSCs) and their acelullar derivatives (allo-acd-mMSCs) on skin wound healing in Non-Obese Diabetic (NOD) mice. One dose of allo-mBM-MSCs (1×106 cells) or one dose of allo-acd-mMSCs (1X) were intradermally injected around wounds in 8-10 week old female NOD mice. Wound healing was evaluated macroscopically (wound closure) every two days, and microscopically (reepithelialization, dermoepidermal junction, skin appendage regeneration, leukocyte infiltration, vascularization, granulation tissue formation, and density of collagen fibers in the dermis) after 16 days of MSC injection. In addition, we measured growth factors and specific proteins that were present in the allo-acd-mMSCs. Results showed significant differences in the wound healing kinetics of lesions that received allo-acd-mMSCs compared to lesions that received vehicle or allo-mBM-MSCs. In particular, mice treated with allo-acd-mMSCs reached significantly higher percentages of wound closure at day 4, 6 and 8, relative to the allo-mBM-MSCs and vehicle groups (p < 0.05), while wound closure percentages could not be statistically distinguished between the allo-mBM-MSCs and vehicle groups. Also, allo-acd-mMSCs had a greater influence in the skin would healing process. Specifically, they caused a less pronounced inflammatory severe response (p < 0.0001), more granulation tissue formation at an advanced stage (p < 0.0001), and higher density of collagen fibers (p < 0.05) compared to the other groups. Nevertheless, at day 16, both allo-mBM-MSCs and allo-acd-mMSCs revealed a higher effect on the recovery of the quality skin (continuous epidermis; regular dermoepidermal junction and skin appendages) relative to untreated lesions (p < 0.0001), but not between them. On the other hand, ELISA analyses indicated that the allo-acd-mMSCs contained growth factors and proteins relevant to wound healing such as IGF-1, KGF, HGF, VEGF, ANG-2, MMP-1, CoL-1 and PGE2. Compared to allo-acd-mMSCs, the administration of allo-mBM-MSCs is insufficient for wound healing in diabetic mice and delays the therapeutic effect, which maybe explained by the fact that trophic factors secreted by MSCs are critical for skin regeneration, and not the cells per se, suggesting that MSCs may require some time to secrete these factors after their administration.
Collapse
Affiliation(s)
- Tomas de Mayo
- School of Medicine Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | - Paulette Conget
- Center for Regenerative Medicine, School of Medicine Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | | | - Claudia L. Sossa
- Universidad Autónoma de Bucaramanga (UNAB), Bucaramanga, Colombia
- Production Unity of Advanced Therapy, Fundación Ofalmológica de Santander, Clínica Carlos Ardila Lulle (FOSCAL Internacional), Bucaramanga, Colombia
| | - Virgilio Galvis
- Universidad Autónoma de Bucaramanga (UNAB), Bucaramanga, Colombia
- Centro Oftalmológico Virgilio Galvis, Bucaramanga, Colombia
- Fundación Oftalmológica de Santander FOSCAL, Bucaramanga, Colombia
| | - Martha L. Arango-Rodríguez
- Production Unity of Advanced Therapy, Fundación Ofalmológica de Santander, Clínica Carlos Ardila Lulle (FOSCAL Internacional), Bucaramanga, Colombia
- * E-mail:
| |
Collapse
|
140
|
Takeshita K, Motoike S, Kajiya M, Komatsu N, Takewaki M, Ouhara K, Iwata T, Takeda K, Mizuno N, Fujita T, Kurihara H. Xenotransplantation of interferon-gamma-pretreated clumps of a human mesenchymal stem cell/extracellular matrix complex induces mouse calvarial bone regeneration. Stem Cell Res Ther 2017; 8:101. [PMID: 28446226 PMCID: PMC5406942 DOI: 10.1186/s13287-017-0550-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022] Open
Abstract
Background Three-dimensional cultured clumps of a mesenchymal stem cell (MSC)/extracellular matrix (ECM) complex (C-MSC) consists of cells and self-produced ECM. C-MSC can regulate the cellular function in vitro and induce successful bone regeneration using ECM as a cell scaffold. Potentiating the immunomodulatory capacity of C-MSCs, which can ameliorate the allo-specific immune response, may be helpful in developing beneficial “off-the-shelf” cell therapy for tissue regeneration. It is well reported that interferon (IFN)-γ stimulates the immunosuppressive properties of MSC via upregulation of the immunomodulatory enzyme IDO. Therefore, the aim of this study was to investigate the effect of IFN-γ on the immunomodulatory capacity of C-MSC in vitro and to test the bone regenerative activity of C-MSC or IFN-γ-pretreated C-MSC (C-MSCγ) xenografts in a mice calvarial defect model. Methods Human bone marrow-derived MSCs were seeded at a density of 2.0 × 105 cells/well into 24-well plates and cultured with growth medium supplemented with 50 μg/mL L-ascorbic acid for 4 days. To obtain C-MSC, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and were then torn off. The cellular sheet was rolled to make a round clump of cells. C-MSC was stimulated with IFN-γ and IDO expression, immunosuppressive capacity, and immunophenotype were evaluated in vitro. Moreover, C-MSC or C-MSCγ was xenotransplanted into immunocompetent or immunodeficient mice calvarial defect models without artificial scaffold, respectively. Results IFN-γ stimulated IDO expression in C-MSC. C-MSCγ, but not C-MSC, attenuated CD3/CD28-induced T cell proliferation and its suppressive effect was reversed by an IDO inhibitor. C-MSCγ showed upregulation of HLA-DR expression, but its co-stimulatory molecule, CD86, was not detected. Xenotransplantation of C-MSCγ into immunocompetent mice calvarial defect induced bone regeneration, whereas C-MSC xenograft failed and induced T cell infiltration in the grafted area. On the other hand, both C-MSC and C-MSCγ xenotransplantation into immunodeficient mice caused bone regeneration. Conclusions Xenotransplantation of C-MSCγ, which exerts immunomodulatory properties via the upregulation of IDO activity in vitro, may attenuate xenoreactive host immune response, and thereby induce bone regeneration in mice. Accordingly, C-MSCγ may constitute a promising novel allograft cell therapy for bone regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0550-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kei Takeshita
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Souta Motoike
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Nao Komatsu
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Manabu Takewaki
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
141
|
Sui BD, Hu CH, Zheng CX, Shuai Y, He XN, Gao PP, Zhao P, Li M, Zhang XY, He T, Xuan K, Jin Y. Recipient Glycemic Micro-environments Govern Therapeutic Effects of Mesenchymal Stem Cell Infusion on Osteopenia. Theranostics 2017; 7:1225-1244. [PMID: 28435461 PMCID: PMC5399589 DOI: 10.7150/thno.18181] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/24/2016] [Indexed: 12/22/2022] Open
Abstract
Therapeutic effects of mesenchymal stem cell (MSC) infusion have been revealed in various human disorders, but impacts of diseased micro-environments are only beginning to be noticed. Donor diabetic hyperglycemia is reported to impair therapeutic efficacy of stem cells. However, whether recipient diabetic condition also affects MSC-mediated therapy is unknown. We and others have previously shown that MSC infusion could cure osteopenia, particularly in ovariectomized (OVX) mice. Here, we discovered impaired MSC therapeutic effects on osteopenia in recipient type 1 diabetes (T1D). Through intensive glycemic control by daily insulin treatments, therapeutic effects of MSCs on osteopenia were maintained. Interestingly, by only transiently restoration of recipient euglycemia using single insulin injection, MSC infusion could also rescue T1D-induced osteopenia. Conversely, under recipient hyperglycemia induced by glucose injection in OVX mice, MSC-mediated therapeutic effects on osteopenia were diminished. Mechanistically, recipient hyperglycemic micro-environments reduce anti-inflammatory capacity of MSCs in osteoporotic therapy through suppressing MSC interaction with T cells via the Adenosine monophosphate-activated protein kinase (AMPK) pathway. We further revealed in diabetic micro-environments, double infusion of MSCs ameliorated osteopenia by anti-inflammation, attributed to the first transplanted MSCs which normalized the recipient glucose homeostasis. Collectively, our findings uncover a previously unrecognized role of recipient glycemic conditions controlling MSC-mediated therapy, and unravel that fulfillment of potent therapeutic effects of MSCs requires tight control of recipient micro-environments.
Collapse
|
142
|
Friel NA, de Girolamo L, Gomoll AH, Mowry KC, Vines JB, Farr J. Amniotic Fluid, Cells, and Membrane Application. OPER TECHN SPORT MED 2017. [DOI: 10.1053/j.otsm.2016.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
143
|
Joswig AJ, Mitchell A, Cummings KJ, Levine GJ, Gregory CA, Smith R, Watts AE. Repeated intra-articular injection of allogeneic mesenchymal stem cells causes an adverse response compared to autologous cells in the equine model. Stem Cell Res Ther 2017; 8:42. [PMID: 28241885 PMCID: PMC5329965 DOI: 10.1186/s13287-017-0503-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/30/2017] [Accepted: 02/09/2017] [Indexed: 12/11/2022] Open
Abstract
Background Intra-articular injection of mesenchymal stem cells (MSCs) is efficacious in osteoarthritis therapy. A direct comparison of the response of the synovial joint to intra-articular injection of autologous versus allogeneic MSCs has not been performed. The objective of this study was to assess the clinical response to repeated intra-articular injection of allogeneic versus autologous MSCs prepared in a way to minimize xeno-contaminants in a large animal model. Methods Intra-articular injections of bone marrow-derived, culture-expanded MSCs to a forelimb metacarpophalangeal joint were performed at week 0 and week 4 (six autologous; six autologous with xeno-contamination; six allogeneic). In the week following each injection, clinical and synovial cytology evaluations were performed. Results Following the first intra-articular injection, there were no differences in clinical parameters over time. Following the second intra-articular injection, there was a significant adverse response of the joint to allogeneic MSCs and autologous MSCs with xeno-contamination with elevated synovial total nucleated cell counts. There was also significantly increased pain from joints injected with autologous MSCs with xeno-contamination. Conclusions Repeated intra-articular injection of allogeneic MSCs results in an adverse clinical response, suggesting there is immune recognition of allogeneic MSCs upon a second exposure. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0503-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amanda-Jo Joswig
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alexis Mitchell
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Kevin J Cummings
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gwendolyn J Levine
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Carl A Gregory
- Institute for Regenerative Medicine and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, Temple, TX, 76502, USA
| | - Roger Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Ashlee E Watts
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
144
|
Aktas E, Chamberlain CS, Saether EE, Duenwald-Kuehl SE, Kondratko-Mittnacht J, Stitgen M, Lee JS, Clements AE, Murphy WL, Vanderby R. Immune modulation with primed mesenchymal stem cells delivered via biodegradable scaffold to repair an Achilles tendon segmental defect. J Orthop Res 2017; 35:269-280. [PMID: 27061844 DOI: 10.1002/jor.23258] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/04/2016] [Indexed: 02/06/2023]
Abstract
Tendon healing is a complex coordinated series of events resulting in protracted recovery, limited regeneration, and scar formation. Mesenchymal stem cell (MSC) therapy has shown promise as a new technology to enhance soft tissue and bone healing. A challenge with MSC therapy involves the ability to consistently control the inflammatory response and subsequent healing. Previous studies suggest that preconditioning MSCs with inflammatory cytokines, such as IFN-γ, TNF-α, and IL-1β may accelerate cutaneous wound closure. The objective of this study was to therefore elucidate these effects in tendon. That is, the in vivo healing effects of TNF-α primed MSCs were studied using a rat Achilles segmental defect model. Rat Achilles tendons were subjected to a unilateral 3 mm segmental defect and repaired with either a PLG scaffold alone, MSC-seeded PLG scaffold, or TNF-α-primed MSC-seeded PLG scaffold. Achilles tendons were analyzed at 2 and 4 weeks post-injury. In vivo, MSCs, regardless of priming, increased IL-10 production and reduced the inflammatory factor, IL-1α. Primed MSCs reduced IL-12 production and the number of M1 macrophages, as well as increased the percent of M2 macrophages, and synthesis of the anti-inflammatory factor IL-4. Primed MSC treatment also increased the concentration of type I procollagen in the healing tissue and increased failure stress of the tendon 4 weeks post-injury. Taken together delivery of TNF-α primed MSCs via 3D PLG scaffold modulated macrophage polarization and cytokine production to further accentuate the more regenerative MSC-induced healing response. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:269-280, 2017.
Collapse
Affiliation(s)
- Erdem Aktas
- Department of Orthopedics, Ankara Oncology Research and Training Hospital, Ankara, Turkey
| | - Connie S Chamberlain
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, 53705
| | - Erin E Saether
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, 53705
| | - Sarah E Duenwald-Kuehl
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, 53705
| | | | - Michael Stitgen
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, 53705
| | - Jae Sung Lee
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, 53705
| | - Anna E Clements
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, 53705
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, 53705.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, 53705
| | - Ray Vanderby
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, 53705.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, 53705
| |
Collapse
|
145
|
Stenger EO, Chinnadurai R, Yuan S, Garcia M, Arafat D, Gibson G, Krishnamurti L, Galipeau J. Bone Marrow-Derived Mesenchymal Stromal Cells from Patients with Sickle Cell Disease Display Intact Functionality. Biol Blood Marrow Transplant 2017; 23:736-745. [PMID: 28132869 DOI: 10.1016/j.bbmt.2017.01.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
Abstract
Hematopoietic cell transplantation (HCT) is the only cure for sickle cell disease (SCD), but engraftment remains challenging in patients lacking matched donors. Infusion of mesenchymal stromal cells (MSCs) at the time of HCT may promote hematopoiesis and ameliorate graft-versus-host disease. Experimental murine models suggest MSC major histocompatibility complex compatibility with recipient impacts their in vivo function, suggesting autologous MSCs could be superior to third-party MSCs for promoting HCT engraftment. Here we tested whether bone marrow (BM)-derived MSCs from SCD subjects have comparable functionality compared with MSCs from healthy volunteers. SCD MSC doubling time and surface marker phenotype did not differ significantly from non-SCD. Third-party and autologous (SCD) T cell proliferation was suppressed in a dose-dependent manner by all MSCs. SCD MSCs comparably expressed indoleamine-2,3-dioxygenase, which based on transwell and blocking experiments appeared to be the dominant immunomodulatory pathway. The expression of key genes involved in hematopoietic stem cell (HSC)-MSC interactions was minimally altered between SCD and non-SCD MSCs. Expression was, however, altered by IFN-γ stimulation, particularly CXCL14, CXCL26, CX3CL1, CKITL, and JAG1, indicating the potential to augment MSC expression by cytokine stimulation. These data demonstrate the feasibility of expanding BM-derived MSCs from SCD patients that phenotypically and functionally do not differ per International Society of Cell Therapy essential criteria from non-SCD MSCs, supporting initial evaluation (primarily for safety) of autologous MSCs to enhance haploidentical HSC engraftment in SCD.
Collapse
Affiliation(s)
- Elizabeth O Stenger
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia.
| | - Raghavan Chinnadurai
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Shala Yuan
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Marco Garcia
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Dalia Arafat
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Greg Gibson
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Lakshmanan Krishnamurti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Jacques Galipeau
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
146
|
Mesenchymal Stem Cell Therapy for Inflammatory Skin Diseases: Clinical Potential and Mode of Action. Int J Mol Sci 2017; 18:ijms18020244. [PMID: 28125063 PMCID: PMC5343781 DOI: 10.3390/ijms18020244] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory skin disorders that cause serious deterioration of the quality of life have become one of the major public concerns. Despite their significance, there is no fundamental cure to date. Mesenchymal stem cells (MSCs) possess unique immunomodulatory properties which make them a promising tool for the treatment of various inflammatory diseases. Our recent preclinical and clinical studies have shown that MSCs can be successfully used for the treatment of atopic dermatitis (AD), one of the major inflammatory skin diseases. This observation along with similar reports from other groups revealed the efficacy and underlying mechanisms of MSCs in inflammatory dermatosis. In addition, it has been proposed that cell priming or gene transduction can be novel strategies for the development of next-generation high-efficacy MSCs for treating inflammatory skin diseases. We discuss here existing evidence that demonstrates the regulatory properties of MSCs on immune responses under inflammatory conditions.
Collapse
|
147
|
Moore AL, Marshall CD, Longaker MT. Minimizing Skin Scarring through Biomaterial Design. J Funct Biomater 2017; 8:jfb8010003. [PMID: 28117733 PMCID: PMC5371876 DOI: 10.3390/jfb8010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/16/2017] [Indexed: 12/14/2022] Open
Abstract
Wound healing continues to be a major burden to patients, though research in the field has expanded significantly. Due to an aging population and increasing comorbid conditions, the cost of chronic wounds is expected to increase for patients and the U.S. healthcare system alike. With this knowledge, the number of engineered products to facilitate wound healing has also increased dramatically, with some already in clinical use. In this review, the major biomaterials used to facilitate skin wound healing will be examined, with particular attention allocated to the science behind their development. Experimental therapies will also be evaluated.
Collapse
Affiliation(s)
- Alessandra L Moore
- Division of General and Gastrointestinal Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Clement D Marshall
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Michael T Longaker
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
148
|
Abstract
The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.
Collapse
Affiliation(s)
- Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
149
|
Volpe G, Bernstock JD, Peruzzotti-Jametti L, Pluchino S. Modulation of host immune responses following non-hematopoietic stem cell transplantation: Translational implications in progressive multiple sclerosis. J Neuroimmunol 2016; 331:11-27. [PMID: 28034466 DOI: 10.1016/j.jneuroim.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
There exists an urgent need for effective treatments for those patients suffering from chronic/progressive multiple sclerosis (MS). Accordingly, it has become readily apparent that different classes of stem cell-based therapies must be explored at both the basic science and clinical levels. Herein, we provide an overview of the basic mechanisms underlying the pre-clinical benefits of exogenously delivered non-hematopoietic stem cells (nHSCs) in animal models of MS. Further, we highlight a number of early clinical trials in which nHSCs have been used to treat MS. Finally, we identify a series of challenges that must be met and ultimately overcome if such promising therapeutics are to be advanced from the bench to the bedside.
Collapse
Affiliation(s)
- Giulio Volpe
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; University of Cambridge, Clifford Allbutt Building - Cambridge Biosciences Campus, Hills Road, CB2 0AH Cambridge, UK.
| | - Joshua D Bernstock
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA.
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; University of Cambridge, Clifford Allbutt Building - Cambridge Biosciences Campus, Hills Road, CB2 0AH Cambridge, UK.
| | - Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
150
|
Berglund AK, Schnabel LV. Allogeneic major histocompatibility complex-mismatched equine bone marrow-derived mesenchymal stem cells are targeted for death by cytotoxic anti-major histocompatibility complex antibodies. Equine Vet J 2016; 49:539-544. [PMID: 27862236 PMCID: PMC5425313 DOI: 10.1111/evj.12647] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
Background Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Controversy exists, however, over whether major histocompatibility complex (MHC)‐mismatched MSCs are recognised by the recipient immune system and targeted for death by a cytotoxic antibody response. Objectives To determine if cytotoxic anti‐MHC antibodies generated in vivo following MHC‐mismatched MSC injections are capable of initiating complement‐dependent cytotoxicity of MSCs. Study design Experimental controlled study. Methods Antisera previously collected at Days 0, 7, 14 and 21 post‐injection from 4 horses injected with donor MHC‐mismatched equine leucocyte antigen (ELA)‐A2 haplotype MSCs and one control horse injected with donor MHC‐matched ELA‐A2 MSCs were utilised in this study. Antisera were incubated with ELA‐A2 MSCs before adding complement in microcytotoxicity assays and cell death was analysed via eosin dye exclusion. ELA‐A2 peripheral blood leucocytes (PBLs) were used in the assays as a positive control. Results Antisera from all 4 horses injected with MHC‐mismatched MSCs contained antibodies that caused the death of ELA‐A2 haplotype MSCs in the microcytotoxicity assays. In 2 of the 4 horses, antibodies were present as early as Day 7 post‐injection. MSC death was consistently equivalent to that of ELA‐A2 haplotype PBL death at all time points and antisera dilutions. Antisera from the control horse that was injected with MHC‐matched MSCs did not contain cytotoxic ELA‐A2 antibodies at any of the time points examined. Main limitations This study examined MSC death in vitro only and utilized antisera from a small number of horses. Conclusions The cytotoxic antibody response induced in recipient horses following injection with donor MHC‐mismatched MSCs is capable of killing donor MSCs in vitro. These results suggest that the use of allogeneic MHC‐mismatched MSCs must be cautioned against, not only for potential adverse events, but also for reduced therapeutic efficacy due to targeted MSC death.
Collapse
Affiliation(s)
- A K Berglund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - L V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|