101
|
Grab DJ, Chakravorty SJ, van der Heyde H, Stins MF. How can microbial interactions with the blood-brain barrier modulate astroglial and neuronal function? Cell Microbiol 2011; 13:1470-8. [DOI: 10.1111/j.1462-5822.2011.01661.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
102
|
The neuropathology of fatal cerebral malaria in malawian children. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2146-58. [PMID: 21514429 PMCID: PMC3081150 DOI: 10.1016/j.ajpath.2011.01.016] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/26/2010] [Accepted: 01/07/2011] [Indexed: 12/21/2022]
Abstract
We examined the brains of 50 Malawian children who satisfied the clinical definition of cerebral malaria (CM) during life; 37 children had sequestration of infected red blood cells (iRBCs) and no other cause of death, and 13 had a nonmalarial cause of death with no cerebral sequestration. For comparison, 18 patients with coma and no parasitemia were included. We subdivided the 37 CM cases into two groups based on the cerebral microvasculature pathology: iRBC sequestration only (CM1) or sequestration with intravascular and perivascular pathology (CM2). We characterized and quantified the axonal and myelin damage, blood-brain barrier (BBB) disruption, and cellular immune responses and correlated these changes with iRBC sequestration and microvascular pathology. Axonal and myelin damage was associated with ring hemorrhages and vascular thrombosis in the cerebral and cerebellar white matter and brainstem of the CM2 cases. Diffuse axonal and myelin damage were present in CM1 and CM2 cases in areas of prominent iRBC sequestration. Disruption of the BBB was associated with ring hemorrhages and vascular thrombosis in CM2 cases and with sequestration in both CM1 and CM2 groups. Monocytes with phagocytosed hemozoin accumulated within microvessels containing iRBCs in CM2 cases but were not present in the adjacent neuropil. These findings are consistent with a link between iRBC sequestration and intravascular and perivascular pathology in fatal pediatric CM, resulting in myelin damage, axonal injury, and breakdown of the BBB.
Collapse
|
103
|
Prato M, D'Alessandro S, Van den Steen PE, Opdenakker G, Arese P, Taramelli D, Basilico N. Natural haemozoin modulates matrix metalloproteinases and induces morphological changes in human microvascular endothelium. Cell Microbiol 2011; 13:1275-85. [PMID: 21707906 DOI: 10.1111/j.1462-5822.2011.01620.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Severe malaria, including cerebral malaria (CM), is characterized by the sequestration of parasitized erythrocytes in the microvessels after cytoadherence to endothelial cells. Products of parasite origin, such as haemozoin (HZ), contribute to the pathogenesis of severe malaria by interfering with host inflammatory response. In human monocytes, HZ enhanced the levels of matrix metalloproteinase-9 (MMP-9), a protease involved in neuroinflammation. Here the effects of HZ on the regulation of MMPs by the human microvascular endothelial cell line HMEC-1 were investigated. Cells treated with natural (n)HZ appeared elongated instead of polygonal, and formed microtubule-like vessels on synthetic basement membrane. nHZ enhanced total gelatinolytic activity by inducing proMMP-9 and MMP-9 without affecting basal MMP-2. The level of the endogenous tissue inhibitor of MMP-9 (TIMP-1) was not altered by nHZ, while TIMP-2, the MMP-2 inhibitor, was enhanced. Additionally, nHZ induced MMP-1 and MMP-3, two enzymes sequentially involved in collagenolysis and proMMP-9 proteolytic activation. Lipid-free HZ did not reproduce nHZ effects. Present data suggest that the lipid moiety of HZ alters the MMP/TIMP balances and promotes the proteolytic activation of proMMP-9 in HMEC-1, thereby enhancing total gelatinolytic activity, cell activation and inflammation. These findings might help understanding the mechanisms of blood brain barrier damage during CM.
Collapse
Affiliation(s)
- Mauro Prato
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
104
|
Andrographolide: A Novel Antimalarial Diterpene Lactone Compound from Andrographis paniculata and Its Interaction with Curcumin and Artesunate. J Trop Med 2011; 2011:579518. [PMID: 21760808 PMCID: PMC3134201 DOI: 10.1155/2011/579518] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/16/2011] [Accepted: 01/31/2011] [Indexed: 01/06/2023] Open
Abstract
Andrographolide (AND), the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plant Andrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages of Plasmodium falciparum in vitro and Plasmodium berghei ANKA in vivo. IC(50)s for artesunate (AS), andrographolide (AND), and curcumin (CUR) were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND) was found synergistic with curcumin (CUR) and addictively interactive with artesunate (AS). In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%), compared to the control (81%), but also by extending the life span by 2-3 folds. Being nontoxic to the in vivo system this agent can be used as template molecule for designing new derivatives with improved antimalarial properties.
Collapse
|
105
|
Abstract
Residence in the human erythrocyte is essential for the lifecycle of all Plasmodium that infect man. It is also the phase of the life cycle that causes disease. Although the red blood cell (RBC) is a highly specialized cell for its function of carrying oxygen to and carbon dioxide away from tissues, it is devoid of organelles and lacks any cellular machinery to synthesize new protein. Therefore in order to be able to survive and multiply within the RBC membrane the parasite needs to make many modifications to the infected RBC (iRBC). Plasmodium falciparum (P. falciparum) also expresses parasite-derived proteins on the surface of the iRBC that enable the parasite to cytoadhere to endothelial and other intravascular cells. These RBC modifications are at the root of malaria pathogenesis and, in this ancient disease of man, have formed the epicentre of a genetic 'battle' between parasite and host. This review discusses some of the critical modifications of the RBC by the parasite and some of the consequences of these adaptations on disease in the human host, with an emphasis on advances in understanding of the pathogenesis of severe and cerebral malaria (CM) from recent research.
Collapse
Affiliation(s)
- Christopher A Moxon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Chichiri, Blantyre 3, MalawiLiverpool School of Tropical Medicine, Liverpool, UKVascular Immunology Unit, Department of Pathology, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
106
|
Barbier M, Faille D, Loriod B, Textoris J, Camus C, Puthier D, Flori L, Wassmer SC, Victorero G, Alessi MC, Fusaï T, Nguyen C, Grau GE, Rihet P. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria. PLoS One 2011; 6:e19651. [PMID: 21603600 PMCID: PMC3095604 DOI: 10.1371/journal.pone.0019651] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/12/2011] [Indexed: 01/16/2023] Open
Abstract
Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM) in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC) and human brain microvascular endothelial cells (HBEC) and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF) and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.
Collapse
Affiliation(s)
- Mathieu Barbier
- Laboratoire de Pharmacogenétique des Maladies Parasitaires-EA 864, IFR 48, Faculté de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Dorothée Faille
- Unité de Recherche en Biologie et en Épidémiologie Parasitaires, UMR 6236-URMITE-IMTSSA, Institut de Recherche Biomédicale des Armées-Antenne Marseille, Marseille, France
- INSERM, UMR 626, Faculté de Médecine, Aix-Marseille Université, Marseille, France
- Vascular Immunology Unit, Department of Pathology, University of Sydney, Camperdown, Australia
| | - Béatrice Loriod
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
| | - Julien Textoris
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
| | - Claire Camus
- Laboratoire de Pharmacogenétique des Maladies Parasitaires-EA 864, IFR 48, Faculté de Pharmacie, Aix-Marseille Université, Marseille, France
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
| | - Denis Puthier
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
| | - Laurence Flori
- Laboratoire de Génétique Animale et Biologie Intégrative, Domaine de Vilvert, INRA AgroParisTech, Jouy-en-Josas, France
| | - Samuel Crocodile Wassmer
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | | | | | - Thierry Fusaï
- Unité de Recherche en Biologie et en Épidémiologie Parasitaires, UMR 6236-URMITE-IMTSSA, Institut de Recherche Biomédicale des Armées-Antenne Marseille, Marseille, France
| | - Catherine Nguyen
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
| | - Georges E. Grau
- Vascular Immunology Unit, Department of Pathology, University of Sydney, Camperdown, Australia
| | - Pascal Rihet
- Laboratoire de Pharmacogenétique des Maladies Parasitaires-EA 864, IFR 48, Faculté de Pharmacie, Aix-Marseille Université, Marseille, France
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
- * E-mail:
| |
Collapse
|
107
|
Comparative RNAi screening reveals host factors involved in enterovirus infection of polarized endothelial monolayers. Cell Host Microbe 2011; 9:70-82. [PMID: 21238948 DOI: 10.1016/j.chom.2011.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/12/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022]
Abstract
Enteroviruses, including coxsackievirus B (CVB) and poliovirus (PV), can access the CNS through the blood brain barrier (BBB) endothelium to cause aseptic meningitis. To identify cellular components required for CVB and PV infection of human brain microvascular endothelial cells, an in vitro BBB model, we performed comparative RNAi screens and identified 117 genes that influenced infection. Whereas a large proportion of genes whose depletion enhanced infection (17 of 22) were broadly antienteroviral, only 46 of the 95 genes whose depletion inhibited infection were required by both CVB and PV and included components of cell signaling pathways such as adenylate cyclases. Downregulation of genes including Rab GTPases, Src tyrosine kinases, and tyrosine phosphatases displayed specificity in their requirement for either CVB or PV infection. These findings highlight the pathways hijacked by enteroviruses for entry and replication in the BBB endothelium, a specialized and clinically relevant cell type for these viruses.
Collapse
|
108
|
Mimche PN, Taramelli D, Vivas L. The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria. Malar J 2011; 10 Suppl 1:S10. [PMID: 21411011 PMCID: PMC3059458 DOI: 10.1186/1475-2875-10-s1-s10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The clinical manifestations of cerebral malaria (CM) are well correlated with underlying major pathophysiological events occurring during an acute malaria infection, the most important of which, is the adherence of parasitized erythrocytes to endothelial cells ultimately leading to sequestration and obstruction of brain capillaries. The consequent reduction in blood flow, leads to cerebral hypoxia, localized inflammation and release of neurotoxic molecules and inflammatory cytokines by the endothelium. The pharmacological regulation of these immunopathological processes by immunomodulatory molecules may potentially benefit the management of this severe complication. Adjunctive therapy of CM patients with an appropriate immunomodulatory compound possessing even moderate anti-malarial activity with the capacity to down regulate excess production of proinflammatory cytokines and expression of adhesion molecules, could potentially reverse cytoadherence, improve survival and prevent neurological sequelae. Current major drug discovery programmes are mainly focused on novel parasite targets and mechanisms of action. However, the discovery of compounds targeting the host remains a largely unexplored but attractive area of drug discovery research for the treatment of CM. This review discusses the properties of the plant immune-modifier curcumin and its potential as an adjunctive therapy for the management of this complication.
Collapse
Affiliation(s)
- Patrice N Mimche
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK.
| | | | | |
Collapse
|
109
|
Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O’Donnell M, Povlishock J, Saunders N, Sharp F, Stanimirovic D, Watts R, Drewes L. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011; 12:169-82. [PMID: 21331083 PMCID: PMC3335275 DOI: 10.1038/nrn2995] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The delivery of many potentially therapeutic and diagnostic compounds to specific areas of the brain is restricted by brain barriers, of which the most well known are the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. Recent studies have shown numerous additional roles of these barriers, including an involvement in neurodevelopment, in the control of cerebral blood flow, and--when barrier integrity is impaired--in the pathology of many common CNS disorders such as Alzheimer's disease, Parkinson's disease and stroke.
Collapse
Affiliation(s)
- Edward A. Neuwelt
- Oregon Health & Science University, Portland, Oregon
- Portland Veterans Affairs Medical Center, Portland, Oregon
| | | | | | | | | | | | | | | | | | | | | | - Frank Sharp
- University of California at Davis, Davis, California
| | | | - Ryan Watts
- Genentech, Inc., South San Francisco, California
| | | |
Collapse
|
110
|
Taoufiq Z, Pino P, N'dilimabaka N, Arrouss I, Assi S, Soubrier F, Rebollo A, Mazier D. Atorvastatin prevents Plasmodium falciparum cytoadherence and endothelial damage. Malar J 2011; 10:52. [PMID: 21356073 PMCID: PMC3056843 DOI: 10.1186/1475-2875-10-52] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/28/2011] [Indexed: 12/29/2022] Open
Abstract
Background The adhesion of Plasmodium falciparum parasitized red blood cell (PRBC) to human endothelial cells (EC) induces inflammatory processes, coagulation cascades, oxidative stress and apoptosis. These pathological processes are suspected to be responsible for the blood-brain-barrier and other organs' endothelial dysfunctions observed in fatal cases of malaria. Atorvastatin, a drug that belongs to the lowering cholesterol molecule family of statins, has been shown to ameliorate endothelial functions and is widely used in patients with cardiovascular disorders. Methods The effect of this compound on PRBC induced endothelial impairments was assessed using endothelial co-culture models. Results Atorvastatin pre-treatment of EC was found to reduce the expression of adhesion molecules and P. falciparum cytoadherence, to protect cells against PRBC-induced apoptosis and to enhance endothelial monolayer integrity during co-incubation with parasites. Conclusions These results might suggest a potential interest use of atorvastatin as a protective treatment to interfere with the pathophysiological cascades leading to severe malaria.
Collapse
Affiliation(s)
- Zacharie Taoufiq
- INSERM, UMR S945, Université Pierre et Marie Curie-Paris 6, CHU-Pitié-Salpêtrière, 91 bd de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Therapeutical targeting of nucleic acid-sensing Toll-like receptors prevents experimental cerebral malaria. Proc Natl Acad Sci U S A 2011; 108:3689-94. [PMID: 21303985 DOI: 10.1073/pnas.1015406108] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Excessive release of proinflammatory cytokines by innate immune cells is an important component of the pathogenic basis of malaria. Proinflammatory cytokines are a direct output of Toll-like receptor (TLR) activation during microbial infection. Thus, interference with TLR function is likely to render a better clinical outcome by preventing their aberrant activation and the excessive release of inflammatory mediators. Herein, we describe the protective effect and mechanism of action of E6446, a synthetic antagonist of nucleic acid-sensing TLRs, on experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA. We show that in vitro, low doses of E6446 specifically inhibited the activation of human and mouse TLR9. Tenfold higher concentrations of this compound also inhibited the human TLR8 response to single-stranded RNA. In vivo, therapy with E6446 diminished the activation of TLR9 and prevented the exacerbated cytokine response observed during acute Plasmodium infection. Furthermore, severe signs of ECM, such as limb paralysis, brain vascular leak, and death, were all prevented by oral treatment with E6446. Hence, we provide evidence that supports the involvement of nucleic acid-sensing TLRs in malaria pathogenesis and that interference with the activation of these receptors is a promising strategy to prevent deleterious inflammatory responses that mediate pathogenesis and severity of malaria.
Collapse
|
112
|
Peroxisome proliferator activating receptor (PPAR) in cerebral malaria (CM): a novel target for an additional therapy. Eur J Clin Microbiol Infect Dis 2010; 30:483-98. [PMID: 21140187 DOI: 10.1007/s10096-010-1122-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/13/2010] [Indexed: 12/16/2022]
Abstract
Cerebral malaria (CM) is a global life-threatening complication of Plasmodium infection and represents a major cause of morbidity and mortality among severe forms of malaria. Despite developing knowledge in understanding mechanisms of pathogenesis, the current anti-malarial agents are not sufficient due to drug resistance and various adverse effects. Therefore, there is an urgent need for the novel target and additional therapy. Recently, peroxisome proliferator-activated receptor (PPAR) a nuclear receptors (NR) and agonists of its isoforms (PPARγ, PPARα and PPARβ/δ) have been demonstrated to exhibit anti-inflammatory and immunomodulatory properties, which are driven to a new approach of research on inflammatory diseases. Although many studies on PPARs have confirmed their diverse biological role, there is a lack of knowledge of its therapeutic use in CM. The major objective of this review is to explore the possible experimental studies to link these two areas of research. We focus on the data describing the beneficial effects of this receptor in inflammation, which is observed as a basic pathology in CM. In conclusion, PPARs could be a novel target in treating inflammatory diseases, and continued work with the available and additional agonists screened from various sources may result in a potential new treatment for CM.
Collapse
|
113
|
Abstract
PURPOSE OF REVIEW Intense interventions are ongoing to combat malaria. Malaria mortality investigation remains as an intense area of study with controversies, competing models of pathogenesis, and a few carefully proceeding clinical trials. This review suggests a reframing of the question of cerebral malaria pathology in light of recent findings to focus on dissection of pathogenesis that will lead to effective treatments. RECENT FINDINGS Pediatric and adult manifestations of cerebral malaria within the retina allows for intense study of the clinical defined patients including the advent of multiple imaging modalities in endemic regions. Basic pathogenesis in mouse models and human studies, focused on cytokines, inflammation, cytoadherence, and endothelial activation, continues to be elucidated molecule by molecule. Coagulation is variably important and may serve as one of several unifying principles of current pathogenesis models. Parasite-derived molecules - surface or soluble - remain necessary but not sufficient to explain pathologic manifestations. SUMMARY As we close the gaps in the fight against global malaria, the question of cerebral malaria mortality remains a source of great concern. We currently have no effective means of reversal of coma or impacting mortality in the comatose patient. As transmission is broken, cerebral malaria will spread to older age groups in Africa where we expect mortality will be higher. Continued directed study of pathogenesis with the primary goal of efficacious interventions in the comatose is a necessity.
Collapse
Affiliation(s)
- Danny A Milner
- The Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
114
|
EHD proteins: key conductors of endocytic transport. Trends Cell Biol 2010; 21:122-31. [PMID: 21067929 DOI: 10.1016/j.tcb.2010.10.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 12/12/2022]
Abstract
Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently less was known about the four mammalian dynamin-like C-terminal Eps15 homology domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field.
Collapse
|
115
|
Yeo TW, Lampah DA, Tjitra E, Piera K, Gitawati R, Kenangalem E, Price RN, Anstey NM. Greater endothelial activation, Weibel-Palade body release and host inflammatory response to Plasmodium vivax, compared with Plasmodium falciparum: a prospective study in Papua, Indonesia. J Infect Dis 2010; 202:109-12. [PMID: 20497057 DOI: 10.1086/653211] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pathogenic mechanisms underlying vivax malaria are poorly understood, with few studies comparing endothelial and inflammatory responses with falciparum malaria. In adults with uncomplicated vivax or falciparum malaria, we compared plasma measurements of endothelial Weibel-Palade body release (angiopoietin-2) and activation (ICAM-1, E-selectin), as well as selected cytokines. Despite a lower median parasite count, angiopoietin-2 concentrations were higher in patients with vivax malaria, compared with falciparum malaria. Per peripheral parasite, median plasma angiopoietin-2, ICAM-1, E-selectin, interleukin-6, and interleukin-10 concentrations were higher in patients with malaria due to Plasmodium vivax. P. vivax induces greater endothelial Weibel-Palade body release and activation and greater host inflammatory responses, compared with Plasmodium falciparum.
Collapse
Affiliation(s)
- Tsin W Yeo
- International Health Division, Menzies School of Health Research and Charles Darwin University, and Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Riley EM, Couper KN, Helmby H, Hafalla JCR, de Souza JB, Langhorne J, Jarra WB, Zavala F. Neuropathogenesis of human and murine malaria. Trends Parasitol 2010; 26:277-8. [PMID: 20338809 DOI: 10.1016/j.pt.2010.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 01/18/2023]
|
117
|
Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease. Parasitology 2009; 137:755-72. [PMID: 20028608 DOI: 10.1017/s0031182009991715] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebral malaria is a life-threatening complication of malaria infection. The pathogenesis of cerebral malaria is poorly defined and progress in understanding the condition is severely hampered by the inability to study in detail, ante-mortem, the parasitological and immunological events within the brain that lead to the onset of clinical symptoms. Experimental murine models have been used to investigate the sequence of events that lead to cerebral malaria, but there is significant debate on the merits of these models and whether their study is relevant to human disease. Here we review the current understanding of the parasitological and immunological events leading to human and experimental cerebral malaria, and explain why we believe that studies with experimental models of CM are crucial to define the pathogenesis of the condition.
Collapse
|
118
|
Bansal D, Herbert F, Lim P, Deshpande P, Bécavin C, Guiyedi V, de Maria I, Rousselle JC, Namane A, Jain R, Cazenave PA, Mishra GC, Ferlini C, Fesel C, Benecke A, Pied S. IgG autoantibody to brain beta tubulin III associated with cytokine cluster-II discriminate cerebral malaria in central India. PLoS One 2009; 4:e8245. [PMID: 20011600 PMCID: PMC2788233 DOI: 10.1371/journal.pone.0008245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/10/2009] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The main processes in the pathogenesis of cerebral malaria caused by Plasmodium falciparum involved sequestration of parasitized red blood cells and immunopathological responses. Among immune factors, IgG autoantibodies to brain antigens are increased in P. falciparum infected patients and correlate with disease severity in African children. Nevertheless, their role in the pathophysiology of cerebral malaria (CM) is not fully defined. We extended our analysis to an Indian population with genetic backgrounds and endemic and environmental status different from Africa to determine if these autoantibodies could be either a biomarker or a risk factor of developing CM. METHODS/PRINCIPAL FINDINGS We investigated the significance of these self-reactive antibodies in clinically well-defined groups of P. falciparum infected patients manifesting mild malaria (MM), severe non-cerebral malaria (SM), or cerebral malaria (CM) and in control subjects from Gondia, a malaria epidemic site in central India using quantitative immunoprinting and multivariate statistical analyses. A two-fold complete-linkage hierarchical clustering allows classifying the different patient groups and to distinguish the CM from the others on the basis of their profile of IgG reactivity to brain proteins defined by PANAMA Blot. We identified beta tubulin III (TBB3) as a novel discriminant brain antigen in the prevalence of CM. In addition, circulating IgG from CM patients highly react with recombinant TBB3. Overall, correspondence analyses based on singular value decomposition show a strong correlation between IgG anti-TBB3 and elevated concentration of cluster-II cytokine (IFNgamma, IL1beta, TNFalpha, TGFbeta) previously demonstrated to be a predictor of CM in the same population. CONCLUSIONS/SIGNIFICANCE Collectively, these findings validate the relationship between antibody response to brain induced by P. falciparum infection and plasma cytokine patterns with clinical outcome of malaria. They also provide significant insight into the immune mechanisms associated to CM by the identification of TBB3 as a new disease-specific marker and potential therapeutic target.
Collapse
Affiliation(s)
- Devendra Bansal
- Equipe PIME CNRS, Inserm U547, Institut Pasteur de Lille, Pôle Universitaire Nord, France
| | - Fabien Herbert
- Equipe PIME CNRS, Inserm U547, Institut Pasteur de Lille, Pôle Universitaire Nord, France
| | - Pharath Lim
- Equipe PIME CNRS, Inserm U547, Institut Pasteur de Lille, Pôle Universitaire Nord, France
| | | | - Christophe Bécavin
- Institut de Recherche Interdisciplinaire CNRS USR3078 Univ. Lille I, II, and Institut des Hautes Études Scientifiques, Bures sur Yvettes, France
| | - Vincent Guiyedi
- Equipe PIME CNRS, Inserm U547, Institut Pasteur de Lille, Pôle Universitaire Nord, France
| | - Ilaria de Maria
- Laboratory of Antineoplastic Pharmacology, Università Cattolica Sacro Cuore, Rome, Italy
| | | | - Abdelkader Namane
- Institut Pasteur, Plate-Forme de Protéomique, CNRS URA 2185, Paris, France
| | - Rajendra Jain
- K.T.S. Hospital, Gondia District, Maharashtra, India
| | - Pierre-André Cazenave
- Equipe PIME CNRS, Inserm U547, Institut Pasteur de Lille, Pôle Universitaire Nord, France
- Université Pierre et Marie Curie–CNRS U7087, and Institut Pasteur, Paris, France
| | | | - Cristiano Ferlini
- Laboratory of Antineoplastic Pharmacology, Università Cattolica Sacro Cuore, Rome, Italy
| | | | - Arndt Benecke
- Institut de Recherche Interdisciplinaire CNRS USR3078 Univ. Lille I, II, and Institut des Hautes Études Scientifiques, Bures sur Yvettes, France
| | - Sylviane Pied
- Equipe PIME CNRS, Inserm U547, Institut Pasteur de Lille, Pôle Universitaire Nord, France
| |
Collapse
|