101
|
Judge HM, Buckland RJ, Holgate CE, Storey RF. Glycoprotein IIb/IIIa and P2Y12 receptor antagonists yield additive inhibition of platelet aggregation, granule secretion, soluble CD40L release and procoagulant responses. Platelets 2005; 16:398-407. [PMID: 16236601 DOI: 10.1080/09537100500163226] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycoprotein IIb/IIIa (GPIIb/IIIa) antagonists, including abciximab and tirofiban, are administered concurrently with clopidogrel, a P2Y12 antagonist, and aspirin in some patients undergoing percutaneous coronary intervention. We studied the effects of, and interactions between, abciximab, tirofiban, aspirin and the P2Y12 antagonist cangrelor on platelet aggregation, alpha and dense granule secretion and procoagulant responses in vitro. Blood was obtained from healthy volunteers. Platelet aggregation, dense granule secretion, alpha granule secretion (PAI-1 and soluble CD40 ligand levels) and procoagulant responses (annexin-V and microparticle formation) were assessed using collagen and thrombin receptor activating peptide (TRAP) as agonists. All the antagonists used singularly inhibited collagen-induced responses. Combinations of abciximab or tirofiban with aspirin and/or cangrelor gave additive inhibition with the greatest effect seen when abciximab or tirofiban was combined with both aspirin and cangrelor. Cangrelor inhibited TRAP-induced responses and, again, there was additive inhibition of these parameters when abciximab or tirofiban were combined with cangrelor. The GPIIb/IIIa receptor plays an important role in amplification of platelet activation such that there are important interactions between GPIIb/IIIa antagonists and inhibitors of both P2Y12 receptor activation and, to a lesser extent, thromboxane A2 generation. These interactions are likely to have important influences on the safety and efficacy of combination anti-platelet therapies.
Collapse
Affiliation(s)
- Heather M Judge
- Cardiovascular Research Unit, Clinical Sciences Centre, Northern General Hospital, Sheffield S5 7AU, UK.
| | | | | | | |
Collapse
|
102
|
Goto S, Tamura N, Ishida H, Ruggeri ZM. Dependence of platelet thrombus stability on sustained glycoprotein IIb/IIIa activation through adenosine 5'-diphosphate receptor stimulation and cyclic calcium signaling. J Am Coll Cardiol 2005; 47:155-62. [PMID: 16386680 DOI: 10.1016/j.jacc.2005.08.055] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 07/24/2005] [Accepted: 08/01/2005] [Indexed: 12/16/2022]
Abstract
OBJECTIVES We sought to evaluate the mechanisms that support the stability of platelet aggregates on a thrombogenic surface exposed to flowing blood. BACKGROUND Activation of the membrane glycoprotein (GP) IIb/IIIa--mediated in part through the P2Y1 and P2Y12 adenosine 5'-diphosphate (ADP) receptors--is necessary for platelet aggregation. Platelets in growing thrombi exhibit cyclic calcium signal, suggesting that sustained activation may be required for thrombus stability. METHODS Blood was perfused over type I collagen fibrils at the wall shear rate of 1,500 s(-1). Three-dimensional visualization of platelet thrombi was obtained in real time with confocal microscopy. The intracytoplasmic Ca2+ concentration ([Ca2+]i) was measured in fluo-3AM-loaded platelets. RESULTS The height of platelet thrombi in control blood was 13.5 +/- 3.3 microm after 6 min, and increased to 16.3 +/- 4.5 microm (n = 8) after an additional 6 min. In contrast, the height was reduced to 5.4 +/- 2.2 and 3.3 +/- 1.3 microm, respectively (p < 0.01, n = 8), when the blood used in the second 6-min perfusion contained a P2Y1 (MRS2179) or P2Y12 (AR-C69931MX) inhibitor. The [Ca2+]i of platelets within forming thrombi oscillated between 212 +/- 38 nmol/l and 924 +/- 458 nmol/l, with cycles lasting 4.2 +/- 2.8 s that were inhibited completely by AR-C69931MX and partially by MRS2179. Accordingly, thrombi became unstable upon perfusion of blood containing the Ca2+ channel blocker, lanthanum chloride. Flow cytometric studies demonstrated that AR-C69931MX, MRS2179, and lanthanum chloride reduced monoclonal antibody PAC-1 binding to platelets, indicating a decrease of membrane-expressed activated GP IIb/IIIa. CONCLUSIONS Continuous P2Y1 and P2Y12 stimulation resulting in cyclic [Ca2+]i oscillations is required for maintaining the activation of GP IIb/IIIa needed for thrombus stability in flowing blood.
Collapse
Affiliation(s)
- Shinya Goto
- Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| | | | | | | |
Collapse
|
103
|
Kim S, Jin J, Kunapuli SP. Relative contribution of G-protein-coupled pathways to protease-activated receptor-mediated Akt phosphorylation in platelets. Blood 2005; 107:947-54. [PMID: 16223779 DOI: 10.1182/blood-2005-07-3040] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protease-activated receptors (PARs) activate Gq and G(12/13) pathways, as well as Akt (protein kinase B [PKB/Akt]) in platelets. However, the relative contribution of different G-protein pathways to Akt phosphorylation has not been elucidated. We investigated the contribution of Gq and G(12/13) to Gi/Gz-mediated Akt phosphorylation downstream of PAR activation. Selective G(12/13) activation failed to cause Akt phosphorylation in human and Galpha q-deficient mouse platelets. However, supplementing Gi/Gz signaling to G(12/13) caused significant increase in Akt phosphorylation, confirming that G(12/13) potentiates Akt phosphorylation. Inhibition of PAR-mediated Akt phosphorylation in the presence of the Gq-selective inhibitor YM-254890 was restored to the normal extent achieved by PAR agonists if supplemented with Gi signaling, indicating that Gq does not have any direct effect on Akt phosphorylation. Selective G(12/13) activation resulted in Src kinase activation, and Akt phosphorylation induced by costimulation of G(12/13) and Gi/Gz was inhibited by a Src kinase inhibitor but not by a Rho kinase inhibitor. These data demonstrate that G(12/13), but not Gq, is essential for thrombin-induced Akt phosphorylation in platelets, whereas Gq indirectly contributes to Akt phosphorylation through Gi stimulation by secreted ADP. G(12/13) activation might mediate its potentiating effect through Src activation, and Src kinases play an important role in thrombin-mediated Akt phosphorylation.
Collapse
Affiliation(s)
- Soochong Kim
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
104
|
Tran L, Farinas J, Ruslim-Litrus L, Conley PB, Muir C, Munnelly K, Sedlock DM, Cherbavaz DB. Agonist-induced calcium response in single human platelets assayed in a microfluidic device. Anal Biochem 2005; 341:361-8. [PMID: 15907883 DOI: 10.1016/j.ab.2005.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Indexed: 10/25/2022]
Abstract
To facilitate drug discovery directed toward platelet-specific targets, we developed a platelet isolation and fluorophore-loading method that yields functionally responsive platelets in which we were able to detect agonist-induced calcium flux using a microfluidics-based screening platform. The platelet preparation protocol was designed to minimize preparation-induced platelet activation and to optimize signal strength. Measurement of platelet activation, as monitored by ratiometric determination of agonist-induced calcium flux in fluor-loaded human platelets, was optimized in a macrosample cuvette format in preparation for detection in a microfluidic chip-based assay. For the microfluidic device used in these studies, a cell density of 1 to 2 x 10(6) platelets per milliliter and a nominal flow rate of 5 to 10 nl per second provided optimal event resolution of 5 to 20 platelets traversing the detection volume per unit time. Platelets responded in a dose-dependent manner to adenosine diphosphate and protease-activating peptide (PAR) 1 thrombin receptor-activating peptide (TRAP). The work presented here constitutes proof-of-principle experiments demonstrating the enabling application of a microfluidic device to conduct high-throughput signaling studies and drug discovery screening against human platelet targets.
Collapse
Affiliation(s)
- Louie Tran
- Caliper Technologies, Mountain View, CA 94043, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Soulet C, Hechler B, Gratacap MP, Plantavid M, Offermanns S, Gachet C, Payrastre B. A differential role of the platelet ADP receptors P2Y1 and P2Y12 in Rac activation. J Thromb Haemost 2005; 3:2296-306. [PMID: 16194206 DOI: 10.1111/j.1538-7836.2005.01588.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics of the actin cytoskeleton, largely controlled by the Rho family of small GTPases (Rho, Rac and Cdc42), is critical for the regulation of platelet responses such as shape change, adhesion, spreading and aggregation. Here, we investigated the role of adenosine diphosphate (ADP), a major co-activator of platelets, on the activation of Rac. ADP rapidly activated Rac in a dose-dependent manner and independently of GPIIb/IIIa and phosphoinositide 3-kinase. ADP alone, used as a primary agonist, activated Rac and its effector PAK via its P2Y1 receptor, through a G(q)-dependent pathway and independently of P2Y12. The P2Y12 receptor appeared unable to activate the GTPase per se as also observed for the adenosine triphosphate receptor P2X1. Conversely, secreted ADP strongly potentiated Rac activation induced by FcgammaRIIa clustering or TRAP via its P2Y12 receptor, the target of antithrombotic thienopyridines. Stimulation of the alpha(2A)-adrenergic receptor/G(z) pathway by epinephrine was able to replace the P2Y12/G(i)-mediated pathway to amplify Rac activation by FcgammaRIIa or by the thrombin receptor PAR-1. This co-activation appeared necessary to reach a full stimulation of Rac as well as PAK activation and actin polymerization and was blocked by a G-protein betagamma subunits scavenger peptide.
Collapse
Affiliation(s)
- C Soulet
- Inserm U563, Département d'Oncogenèse et signalisation dans les cellules hématopoïétiques, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
106
|
Storey RF, May JA, Heptinstall S. Potentiation of platelet aggregation by heparin in human whole blood is attenuated by P2Y12 and P2Y1 antagonists but not aspirin. Thromb Res 2005; 115:301-7. [PMID: 15668190 DOI: 10.1016/j.thromres.2004.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 09/06/2004] [Accepted: 09/07/2004] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Unfractionated heparin (UFH) potentiates platelet aggregation induced by some agonists. P2Y12 and P2Y1 receptors play a major role in amplifying platelet aggregation. We assessed the ability of cangrelor, a selective P2Y12 antagonist, A2P5P, a selective P2Y1 antagonist, and aspirin to block the potentiating effects of heparin. MATERIALS AND METHODS Whole blood from healthy human volunteers was anticoagulated with either hirudin or UFH 10 IU/ml. Some tubes anticoagulated with hirudin also contained UFH 1 or 10 IU/ml. The low-molecular-weight heparin dalteparin was also assessed. Platelet aggregation was performed using whole blood single-platelet counting. Dense granule release was assessed using 14C-5HT-labelled platelets. RESULTS UFH and, to a lesser extent, dalteparin potentiated platelet aggregation induced by ADP, PAF, 5HT, U46619, epinephrine and TRAP in a concentration-dependent manner but inhibited aggregation induced by collagen. Cangrelor effectively opposed the potentiating effects of heparins on sustained aggregation induced by ADP, PAF, 5HT, U46619 and TRAP but had less effect on epinephrine-induced aggregation, whereas A2P5P was more effective at blocking both the initial phase of ADP-induced aggregation and the aggregation response to epinephrine, reflecting the differences in G protein coupling between the agonist receptors. Aspirin had no effect on potentiation by heparin. Heparins did not increase ADP- or TRAP-induced 14C-5HT release. CONCLUSIONS Heparins potentiate platelet responses to ADP and numerous other agonists. This potentiation is attenuated by cangrelor and A2P5P, and is not mediated by increased dense granule release. ADP receptor antagonists but not aspirin may have potential therapeutic benefits in counteracting the pro-thrombotic effects of heparins.
Collapse
Affiliation(s)
- Robert F Storey
- Cardiovascular Research Unit, Clinical Sciences Centre, Northern General Hospital, Sheffield S5 7AU, UK.
| | | | | |
Collapse
|
107
|
Gachet C. The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacol Ther 2005; 108:180-92. [PMID: 15955565 DOI: 10.1016/j.pharmthera.2005.03.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 03/24/2005] [Indexed: 12/15/2022]
Abstract
Platelet activation by ADP and ATP plays a crucial role in haemostasis and thrombosis, and their so-called P2 receptors are potential targets for antithrombotic drugs. The ATP-gated channel P2X1 and the 2 G protein-coupled P2Y1 and P2Y12 ADP receptors selectively contribute to platelet aggregation. The P2Y1 receptor is responsible for ADP-induced shape change and weak and transient aggregation, while the P2Y12 receptor is responsible for the completion and amplification of the response to ADP and to all platelet agonists, including thromboxane A2 (TXA2), thrombin, and collagen. The P2X1 receptor is involved in platelet shape change and in activation by collagen under shear conditions. Due to its central role in the formation and stabilization of a thrombus, the P2Y12 receptor is a well-established target of antithrombotic drugs like ticlopidine or clopidogrel, which have proved efficacy in many clinical trials and experimental models of thrombosis. Competitive P2Y12 antagonists have also been shown to be effective in experimental thrombosis as well as in several clinical trials. Studies in P2Y1 and P2X1 knockout mice and experimental thrombosis models using selective P2Y1 and P2X1 antagonists have shown that, depending on the conditions, these receptors could also be potential targets for new antithrombotic drugs.
Collapse
Affiliation(s)
- Christian Gachet
- INSERM U.311, Etablissement Français du Sang-Alsace, 10 rue Spielmann, B.P. No. 36, 67065 Strasbourg Cedex, France.
| |
Collapse
|
108
|
Canobbio I, Noris P, Pecci A, Balduini A, Balduini CL, Torti M. Altered cytoskeleton organization in platelets from patients with MYH9-related disease. J Thromb Haemost 2005; 3:1026-35. [PMID: 15869600 DOI: 10.1111/j.1538-7836.2005.01244.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MYH9-related disease (MYH9-RD) is an autosomal dominant disorder deriving from mutations in the MYH9 gene encoding for the heavy chain of non-muscle myosin IIA, and characterized by thrombocytopenia and giant platelets. Isoform IIA of myosin is the only one expressed in platelets, but the possibility that MYH9 mutations affect the organization of contractile structures in these blood elements has never been investigated. In this work we have analyzed the composition and the agonist-induced reorganization of the platelet cytoskeleton from seven MYH9-RD patients belonging to four different families. We found that an increased amount of myosin was constitutively associated with actin in the cytoskeleton of resting MYH9-RD platelets. Upon platelet stimulation, an impaired increase in the total cytoskeletal proteins was observed. Moreover, selected membrane glycoproteins, tyrosine kinases, and small GTPases failed to interact with the cytoskeleton in agonist-stimulated MYH9-RD platelets. These results demonstrate for the first time that mutations of MYH9 result in an alteration of the composition and agonist-induced reorganization of the platelet cytoskeleton. We suggest that these abnormalities may represent the biochemical basis for the previously reported functional alterations of MYH9-RD platelets, and for the abnormal platelet formation from megakaryocytes, resulting in thrombocytopenia and giant platelets.
Collapse
Affiliation(s)
- I Canobbio
- Centre of Excellence for Applied Biology, Department of Biochemistry, University of Pavia, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
109
|
Gould WR, Baxi SM, Schroeder R, Peng YW, Leadley RJ, Peterson JT, Perrin LA. Gas6 receptors Axl, Sky and Mer enhance platelet activation and regulate thrombotic responses. J Thromb Haemost 2005; 3:733-41. [PMID: 15733062 DOI: 10.1111/j.1538-7836.2005.01186.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas6 (encoded by growth arrest-specific gene 6) is a vitamin-K dependent protein highly homologous to coagulation protein S that is secreted from platelet alpha-granules and has recently been demonstrated to participate in platelet thrombus formation. The current study evaluated the contribution of each of the three known Gas6 receptors (Axl, Sky and Mer) in human and mouse platelet function. Flow cytometry analyses confirmed that all three receptors are present on both human and mouse platelets. Pre-incubation of human platelets with either an anti-Gas6 antibody or blocking antibodies to Sky or Mer inhibited platelet aggregation and degranulation responses to both ADP and the PAR-1 activating peptide, SFLLRN, by more than 80%. In contrast, a stimulatory anti-Axl antibody increased activation responses to these agonists, suggesting a potentiating role for Gas6 in platelet activation. Moreover, in a mouse model of thrombosis, administration of Gas6 or Sky blocking antibodies resulted in a decrease in thrombus weight similar to clopidogrel but, unlike clopidogrel, produced no increase in template bleeding. Thus, Gas6 enhances platelet degranulation and aggregation responses through its known receptors, promoting platelet activation and mediating thrombus formation such that its inhibition prevents thrombosis without increasing bleeding.
Collapse
Affiliation(s)
- W R Gould
- Pfizer Global Research and Development, Department of Cardiovascular Pharmacology, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Angelillo-Scherrer A, Burnier L, Flores N, Savi P, DeMol M, Schaeffer P, Herbert JM, Lemke G, Goff SP, Matsushima GK, Earp HS, Vesin C, Hoylaerts MF, Plaisance S, Collen D, Conway EM, Wehrle-Haller B, Carmeliet P. Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J Clin Invest 2005; 115:237-46. [PMID: 15650770 PMCID: PMC544035 DOI: 10.1172/jci22079] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 11/23/2004] [Indexed: 12/21/2022] Open
Abstract
Mechanisms regulating thrombus stabilization remain largely unknown. Here, we report that loss of any 1 of the Gas6 receptors (Gas6-Rs), i.e., Tyro3, Axl, or Mer, or delivery of a soluble extracellular domain of Axl that traps Gas6 protects mice against life-threatening thrombosis. Loss of a Gas6-R does not prevent initial platelet aggregation but impairs subsequent stabilization of platelet aggregates, at least in part by reducing "outside-in" signaling and platelet granule secretion. Gas6, through its receptors, activates PI3K and Akt and stimulates tyrosine phosphorylation of the beta3 integrin, thereby amplifying outside-in signaling via alphaIIbbeta3. Blocking the Gas6-R-alphaIIbbeta3 integrin cross-talk might be a novel approach to the reduction of thrombosis.
Collapse
Affiliation(s)
- Anne Angelillo-Scherrer
- Division of Angiology and Hemostasis, Department of Internal Medicine, Faculty of Medicine and University Hospitals of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Lemmens-Gruber R. Patent focus on agents affecting cardiovascular and renal functions November 1999 - March 2000. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.5.533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
112
|
Bodin S, Soulet C, Tronchère H, Sié P, Gachet C, Plantavid M, Payrastre B. Integrin-dependent interaction of lipid rafts with the actin cytoskeleton in activated human platelets. J Cell Sci 2005; 118:759-69. [PMID: 15671066 DOI: 10.1242/jcs.01648] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dynamic connections between actin filaments and the plasma membrane are crucial for the regulation of blood platelet functions. Protein complexes associated with αIIbβ3 integrin-based cytoskeleton structures are known to play a role in these processes. However, mechanisms involving lateral organizations of the plasma membrane remain to be investigated. Here, we demonstrate that a large fraction of platelet lipid rafts specifically associates with the actin cytoskeleton upon activation. This association was inhibited by antagonists of fibrinogen-αIIbβ3 binding and did not occur in type I Glanzman's thrombasthenic platelets. The raft-cytoskeleton interaction is a reversible process correlating with the intensity and stability of platelet aggregation. Although only a minor fraction of αIIbβ3 was recovered in rafts upon activation, this integrin specifically upregulated the level of PtdIns(4,5)P2 in membrane microdomains and induced the recruitment of several actin-modulating proteins known to directly or indirectly interact with this lipid. Controlled disruption of rafts did not affect αIIbβ3-mediated platelet aggregation in response to high concentrations of thrombin but significantly inhibited fibrin clot retraction. We propose that rafts participate in the organization of membrane-cytoskeleton interactions where αIIbβ3-mediated tension forces apply during the late phase of platelet activation.
Collapse
Affiliation(s)
- Stéphane Bodin
- Inserm U.563, Centre de Physiopathologie de Toulouse Purpan, Department of Oncogenesis and Signaling in Haematopoïetic Cells, IFR30, Hôpital Purpan, 31059 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
113
|
Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 2005; 26:1-43. [PMID: 15689571 DOI: 10.1210/er.2003-0025] [Citation(s) in RCA: 364] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serine proteinases such as thrombin, mast cell tryptase, trypsin, or cathepsin G, for example, are highly active mediators with diverse biological activities. So far, proteinases have been considered to act primarily as degradative enzymes in the extracellular space. However, their biological actions in tissues and cells suggest important roles as a part of the body's hormonal communication system during inflammation and immune response. These effects can be attributed to the activation of a new subfamily of G protein-coupled receptors, termed proteinase-activated receptors (PARs). Four members of the PAR family have been cloned so far. Thus, certain proteinases act as signaling molecules that specifically regulate cells by activating PARs. After stimulation, PARs couple to various G proteins and activate signal transduction pathways resulting in the rapid transcription of genes that are involved in inflammation. For example, PARs are widely expressed by cells involved in immune responses and inflammation, regulate endothelial-leukocyte interactions, and modulate the secretion of inflammatory mediators or neuropeptides. Together, the PAR family necessitates a paradigm shift in thinking about hormone action, to include proteinases as key modulators of biological function. Novel compounds that can modulate PAR function may be potent candidates for the treatment of inflammatory or immune diseases.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Boltzmann Institute for Immunobiology of the Skin, University of Münster, von-Esmarch-Strasse 58, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Kimmelstiel C, Badar J, Covic L, Waxman S, Weintraub A, Jacques S, Kuliopulos A. Pharmacodynamics and pharmacokinetics of the platelet GPIIb/IIIa inhibitor tirofiban in patients undergoing percutaneous coronary intervention: implications for adjustment of tirofiban and clopidogrel dosage. Thromb Res 2005; 116:55-66. [PMID: 15850609 DOI: 10.1016/j.thromres.2004.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 11/12/2004] [Accepted: 11/16/2004] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Despite extensive data supporting the use of platelet glycoprotein (GP) IIb/IIIa (GPIIb/IIIa) inhibitors in the therapy of patients with acute coronary syndromes (ACS), there is considerable debate as to the optimal choice of antiplatelet regimen. The objective of this study was to conduct a detailed time-resolved analysis of the effects of the GPIIb/IIIa inhibitor tirofiban with concomitant clopidogrel in ACS patients undergoing percutaneous coronary intervention (PCI) to improve the dosing regimen of these two commonly used antiplatelet drugs. METHODS The study was performed in 14 patients with non-ST-segment elevation (NSTE) ACS who underwent PCI while being treated with the current typically utilized regimen of tirofiban (10 microg/kg bolus, 0.15 microg/kg/min infusion) and clopidogrel (300 mg). Platelet function was assessed before, during, and after tirofiban infusion using a panel of agonists for ADP receptors, PAR1 and PAR4 thrombin receptors, and collagen receptors. RESULTS Measurements of circulating tirofiban levels demonstrated a trough, which paralleled a reduction in platelet inhibition for all platelet agonists during the time when PCI was being performed. Interestingly, younger ACS patients (<55 years) exhibited less inhibition of platelet function both during the PCI procedure and after termination of the tirofiban infusion. These apparent age differences were primarily attributed to a decreased responsiveness of the younger patients to clopidogrel. CONCLUSIONS This study shows that the currently utilized tirofiban dosage is suboptimal and suggests that patients may benefit from a higher dose regimen.
Collapse
Affiliation(s)
- Carey Kimmelstiel
- Tufts-New England Medical Center, Division of Cardiology, Department of Medicine, Tufts University School of Medicine, 750 Washington Street, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Aleil B, Ravanat C, Cazenave JP, Rochoux G, Heitz A, Gachet C. Flow cytometric analysis of intraplatelet VASP phosphorylation for the detection of clopidogrel resistance in patients with ischemic cardiovascular diseases. J Thromb Haemost 2005; 3:85-92. [PMID: 15634270 DOI: 10.1111/j.1538-7836.2004.01063.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interindividual variability of the inhibitory effect of clopidogrel on platelet functions leading to clopidogrel resistance has been described in some patients with ischemic cardiovascular disease. A reliable laboratory test is therefore needed to identify patients insufficiently protected by this antiplatelet treatment. The phosphorylation of vasodilator-stimulated phosphoprotein (VASP), an intraplatelet actin regulatory protein, is dependent on the level of activation of the platelet P2Y12 receptor, which is targeted by clopidogrel. The aim of this study was to use a flow cytometric VASP phosphorylation assay to evaluate the efficacy of clopidogrel therapy. The platelet reactivity index (PRI), expressed as a percentage, is the difference in VASP fluorescence intensity between resting (+PGE1) and activated (+ADP) platelets. In vitro, the PRI was strongly correlated with the inhibition of platelet aggregation induced by specific blockade of the P2Y12 receptor by the competitive antagonist AR-C69931MX (R = 0.72, P < 0.0001). Ex vivo, the PRI was 78.3 +/- 4.6% in 47 healthy donors, 79.0 +/- 4.1% in 34 patients not receiving clopidogrel and 61.1 +/- 17.0% in 33 patients treated with clopidogrel (P < 0.0001). In the clopidogrel group, the PRI values were widely dispersed (from 6.6 to 85.8%) and more than 30% of these patients had a PRI equivalent of values in patients not receiving clopidogrel. The flow cytometric analysis of VASP phosphorylation seems to be a suitable test to evaluate the efficacy of clopidogrel treatment. This assay demonstrated a wide interindividual variability of the inhibitory response of platelets to clopidogrel and showed that one-third of the patients treated appeared to be 'unprotected' by this therapy.
Collapse
Affiliation(s)
- B Aleil
- Institut National de la Santé et de la Recherche Médicale U.311, Etablissement Français du Sang, Alsace, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
116
|
Baurand A, Eckly A, Hechler B, Kauffenstein G, Galzi JL, Cazenave JP, Léon C, Gachet C. Differential regulation and relocalization of the platelet P2Y receptors after activation: a way to avoid loss of hemostatic properties? Mol Pharmacol 2004; 67:721-33. [PMID: 15602005 DOI: 10.1124/mol.104.004846] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we investigated the desensitization and trafficking of the P2Y1 and P2Y12 receptors after agonist-induced stimulation of platelets or astrocytoma cells transfected with the P2Y1 or P2Y12 receptors fused to green fluorescent protein. In platelets and in transfected cells, exposure to 10 microM ADP caused desensitization of the P2Y1 receptor-driven calcium signal, whereas the P2Y12 receptor-mediated inhibition of cAMP formation was not affected. Plasma membranes from ADP-stimulated platelets also retained P2Y12 activity. Agonist-induced P2Y1 receptor desensitization was accompanied by its internalization in platelets and transfected cells. In contrast, although a substantial fraction of P2Y12 receptors was rapidly and transiently internalized, most of the P2Y12 receptors remained at the plasma membrane. Activated P2Y1 receptors were internalized through a clathrin-dependent pathway in cells and platelets, whereas the P2Y12 receptors seemed to use a distinct, clathrin-independent pathway. Together, these data indicate that the P2Y1 and P2Y12 receptors are differentially regulated upon activation. The absence of desensitization of the Gi protein-coupled P2Y12 receptor-dependent responses could represent a mechanism to preserve the hemostatic properties of otherwise unresponsive platelets.
Collapse
Affiliation(s)
- Anthony Baurand
- Laboratoire de Biologie et de Pharmacologie de l'Hémostase et de la Thrombose, INSERM U.311, Etablissement Français du Sang-Alsace, 10 rue Spielmann, BP 36, 67065 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Fox SC, Behan MWH, Heptinstall S. Inhibition of ADP-induced intracellular Ca2+ responses and platelet aggregation by the P2Y12 receptor antagonists AR-C69931MX and clopidogrel is enhanced by prostaglandin E1. Cell Calcium 2004; 35:39-46. [PMID: 14670370 DOI: 10.1016/s0143-4160(03)00170-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
P2Y(12) antagonists such as clopidogrel and AR-C69931MX inhibit aggregation by antagonizing the effects of ADP at P2Y(12) receptors on platelets. Agents such as PGE(1) also inhibit aggregation by stimulating adenylate cyclase to produce cAMP, which interferes with Ca(2+) mobilization within the cell. Since one facet of P2Y(12) receptors is that they mediate inhibition of adenylate cyclase by ADP, it might be expected that P2Y(12) antagonists would interact with PGE(1). We have explored the effects of PGE(1) and AR-C69931MX singly and in combination on ADP-induced intracellular Ca(2+) ([Ca(2+)](i)) responses and aggregation. PGE(1) alone caused parallel dose-dependent inhibition of [Ca(2+)](i) and aggregation responses. AR-C66931MX alone caused only partial inhibition of [Ca(2+)](i) despite a marked inhibitory effect on aggregation. Combinations of PGE(1) with AR-C66931MX were found to act in synergy to reduce both [Ca(2+)](i) and aggregation. This effect was confirmed in patients with acute coronary syndromes by studying the inhibitory effects of PGE(1) on [Ca(2+)](i) and aggregation before and after clopidogrel. In summary, we have shown that P2Y(12) antagonists interact with natural agents such as PGE(1) to provide more effective inhibition of [Ca(2+)](i) and platelet aggregation. This would contribute to the effectiveness of P2Y(12) antagonists as antithrombotic agents in man.
Collapse
Affiliation(s)
- S C Fox
- Cardiovascular Medicine, University Hospital, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
118
|
Maayani S, Schwarz TE, Patel ND, Craddock-Royal BD, Tagliente TM. Agonist concentration-dependent differential responsivity of a human platelet purinergic receptor: pharmacological and kinetic studies of aggregation, deaggregation and shape change responses mediated by the purinergic P2Y1 receptor in vitro. Platelets 2004; 14:445-62. [PMID: 14713514 DOI: 10.1080/09537100310001612399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Platelet shape change (SC), aggregation and deaggregation responses are integral components of hemostasis that are elicited and modulated in vivo by the simultaneous activation of several membrane receptors. Selective activation of the purinergic P2Y1 receptor in vivo elicits a sustained SC and a small, transient aggregation response that is reversed rapidly by a robust deaggregation response (Platelets 2003; 14: 89). Using a kinetics-based turbidimetric approach to study the modulation of these concurrent components of human platelet responses, we demonstrate that these P2Y1 receptor-related responses and a number of their kinetic and steady-state characteristics are differentially elicited and modulated. P2Y1 receptor agonist concentrations that elicited aggregation (pEC50 for ADP, 2-MeSADP; 5.88, 6.69) were 10-fold greater than those that elicited SC (7.33, 7.67). The magnitude of the aggregation response was agonist concentration-dependent, saturable and was associated with an agonist concentration-dependent deceleration of the deaggregation response. Gi-coupled receptor (alpha 2A-adrenoceptor, EP3 and P2Y12 receptors) agonists also enhanced aggregation through deceleration of the deaggregation response, and an inhibitor of PI3K activity (wortmannin) inhibited aggregation through acceleration of the deaggregation response. Neither treatment affected the extent or the kinetics of the SC response. The aggregation but not the SC response was rapidly desensitized by P2Y1 receptor activation by ADP. The affinity of the presence of a single P2Y1 receptor subtype. The differential characteristics and modulation of the SC and aggregation responses by a single receptor support the idea that different signaling pathways activated at different occupancy states of the same receptor underlie the two responses. P2Y1 receptor-mediated platelet aggregation and SC responses provide a convenient model for studying the phenomenon of agonist-directed signaling by differential occupancy of the same membrane receptor.
Collapse
Affiliation(s)
- Saul Maayani
- Department of Anesthesiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
119
|
Klinkhardt U, Kuczka K, Harder S. Effects of the NHE-1 inhibitor cariporide alone or together with the P2Y12 antagonist AR-C 69331 MX on CD62p expression and formation of platelet-leukocyte aggregates. Thromb Res 2004; 111:251-7. [PMID: 14693172 DOI: 10.1016/j.thromres.2003.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The sodium-hydrogen exchanger isoform 1 (NHE-1) contributes to platelet activation at elevated pH. Effects of NHE-1 inhibitors on platelet degranulation and formation of proinflammatory and procoagulatory platelet-leukocyte aggregates (PLA) and possible interactions with P2Y(12) inhibitors--which also affect platelet degranulation--have not been investigated. Whole blood from healthy human subjects was incubated with the NHE-1 inhibitor cariporide and the P2Y(12) inhibitor AR-C 69331 MX at clinically reasonable concentrations, in the presence of normal pH or in a propionate model to activate the NHE-1 (approximately pH 7.0). The degranulation marker CD62p, the expression of the activated GPIIb/IIIa receptor (PAC-1), and formation of platelet-leukocyte (monocyte) aggregates (PLA) was assessed by flow cytometry. Cariporide at concentrations up to 20 microg/ml had no effects on ADP- (5 microM) or TRAP- (2 microM) induced CD62p expression or PLA formation at normal pH. At pH 7.0 and stimulation with ADP, PLA decreased from 64+/-24% (control) to 47+/-23% under cariporide at 2 microg/ml (p<0.05), and the MFI of PLA (i.e. the platelet mass attached at monocytes) decreased from 547+/-203 to 360+/-96 units (p<0.05). PAC-1 MFI decreased from 66+/-23 to 34+/-18 units (p<0.05) after ADP and from 74+/-29 to 42+/-17 units (p<0.05) after TRAP, respectively. AR-C 69331 MX (10 nM) had inhibitory effects on all parameters irrespectively of the pH, and the combination of both agents at pH 7.0 shows additive effects. In conclusion, our investigation points to-perhaps clinically relevant-effects of NHE-1 inhibition on the degranulation of platelets and formation of platelet-leukocyte aggregates.
Collapse
Affiliation(s)
- Ute Klinkhardt
- Institute for Clinical Pharmacology at the Pharmazentrum Frankfurt, University Hospital, Frankfurt/Main, Theodor Stern Kai 7, D-60590 Frankfurt on the Main, Germany
| | | | | |
Collapse
|
120
|
Xiao Z, Théroux P. Clopidogrel inhibits platelet-leukocyte interactions and thrombin receptor agonist peptide-induced platelet activation in patients with an acute coronary syndrome. J Am Coll Cardiol 2004; 43:1982-8. [PMID: 15172401 DOI: 10.1016/j.jacc.2003.10.071] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 10/15/2003] [Accepted: 10/20/2003] [Indexed: 12/22/2022]
Abstract
OBJECTIVES We sought to characterize the effects of clopidogrel on the activation of circulating platelets, the activation and aggregation of ex vivo platelets, and the interactions with leukocytes in patients with a non-ST-segment elevation in acute coronary syndromes (ACS). BACKGROUND The significant benefits of clopidogrel in cardiovascular trials suggest that blockage of the P2Y(12) receptor may be associated with important biologic consequences. METHODS Blood samples obtained from 23 ACS patients before and 24 h after a loading dose of clopidogrel (300 mg) were analyzed by whole-blood flow cytometry, light transmission aggregometry in platelet-rich plasma, and plasma enzyme-linked immunoassays. A thrombin receptor agonist peptide (TRAP) and adenosine diphosphate (ADP) were used as agonists. Normal individuals pretreated with aspirin served as controls. RESULTS Clopidogrel attenuated platelet aggregation to both ADP (10 micromol/l) and TRAP (10 micromol/l) by 22% and P-selectin expression by 16% and 25%, respectively. The drug decreased the excess platelet-monocyte and platelet-neutrophil conjugates found in the blood of ACS patients (p < 0.01) and prevented their formation ex vivo with agonist stimulation. Plasma levels of soluble CD40L were reduced by 27% (p < 0.001) and of soluble P-selectin by 15% (p < 0.001). CONCLUSIONS Clopidogrel attenuates the agonist effects of ADP and TRAP on platelet secretion, aggregation, and formation of platelet-monocyte and platelet-neutrophil conjugates in patients with ACS. These effects may all contribute to the clinical benefits of the drug in these syndromes.
Collapse
Affiliation(s)
- Zihui Xiao
- Department of Medicine, Montreal Heart Institute, and University of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
121
|
Hardy AR, Jones ML, Mundell SJ, Poole AW. Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood 2004; 104:1745-52. [PMID: 15187029 DOI: 10.1182/blood-2004-02-0534] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenosine diphosphate (ADP), an important platelet agonist, acts through 2 G-protein-coupled receptors (GPCRs), P2Y(1) and P2Y(12), which signal through Gq and Gi, respectively. There is increasing evidence for cross-talk between signaling pathways downstream of GPCRs and here we demonstrate cross-talk between these 2 ADP receptors in human platelets. We show that P2Y(12) contributes to platelet signaling by potentiating the P2Y(1)-induced calcium response. This potentiation is mediated by 2 mechanisms: inhibition of adenylate cyclase and activation of phosphatidylinositol 3 (PI 3)-kinase. Furthermore, the Src family kinase inhibitor PP1 selectively potentiates the contribution to the calcium response by P2Y(12), although inhibition of adenylate cyclase by P2Y(12) is unaffected. Using PP1 in combination with the inhibitor of PI 3-kinase LY294002, we show that Src negatively regulates the PI 3-kinase-mediated component of the P2Y(12) calcium response. Finally, we were able to show that Src kinase is activated through P2Y(1) but not P2Y(12). Taken together, we present evidence for a complex signaling interplay between P2Y(1) and P2Y(12), where P2Y(12) is able to positively regulate P2Y(1) action and P2Y(1) negatively regulates this action of P2Y(12). It is likely that this interplay between receptors plays an important role in maintaining the delicate balance between platelet activation and inhibition during normal hemostasis.
Collapse
Affiliation(s)
- Adam R Hardy
- Department of Pharmacology, School of Medical Sciences, University Walk, Bristol, BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
122
|
Mangin P, Ohlmann P, Eckly A, Cazenave JP, Lanza F, Gachet C. The P2Y1 receptor plays an essential role in the platelet shape change induced by collagen when TxA2 formation is prevented. J Thromb Haemost 2004; 2:969-77. [PMID: 15140133 DOI: 10.1111/j.1538-7836.2004.00722.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ADP and TxA2 are secondary agonists which play an important role as cofactors when platelets are activated by agonists such as collagen or thrombin. The aim of the present study was to characterize the role of the ADP receptor P2Y(1) in collagen-induced activation of washed platelets. Inhibition of P2Y(1) alone with the selective antagonist MRS2179 prolonged the lag phase preceding aggregation in response to low or high concentrations of fibrillar collagen, without affecting the maximum amplitude of aggregation or secretion. A combination of MRS2179 and aspirin resulted in complete inhibition of platelet shape change at low and high collagen concentrations, together with a profound decrease in aggregation and secretion. Scanning electron microscopy showed that these platelets had conserved the discoid morphology typical of the resting state. A lack of shape change was also observed in aspirin-treated P2Y(1)- and G(alphaq)-deficient mouse platelets and in delta-storage pool-deficient platelets from Fawn Hooded rats. In contrast, when the second ADP receptor P2Y(12) was inhibited with AR-C69931MX, aspirin-treated platelets were still able to change shape and displayed only a moderate decrease in aggregation and secretion. In conclusion, this study provides evidence that collagen requires not only the TxA2 receptor Tpalpha, but also P2Y(1), to induce platelet shape change.
Collapse
Affiliation(s)
- P Mangin
- INSERM U.311, Etablissement Français du Sang-Alsace, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
123
|
Shankar H, Murugappan S, Kim S, Jin J, Ding Z, Wickman K, Kunapuli SP. Role of G protein-gated inwardly rectifying potassium channels in P2Y12 receptor-mediated platelet functional responses. Blood 2004; 104:1335-43. [PMID: 15142872 DOI: 10.1182/blood-2004-01-0069] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the G(i)-coupled platelet P2Y(12) receptor in platelet function has been well established. However, the functional effector or effectors contributing directly to alphaIIbbeta3 activation in human platelets has not been delineated. As the P2Y(12) receptor has been shown to activate G protein-gated, inwardly rectifying potassium (GIRK) channels, we investigated whether GIRK channels mediate any of the functional responses of the platelet P2Y(12) receptor. Western blot analysis revealed that platelets express GIRK1, GIRK2, and GIRK4. In aspirin-treated and washed human platelets, 2 structurally distinct GIRK inhibitors, SCH23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride) and U50488H (trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(pyrrolidinyl)cyclohexyl] benzeneacetamide methanesulfonate), inhibited adenosine diphosphate (ADP)-, 2-methylthioADP (2-MeSADP)-, U46619-, and low-dose thrombin-mediated platelet aggregation. However, the GIRK channel inhibitors did not affect platelet aggregation induced by high concentrations of thrombin, AYPGKF, or convulxin. Furthermore, the GIRK channel inhibitors reversed SFLLRN-induced platelet aggregation, inhibited the P2Y(12)-mediated potentiation of dense granule secretion and Akt phosphorylation, and did not affect the agonist-induced G(q)-mediated platelet shape change and intracellular calcium mobilization. Unlike AR-C 69931MX, a P2Y(12) receptor-selective antagonist, the GIRK channel blockers did not affect the ADP-induced adenlylyl cyclase inhibition, indicating that they do not directly antagonize the P2Y(12) receptor. We conclude that GIRK channels are important functional effectors of the P2Y(12) receptor in human platelets.
Collapse
Affiliation(s)
- Haripriya Shankar
- Department of Physiology, Temple University, 3420 N Broad St, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | |
Collapse
|
124
|
Lova P, Campus F, Lombardi R, Cattaneo M, Sinigaglia F, Balduini C, Torti M. Contribution of protease-activated receptors 1 and 4 and glycoprotein Ib-IX-V in the G(i)-independent activation of platelet Rap1B by thrombin. J Biol Chem 2004; 279:25299-306. [PMID: 15078882 DOI: 10.1074/jbc.m313199200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin activates human platelets through three different membrane receptors, the protease-activated receptors PAR-1 and PAR-4 and the glycoprotein Ib (GPIb)-IX-V complex. We investigated the contribution of these three receptors to thrombin-induced activation of the small GTPase Rap1B. We found that, similarly to thrombin, selective stimulation of either PAR-1 or PAR-4 by specific activating peptides caused accumulation of GTP-bound Rap1B in a dose-dependent manner. By contrast, in PAR-1- and PAR-4-desensitized platelets, thrombin failed to activate Rap1B. Thrombin, PAR-1-, or PAR-4-activating peptides also induced the increase of intracellular Ca(2+) concentration and the release of serotonin in a dose-dependent manner. We found that activation of Rap1B by selected doses of agonists able to elicit comparable intracellular Ca(2+) increase and serotonin release was differently dependent on secreted ADP. In the presence of the ADP scavengers apyrase or phosphocreatine-phosphocreatine kinase, activation of Rap1B induced by stimulation of either PAR-1 or PAR-4 was totally inhibited. By contrast, thrombin-induced activation of Rap1B was only minimally affected by neutralization of secreted ADP. Concomitant stimulation of both PAR-1 and PAR-4 in the presence of ADP scavengers still resulted in a strongly reduced activation of Rap1B. A similar effect was also observed upon blockade of the P2Y12 receptor for ADP, as well as in P2Y12 receptor-deficient human platelets, but not after blockade of the P2Y1 receptor. Activation of Rap1B induced by thrombin was not affected by preincubation of platelets with the anti-GPIbalpha monoclonal antibody AK2 in the absence of ADP scavengers or a P2Y12 antagonist but was totally abolished when secreted ADP was neutralized or after blockade of the P2Y12 receptor. Similarly, cleavage of the extracellular portion of GPIbalpha by the cobra venom mocarhagin totally prevented Rap1B activation induced by thrombin in the presence of apyrase and in P2Y12 receptor-deficient platelets. By contrast, inhibition of MAP kinases or p160ROCK, which have been shown to be activated upon thrombin binding to GPIb-IX-V, did not affect agonist-induced activation of Rap1B in the presence of ADP scavengers. These results indicate that although both PAR-1 and PAR-4 signal Rap1B activation, the ability of thrombin to activate this GTPase independently of secreted ADP involves costimulation of both receptors as well as binding to GPIb-IX-V.
Collapse
Affiliation(s)
- Paolo Lova
- Center of Excellence in Applied Biology, Department of Biochemistry, University of Pavia, via Bassi 21, 27100 Pavia
| | | | | | | | | | | | | |
Collapse
|
125
|
Woulfe D, Jiang H, Morgans A, Monks R, Birnbaum M, Brass LF. Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. J Clin Invest 2004. [DOI: 10.1172/jci200420267] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
126
|
Kim S, Jin J, Kunapuli SP. Akt activation in platelets depends on Gi signaling pathways. J Biol Chem 2003; 279:4186-95. [PMID: 14623889 DOI: 10.1074/jbc.m306162200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine-threonine kinase Akt has been established as an important signaling intermediate in regulating cell survival, cell cycle progression, as well as agonist-induced platelet activation. Stimulation of platelets with various agonists including thrombin results in Akt activation. As thrombin can stimulate multiple G protein signaling pathways, we investigated the mechanism of thrombin-induced activation of Akt. Stimulation of platelets with a PAR1-activating peptide (SFLLRN), PAR4-activating peptide (AYPGKF), and thrombin resulted in Thr308 and Ser473 phosphorylation of Akt, which results in its activation. This phosphorylation and activation of Akt were dramatically inhibited in the presence of AR-C69931MX, a P2Y12 receptor-selective antagonist, or GF 109203X, a protein kinase C inhibitor, but Akt phosphorylation was restored by supplemental Gi or Gz signaling. Unlike wild-type mouse platelets, platelets from Galphaq-deficient mice failed to trigger Akt phosphorylation by thrombin and AYPGKF, whereas Akt phosphorylation was not affected by these agonists in platelets from mice that lack P2Y1 receptor. However, ADP caused Akt phosphorylation in Galphaq- and P2Y1-deficient platelets, which was completely blocked by AR-C69931MX. In contrast, ADP failed to cause Akt phosphorylation in platelets from mice treated with clopidogrel, and thrombin and AYPGKF induced minimal phosphorylation of Akt, which was not affected by AR-C69931MX in these platelets. These data demonstrate that Gi, but not Gq or G12/13, signaling pathways are required for activation of Akt in platelets, and Gi signaling pathways, stimulated by secreted ADP, play an essential role in the activation of Akt in platelets.
Collapse
Affiliation(s)
- Soochong Kim
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
127
|
Li Z, Zhang G, Le Breton GC, Gao X, Malik AB, Du X. Two waves of platelet secretion induced by thromboxane A2 receptor and a critical role for phosphoinositide 3-kinases. J Biol Chem 2003; 278:30725-31. [PMID: 12796499 DOI: 10.1074/jbc.m301838200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thromboxane A2 (TXA2)-mediated platelet secretion and aggregation are important in thrombosis. Here, we present a novel finding that the stable TXA2 analogue, U46619, induces two waves of platelet secretion, each of which precedes a distinct wave of platelet aggregation. ADP released from platelets during the first wave of secretion played a major role in augmenting the first wave of platelet aggregation. The second wave of platelet secretion and aggregation required the first wave of both ADP secretion and aggregation and were blocked by either the integrin inhibitor RGDS or a P2Y12 receptor antagonist, indicating a requirement for both the integrin outside-in signal and ADP-activated Gi pathway. U46619 stimulated phosphoinositide 3-kinase (PI3K)-dependent phosphorylation of Akt, which was augmented by ADP but did not require integrin outside-in signaling. Platelets from PI3Kgamma knock-out mice or PI3K inhibitor-treated platelets showed an impaired second wave of platelet secretion and aggregation. However, the second wave of platelet aggregation was restored by addition of exogenous ADP to PI3Kgamma deficient or PI3K inhibitor-treated platelets. Thus, our data indicate that PI3K, together with the integrin outside-in signaling, play a central role in inducing the second wave of platelet secretion, which leads to the second wave of irreversible platelet aggregation.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
128
|
Abstract
Inherited platelet-based bleeding disorders include abnormalities of platelet number and function, and are generally classified based on the abnormal functions or responses. However, a clear distinction is problematic, and in this review, the classification has been based on abnormalities of platelet components that share common characteristics. Inherited thrombocytopenias are rare, but probably underdiagnosed. They are usually classified according to both platelet size and the presence or absence of clinical features other than those deriving from the platelet defect. Hereditary disorders of platelet function can be classified as resulting from: (i) abnormalities of the platelet receptors for adhesive proteins; (ii) abnormalities of the platelet receptors for soluble agonists; (iii) abnormalities of the platelet granules; (iv) abnormalities of the signal-transduction pathways; (v) abnormalities of the membrane phospholipids; and (vi) miscellaneous abnormalities of platelet function. The literature on these disorders is reviewed, and the underlying defects discussed.
Collapse
Affiliation(s)
- M Cattaneo
- Unit of Hematology and Thrombosis, Ospedale San Paolo, Department of Medicine, Surgery and Dentistry, University of Milan, Milan, Italy.
| |
Collapse
|
129
|
Adam F, Guillin MC, Jandrot-Perrus M. Glycoprotein Ib-mediated platelet activation. A signalling pathway triggered by thrombin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2959-70. [PMID: 12846829 DOI: 10.1046/j.1432-1033.2003.03670.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet activation by thrombin plays a major role in the development of haemostasis and thrombosis. Thrombin activates human platelets by cleaving the N-terminal region of G-protein-coupled protease-activated receptors (PARs). On the other hand, the platelet membrane glycoprotein GPIb acts as a thrombin-binding site and promotes platelet activation by low thrombin concentrations. We present here new evidence in favour of a thrombin receptor function for GPIb. We have selected conditions in which thrombin-GPIb interactions were enhanced by thrombin immobilization. Activation was studied independently of PAR cleavage by using active-site-blocked thrombin. We show that immobilized, proteolytically inactive thrombin induces platelet adhesion and spreading, dense granule secretion and integrin alphaIIbbeta3-dependent platelet-platelet interactions. The pathway must be dependent on GPIb because it is deficient in platelets from a patient with Bernard Soulier syndrome and inhibited by a monoclonal antibody to GPIb (SZ2) or by an excess of glycocalicin. Secreted ADP plays a major role in GPIb-dependent thrombin-induced platelet activation which is, in addition, regulated by cAMP concentration. Thrombin-induced GPIb-dependent platelet activation leads to tyrosyl phosphorylation of several proteins. Inhibition of platelet-platelet interactions and protein tyrosine phosphorylations by inhibitors of phosphatidylinositol 3-kinases and protein kinase C implies that activation of the latter are important steps of the GPIb-coupled signalling pathway triggered by thrombin.
Collapse
|
130
|
Adam F, Verbeuren TJ, Fauchère JL, Guillin MC, Jandrot-Perrus M. Thrombin-induced platelet PAR4 activation: role of glycoprotein Ib and ADP. J Thromb Haemost 2003; 1:798-804. [PMID: 12871418 DOI: 10.1046/j.1538-7836.2003.00138.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thrombin activates human platelets via the cleavage of two protease-activated G-protein coupled receptors (PARs), PAR1 and PAR4 that respond to low and high concentrations of thrombin, respectively. The aim of the present study was to examine the relative contributions of GPIbalpha and ADP receptors in response to thrombin-induced PAR1 and PAR4 stimulation. Platelet responses (aggregation, secretion and calcium mobilization) elicited by low thrombin concentrations were impaired when thrombin interaction with GPIbalpha was blocked. In contrast, blockade of thrombin interaction with GPIbalpha had no effect when PAR4-coupled responses were specifically elicited by high thrombin concentrations in the presence of PAR1 antagonists or after PAR1 desensitization. These results confirmed that unlike PAR1, PAR4 does not require GPIbalpha as a cofactor for thrombin-mediated activation. Both apyrase and selective antagonists of P2Y1 and P2Y12 inhibited PAR1-coupled responses but did not modify PAR4-coupled responses, indicating that in contrast to PAR1, PAR4 signals are not reinforced by ADP secretion and binding to the platelets. These results provide the direct evidence that, in human platelets, GPIbalpha and ADP act in synergy to amplify PAR1 coupled responses while PAR4 is activated independently of GPIbalpha and ADP.
Collapse
Affiliation(s)
- F Adam
- INSERM E9907, Faculté Xavier Bichat, Paris, France
| | | | | | | | | |
Collapse
|
131
|
van Gestel MA, Heemskerk JWM, Slaaf DW, Heijnen VVT, Reneman RS, oude Egbrink MGA. In vivo blockade of platelet ADP receptor P2Y12 reduces embolus and thrombus formation but not thrombus stability. Arterioscler Thromb Vasc Biol 2003; 23:518-23. [PMID: 12615691 DOI: 10.1161/01.atv.0000057809.32354.22] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ADP is a key platelet agonist in thromboembolism. One of the receptors involved in ADP-induced platelet activation is the P2Y12 receptor, which is a target for antithrombotic drugs. METHODS AND RESULTS Here, we present first evidence for a differential role of this receptor in thrombus and embolus formation in vivo. Anesthetized rabbits were treated with the selective P2Y12 antagonists AR-C69931 MX (3 microg x kg x min(-1) IV) or clopidogrel (25 mg/kg orally). Efficacy of these treatments was monitored by aggregation and thrombin generation measurements in blood samples ex vivo. Mesenteric arterioles were mechanically injured; thrombus growth and subsequent embolus formation were visualized by real-time intravital microscopy. AR-C69931 MX and clopidogrel significantly (P<0.05) reduced the total duration of embolization (by 52% and 36%, respectively), and fewer and smaller emboli were produced. The size of the initial thrombus was significantly reduced (P<0.005), but its stability was unaffected: plug formation was still effective. CONCLUSIONS These findings demonstrate that ADP and its P2Y12 receptor are involved in thrombus growth and especially in the formation of emboli on the downstream side of the initial thrombus. This may explain the beneficial effects of P2Y12 receptor antagonists in secondary prevention of ischemic events in patients with arterial thrombosis.
Collapse
Affiliation(s)
- Miriam A van Gestel
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
132
|
Reséndiz JC, Feng S, Ji G, Francis KA, Berndt MC, Kroll MH. Purinergic P2Y12 receptor blockade inhibits shear-induced platelet phosphatidylinositol 3-kinase activation. Mol Pharmacol 2003; 63:639-45. [PMID: 12606772 DOI: 10.1124/mol.63.3.639] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathologically elevated shear stress triggers aspirin-insensitive platelet thrombosis. Signaling mechanisms involved in shear-induced platelet thrombosis are not well understood. To investigate these, we examined the hypothesis that functionally important platelet phosphatidylinositol 3-kinase (PI3-K) activity is stimulated by an in vitro shear stress of 120 dynes/cm(2) (shear rate of 6,000 sec(-1)). Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) production was examined in washed human platelets subjected to pathological shear stress in a cone-plate viscometer. PIP(3) production peaks 30 s after shear begins and is initiated by von Willebrand factor (VWF) binding to the glycoprotein (Gp) Ib-IX-V complex. Inhibiting PI3-K with wortmannin or 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) results in the inhibition of shear-induced platelet aggregation. In resting platelets, class IA PI3-K associates with the tyrosine kinase Syk. Within 30 s of beginning shear, PI3-K-associated Syk becomes tyrosine phosphorylated. Inhibiting Syk activation with piceatannol results in the inhibition of PIP(3) production and aggregation. Selective blockade of the P2Y(12) receptor results in the inhibition of Syk phosphorylation, PIP(3) production, and aggregation. These results indicate that shear-induced VWF binding to platelet GpIb-IX-V stimulates functionally important PI3-K activity. PI3-K activation is signaled by rapid feedback amplification that involves P2Y(12) receptor-mediated activation of Syk.
Collapse
|
133
|
Cho MJ, Liu J, Pestina TI, Steward SA, Jackson CW, Gartner TK. AlphaIIbbeta3-mediated outside-in signaling induced by the agonist peptide LSARLAF utilizes ADP and thromboxane A2 receptors to cause alpha-granule secretion by platelets. J Thromb Haemost 2003; 1:363-73. [PMID: 12871512 DOI: 10.1046/j.1538-7836.2003.00055.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The peptide LSARLAF (LSA) causes alphaIIbbeta3-dependent platelet activation that results in alpha-granule secretion and aggregation. LSARLAF-induced, alphaIIbbeta3-mediated outside-in signaling causing alpha-granule secretion and platelet aggregation was studied using washed mouse platelets. ADP receptor antagonists, enzyme inhibitors, normal platelets and platelets from mice that lack either Galphaq or thromboxane (Tx) A2 receptors were used for this investigation. The results demonstrate that LSA-induced alphaIIbbeta3-mediated signaling producing aggregation of washed platelets is mediated through the release of ADP and thromboxane, which cause alpha-granule release by mediating their effects though Galphaq and/or Gi depending on the level of LSA used to activate the platelets. Specifically, alphaIIbbeta3 elicited aggregation of washed platelets in response to a low level of LSA requires signaling through the ADP receptor P2Y1 and Galphaq, and the ADP receptor P2Y12 and Gi as well as TxA2 receptors. However, this aggregation is independent of Galphaq and TxA2 signaling in response to high LSA concentrations, but is dependent on ADP signaling through its receptor P2Y12, and therefore presumably Gi, regardless of the level of LSA used to activate the platelets. PKC function is required for ADP secretion and the subsequent signaling through P2Y12 regardless of the level of LSA used to activate the platelets. The end point of the LSA-induced alphaIIbbeta3-mediated signaling characterized in this study is alpha-granule secretion, which provides the fibrinogen required for aggregation of washed platelets.
Collapse
Affiliation(s)
- M J Cho
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
134
|
Lova P, Paganini S, Hirsch E, Barberis L, Wymann M, Sinigaglia F, Balduini C, Torti M. A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem 2003; 278:131-8. [PMID: 12407113 DOI: 10.1074/jbc.m204821200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTP-binding protein Rap1B is activated in human platelets upon stimulation of a G(i)-dependent signaling pathway. In this work, we found that inhibition of platelet adenylyl cyclase by dideoxyadenosine or SQ22536 did not cause activation of Rap1B and did not restore Rap1B activation in platelets stimulated by cross-linking of Fcgamma receptor IIA (FcgammaRIIA) in the presence of ADP scavengers. Moreover, elevation of the intracellular cAMP concentration did not impair the G(i)-dependent activation of Rap1B. Two unrelated inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002, totally prevented Rap1B activation in platelets stimulated by cross-linking of FcgammaRIIA, by stimulation of the P2Y(12) receptor for ADP, or by epinephrine. However, in platelets from PI3Kgamma-deficient mice, both ADP and epinephrine were still able to normally stimulate Rap1B activation through a PI3K-dependent mechanism, suggesting the involvement of a different isoform of the enzyme. Moreover, the lack of PI3Kgamma did not prevent the ability of epinephrine to potentiate platelet aggregation through a G(i)-dependent pathway. The inhibitory effect of wortmannin on Rap1B activation was overcome by addition of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), but not PtdIns(3,4)P(2), although both lipids were found to support phosphorylation of Akt. Moreover, PtdIns(3,4,5)P(3) was able to relieve the inhibitory effect of apyrase on FcgammaRIIA-mediated platelet aggregation. We conclude that stimulation of a G(i)-dependent signaling pathway causes activation of the small GTPase Rap1B through the action of the PI3K product PtdIns(3,4,5)P(3), but not PtdIns(3,4)P(2), and that this process may contribute to potentiation of platelet aggregation.
Collapse
Affiliation(s)
- Paolo Lova
- Department of Biochemistry, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
The recent observation that knock-out of protease-activated receptor-4 (PAR4) ablates thrombin signaling in mouse platelets and protects against ferric chloride-induced thrombosis of mouse mesenteric arterioles suggests that thrombin's actions on platelets can play an important role in thrombosis. Complete ablation of thrombin signaling would be difficult to achieve in human beings because human platelets have 2 thrombin receptors that are each capable of mediating transmembrane signaling. However, it is possible that complete ablation of thrombin signaling in platelets is not necessary for an antithrombotic effect. In mouse platelets, PAR3 functions as a cofactor that binds thrombin and promotes productive cleavage of PAR4, and thrombin responses are decreased but not absent in Par3(-/-) platelets. We now report that Par3(-/-) mice were protected against ferric chloride-induced thrombosis of mesenteric arterioles and against thromboplastin-induced pulmonary embolism. Surprisingly, Par3(-/-) and Par4(-/-) mice showed similar degrees of protection in these models and similar prolongation of tail bleeding times. Thus, even a partial decrease in mouse platelet responsiveness to thrombin protected against thrombosis and impaired hemostasis in some settings. These results demonstrate the importance of PAR3's unusual cofactor function and underscore the relative importance of thrombin's actions on platelets in vivo. They also suggest that PAR inhibition might be explored for the prevention or treatment of thrombosis in human beings.
Collapse
Affiliation(s)
- Ethan J Weiss
- Cardiovascular Research Institute, Department of Medicine, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0130, USA
| | | | | | | |
Collapse
|
136
|
Rahman A, True AL, Anwar KN, Ye RD, Voyno-Yasenetskaya TA, Malik AB. Galpha(q) and Gbetagamma regulate PAR-1 signaling of thrombin-induced NF-kappaB activation and ICAM-1 transcription in endothelial cells. Circ Res 2002; 91:398-405. [PMID: 12215488 DOI: 10.1161/01.res.0000033520.95242.a2] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As thrombin binding to the G protein-coupled proteinase activated receptor-1 (PAR-1) induces endothelial adhesivity to leukocytes through NF-kappaB activation and intercellular adhesion molecule-1 (ICAM-1) expression, we determined the signaling pathways mediating the response. Studies showed that the heterotrimeric G proteins, Galpha(q), and the Gbetagamma dimer were key determinants of the PAR-1 agonist peptide (TFLLRNPNDK)-induced NF-kappaB activation and ICAM-1 expression in endothelial cells. Cotransfection of RGS3T, a regulator of G-protein signaling that inhibits Galpha(q), or alpha-transducin (Galpha(t)), a scavenger of the Gbetagamma, markedly decreased NF-kappaB activity induced by PAR-1 activation. We determined the downstream signaling targets activated by Galpha(q) and Gbetagamma that mediate NF-kappaB activation. Expression of the kinase-defective protein kinase C (PKC)-delta mutant inhibited NF-kappaB activation induced by the constitutively active Galpha(q) mutant, but had no effect on NF-kappaB activity induced by Gbeta(1)gamma(2). In related experiments, NF-kappaB as well as ICAM-1 promoter activation induced by Gbeta(1)gamma(2) were inhibited by the expression of the dominant-negative mutant of 85-kDa regulatory subunit of PI 3-kinase; however, the expression of this mutant had no effect on the response induced by activated Galpha(q). Cotransfection of the catalytically inactive Akt mutant inhibited the NF-kappaB activation induced by the constitutively active PI 3-kinase mutant as well as that by the activated forms of Galpha(q) and PKC-delta. These results support a model in which ligation of PAR-1 induces NF-kappaB activation and ICAM-1 transcription by the engagement of parallel Galphaq/PKC-delta and Gbetagamma/PI3-kinase pathways that converge at Akt.
Collapse
Affiliation(s)
- Arshad Rahman
- Department of Pharmacology, College of Medicine, The University of Illinois, Chicago, Ill 60612-7343, USA.
| | | | | | | | | | | |
Collapse
|
137
|
Kim S, Foster C, Lecchi A, Quinton TM, Prosser DM, Jin J, Cattaneo M, Kunapuli SP. Protease-activated receptors 1 and 4 do not stimulate G(i) signaling pathways in the absence of secreted ADP and cause human platelet aggregation independently of G(i) signaling. Blood 2002; 99:3629-36. [PMID: 11986217 DOI: 10.1182/blood.v99.10.3629] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombin is an important agonist for platelet activation and plays a major role in hemostasis and thrombosis. Thrombin activates platelets mainly through protease-activated receptor 1 (PAR1), PAR4, and glycoprotein Ib. Because adenosine diphosphate and thromboxane A(2) have been shown to cause platelet aggregation by concomitant signaling through G(q) and G(i) pathways, we investigated whether coactivation of G(q) and G(i) signaling pathways is the general mechanism by which PAR1 and PAR4 agonists also activate platelet fibrinogen receptor (alphaIIbbeta3). A PAR1-activating peptide, SFLLRN, and PAR4-activating peptides GYPGKF and AYPGKF, caused inhibition of stimulated adenylyl cyclase in human platelets but not in the presence of either Ro 31-8220, a protein kinase C selective inhibitor that abolishes secretion, or AR-C66096, a P2Y12 receptor-selective antagonist; alpha-thrombin-induced inhibition of adenylyl cyclase was also blocked by Ro 31-8220 or AR-C66096. In platelets from a P2Y12 receptor-defective patient, alpha-thrombin, SFLLRN, and GYPGKF also failed to inhibit adenylyl cyclase. In platelets from mice lacking the P2Y12 receptor, neither alpha-thrombin nor AYPGKF caused inhibition of adenylyl cyclase. Furthermore, AR-C66096 caused a rightward shift of human platelet aggregation induced by the lower concentrations of alpha-thrombin and AYPGKF but had no effect at higher concentrations. Similar results were obtained with platelets from mice deficient in the P2Y12. We conclude that (1) thrombin- and thrombin receptor-activating peptide-induced inhibition of adenylyl cyclase in platelets depends exclusively on secreted adenosine diphosphate that stimulates G(i) signaling pathways and (2) thrombin and thrombin receptor-activating peptides cause platelet aggregation independently of G(i) signaling.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Diphosphate/physiology
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Adenylyl Cyclases/metabolism
- Animals
- Blood Platelets/drug effects
- Blood Platelets/physiology
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Humans
- Membrane Proteins
- Mice
- Mice, Knockout
- Oligopeptides/antagonists & inhibitors
- Oligopeptides/pharmacokinetics
- Peptide Fragments/antagonists & inhibitors
- Peptide Fragments/pharmacology
- Platelet Aggregation/drug effects
- Platelet Aggregation Inhibitors/pharmacology
- Purinergic P2 Receptor Antagonists
- Receptor, PAR-1
- Receptor, PAR-2
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2Y12
- Receptors, Thrombin/agonists
- Receptors, Thrombin/antagonists & inhibitors
- Receptors, Thrombin/physiology
- Signal Transduction
- Thrombin/antagonists & inhibitors
- Thrombin/pharmacology
- Yohimbine/pharmacology
Collapse
Affiliation(s)
- Soochong Kim
- Department of Physiology and the Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Lova P, Paganini S, Sinigaglia F, Balduini C, Torti M. A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets. J Biol Chem 2002; 277:12009-15. [PMID: 11815620 DOI: 10.1074/jbc.m111803200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of human platelets by cross-linking of the low affinity receptor for immunoglobulin, FcgammaRIIA, caused the rapid activation of the small GTPase Rap1B, as monitored by accumulation of the GTP-bound form of the protein. This process was totally dependent on the action of secreted ADP since it was completely prevented in the presence of either apyrase or creatine phosphate and creatine phosphokinase. Dose-dependent experiments revealed that the inhibitory effect of ADP scavengers was not related to the reduced increase of cytosolic Ca(2+) concentration in stimulated platelets. Activation of Rap1B induced by clustering of FcgammaRIIA was totally suppressed by AR-C69931MX, a specific antagonist of the G(i)-coupled ADP receptor P2Y12, but was not affected by blockade of the G(q)-coupled receptor, P2Y1. Similarly, direct stimulation of platelets with ADP induced the rapid activation of Rap1B. Pharmacological blockade of the P2Y1 receptor totally prevented ADP-induced Ca(2+) mobilization but did not affect activation of Rap1B. By contrast, prevention of ADP binding to the P2Y12 receptor totally suppressed activation of Rap1B without affecting Ca(2+) signaling. In platelets stimulated by cross-linking of FcgammaRIIA, inhibition of Rap1B activation by ADP scavengers could be overcome by the simultaneous recruitment of the G(i)-coupled alpha(2A)-adrenergic receptor by epinephrine. By contrast, serotonin, which binds to a G(q)-coupled receptor, could not restore activation of Rap1B. When tested alone, epinephrine was found to be able to induce GTP binding to Rap1B, whereas serotonin produced only a slight effect. Finally, activation of Rap1B induced by stimulation of the G(q)-coupled thromboxane A(2) receptor by was completely inhibited by ADP scavengers under conditions in which intracellular Ca(2+) mobilization was unaffected. Inhibition of -induced Rap1B activation was also observed upon blockade of the P2Y12 but not of the P2Y1 receptor for ADP. These results demonstrate that stimulation of a G(i)-dependent signaling pathway by either ADP of epinephrine is necessary and sufficient to activate the small GTPase Rap1B.
Collapse
Affiliation(s)
- Paolo Lova
- Department of Biochemistry, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
139
|
Cho MJ, Pestina TI, Steward SA, Lowell CA, Jackson CW, Gartner TK. Role of the Src family kinase Lyn in TxA2 production, adenosine diphosphate secretion, Akt phosphorylation, and irreversible aggregation in platelets stimulated with gamma-thrombin. Blood 2002; 99:2442-7. [PMID: 11895777 DOI: 10.1182/blood.v99.7.2442] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the Src family of kinases are abundant in platelets. Although their localization is known, their role(s) in platelet function are not well understood. Lyn is a Src-family kinase that participates in signal transduction pathways elicited by collagen-related peptide; it has also been implicated through biochemical studies in the regulation of von Willebrand factor signaling. Here, we provide evidence that Lyn plays a role in gamma-thrombin activation of platelets. Unlike the wild-type platelets, platelets from Lyn-deficient mice do not undergo irreversible aggregation, produce thromboxane A2, or secrete adenosine diphosphate in response to submaximal gamma-thrombin concentrations that cause secretion-dependent irreversible aggregation. Phosphorylation of Akt, a downstream effector of phosphatidylinositol 3-kinase, also requires a higher concentration of gamma-thrombin in Lyn-deficient platelets than in wild-type platelets. These findings demonstrate that Lyn signaling is required for thrombin induction of secretion-dependent platelet aggregation. Specifically, Lyn is required under these conditions to enable thrombin-induced TxA2 production and adenosine diphosphate secretion, necessary steps in secretion-dependent platelet aggregation.
Collapse
Affiliation(s)
- Moon J Cho
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN 38152, USA
| | | | | | | | | | | |
Collapse
|
140
|
Graff J, Klinkhardt U, Schini-Kerth VB, Harder S, Franz N, Bassus S, Kirchmaier CM. Close relationship between the platelet activation marker CD62 and the granular release of platelet-derived growth factor. J Pharmacol Exp Ther 2002; 300:952-7. [PMID: 11861803 DOI: 10.1124/jpet.300.3.952] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of CD62 on the surface of platelets is considered to be an indicator of platelet degranulation and secretion. We characterized the relationship between CD62 expression and platelet-derived growth factor (PDGF)(AB) and PDGF(BB) secretion in response to thrombin-receptor activating peptide (TRAP). The principal findings were 1) expression of CD62 as a constituent of platelet alpha-granule membrane and secretion of PDGF, an important ingredient of alpha-granules, can be stimulated by TRAP-induced activation in a dose-dependent fashion; 2) the activation marker and secretion product are closely correlated with each other; and 3) changes in the CD62 expression induced by a drug, namely clopidogrel, or by a disease, namely diabetes, are paralleled by changes in PDGF secretion. Although CD62 is perceived as an activation marker of platelets indicating enhanced aggregability and secretion of alpha-granular content, the proof that the CD62 status and its modifications reflect directly the actual secretion of the most important platelet mitogen, PDGF, has so far not been given. This ex vivo-in vitro study shows that at least for the activation pathway provided by the PAR-1 receptor for which TRAP is the selective agonist, CD62 expression on platelets could be a surrogate for their secretory activity.
Collapse
Affiliation(s)
- Jochen Graff
- Institute of Clinical Pharmacology, University Hospital, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
141
|
Vial C, Rolf MG, Mahaut-Smith MP, Evans RJ. A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors. Br J Pharmacol 2002; 135:363-72. [PMID: 11815371 PMCID: PMC1573149 DOI: 10.1038/sj.bjp.0704486] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have examined the role of ATP-dependent P2X(1) receptors in megakaryocytes (MKs) and platelets using receptor-deficient mice and selective agonists. Alpha,beta-meATP- and ATP- evoked ionotropic inward currents were absent in whole-cell recordings from MKs of P2X(1)(-/-) mice, demonstrating that the P2X receptor phenotype in MKs, and by inference, platelets, is due to expression of homomeric P2X(1) receptors. P2X(1) receptor deficiency had no effect on MK (CD 41) numbers or size distribution, showing that it is not essential for normal MK development. P2Y receptor-stimulated [Ca(2+)](i) responses were unaffected in MKs from P2X(1)(-/-) mice, however the inward cation current associated with Ca(2+) release was reduced by approximately 50%, suggesting an interaction between the membrane conductances activated by P2X(1) and P2Y receptors. Interaction between P2X(1) and P2Y receptors in human platelets was also examined using [Ca(2+)](i) recordings from cell suspensions. Alpha,beta-meATP (10 microM) evoked a rapid transient P2X(1) receptor-mediated increase in [Ca(2+)](i), whereas ADP-(10 microM) evoked P2Y receptor responses were slower, peaked at a higher level and remained elevated for longer periods. Co-application of alpha, beta-meATP and ADP resulted in marked acceleration and amplification of the peak [Ca(2+)](i) response. We conclude that ionotropic P2X(1) receptors may play a priming role in the subsequent activation of metabotropic P2Y receptors during platelet stimulation.
Collapse
Affiliation(s)
- Catherine Vial
- Department of Cell Physiology & Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, U.K
| | - Michael G Rolf
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, U.K
| | - Martyn P Mahaut-Smith
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, U.K
| | - Richard J Evans
- Department of Cell Physiology & Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, U.K
- Author for correspondence:
| |
Collapse
|
142
|
Yap CL, Anderson KE, Hughan SC, Dopheide SM, Salem HH, Jackson SP. Essential role for phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin alpha(IIb)beta(3). Blood 2002; 99:151-8. [PMID: 11756165 DOI: 10.1182/blood.v99.1.151] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet adhesion and aggregation at sites of vascular injury are critically dependent on the interaction between von Willebrand factor (VWF) and 2 major platelet adhesion receptors, glycoprotein (GP) Ib/V/IX and integrin alpha(IIb)beta(3). GP Ib/V/IX binding to VWF mediates platelet tethering and translocation, whereas activation of integrin alpha(IIb)beta(3) promotes cell arrest. To date, the signaling pathways used by the VWF-GP Ib/V/IX interaction to promote activation of integrin alpha(IIb)beta(3), particularly under shear, have remained poorly defined. In this study, the potential involvement of type 1 phosphoinositide (PI) 3-kinases in this process was investigated. Results show that platelet adhesion and spreading on immobilized VWF results in a specific increase in the PI 3-kinase lipid product, PtdIns(3,4)P(2). Under static conditions, inhibiting PI 3-kinase with LY294002 or wortmannin did not prevent platelet adhesion, integrin alpha(IIb)beta(3) activation, or platelet spreading although it significantly delayed the onset of these events. In contrast, PI 3-kinase inhibition under shear dramatically reduced both platelet adhesion and spreading. Real-time analysis of intracellular calcium demonstrated that under static conditions inhibiting PI 3-kinase delayed the onset of intracellular fluxes in adherent platelets, but did not affect the final magnitude of the calcium response. However, under shear, inhibiting PI 3-kinase dramatically reduced intracellular calcium mobilization and integrin alpha(IIb)beta(3) activation, resulting in impaired thrombus growth. The studies demonstrate a shear-dependent role for PI 3-kinase in promoting platelet adhesion on immobilized VWF. Under static conditions, platelets appear to mobilize intracellular calcium through both PI 3-kinase-dependent and -independent mechanisms, whereas under shear PI 3-kinase is indispensable for VWF-induced calcium release.
Collapse
Affiliation(s)
- Cindy L Yap
- Australian Centre for Blood Diseases, Department of Medicine, Monash Medical School, Box Hill Hospital, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
143
|
Abstract
Adenosine diphosphate (ADP) plays a crucial role in hemostasis and thrombosis, and its receptors are potential targets for antithrombotic drugs. Two G-protein-coupled P2 receptors contribute to platelet aggregation: the P2Y1 receptor initiates aggregation through mobilization of calcium stores, whereas the P2Y12 receptor coupled to adenylyl cyclase inhibition is essential for a full aggregation response to ADP and the stabilization of aggregates. The latter is defective in certain patients with a selective congenital deficiency of aggregation to ADP. It is also the target of the antithrombotic drug clopidogrel and of adenosine triphosphate analogues and other compounds currently under evaluation. In addition, the P2X1 ionotropic receptor is present in platelets, but its role is not yet completely known. Studies in P2Y1-knockout mice and experimental thrombosis models using selective P2Y1 antagonists have shown that the P2Y1 receptor, like the P2Y12 receptor, is a potential target for new antithrombotic drugs.
Collapse
Affiliation(s)
- C Gachet
- Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang-Alsace, Strasbourg, France.
| |
Collapse
|
144
|
Atkinson BT, Stafford MJ, Pears CJ, Watson SP. Signalling events underlying platelet aggregation induced by the glycoprotein VI agonist convulxin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5242-8. [PMID: 11606185 DOI: 10.1046/j.0014-2956.2001.02448.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the role of secretion and intracellular signalling events in aggregation induced by the glycoprotein (GP)VI-selective snake venom toxin convulxin and by collagen. We demonstrate that aggregation induced by threshold concentrations of convulxin undergoes synergy with ADP acting via the P2Y12 receptor whereas there is no synergy via the P2Y1 receptor or with thromboxanes. On the other hand, apyrase, the P2Y12 receptor antagonist, AR-C67085, and indomethacin only marginally inhibit aggregation induced by convulxin. In comparison, these inhibitors severely attenuate the response to collagen. In order to investigate whether the weak inhibitory action against convulxin is due to release of agonists other than ADP from dense granules, experiments were performed on murine platelets deficient in this organelle (pearl mice platelets). A slightly greater reduction in aggregation induced by convulxin was observed in pearl platelets than in the presence of inhibitors of ADP, but a maximal response was still attained. Importantly, inhibition of protein kinase C further reduced the response to convulxin in pearl platelets demonstrating a direct role for the kinase in aggregation. Chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N,N',N'-tetraacetic acid (acetoxymethyl)ester (BAPTA-AM) abolished aggregation induced by convulxin under all conditions. Activation of phospholipase C by convulxin was potentiated by ADP acting through the P2Y12 receptor. In conclusion, we show that Ca2+ and protein kinase C, but not release of the secondary agonists ADP and thromboxane A2, are required for full aggregation induced by convulxin, whereas the response induced by collagen shows a much greater dependence on secretion of secondary agonists.
Collapse
Affiliation(s)
- B T Atkinson
- Department of Pharmacology, University of Oxford, UK.
| | | | | | | |
Collapse
|
145
|
Kauffenstein G, Bergmeier W, Eckly A, Ohlmann P, Léon C, Cazenave JP, Nieswandt B, Gachet C. The P2Y(12) receptor induces platelet aggregation through weak activation of the alpha(IIb)beta(3) integrin--a phosphoinositide 3-kinase-dependent mechanism. FEBS Lett 2001; 505:281-90. [PMID: 11566191 DOI: 10.1016/s0014-5793(01)02824-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High concentrations of adenosine-5'-diphosphate ADP are able to induce partial aggregation without shape change of P2Y(1) receptor-deficient mouse platelets through activation of the P2Y(12) receptor. In the present work we studied the transduction pathways selectively involved in this phenomenon. Flow cytometric analyses using R-phycoerythrin-conjugated JON/A antibody (JON/A-PE), an antibody which recognizes activated mouse alpha(IIb)beta(3) integrin, revealed a low level activation of alpha(IIb)beta(3) in P2Y(1) receptor-deficient platelets in response to 100 microM ADP or 1 microM 2MeS-ADP. Adrenaline induced no such activation but strongly potentiated the effect of ADP in a dose-dependent manner. Global phosphorylation of (32)P-labeled platelets showed that P2Y(12)-mediated aggregation was not accompanied by an increase in the phosphorylation of myosin light chain (P(20)) or pleckstrin (P(47)) and was not affected by the protein kinase C (PKC) inhibitor staurosporine. On the other hand, two unrelated phosphoinositide 3-kinase inhibitors, wortmannin and LY294002, inhibited this aggregation. Our results indicate that (i) the P2Y(12) receptor is able to trigger a P2Y(1) receptor-independent inside-out signal leading to alpha(IIb)beta(3) integrin activation and platelet aggregation, (ii) ADP and adrenaline use different signaling pathways which synergize to activate the alpha(IIb)beta(3) integrin, and (iii) the transduction pathway triggered by the P2Y(12) receptor is independent of PKC but dependent on phosphoinositide 3-kinase.
Collapse
Affiliation(s)
- G Kauffenstein
- INSERM U.311, Etablissement Français du Sang-Alsace, 10 rue Spielmann, 67065 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Platelet aggregation is initiated by receptor activation coupled to intracellular signaling leading to activation of integrin alphaIIbbeta3. Recent advances in the study of platelet receptors for collagen, von Willebrand factor, thrombin, and adenosine diphosphate are providing new insights into the mechanisms of platelet aggregation.
Collapse
Affiliation(s)
- B Savage
- The Roon Research Center for Arteriosclerosis and Thrombosis, Division of Experimental Hemostasis and Thrombosis, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
147
|
Hirsch E, Bosco O, Tropel P, Laffargue M, Calvez R, Altruda F, Wymann M, Montrucchio G. Resistance to thromboembolism in PI3Kgamma-deficient mice. FASEB J 2001; 15:2019-21. [PMID: 11511514 DOI: 10.1096/fj.00-0810fje] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Platelet aggregation and subsequent thrombosis are the major cause of ischemic diseases such as heart attack and stroke. ADP, acting via G protein-coupled receptors (GPCRs), is an important signal in thrombus formation and involves activation of phosphoinositide 3-kinases (PI3K). When platelets from mice lacking the G protein-activated PI3Kgamma isoform were stimulated with ADP, aggregation was impaired. Collagen or thrombin, however, evoked a normal response. ADP stimulation of PI3Kgamma-deficient platelets resulted in decreased PKB/Akt phosphorylation and alpha(IIb)beta(3) fibrinogen receptor activation. These effects did not influence bleeding time but protected PI3Kgamma-null mice from death caused by ADP-induced platelet-dependent thromboembolic vascular occlusion. This result demonstrates an unsuspected, well-defined role for PI3Kgamma downstream of ADP and suggests that pharmacological targeting of PI3Kgamma has a potential use as antithrombotic therapy.
Collapse
Affiliation(s)
- E Hirsch
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Via Santina 5 bis, 10126 Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Jantzen HM, Milstone DS, Gousset L, Conley PB, Mortensen RM. Impaired activation of murine platelets lacking G alpha(i2). J Clin Invest 2001; 108:477-83. [PMID: 11489941 PMCID: PMC209362 DOI: 10.1172/jci12818] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The intracellular signaling pathways by which G protein-coupled receptors on the platelet surface initiate aggregation, a critical process for hemostasis and thrombosis, are not well understood. In particular, the contribution of the G(i) pathway has not been directly addressed. We have investigated the activation of platelets from mice in which the gene for the predominant platelet G alpha(i) subtype, G alpha(i2), has been disrupted. In intact platelets from G alpha(i2)-deficient mice, the inhibition of adenylyl cyclase by ADP was found to be partially impaired compared with wild-type platelets. Moreover, both ADP-dependent platelet aggregation and the activation of the integrin alpha IIb beta 3 (GPIIb-IIIa) were strongly reduced in platelets from G alpha(i2)-deficient mice. In addition, G alpha(i2)-deficient platelets displayed impaired activation at low thrombin concentrations. This defect was mimicked by blocking the adenylyl cyclase--coupled platelet ADP receptor (P2Y(12)) on wild-type platelets with a selective antagonist. These observations suggest that G alpha(i2) is involved in the inhibition of platelet adenylyl cyclase in vivo and is a critical component of the signaling pathway for integrin activation by ADP, resulting in platelet aggregation. In addition, thrombin-dependent activation of mouse platelets is mediated, at least in part, by secreted ADP acting on the G alpha(i2)-linked ADP receptor.
Collapse
Affiliation(s)
- H M Jantzen
- COR Therapeutics Inc., South San Francisco, California 94080, USA.
| | | | | | | | | |
Collapse
|
149
|
Greco NJ, Tonon G, Chen W, Luo X, Dalal R, Jamieson GA. Novel structurally altered P(2X1) receptor is preferentially activated by adenosine diphosphate in platelets and megakaryocytic cells. Blood 2001; 98:100-7. [PMID: 11418468 DOI: 10.1182/blood.v98.1.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experimental and clinical data suggest the presence of multiple types of adenosine diphosphate (ADP) receptors, one coupled to ligand-gated cation channels (P(2X)) and others coupled to G-protein-coupled (P(2Y)) receptors. This report identifies cDNA for a structurally altered P(2X1)-like receptor in megakaryocytic cell lines (Dami and CMK 11-5) and platelets that, when transfected into nonresponsive 1321 cells, confers a specific sensitivity to ADP with the pharmacologic rank order of ADP > > ATP > > > alpha,beta-methylene-ATP as measured by Ca(++) influx. This receptor (P(2X1del)) contains a deletion of 17 amino acids (PALLREAENFTLFIKNS) that includes an NFT consensus sequence for N-linked glycosylation. Glycosylated forms of the P(2X1del) and P(2X1wt) receptors were indistinguishable electrophoretically by Western blot or by immunoprecipitation using available antihuman and antirat antibodies. These results indicate that the expression of the P(2X1del) receptor results in an influx of Ca(++) induced by ADP. Expression of P(2X1del) receptor homomeric subunits is sufficient to express a receptor preferentially activated by ADP and suggests that this altered form, alone or in combination with P(2X1wt) receptors, is a component of an ADP-activated ion channel.
Collapse
MESH Headings
- Adenosine Diphosphate/pharmacology
- Blood Platelets/metabolism
- Calcium Signaling/drug effects
- Dose-Response Relationship, Drug
- Humans
- Megakaryocytes/metabolism
- Polymerase Chain Reaction
- Receptors, Purinergic/drug effects
- Receptors, Purinergic/genetics
- Receptors, Purinergic/metabolism
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X
- Sequence Homology, Nucleic Acid
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- N J Greco
- Platelet Biology and the Product Development Departments, American Red Cross, Rockville, MD, USA.
| | | | | | | | | | | |
Collapse
|
150
|
Foster CJ, Prosser DM, Agans JM, Zhai Y, Smith MD, Lachowicz JE, Zhang FL, Gustafson E, Monsma FJ, Wiekowski MT, Abbondanzo SJ, Cook DN, Bayne ML, Lira SA, Chintala MS. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 2001; 107:1591-8. [PMID: 11413167 PMCID: PMC200194 DOI: 10.1172/jci12242] [Citation(s) in RCA: 329] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ADP plays a critical role in modulating thrombosis and hemostasis. ADP initiates platelet aggregation by simultaneous activation of two G protein-coupled receptors, P2Y1 and P2Y12. Activation of P2Y1 activates phospholipase C and triggers shape change, while P2Y12 couples to Gi to reduce adenylyl cyclase activity. P2Y12 has been shown to be the target of the thienopyridine drugs, ticlopidine and clopidogrel. Recently, we cloned a human orphan receptor, SP1999, highly expressed in brain and platelets, which responded to ADP and had a pharmacological profile similar to that of P2Y12. To determine whether SP1999 is P2Y12, we generated SP1999-null mice. These mice appear normal, but they exhibit highly prolonged bleeding times, and their platelets aggregate poorly in responses to ADP and display a reduced sensitivity to thrombin and collagen. These platelets retain normal shape change and calcium flux in response to ADP but fail to inhibit adenylyl cyclase. In addition, oral clopidogrel does not inhibit aggregation responses to ADP in these mice. These results demonstrate that SP1999 is indeed the elusive receptor, P2Y12. Identification of the target receptor of the thienopyridine drugs affords us a better understanding of platelet function and provides tools that may lead to the discovery of more effective antithrombotic therapies.
Collapse
Affiliation(s)
- C J Foster
- Department of Central Nervous System and Cardiovascular Pharmacology, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|