101
|
Jermiin LS, Catullo RA, Holland BR. A new phylogenetic protocol: dealing with model misspecification and confirmation bias in molecular phylogenetics. NAR Genom Bioinform 2020; 2:lqaa041. [PMID: 33575594 PMCID: PMC7671319 DOI: 10.1093/nargab/lqaa041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular phylogenetics plays a key role in comparative genomics and has increasingly significant impacts on science, industry, government, public health and society. In this paper, we posit that the current phylogenetic protocol is missing two critical steps, and that their absence allows model misspecification and confirmation bias to unduly influence phylogenetic estimates. Based on the potential offered by well-established but under-used procedures, such as assessment of phylogenetic assumptions and tests of goodness of fit, we introduce a new phylogenetic protocol that will reduce confirmation bias and increase the accuracy of phylogenetic estimates.
Collapse
Affiliation(s)
- Lars S Jermiin
- CSIRO Land & Water, Canberra, ACT 2601, Australia
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- School of Biology & Environment Science, University College Dublin, Belfield, Dublin 4, Ireland
- Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Renee A Catullo
- CSIRO Land & Water, Canberra, ACT 2601, Australia
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- School of Science and Health & Hawkesbury Institute of the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Barbara R Holland
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
102
|
Sun M, Folk RA, Gitzendanner MA, Soltis PS, Chen Z, Soltis DE, Guralnick RP. Estimating rates and patterns of diversification with incomplete sampling: a case study in the rosids. AMERICAN JOURNAL OF BOTANY 2020; 107:895-909. [PMID: 32519354 PMCID: PMC7384126 DOI: 10.1002/ajb2.1479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/03/2020] [Indexed: 05/03/2023]
Abstract
PREMISE Recent advances in generating large-scale phylogenies enable broad-scale estimation of species diversification. These now common approaches typically are characterized by (1) incomplete species coverage without explicit sampling methodologies and/or (2) sparse backbone representation, and usually rely on presumed phylogenetic placements to account for species without molecular data. We used empirical examples to examine the effects of incomplete sampling on diversification estimation and provide constructive suggestions to ecologists and evolutionary biologists based on those results. METHODS We used a supermatrix for rosids and one well-sampled subclade (Cucurbitaceae) as empirical case studies. We compared results using these large phylogenies with those based on a previously inferred, smaller supermatrix and on a synthetic tree resource with complete taxonomic coverage. Finally, we simulated random and representative taxon sampling and explored the impact of sampling on three commonly used methods, both parametric (RPANDA and BAMM) and semiparametric (DR). RESULTS We found that the impact of sampling on diversification estimates was idiosyncratic and often strong. Compared to full empirical sampling, representative and random sampling schemes either depressed or inflated speciation rates, depending on methods and sampling schemes. No method was entirely robust to poor sampling, but BAMM was least sensitive to moderate levels of missing taxa. CONCLUSIONS We suggest caution against uncritical modeling of missing taxa using taxonomic data for poorly sampled trees and in the use of summary backbone trees and other data sets with high representative bias, and we stress the importance of explicit sampling methodologies in macroevolutionary studies.
Collapse
Affiliation(s)
- Miao Sun
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
- State Key Laboratory of Systematic and Evolutionary BotanyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- Department of BioscienceAarhus UniversityAarhus8000Denmark
| | - Ryan A. Folk
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi39762USA
| | - Matthew A. Gitzendanner
- Department of BiologyUniversity of FloridaGainesvilleFlorida32611USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFlorida32608USA
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary BotanyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Douglas E. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
- Department of BiologyUniversity of FloridaGainesvilleFlorida32611USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFlorida32608USA
| | - Robert P. Guralnick
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
| |
Collapse
|
103
|
Stull GW, Soltis PS, Soltis DE, Gitzendanner MA, Smith SA. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. AMERICAN JOURNAL OF BOTANY 2020; 107:790-805. [PMID: 32406108 DOI: 10.1002/ajb2.1468] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
PREMISE Discordance between nuclear and organellar phylogenies (cytonuclear discordance) is a well-documented phenomenon at shallow evolutionary levels but has been poorly investigated at deep levels of plant phylogeny. Determining the extent of cytonuclear discordance across major plant lineages is essential not only for elucidating evolutionary processes, but also for evaluating the currently used framework of plant phylogeny, which is largely based on the plastid genome. METHODS We present a phylogenomic examination of a major angiosperm clade (Asteridae) based on sequence data from the nuclear, plastid, and mitochondrial genomes as a means of evaluating currently accepted relationships inferred from the plastome and exploring potential sources of genomic conflict in this group. RESULTS We recovered at least five instances of well-supported cytonuclear discordance concerning the placements of major asterid lineages (i.e., Ericales, Oncothecaceae, Aquifoliales, Cassinopsis, and Icacinaceae). We attribute this conflict to a combination of incomplete lineage sorting and hybridization, the latter supported in part by previously inferred whole-genome duplications. CONCLUSIONS Our results challenge several long-standing hypotheses of asterid relationships and have implications for morphological character evolution and for the importance of ancient whole-genome duplications in early asterid evolution. These findings also highlight the value of reevaluating broad-scale angiosperm and green-plant phylogeny with nuclear genomic data.
Collapse
Affiliation(s)
- Gregory W Stull
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
- Department of Botany, Smithsonian Institution, Washington, D.C., 20013, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | | | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
104
|
Wohl J, Petersen M. Functional expression and characterization of cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis in Physcomitrella patens. PLANT CELL REPORTS 2020; 39:597-607. [PMID: 32055924 PMCID: PMC7165133 DOI: 10.1007/s00299-020-02517-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/02/2020] [Indexed: 05/05/2023]
Abstract
Cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis (AaC4H) was functionally expressed in the moss Physcomitrella patens and characterized at biochemical and molecular levels. Cinnamic acid 4-hydroxylase (C4H), a cytochrome P450-dependent hydroxylase, catalyzes the formation of 4-coumaric acid (=4-hydroxycinnamic acid) from trans-cinnamic acid. In the hornwort Anthoceros agrestis (Aa), this enzyme is supposed to be involved in the biosynthesis of rosmarinic acid (a caffeic acid ester of 3-(3,4-dihydroxyphenyl)lactic acid) and other related compounds. The coding sequence of AaC4H (CYP73A260) was expressed in the moss Physcomitrella patens (Pp_AaC4H). Protein extracts from the transformed moss showed considerably increased C4H activity driven by NADPH:cytochrome P450 reductase of the moss. Since Physcomitrella has own putative cinnamic acid 4-hydroxylases, enzyme characterization was carried out in parallel with the untransformed Physcomitrella wild type (Pp_WT). Apparent Km-values for cinnamic acid and NADPH were determined to be at 17.3 µM and 88.0 µM for Pp_AaC4H and 25.1 µM and 92.3 µM for Pp_WT, respectively. Expression levels of AaC4H as well as two Physcomitrella patens C4H isoforms were analyzed by quantitative real-time PCR. While PpC4H_1 displayed constantly low levels of expression during the whole 21-day culture period, AaC4H and PpC4H_2 increased their expression during the first 6-8 days of the culture period and then decreased again. This work describes the biochemical in vitro characterization of a cytochrome P450-dependent enzyme, namely C4H, heterologously expressed in the haploid model plant Physcomitrella patens.
Collapse
Affiliation(s)
- Julia Wohl
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Maike Petersen
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany.
| |
Collapse
|
105
|
Wohl J, Petersen M. Functional expression and characterization of cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis in Physcomitrella patens. PLANT CELL REPORTS 2020; 39:597-607. [PMID: 32055924 DOI: 10.1007/s00299-020-02517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/02/2020] [Indexed: 05/21/2023]
Abstract
Cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis (AaC4H) was functionally expressed in the moss Physcomitrella patens and characterized at biochemical and molecular levels. Cinnamic acid 4-hydroxylase (C4H), a cytochrome P450-dependent hydroxylase, catalyzes the formation of 4-coumaric acid (=4-hydroxycinnamic acid) from trans-cinnamic acid. In the hornwort Anthoceros agrestis (Aa), this enzyme is supposed to be involved in the biosynthesis of rosmarinic acid (a caffeic acid ester of 3-(3,4-dihydroxyphenyl)lactic acid) and other related compounds. The coding sequence of AaC4H (CYP73A260) was expressed in the moss Physcomitrella patens (Pp_AaC4H). Protein extracts from the transformed moss showed considerably increased C4H activity driven by NADPH:cytochrome P450 reductase of the moss. Since Physcomitrella has own putative cinnamic acid 4-hydroxylases, enzyme characterization was carried out in parallel with the untransformed Physcomitrella wild type (Pp_WT). Apparent Km-values for cinnamic acid and NADPH were determined to be at 17.3 µM and 88.0 µM for Pp_AaC4H and 25.1 µM and 92.3 µM for Pp_WT, respectively. Expression levels of AaC4H as well as two Physcomitrella patens C4H isoforms were analyzed by quantitative real-time PCR. While PpC4H_1 displayed constantly low levels of expression during the whole 21-day culture period, AaC4H and PpC4H_2 increased their expression during the first 6-8 days of the culture period and then decreased again. This work describes the biochemical in vitro characterization of a cytochrome P450-dependent enzyme, namely C4H, heterologously expressed in the haploid model plant Physcomitrella patens.
Collapse
Affiliation(s)
- Julia Wohl
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Maike Petersen
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany.
| |
Collapse
|
106
|
Chernova T, Ageeva M, Mikshina P, Trofimova O, Kozlova L, Lev-Yadun S, Gorshkova T. The Living Fossil Psilotum nudum Has Cortical Fibers With Mannan-Based Cell Wall Matrix. FRONTIERS IN PLANT SCIENCE 2020; 11:488. [PMID: 32411161 PMCID: PMC7199214 DOI: 10.3389/fpls.2020.00488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/31/2020] [Indexed: 05/13/2023]
Abstract
Cell wall thickening and development of secondary cell walls was a major step in plant terrestrialization that provided the mechanical support, effective functioning of water-conducting elements and fortification of the surface tissues. Despite its importance, the diversity, emergence and evolution of secondary cell walls in early land plants have been characterized quite poorly. Secondary cell walls can be present in different cell types with fibers being among the major ones. The necessity for mechanical support upon increasing plant height is widely recognized; however, identification of fibers in land plants of early taxa is quite limited. In an effort to partially fill this gap, we studied the fibers and the composition of cell walls in stems of the sporophyte of the living fossil Psilotum nudum. Various types of light microscopy, combined with partial tissue maceration demonstrated that this perennial, rootless, fern-like vascular plant, has abundant fibers located in the middle cortex. Extensive immunodetection of cell wall polymers together with various staining and monosaccharide analysis of cell wall constituents revealed that in P. nudum, the secondary cell wall of its cortical fibers is distinct from that of its tracheids. Primary cell walls of all tissues in P. nudum shoots are based on mannan, which is also common in other extant early land plants. Besides, the primary cell wall contains epitope for LM15 specific for xyloglucan and JIM7 that binds methylesterified homogalacturonans, two polymers common in the primary cell walls of higher plants. Xylan and lignin were detected as the major polymers in the secondary cell walls of P. nudum tracheids. However, the secondary cell wall in its cortical fibers is quite similar to their primary cell walls, i.e., enriched in mannan. The innermost secondary cell wall layer of its fibers but not its tracheids has epitope to bind the LM15, LM6, and LM5 antibodies recognizing, respectively, xyloglucan, arabinan and galactan. Together, our data provide the first description of a mannan-based cell wall in sclerenchyma fibers, and demonstrate in detail that the composition and structure of secondary cell wall in early land plants are not uniform in different tissues.
Collapse
Affiliation(s)
- Tatyana Chernova
- The Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Marina Ageeva
- Microscopy Cabinet, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Polina Mikshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Oksana Trofimova
- The Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Liudmila Kozlova
- The Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, Israel
| | - Tatyana Gorshkova
- The Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
107
|
Sousa F, Civáň P, Brazão J, Foster PG, Cox CJ. The mitochondrial phylogeny of land plants shows support for Setaphyta under composition-heterogeneous substitution models. PeerJ 2020; 8:e8995. [PMID: 32377448 PMCID: PMC7194085 DOI: 10.7717/peerj.8995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/26/2020] [Indexed: 01/04/2023] Open
Abstract
Congruence among analyses of plant genomic data partitions (nuclear, chloroplast and mitochondrial) is a strong indicator of accuracy in plant molecular phylogenetics. Recent analyses of both nuclear and chloroplast genome data of land plants (embryophytes) have, controversially, been shown to support monophyly of both bryophytes (mosses, liverworts, and hornworts) and tracheophytes (lycopods, ferns, and seed plants), with mosses and liverworts forming the clade Setaphyta. However, relationships inferred from mitochondria are incongruent with these results, and typically indicate paraphyly of bryophytes with liverworts alone resolved as the earliest-branching land plant group. Here, we reconstruct the mitochondrial land plant phylogeny from a newly compiled data set. When among-lineage composition heterogeneity is accounted for in analyses of codon-degenerate nucleotide and amino acid data, the clade Setaphyta is recovered with high support, and hornworts are supported as the earliest-branching lineage of land plants. These new mitochondrial analyses demonstrate partial congruence with current hypotheses based on nuclear and chloroplast genome data, and provide further incentive for revision of how plants arose on land.
Collapse
Affiliation(s)
- Filipe Sousa
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Peter Civáň
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
- INRAE-Université Clermont-Auvergne, Clermont-Ferrand, France
| | - João Brazão
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Peter G. Foster
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Cymon J. Cox
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
108
|
The draft mitochondrial genome of Magnolia biondii and mitochondrial phylogenomics of angiosperms. PLoS One 2020; 15:e0231020. [PMID: 32294100 PMCID: PMC7159230 DOI: 10.1371/journal.pone.0231020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
The mitochondrial genomes of flowering plants are well known for their large size, variable coding-gene set and fluid genome structure. The available mitochondrial genomes of the early angiosperms show extreme genetic diversity in genome size, structure, and sequences, such as rampant HGTs in Amborella mt genome, numerous repeated sequences in Nymphaea mt genome, and conserved gene evolution in Liriodendron mt genome. However, currently available early angiosperm mt genomes are still limited, hampering us from obtaining an overall picture of the mitogenomic evolution in angiosperms. Here we sequenced and assembled the draft mitochondrial genome of Magnolia biondii Pamp. from Magnoliaceae (magnoliids) using Oxford Nanopore sequencing technology. We recovered a single linear mitochondrial contig of 967,100 bp with an average read coverage of 122 × and a GC content of 46.6%. This draft mitochondrial genome contains a rich 64-gene set, similar to those of Liriodendron and Nymphaea, including 41 protein-coding genes, 20 tRNAs, and 3 rRNAs. Twenty cis-spliced and five trans-spliced introns break ten protein-coding genes in the Magnolia mt genome. Repeated sequences account for 27% of the draft genome, with 17 out of the 1,145 repeats showing recombination evidence. Although partially assembled, the approximately 1-Mb mt genome of Magnolia is still among the largest in angiosperms, which is possibly due to the expansion of repeated sequences, retention of ancestral mtDNAs, and the incorporation of nuclear genome sequences. Mitochondrial phylogenomic analysis of the concatenated datasets of 38 conserved protein-coding genes from 91 representatives of angiosperm species supports the sister relationship of magnoliids with monocots and eudicots, which is congruent with plastid evidence.
Collapse
|
109
|
Shen J, Zhang X, Landis JB, Zhang H, Deng T, Sun H, Wang H. Plastome Evolution in Dolomiaea (Asteraceae, Cardueae) Using Phylogenomic and Comparative Analyses. FRONTIERS IN PLANT SCIENCE 2020; 11:376. [PMID: 32351518 PMCID: PMC7174903 DOI: 10.3389/fpls.2020.00376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/16/2020] [Indexed: 05/24/2023]
Abstract
Dolomiaea is a medicinally important genus of Asteraceae endemic to alpine habitats of the Qinghai-Tibet Plateau (QTP) and adjacent areas. Despite significant medicinal value, genomic resources of Dolomiaea are still lacking, impeding our understanding of its evolutionary history. Here, we sequenced and annotated plastomes of four Dolomiaea species. All analyzed plastomes share the gene content and structure of most Asteraceae plastomes, indicating the conservation of plastome evolutionary history of Dolomiaea. Eight highly divergent regions (rps16-trnQ, trnC-petN, trnE-rpoB, trnT-trnL-trnF, psbE-petL, ndhF-rpl32-trnL, rps15-ycf1, and ycf1), along with a total of 51-61 simple sequence repeats (SSRs) were identified as valuable molecular markers for further species delimitation and population genetic studies. Phylogenetic analyses confirmed the evolutionary position of Dolomiaea as a clade within the subtribe Saussureinae, while revealing the discordance between the molecular phylogeny and morphological treatment. Our analysis also revealed that the plastid genes, rpoC2 and ycf1, which are rarely used in Asteraceae phylogenetic inference, exhibit great phylogenetic informativeness and promise in further phylogenetic studies of tribe Cardueae. Analysis for signatures of selection identified four genes that contain sites undergoing positive selection (atpA, ndhF, rbcL, and ycf4). These genes may play important roles in the adaptation of Dolomiaea to alpine environments. Our study constitutes the first investigation on the sequence and structural variation, phylogenetic utility and positive selection of plastomes of Dolomiaea, which will facilitate further studies of its taxonomy, evolution and conservation.
Collapse
Affiliation(s)
- Jun Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jacob B. Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
110
|
Armijos Carrion AD, Hinsinger DD, Strijk JS. ECuADOR-Easy Curation of Angiosperm Duplicated Organellar Regions, a tool for cleaning and curating plastomes assembled from next generation sequencing pipelines. PeerJ 2020; 8:e8699. [PMID: 32292644 PMCID: PMC7147433 DOI: 10.7717/peerj.8699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/06/2020] [Indexed: 11/25/2022] Open
Abstract
Background With the rapid increase in availability of genomic resources offered by Next-Generation Sequencing (NGS) and the availability of free online genomic databases, efficient and standardized metadata curation approaches have become increasingly critical for the post-processing stages of biological data. Especially in organelle-based studies using circular chloroplast genome datasets, the assembly of the main structural regions in random order and orientation represents a major limitation in our ability to easily generate “ready-to-align” datasets for phylogenetic reconstruction, at both small and large taxonomic scales. In addition, current practices discard the most variable regions of the genomes to facilitate the alignment of the remaining coding regions. Nevertheless, no software is currently available to perform curation to such a degree, through simple detection, organization and positioning of the main plastome regions, making it a time-consuming and error-prone process. Here we introduce a fast and user friendly software ECuADOR, a Perl script specifically designed to automate the detection and reorganization of newly assembled plastomes obtained from any source available (NGS, sanger sequencing or assembler output). Methods ECuADOR uses a sliding-window approach to detect long repeated sequences in draft sequences, which then identifies the inverted repeat regions (IRs), even in case of artifactual breaks or sequencing errors and automates the rearrangement of the sequence to the widely used LSC–Irb–SSC–IRa order. This facilitates rapid post-editing steps such as creation of genome alignments, detection of variable regions, SNP detection and phylogenomic analyses. Results ECuADOR was successfully tested on plant families throughout the angiosperm phylogeny by curating 161 chloroplast datasets. ECuADOR first identified and reordered the central regions (LSC–Irb–SSC–IRa) for each dataset and then produced a new annotation for the chloroplast sequences. The process took less than 20 min with a maximum memory requirement of 150 MB and an accuracy of over 99%. Conclusions ECuADOR is the sole de novo one-step recognition and re-ordination tool that provides facilitation in the post-processing analysis of the extra nuclear genomes from NGS data. The program is available at https://github.com/BiodivGenomic/ECuADOR/.
Collapse
Affiliation(s)
- Angelo D Armijos Carrion
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
| | - Damien D Hinsinger
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China.,Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
| | - Joeri S Strijk
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China.,Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, PR China
| |
Collapse
|
111
|
The Cell Wall PAC (Proline-Rich, Arabinogalactan Proteins, Conserved Cysteines) Domain-Proteins Are Conserved in the Green Lineage. Int J Mol Sci 2020; 21:ijms21072488. [PMID: 32260156 PMCID: PMC7177597 DOI: 10.3390/ijms21072488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/29/2022] Open
Abstract
Plant cell wall proteins play major roles during plant development and in response to environmental cues. A bioinformatic search for functional domains has allowed identifying the PAC domain (Proline-rich, Arabinogalactan proteins, conserved Cysteines) in several proteins (PDPs) identified in cell wall proteomes. This domain is assumed to interact with pectic polysaccharides and O-glycans and to contribute to non-covalent molecular scaffolds facilitating the remodeling of polysaccharidic networks during rapid cell expansion. In this work, the characteristics of the PAC domain are described in detail, including six conserved Cys residues, their spacing, and the predicted secondary structures. Modeling has been performed based on the crystal structure of a Plantago lanceolata PAC domain. The presence of β-sheets is assumed to ensure the correct folding of the PAC domain as a β-barrel with loop regions. We show that PDPs are present in early divergent organisms from the green lineage and in all land plants. PAC domains are associated with other types of domains: Histidine-rich, extensin, Proline-rich, or yet uncharacterized. The earliest divergent organisms having PDPs are Bryophytes. Like the complexity of the cell walls, the number and complexity of PDPs steadily increase during the evolution of the green lineage. The association of PAC domains with other domains suggests a neo-functionalization and different types of interactions with cell wall polymers
Collapse
|
112
|
Sedano-Partida MD, Santos KPD, Sala-Carvalho WR, Silva-Luz CL, Furlan CM. Anti-HIV-1 and antibacterial potential of Hyptis radicans (Pohl) Harley & J.F.B. Pastore and Hyptis multibracteata Benth. (Lamiaceae). J Herb Med 2020. [DOI: 10.1016/j.hermed.2019.100328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
113
|
Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns. Genes Genomics 2020; 42:553-570. [PMID: 32200544 DOI: 10.1007/s13258-020-00923-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chloroplasts are a common character in plants. The chloroplasts in each plant lineage have shaped their own genomes, plastomes, by structural changes and transferring many genes to nuclear genomes during plant evolution. Some plastid genes have introns that are mostly group II introns. OBJECTIVE This study aimed to get genomic and evolutionary insights on the plastomes from green algae to flowering plants. METHODS Plastomes of 115 species from green algae, bryophytes, pteridophytes (spore bearing vascular plants), gymnosperms, and angiosperms were mined from NCBI organelle genome database. Plastome structure, gene contents and GC contents were analyzed by the in-house developed Phyton code. Intronic features including presence/absence, length, intron phases were analyzed by manually in the annotated information in NCBI. RESULTS The canonical quadripartite structures were retained in most plastomes except of a few plastomes that had lost an invert repeat (IR). Expansion or reduction or deletion of IRs resulted in the length variation of the plastomes. The number of protein coding genes ranged from 40 to 92 with an average 79.43 ± 5.84 per plastome and gene losses were apparent in specific lineages. The number of trn genes ranged from 13 to 33 with an average 21.19 ± 2.42 per plastome. Ribosomal RNA genes, rrn, were located in the IRs so that they were present in a duplicate except of the species that had lost one of the IR. GC contents were variable from 24.9 to 51.0% with an average 38.21 ± 3.27%, indicating bias to high AT contents. Plastid introns were present in 18 protein coding genes, six trn genes, and one rrn gene. Intron losses occurred among the orthologous genes in different plant lineages. The plastid introns were long compared with the nuclear introns, which might be related with the spliceosome nuclear introns and self-splicing group II plastid introns. The trnK-UUU intron contained the maturase encoding matK gene except in the chlorophyte algae and monilophyte ferns in which the trnK-UUU was lost, but matK retained. There were many annotation artefacts in the intron positions in the NCBI database. In the analysis of intron phases, phase 0 introns were more frequent than those of phase 2 and 3 introns. Phase polymorphism was observed in the introns of clpP which was derived from nucleotide insertion. Plastid trn introns were long compared to the archaeal or eukaryotic nuclear tRNA introns. Of the six plastid trn introns, one was at the D loop and other five were at the anticodon loop. The insertion sites were conserved among the trn genes in archaea, eukaryotic nuclear and plastid tRNA genes. CONCLUSIONS Current study refurbrished the previous findings of structural variations, gene contents, and GC contents of the chloroplast genomes from green algae to flowering plants. The study also included some noble findings and discussions on the plastome introns including their length variations and phase variation. We also presented and corrected some false annotations on the introns in protein coding and tRNA genes in the genome database, which might be confirmed by the chloroplast transcriptome analysis in the future.
Collapse
|
114
|
Yang L, Su D, Chang X, Foster CS, Sun L, Huang CH, Zhou X, Zeng L, Ma H, Zhong B. Phylogenomic Insights into Deep Phylogeny of Angiosperms Based on Broad Nuclear Gene Sampling. PLANT COMMUNICATIONS 2020; 1:100027. [PMID: 33367231 PMCID: PMC7747974 DOI: 10.1016/j.xplc.2020.100027] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 05/02/2023]
Abstract
Angiosperms (flowering plants) are the most diverse and species-rich group of plants. The vast majority (∼99.95%) of angiosperms form a clade called Mesangiospermae, which is subdivided into five major groups: eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales. The relationships among these Mesangiospermae groups have been the subject of long debate. In this study, we assembled a phylogenomic dataset of 1594 genes from 151 angiosperm taxa, including representatives of all five lineages, to investigate the phylogeny of major angiosperm lineages under both coalescent- and concatenation-based methods. We dissected the phylogenetic signal and found that more than half of the genes lack phylogenetic information for the backbone of angiosperm phylogeny. We further removed the genes with weak phylogenetic signal and showed that eudicots, Ceratophyllales, and Chloranthales form a clade, with magnoliids and monocots being the next successive sister lineages. Similar frequencies of gene tree conflict are suggestive of incomplete lineage sorting along the backbone of the angiosperm phylogeny. Our analyses suggest that a fully bifurcating species tree may not be the best way to represent the early radiation of angiosperms. Meanwhile, we inferred that the crown-group angiosperms originated approximately between 255.1 and 222.2 million years ago, and Mesangiospermae diversified into the five extant groups in a short time span (∼27 million years) at the Early to Late Jurassic.
Collapse
Affiliation(s)
- Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Danyan Su
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xin Chang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Charles S.P. Foster
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Linhua Sun
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
115
|
Barcytė D, Pilátová J, Mojzeš P, Nedbalová L. The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) Green Algae are Genetically and Morphologically Diverse and Exhibit Effective Accumulation of Polyphosphate. JOURNAL OF PHYCOLOGY 2020; 56:217-232. [PMID: 31610035 DOI: 10.1111/jpy.12931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
The green algal genus Cylindrocystis is widespread in various types of environments, including extreme habitats. However, very little is known about its diversity, especially in polar regions. In the present study, we isolated seven new Cylindrocystis-like strains from terrestrial and freshwater habitats in Svalbard (High Arctic). We aimed to compare the new isolates on a molecular (rbcL and 18S rDNA), morphological (light and confocal laser scanning microscopy), and cytological (Raman microscopy) basis. Our results demonstrated that the Arctic Cylindrocystis were not of a monophyletic origin and that the studied strains clustered within two clades (tentatively named the soil and freshwater/glacier clades) and four separate lineages. Morphological data (cell size, shape, and chloroplast morphology) supported the presence of several distinct taxa among the new isolates. Moreover, the results showed that the Arctic Cylindrocystis strains were closely related to strains originating from the temperate zone, indicating high ecological versatility and successful long-distance dispersal of the genus. Large amounts of inorganic polyphosphate (polyP) grains were detected within the chloroplasts of the cultured Arctic Cylindrocystis strains, suggesting effective luxury uptake of phosphorus. Additionally, various intracellular structures were identified using Raman microscopy and cytochemical and fluorescent staining. This study represents the first attempt to combine molecular, morphological, ecological, and biogeographical data for Arctic Cylindrocystis. Our novel cytological observations partially explain the success of Cylindrocystis-like microalgae in polar regions.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-128 44, Czech Republic
| | - Jana Pilátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague 2, CZ-128 44, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 2, CZ-121 16, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-128 44, Czech Republic
| |
Collapse
|
116
|
Valencia-D J, Murillo-A J, Orozco CI, Parra-O C, Neubig KM. -Complete plastid genome sequences of two species of the Neotropical genus Brunellia (Brunelliaceae). PeerJ 2020; 8:e8392. [PMID: 32025370 PMCID: PMC6993752 DOI: 10.7717/peerj.8392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
Here we present the first two complete plastid genomes for Brunelliaceae, a Neotropical family with a single genus, Brunellia. We surveyed the entire plastid genome in order to find variable cpDNA regions for further phylogenetic analyses across the family. We sampled morphologically different species, B. antioquensis and B. trianae, and found that the plastid genomes are 157,685 and 157,775 bp in length and display the typical quadripartite structure found in angiosperms. Despite the clear morphological distinction between both species, the molecular data show a very low level of divergence. The amount of nucleotide substitutions per site is one of the lowest reported to date among published congeneric studies (π = 0.00025). The plastid genomes have gene order and content coincident with other COM (Celastrales, Oxalidales, Malpighiales) relatives. Phylogenetic analyses of selected superrosid representatives show high bootstrap support for the ((C,M)O) topology. The N-fixing clade appears as the sister group of the COM clade and Zygophyllales as the sister to the rest of the fabids group.
Collapse
Affiliation(s)
- Janice Valencia-D
- School of Biological Sciences, Southern Illinois University at Carbondale, Carbondale, IL, United States of America
| | - José Murillo-A
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Clara Inés Orozco
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Carlos Parra-O
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Kurt M. Neubig
- School of Biological Sciences, Southern Illinois University at Carbondale, Carbondale, IL, United States of America
| |
Collapse
|
117
|
Bellot S, Mitchell TC, Schaefer H. Phylogenetic informativeness analyses to clarify past diversification processes in Cucurbitaceae. Sci Rep 2020; 10:488. [PMID: 31949198 PMCID: PMC6965171 DOI: 10.1038/s41598-019-57249-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/20/2019] [Indexed: 01/12/2023] Open
Abstract
Phylogenomic studies have so far mostly relied on genome skimming or target sequence capture, which suffer from representation bias and can fail to resolve relationships even with hundreds of loci. Here, we explored the potential of phylogenetic informativeness and tree confidence analyses to interpret phylogenomic datasets. We studied Cucurbitaceae because their small genome size allows cost-efficient genome skimming, and many relationships in the family remain controversial, preventing inferences on the evolution of characters such as sexual system or floral morphology. Genome skimming and PCR allowed us to retrieve the plastome, 57 single copy nuclear genes, and the nuclear ribosomal ITS from 29 species representing all but one tribe of Cucurbitaceae. Node support analyses revealed few inter-locus conflicts but a pervasive lack of phylogenetic signal among plastid loci, suggesting a fast divergence of Cucurbitaceae tribes. Data filtering based on phylogenetic informativeness and risk of homoplasy clarified tribe-level relationships, which support two independent evolutions of fringed petals in the family. Our study illustrates how formal analysis of phylogenomic data can increase our understanding of past diversification processes. Our data and results will facilitate the design of well-sampled phylogenomic studies in Cucurbitaceae and related families.
Collapse
Affiliation(s)
| | - Thomas C Mitchell
- Plant Biodiversity Research, Department Ecology & Ecosystem Management, Technical University of Munich, Emil-Ramann Strasse 2, 85354, Freising, Germany
| | - Hanno Schaefer
- Plant Biodiversity Research, Department Ecology & Ecosystem Management, Technical University of Munich, Emil-Ramann Strasse 2, 85354, Freising, Germany.
| |
Collapse
|
118
|
Nie Y, Foster CSP, Zhu T, Yao R, Duchêne DA, Ho SYW, Zhong B. Accounting for Uncertainty in the Evolutionary Timescale of Green Plants Through Clock-Partitioning and Fossil Calibration Strategies. Syst Biol 2020; 69:1-16. [PMID: 31058981 DOI: 10.1093/sysbio/syz032] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
Establishing an accurate evolutionary timescale for green plants (Viridiplantae) is essential to understanding their interaction and coevolution with the Earth's climate and the many organisms that rely on green plants. Despite being the focus of numerous studies, the timing of the origin of green plants and the divergence of major clades within this group remain highly controversial. Here, we infer the evolutionary timescale of green plants by analyzing 81 protein-coding genes from 99 chloroplast genomes, using a core set of 21 fossil calibrations. We test the sensitivity of our divergence-time estimates to various components of Bayesian molecular dating, including the tree topology, clock models, clock-partitioning schemes, rate priors, and fossil calibrations. We find that the choice of clock model affects date estimation and that the independent-rates model provides a better fit to the data than the autocorrelated-rates model. Varying the rate prior and tree topology had little impact on age estimates, with far greater differences observed among calibration choices and clock-partitioning schemes. Our analyses yield date estimates ranging from the Paleoproterozoic to Mesoproterozoic for crown-group green plants, and from the Ediacaran to Middle Ordovician for crown-group land plants. We present divergence-time estimates of the major groups of green plants that take into account various sources of uncertainty. Our proposed timeline lays the foundation for further investigations into how green plants shaped the global climate and ecosystems, and how embryophytes became dominant in terrestrial environments.
Collapse
Affiliation(s)
- Yuan Nie
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Charles S P Foster
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tianqi Zhu
- National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100000, China
| | - Ru Yao
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - David A Duchêne
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
119
|
Larridon I, Villaverde T, Zuntini AR, Pokorny L, Brewer GE, Epitawalage N, Fairlie I, Hahn M, Kim J, Maguilla E, Maurin O, Xanthos M, Hipp AL, Forest F, Baker WJ. Tackling Rapid Radiations With Targeted Sequencing. FRONTIERS IN PLANT SCIENCE 2020; 10:1655. [PMID: 31998342 PMCID: PMC6962237 DOI: 10.3389/fpls.2019.01655] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/22/2019] [Indexed: 05/19/2023]
Abstract
In phylogenetic studies across angiosperms, at various taxonomic levels, polytomies have persisted despite efforts to resolve them by increasing sampling of taxa and loci. The large amount of genomic data now available and statistical tools to analyze them provide unprecedented power for phylogenetic inference. Targeted sequencing has emerged as a strong tool for estimating species trees in the face of rapid radiations, lineage sorting, and introgression. Evolutionary relationships in Cyperaceae have been studied mostly using Sanger sequencing until recently. Despite ample taxon sampling, relationships in many genera remain poorly understood, hampered by diversification rates that outpace mutation rates in the loci used. The C4 Cyperus clade of the genus Cyperus has been particularly difficult to resolve. Previous studies based on a limited set of markers resolved relationships among Cyperus species using the C3 photosynthetic pathway, but not among C4 Cyperus clade taxa. We test the ability of two targeted sequencing kits to resolve relationships in the C4 Cyperus clade, the universal Angiosperms-353 kit and a Cyperaceae-specific kit. Sequences of the targeted loci were recovered from data generated with both kits and used to investigate overlap in data between kits and relative efficiency of the general and custom approaches. The power to resolve shallow-level relationships was tested using a summary species tree method and a concatenated maximum likelihood approach. High resolution and support are obtained using both approaches, but high levels of missing data disproportionately impact the latter. Targeted sequencing provides new insights into the evolution of morphology in the C4 Cyperus clade, demonstrating for example that the former segregate genus Alinula is polyphyletic despite its seeming morphological integrity. An unexpected result is that the Cyperus margaritaceus-Cyperus niveus complex comprises a clade separate from and sister to the core C4 Cyperus clade. Our results demonstrate that data generated with a family-specific kit do not necessarily have more power than those obtained with a universal kit, but that data generated with different targeted sequencing kits can often be merged for downstream analyses. Moreover, our study contributes to the growing consensus that targeted sequencing data are a powerful tool in resolving rapid radiations.
Collapse
Affiliation(s)
- Isabel Larridon
- Royal Botanic Gardens, Kew, Surrey, United Kingdom
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, Ghent, Belgium
| | - Tamara Villaverde
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
- The Morton Arboretum, Lisle, IL, United States
- The Field Museum, Chicago, IL, United States
| | | | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Surrey, United Kingdom
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
- Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), Madrid, Spain
| | | | | | - Isabel Fairlie
- Royal Botanic Gardens, Kew, Surrey, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | - Jan Kim
- Royal Botanic Gardens, Kew, Surrey, United Kingdom
| | - Enrique Maguilla
- The Morton Arboretum, Lisle, IL, United States
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | | | | | - Andrew L. Hipp
- The Morton Arboretum, Lisle, IL, United States
- The Field Museum, Chicago, IL, United States
| | - Félix Forest
- Royal Botanic Gardens, Kew, Surrey, United Kingdom
| | | |
Collapse
|
120
|
Zheng S, Poczai P, Hyvönen J, Tang J, Amiryousefi A. Chloroplot: An Online Program for the Versatile Plotting of Organelle Genomes. Front Genet 2020. [PMID: 33101394 DOI: 10.3389/fgene.576124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Understanding the complexity of genomic structures and their unique architecture is linked with the power of visualization tools used to represent these features. Such tools should be able to provide a realistic and scalable version of genomic content. Here, we present an online organelle plotting tool focused on chloroplasts, which were developed to visualize the exclusive structure of these genomes. The distinguished unique features of this program include its ability to represent the Single Short Copy (SSC) regions in reverse complement, which allows the depiction of the codon usage bias index for each gene, along with the possibility of the minor mismatches between inverted repeat (IR) regions and user-specified plotting layers. The versatile color schemes and diverse functionalities of the program are specifically designed to reflect the accurate scalable representation of the plastid genomes. We introduce a Shiny app website for easy use of the program; a more advanced application of the tool is possible by further development and modification of the downloadable source codes provided online. The software and its libraries are completely coded in R, available at https://irscope.shinyapps.io/chloroplot/.
Collapse
Affiliation(s)
- Shuyu Zheng
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Peter Poczai
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ali Amiryousefi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
121
|
Multilocus data reveal deep phylogenetic relationships and intercontinental biogeography of the Eurasian-North American genus Corylus (Betulaceae). Mol Phylogenet Evol 2020; 142:106658. [DOI: 10.1016/j.ympev.2019.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
|
122
|
Bell D, Lin Q, Gerelle WK, Joya S, Chang Y, Taylor ZN, Rothfels CJ, Larsson A, Villarreal JC, Li FW, Pokorny L, Szövényi P, Crandall-Stotler B, DeGironimo L, Floyd SK, Beerling DJ, Deyholos MK, von Konrat M, Ellis S, Shaw AJ, Chen T, Wong GKS, Stevenson DW, Palmer JD, Graham SW. Organellomic data sets confirm a cryptic consensus on (unrooted) land-plant relationships and provide new insights into bryophyte molecular evolution. AMERICAN JOURNAL OF BOTANY 2020; 107:91-115. [PMID: 31814117 DOI: 10.1002/ajb2.1397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Phylogenetic trees of bryophytes provide important evolutionary context for land plants. However, published inferences of overall embryophyte relationships vary considerably. We performed phylogenomic analyses of bryophytes and relatives using both mitochondrial and plastid gene sets, and investigated bryophyte plastome evolution. METHODS We employed diverse likelihood-based analyses to infer large-scale bryophyte phylogeny for mitochondrial and plastid data sets. We tested for changes in purifying selection in plastid genes of a mycoheterotrophic liverwort (Aneura mirabilis) and a putatively mycoheterotrophic moss (Buxbaumia), and compared 15 bryophyte plastomes for major structural rearrangements. RESULTS Overall land-plant relationships conflict across analyses, generally weakly. However, an underlying (unrooted) four-taxon tree is consistent across most analyses and published studies. Despite gene coverage patchiness, relationships within mosses, liverworts, and hornworts are largely congruent with previous studies, with plastid results generally better supported. Exclusion of RNA edit sites restores cases of unexpected non-monophyly to monophyly for Takakia and two hornwort genera. Relaxed purifying selection affects multiple plastid genes in mycoheterotrophic Aneura but not Buxbaumia. Plastid genome structure is nearly invariant across bryophytes, but the tufA locus, presumed lost in embryophytes, is unexpectedly retained in several mosses. CONCLUSIONS A common unrooted tree underlies embryophyte phylogeny, [(liverworts, mosses), (hornworts, vascular plants)]; rooting inconsistency across studies likely reflects substantial distance to algal outgroups. Analyses combining genomic and transcriptomic data may be misled locally for heavily RNA-edited taxa. The Buxbaumia plastome lacks hallmarks of relaxed selection found in mycoheterotrophic Aneura. Autotrophic bryophyte plastomes, including Buxbaumia, hardly vary in overall structure.
Collapse
Affiliation(s)
- David Bell
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Qianshi Lin
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Wesley K Gerelle
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Steve Joya
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ying Chang
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Z Nathan Taylor
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94702, USA
| | - Anders Larsson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Juan Carlos Villarreal
- Department of Biology, Université Laval, Québec, G1V 0A6, Canada
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Plant Biology Section, Cornell University, Ithaca, New York, 14853, USA
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, TW9 3DS, Surrey, UK
- Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | | | - Lisa DeGironimo
- Department of Biology, College of Arts and Science, New York University, New York, New York, 10003, USA
| | - Sandra K Floyd
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Kelowna, British Columbia, V1V 1V7, Canada
| | - Matt von Konrat
- Field Museum of Natural History, Chicago, Illinois, 60605, USA
| | - Shona Ellis
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Tao Chen
- Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, Guangdong, 518004, China
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | | | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
123
|
Li Y, Dong Y, Liu Y, Yu X, Yang M, Huang Y. Comparative Analyses of Euonymus Chloroplast Genomes: Genetic Structure, Screening for Loci With Suitable Polymorphism, Positive Selection Genes, and Phylogenetic Relationships Within Celastrineae. FRONTIERS IN PLANT SCIENCE 2020; 11:593984. [PMID: 33643327 PMCID: PMC7905392 DOI: 10.3389/fpls.2020.593984] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/28/2020] [Indexed: 05/06/2023]
Abstract
In this study, we assembled and annotated the chloroplast (cp) genome of the Euonymus species Euonymus fortunei, Euonymus phellomanus, and Euonymus maackii, and performed a series of analyses to investigate gene structure, GC content, sequence alignment, and nucleic acid diversity, with the objectives of identifying positive selection genes and understanding evolutionary relationships. The results indicated that the Euonymus cp genome was 156,860-157,611bp in length and exhibited a typical circular tetrad structure. Similar to the majority of angiosperm chloroplast genomes, the results yielded a large single-copy region (LSC) (85,826-86,299bp) and a small single-copy region (SSC) (18,319-18,536bp), separated by a pair of sequences (IRA and IRB; 26,341-26,700bp) with the same encoding but in opposite directions. The chloroplast genome was annotated to 130-131 genes, including 85-86 protein coding genes, 37 tRNA genes, and eight rRNA genes, with GC contents of 37.26-37.31%. The GC content was variable among regions and was highest in the inverted repeat (IR) region. The IR boundary of Euonymus happened expanding resulting that the rps19 entered into IR region and doubled completely. Such fluctuations at the border positions might be helpful in determining evolutionary relationships among Euonymus. The simple-sequence repeats (SSRs) of Euonymus species were composed primarily of single nucleotides (A)n and (T)n, and were mostly 10-12bp in length, with an obvious A/T bias. We identified several loci with suitable polymorphism with the potential use as molecular markers for inferring the phylogeny within the genus Euonymus. Signatures of positive selection were seen in rpoB protein encoding genes. Based on data from the whole chloroplast genome, common single copy genes, and the LSC, SSC, and IR regions, we constructed an evolutionary tree of Euonymus and related species, the results of which were consistent with traditional taxonomic classifications. It showed that E. fortunei sister to the Euonymus japonicus, whereby E. maackii appeared as sister to Euonymus hamiltonianus. Our study provides important genetic information to support further investigations into the phylogenetic development and adaptive evolution of Euonymus species.
Collapse
Affiliation(s)
- Yongtan Li
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Yichao Liu
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
- Institute of Landscaping, Hebei Academic of Forestry and Grassland, Shijiazhuang, China
| | - Xiaoyue Yu
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
- *Correspondence: Minsheng Yang,
| | - Yinran Huang
- Institute of Landscaping, Hebei Academic of Forestry and Grassland, Shijiazhuang, China
- Yinran Huang,
| |
Collapse
|
124
|
Wei R, Zhang XC. Phylogeny of Diplazium (Athyriaceae) revisited: Resolving the backbone relationships based on plastid genomes and phylogenetic tree space analysis. Mol Phylogenet Evol 2019; 143:106699. [PMID: 31809851 DOI: 10.1016/j.ympev.2019.106699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 11/17/2022]
Abstract
Despite progress in resolving the phylogeny of twinsorus ferns (Diplazium) based on multilocus phylogenetic studies, uncertainty remains especially for deep, or backbone relationships among closely related clades, suggesting a classic case of rapid evolutionary radiation. Here, we investigated the deep phylogenetic relationships within Diplazium by sampling all major clades and using 51 plastid genomes (plastomes), of which 38 were newly sequenced with high-throughput sequencing technology, resulting more than 127,000 informative sites. Using parsimony, maximum likelihood and Bayesian analyses of plastome sequences, we largely resolved the backbone of the phylogeny of Diplazium with strong support. However, we also detected phylogenetic incongruence among different datasets and moderately to poorly supported relationships, particularly at several extremely short internal branches. By using phylogenetic tree space and topology-clustering analyses, we provide evidence that conflicting phylogenetic signals can be found across the trees estimated from individual chloroplast protein-coding genes, which may underlie the difficulty of systematics of Diplazium. Furthermore, our phylogenetic estimate offers more resolution over previous multilocus analyses, providing a framework for future taxonomic revisions of sectional classification of Diplazium. Our study demonstrates the advantage of a character-rich plastome dataset, combining the comparison of different phylogenetic methods, for resolving the recalcitrant lineages that have undergone rapid radiation and dramatic changes in evolutionary rates.
Collapse
Affiliation(s)
- Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
125
|
Lortou U, Gkelis S. Polyphasic taxonomy of green algae strains isolated from Mediterranean freshwaters. ACTA ACUST UNITED AC 2019; 26:11. [PMID: 31696064 PMCID: PMC6822476 DOI: 10.1186/s40709-019-0105-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022]
Abstract
Background Terrestrial, freshwater and marine green algae constitute the large and morphologically diverse phylum of Chlorophyta, which gave rise to the core chlorophytes. Chlorophyta are abundant and diverse in freshwater environments where sometimes they form nuisance blooms under eutrophication conditions. The phylogenetic relationships among core chlorophyte clades (Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae), are of particular interest as it is a species-rich phylum with ecological importance worldwide, but are still poorly understood. In the Mediterranean ecoregion, data on molecular characterization of eukaryotic microalgae strains are limited and current knowledge is based on ecological studies of natural populations. In the present study we report the isolation and characterization of 11 green microalgae strains from Greece contributing more information for the taxonomy of Chlorophyta. The study combined morphological and molecular data. Results Phylogenetic analysis based on 18S rRNA, internal transcribed spacer (ITS) region and the large subunit of the ribulose-bisphosphate carboxylase (rbcL) gene revealed eight taxa. Eleven green algae strains were classified in four orders (Sphaeropleales, Chlorellales, Chlamydomonadales and Chaetophorales) and were represented by four genera; one strain was not assigned to any genus. Most strains (six) were classified to the genus Desmodesmus, two strains to genus Chlorella, one to genus Spongiosarcinopsis and one filamentous strain to genus Uronema. One strain is placed in a separate independent branch within the Chlamydomonadales and deserves further research. Conclusions Our study reports, for the first time, the presence of Uronema in an aquatic environment up to 40 °C and reveals new diversity within the Chlamydomonadales. The results from the ITS region and the rbcL gene corroborated those obtained from 18S rRNA without providing further information or resolving the phylogenetic relationships within certain genera, due to the limited number of ITS and rbcL sequences available. The comparison of molecular and morphological data showed that they were congruent. Cosmopolitan genera with high worldwide distribution inhabit Greek freshwaters.
Collapse
Affiliation(s)
- Urania Lortou
- Department of Botany, Aristotle University of Thessaloniki, P.O. Box 109, 541 24 Thessaloniki, Greece
| | - Spyros Gkelis
- Department of Botany, Aristotle University of Thessaloniki, P.O. Box 109, 541 24 Thessaloniki, Greece
| |
Collapse
|
126
|
Fu CN, Mo ZQ, Yang JB, Ge XJ, Li DZ, Xiang QY(J, Gao LM. Plastid phylogenomics and biogeographic analysis support a trans-Tethyan origin and rapid early radiation of Cornales in the Mid-Cretaceous. Mol Phylogenet Evol 2019; 140:106601. [DOI: 10.1016/j.ympev.2019.106601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
|
127
|
Wu CC, Li FW, Kramer EM. Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. PLoS One 2019; 14:e0223521. [PMID: 31603924 PMCID: PMC6788696 DOI: 10.1371/journal.pone.0223521] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
The adaptation of plants to land required multiple morphological innovations. Among these include a variety of lateral organs that are initiated from apical meristems, in which the mantainance of undifferentiated stem cells is regulated by the homeodomain WUSCHEL-RELATED (WOX) transcription factors. Expansion of the WOX gene family has been associated with whole genome duplication (WGD) events and postulated to have been pivotal to the evolution of morphological complexity in land plants. Previous studies have classified the WOX gene family into three superclades (e.g., the ancient clade, the intermediate clade, and the modern clade). In order to improve our understanding of the evolution of the WOX gene family, we surveyed the WOX gene sequences from 38 genomes and 440 transcriptomes spanning the Viridiplantae and Rhodophyta. The WOX phylogeny inferred from 1039 WOX proteins drawn from 267 species with improved support along the backbone of the phylogeny suggests that the plant-specific WOX family contains three ancient superclades, which we term Type 1 (T1WOX, the WOX10/13/14 clade), Type 2 (T2WOX, the WOX8/9 and WOX11/12 clades), and Type 3 (T3WOX, the WUS, WOX1/6, WOX2, WOX3, WOX4 and WOX5/7 clades). Divergence of the T1WOX and T2WOX superclades may predate the diversification of vascular plants. Synteny analysis suggests contribution of WGD to expansion of the WOX family. Promoter analysis finds that the capacity of the WOX genes to be regulated by the auxin and cytokinin signaling pathways may be deeply conserved in the Viridiplantae. This study improves our phylogenetic context for elucidating functional evolution of the WOX gene family, which has likely contributed to the morphological complexity of land plants.
Collapse
Affiliation(s)
- Cheng-Chiang Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, United States of America
- Section of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Elena M. Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
128
|
Lin N, Zhang X, Deng T, Zhang J, Meng A, Wang H, Sun H, Sun Y. Plastome sequencing of Myripnois dioica and comparison within Asteraceae. PLANT DIVERSITY 2019; 41:315-322. [PMID: 31934676 PMCID: PMC6951274 DOI: 10.1016/j.pld.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Myripnois is a monotypic shrub genus in the daisy family constricted to northern China. Although wild populations of Myripnois dioica are relatively rare, this plant may potentially be cultured as a fine ornamental. In the present study, we sequenced the complete plastome of M. dioica, generating the first plastome sequences of the subfamily Pertyoideae. The plastome of M. dioica has a typical quadripartite circular structure. A large ∼20-kb and a small ∼3-kb inversion were detected in the large single copy (LSC) region and shared by other Asteraceae species. Plastome phylogenomic analyses based on 78 Asteraceae species and three outgroups revealed four groups, corresponding to four Asteraceae subfamilies: Asteroideae, Cichorioideae, Pertyoideae and Carduoideae. Among these four subfamilies, Pertyoideae is sister to Asteroideae + Cichorioideae; Carduoideae is the most basal clade. In addition, we characterized 13 simple sequence repeats (SSRs) that may be useful in future studies on population genetics.
Collapse
Affiliation(s)
- Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jianwen Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Aiping Meng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
129
|
Walker JF, Walker-Hale N, Vargas OM, Larson DA, Stull GW. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 2019; 7:e7747. [PMID: 31579615 PMCID: PMC6764362 DOI: 10.7717/peerj.7747] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/25/2019] [Indexed: 11/20/2022] Open
Abstract
Evolutionary relationships among plants have been inferred primarily using chloroplast data. To date, no study has comprehensively examined the plastome for gene tree conflict. Using a broad sampling of angiosperm plastomes, we characterize gene tree conflict among plastid genes at various time scales and explore correlates to conflict (e.g., evolutionary rate, gene length, molecule type). We uncover notable gene tree conflict against a backdrop of largely uninformative genes. We find alignment length and tree length are strong predictors of concordance, and that nucleotides outperform amino acids. Of the most commonly used markers, matK, greatly outperforms rbcL; however, the rarely used gene rpoC2 is the top-performing gene in every analysis. We find that rpoC2 reconstructs angiosperm phylogeny as well as the entire concatenated set of protein-coding chloroplast genes. Our results suggest that longer genes are superior for phylogeny reconstruction. The alleviation of some conflict through the use of nucleotides suggests that stochastic and systematic error is likely the root of most of the observed conflict, but further research on biological conflict within plastome is warranted given documented cases of heteroplasmic recombination. We suggest that researchers should filter genes for topological concordance when performing downstream comparative analyses on phylogenetic data, even when using chloroplast genomes.
Collapse
Affiliation(s)
- Joseph F. Walker
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Oscar M. Vargas
- University of California, Santa Cruz, Santa Cruz, United States of America
| | - Drew A. Larson
- University of Michigan—Ann Arbor, Ann Arbor, MI, United States of America
| | - Gregory W. Stull
- Department of Botany, Smithsonian Institution, Washington, United States of America
| |
Collapse
|
130
|
Chloroplast Genomes and Comparative Analyses among Thirteen Taxa within Myrsinaceae s.str. Clade (Myrsinoideae, Primulaceae). Int J Mol Sci 2019; 20:ijms20184534. [PMID: 31540236 PMCID: PMC6769889 DOI: 10.3390/ijms20184534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023] Open
Abstract
The Myrsinaceae s.str. clade is a tropical woody representative in Myrsinoideae of Primulaceae and has ca. 1300 species. The generic limits and alignments of this clade are unclear due to the limited number of genetic markers and/or taxon samplings in previous studies. Here, the chloroplast (cp) genomes of 13 taxa within the Myrsinaceae s.str. clade are sequenced and characterized. These cp genomes are typical quadripartite circle molecules and are highly conserved in size and gene content. Three pseudogenes are identified, of which ycf15 is totally absent from five taxa. Noncoding and large single copy region (LSC) exhibit higher levels of nucleotide diversity (Pi) than other regions. A total of ten hotspot fragments and 796 chloroplast simple sequence repeats (SSR) loci are found across all cp genomes. The results of phylogenetic analysis support the notion that the monophyletic Myrsinaceae s.str. clade has two subclades. Non-synonymous substitution rates (dN) are higher in housekeeping (HK) genes than photosynthetic (PS) genes, but both groups have a nearly identical synonymous substitution rate (dS). The results indicate that the PS genes are under stronger functional constraints compared with the HK genes. Overall, the study provides hypervariable molecular markers for phylogenetic reconstruction and contributes to a better understanding of plastid gene evolution in Myrsinaceae s.str. clade.
Collapse
|
131
|
Bedoya AM, Ruhfel BR, Philbrick CT, Madriñán S, Bove CP, Mesterházy A, Olmstead RG. Plastid Genomes of Five Species of Riverweeds (Podostemaceae): Structural Organization and Comparative Analysis in Malpighiales. FRONTIERS IN PLANT SCIENCE 2019; 10:1035. [PMID: 31481967 PMCID: PMC6710714 DOI: 10.3389/fpls.2019.01035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/24/2019] [Indexed: 05/21/2023]
Abstract
With the advent of next-generation sequencing technologies, whole-plastome data can be obtained as a byproduct of low-coverage sequencing of the plant genomic DNA. This provides an opportunity to study plastid evolution across groups, as well as testing phylogenetic relationships among taxa. Within the order Malpighiales (∼16,000 spp.), the Podostemaceae (∼300 spp.) stand out for their unique habit, living attached to rocks in fast-flowing aquatic habitats, and displaying highly modified morphologies that confound our understanding of their classification, biology, and evolution. In this study, we used genome skimming data to assemble the full plastid genome of 5 species within Podostemaceae. We analyzed our data in a comparative framework within Malpighiales to determine the structure, gene content, and rearrangements in the plastomes of the family. The Podostemaceae have one of the smallest plastid genomes reported so far for the Malpighiales, possibly due to variation in length of inverted repeat (IR) regions, gene loss, and intergenic region variation. We also detected a major inversion in the large single-copy region unique to the family. The uncommon loss or pseudogenization of ycf1 and ycf2 in angiosperms and in land plants in general is also found to be characteristic of Podostemaceae, but the compensatory mechanisms and implications of this and of the pseudogenization of accD, rpl22, and clpP and loss of rps16 remain to be explained in this group. In addition, we estimated a phylogenetic tree among selected species in Malpighiales. Our findings indicate that the Podostemaceae are a distinct lineage with long branches that suggest faster rates of evolution in the plastome of the group, compared with other taxa in the order. This study lays the foundations for future phylogenomic studies in the family.
Collapse
Affiliation(s)
- Ana M. Bedoya
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, United States
| | - Bradley R. Ruhfel
- University of Michigan Herbarium, University of Michigan, Ann Arbor, MI, United States
| | - C. Thomas Philbrick
- Department of Biological and Environmental Sciences, Western Connecticut State University, Danbury, CT, United States
| | - Santiago Madriñán
- Laboratorio de Botánica y Sistemática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Claudia P. Bove
- Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Richard G. Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, United States
| |
Collapse
|
132
|
Klinger CM, Richardson E. Small Genomes and Big Data: Adaptation of Plastid Genomics to the High-Throughput Era. Biomolecules 2019; 9:E299. [PMID: 31344945 PMCID: PMC6723049 DOI: 10.3390/biom9080299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Plastid genome sequences are becoming more readily available with the increase in high-throughput sequencing, and whole-organelle genetic data is available for algae and plants from across the diversity of photosynthetic eukaryotes. This has provided incredible opportunities for studying species which may not be amenable to in vivo study or genetic manipulation or may not yet have been cultured. Research into plastid genomes has pushed the limits of what can be deduced from genomic information, and in particular genomic information obtained from public databases. In this Review, we discuss how research into plastid genomes has benefitted enormously from the explosion of publicly available genome sequence. We describe two case studies in how using publicly available gene data has supported previously held hypotheses about plastid traits from lineage-restricted experiments across algal and plant diversity. We propose how this approach could be used across disciplines for inferring functional and biological characteristics from genomic approaches, including integration of new computational and bioinformatic approaches such as machine learning. We argue that the techniques developed to gain the maximum possible insight from plastid genomes can be applied across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Christen M Klinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Elisabeth Richardson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
133
|
Yu Y, Yang J, Ma W, Pressel S, Liu H, Wu Y, Schneider H. Chloroplast phylogenomics of liverworts: a reappraisal of the backbone phylogeny of liverworts with emphasis on Ptilidiales. Cladistics 2019; 36:184-193. [DOI: 10.1111/cla.12396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ying Yu
- College of Life and Environmental Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Jun‐Bo Yang
- CAS Plant Germplasm and Genomics Center Germplasm Bank of Wild Species Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Wen‐Zhang Ma
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Silvia Pressel
- Department of Life Sciences Natural History Museum London SW7 5BD UK
| | - Hong‐Mei Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun Yunnan 666303 China
| | - Yu‐Huan Wu
- College of Life and Environmental Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Harald Schneider
- Center of Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun Yunnan 666303 China
| |
Collapse
|
134
|
Bockwoldt M, Heiland I, Fischer K. The evolution of the plastid phosphate translocator family. PLANTA 2019; 250:245-261. [PMID: 30993402 DOI: 10.1007/s00425-019-03161-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The plastid phosphate translocators evolved in algae but diversified into several groups, which adopted different physiological functions by extensive gene duplications and losses in Streptophyta. The plastid phosphate translocators (pPT) are a family of transporters involved in the exchange of metabolites and inorganic phosphate between stroma and cytosol. Based on their substrate specificities, they were divided into four subfamilies named TPT, PPT, GPT and XPT. To analyse the occurrence of these transporters in different algae and land plant species, we identified 652 pPT genes in 101 sequenced genomes for phylogenetic analysis. The first three subfamilies are found in all species and evolved before the split of red and green algae while the XPTs were derived from the duplication of a GPT gene at the base of Streptophyta. The analysis of the intron-exon structures of the pPTs corroborated these findings. While the number and positions of introns are conserved within each subfamily, they differ between the subfamilies suggesting an insertion of the introns shortly after the three subfamilies evolved. During angiosperm evolution, the subfamilies further split into different groups (TPT1-2, PPT1-3, GPT1-6). Angiosperm species differ significantly in the total number of pPTs, with many species having only a few, while several plants, especially crops, have a higher number, pointing to the importance of these transporters for improved source-sink strength and yield. The differences in the number of pPTs can be explained by several small-scale gene duplications and losses in plant families or single species, but also by whole genome duplications, for example, in grasses. This work could be the basis for a comprehensive analysis of the molecular and physiological functions of this important family of transporters.
Collapse
Affiliation(s)
- Mathias Bockwoldt
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Biologibygget, Framstredet 39, 9037, Tromsø, Norway
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Biologibygget, Framstredet 39, 9037, Tromsø, Norway
| | - Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Biologibygget, Framstredet 39, 9037, Tromsø, Norway.
| |
Collapse
|
135
|
Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, Eiserhardt WL, Epitawalage N, Forest F, Kim JT, Leebens-Mack JH, Leitch IJ, Maurin O, Soltis DE, Soltis PS, Wong GKS, Baker WJ, Wickett NJ. A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Syst Biol 2019; 68:594-606. [PMID: 30535394 PMCID: PMC6568016 DOI: 10.1093/sysbio/syy086] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/31/2023] Open
Abstract
Sequencing of target-enriched libraries is an efficient and cost-effective method for obtaining DNA sequence data from hundreds of nuclear loci for phylogeny reconstruction. Much of the cost of developing targeted sequencing approaches is associated with the generation of preliminary data needed for the identification of orthologous loci for probe design. In plants, identifying orthologous loci has proven difficult due to a large number of whole-genome duplication events, especially in the angiosperms (flowering plants). We used multiple sequence alignments from over 600 angiosperms for 353 putatively single-copy protein-coding genes identified by the One Thousand Plant Transcriptomes Initiative to design a set of targeted sequencing probes for phylogenetic studies of any angiosperm group. To maximize the phylogenetic potential of the probes, while minimizing the cost of production, we introduce a k-medoids clustering approach to identify the minimum number of sequences necessary to represent each coding sequence in the final probe set. Using this method, 5-15 representative sequences were selected per orthologous locus, representing the sequence diversity of angiosperms more efficiently than if probes were designed using available sequenced genomes alone. To test our approximately 80,000 probes, we hybridized libraries from 42 species spanning all higher-order groups of angiosperms, with a focus on taxa not present in the sequence alignments used to design the probes. Out of a possible 353 coding sequences, we recovered an average of 283 per species and at least 100 in all species. Differences among taxa in sequence recovery could not be explained by relatedness to the representative taxa selected for probe design, suggesting that there is no phylogenetic bias in the probe set. Our probe set, which targeted 260 kbp of coding sequence, achieved a median recovery of 137 kbp per taxon in coding regions, a maximum recovery of 250 kbp, and an additional median of 212 kbp per taxon in flanking non-coding regions across all species. These results suggest that the Angiosperms353 probe set described here is effective for any group of flowering plants and would be useful for phylogenetic studies from the species level to higher-order groups, including the entire angiosperm clade itself.
Collapse
Affiliation(s)
- Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA
| | - Lisa Pokorny
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Steven Dodsworth
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- School of Life Sciences, University of Bedfordshire, University Square, Luton LU1 3JU, UK
| | - Laura R Botigué
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Robyn S Cowan
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Alison Devault
- Arbor Biosciences, 5840 Interface Dr, Suite 101, Ann Arbor, MI 48103, USA
| | - Wolf L Eiserhardt
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Niroshini Epitawalage
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Félix Forest
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Jan T Kim
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - James H Leebens-Mack
- Department of Plant Biology, University of Georgia, 2502 Miller Plant Sciences, Athens, GA 30602, USA
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Olivier Maurin
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Douglas E Soltis
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611-8525, USA
- Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611-2710, USA
| | - Pamela S Soltis
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611-8525, USA
- Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611-2710, USA
| | - Gane Ka-shu Wong
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - William J Baker
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Norman J Wickett
- Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA
- Program in Plant Biology and Conservation, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
136
|
Tao Q, Tamura K, U. Battistuzzi F, Kumar S. A Machine Learning Method for Detecting Autocorrelation of Evolutionary Rates in Large Phylogenies. Mol Biol Evol 2019; 36:811-824. [PMID: 30689923 PMCID: PMC6804408 DOI: 10.1093/molbev/msz014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
New species arise from pre-existing species and inherit similar genomes and environments. This predicts greater similarity of the tempo of molecular evolution between direct ancestors and descendants, resulting in autocorrelation of evolutionary rates in the tree of life. Surprisingly, molecular sequence data have not confirmed this expectation, possibly because available methods lack the power to detect autocorrelated rates. Here, we present a machine learning method, CorrTest, to detect the presence of rate autocorrelation in large phylogenies. CorrTest is computationally efficient and performs better than the available state-of-the-art method. Application of CorrTest reveals extensive rate autocorrelation in DNA and amino acid sequence evolution of mammals, birds, insects, metazoans, plants, fungi, parasitic protozoans, and prokaryotes. Therefore, rate autocorrelation is a common phenomenon throughout the tree of life. These findings suggest concordance between molecular and nonmolecular evolutionary patterns, and they will foster unbiased and precise dating of the tree of life.
Collapse
Affiliation(s)
- Qiqing Tao
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| | - Koichiro Tamura
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Tokyo, Japan
| | | | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Corresponding author: E-mail:
| |
Collapse
|
137
|
The Complete Chloroplast Genomes of Punica granatum and a Comparison with Other Species in Lythraceae. Int J Mol Sci 2019; 20:ijms20122886. [PMID: 31200508 PMCID: PMC6627765 DOI: 10.3390/ijms20122886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023] Open
Abstract
Pomegranates (Punica granatum L.) are one of the most popular fruit trees cultivated in arid and semi-arid tropics and subtropics. In this study, we determined and characterized three complete chloroplast (cp) genomes of P. granatum cultivars with different phenotypes using the genome skimming approach. The complete cp genomes of three pomegranate cultivars displayed the typical quadripartite structure of angiosperms, and their length ranged from 156,638 to 156,639 bp. They encoded 113 unique genes and 17 are duplicated in the inverted regions. We analyzed the sequence diversity of pomegranate cp genomes coupled with two previous reports. The results showed that the sequence diversity is extremely low and no informative sites were detected, which suggests that cp genome sequences may be not be suitable for investigating the genetic diversity of pomegranate genotypes. Further, we analyzed the codon usage pattern and identified the potential RNA editing sites. A comparative cp genome analysis with other species within Lythraceae revealed that the gene content and organization are highly conserved. Based on a site-specific model, 11 genes with positively selected sites were detected, and most of them were photosynthesis-related genes and genetic system-related genes. Together with previously released cp genomes of the order Myrtales, we determined the taxonomic position of P. granatum based on the complete chloroplast genomes. Phylogenetic analysis suggested that P. granatum form a single clade with other species from Lythraceae with a high support value. The complete cp genomes provides valuable information for understanding the phylogenetic position of P. gramatum in the order Myrtales.
Collapse
|
138
|
Dynamic evolution of mitochondrial genomes in Trebouxiophyceae, including the first completely assembled mtDNA from a lichen-symbiont microalga (Trebouxia sp. TR9). Sci Rep 2019; 9:8209. [PMID: 31160653 PMCID: PMC6547736 DOI: 10.1038/s41598-019-44700-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Trebouxiophyceae (Chlorophyta) is a species-rich class of green algae with a remarkable morphological and ecological diversity. Currently, there are a few completely sequenced mitochondrial genomes (mtDNA) from diverse Trebouxiophyceae but none from lichen symbionts. Here, we report the mitochondrial genome sequence of Trebouxia sp. TR9 as the first complete mtDNA sequence available for a lichen-symbiont microalga. A comparative study of the mitochondrial genome of Trebouxia sp. TR9 with other chlorophytes showed important organizational changes, even between closely related taxa. The most remarkable change is the enlargement of the genome in certain Trebouxiophyceae, which is principally due to larger intergenic spacers and seems to be related to a high number of large tandem repeats. Another noticeable change is the presence of a relatively large number of group II introns interrupting a variety of tRNA genes in a single group of Trebouxiophyceae, which includes Trebouxiales and Prasiolales. In addition, a fairly well-resolved phylogeny of Trebouxiophyceae, along with other Chlorophyta lineages, was obtained based on a set of seven well-conserved mitochondrial genes.
Collapse
|
139
|
Phylogenomic conflict resulting from ancient introgression following species diversification in Stewartia s.l. (Theaceae). Mol Phylogenet Evol 2019; 135:1-11. [DOI: 10.1016/j.ympev.2019.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022]
|
140
|
Gonçalves DJP, Simpson BB, Ortiz EM, Shimizu GH, Jansen RK. Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol Phylogenet Evol 2019; 138:219-232. [PMID: 31146023 DOI: 10.1016/j.ympev.2019.05.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
The current classification of angiosperms is based primarily on concatenated plastid markers and maximum likelihood (ML) inference. This approach has been justified by the assumption that plastid DNA (ptDNA) is inherited as a single locus and that its individual genes produce congruent trees. However, structural and functional characteristics of ptDNA suggest that plastid genes may not evolve as a single locus and are experiencing different evolutionary forces. To examine this idea, we produced new complete plastid genome (plastome) sequences of 27 species and combined these data with publicly available sequences to produce a final dataset that includes 78 plastid genes for 89 species of rosids and five outgroups. We used four data matrices (i.e., gene, exon, codon-aligned, and amino acid) to infer species and gene trees using ML and multispecies coalescent (MSC) methods. Rosids include about one third of all angiosperms and their two major clades, fabids and malvids, were recovered in almost all analyses. However, we detected incongruence between species trees inferred with different matrices and methods and previously published plastid and nuclear phylogenies. We visualized and tested the significance of incongruence between gene trees and species trees. We then measured the distribution of phylogenetic signal across sites and genes supporting alternative placements of five controversial nodes at different taxonomic levels. Gene trees inferred with plastid data often disagree with species trees inferred using both ML (with unpartitioned or partitioned data) and MSC. Species trees inferred with both methods produced alternative topologies for a few taxa. Our results show that, in a phylogenetic context, plastid protein-coding genes may not be fully linked and behaving as a single locus. Furthermore, concatenated matrices may produce highly supported phylogenies that are discordant with individual gene trees. We also show that phylogenies inferred with MSC are accurate. We therefore emphasize the importance of considering variation in phylogenetic signal across plastid genes and the exploration of plastome data to increase accuracy of estimating relationships. We also support the use of MSC with plastome matrices in future phylogenomic investigations.
Collapse
Affiliation(s)
- Deise J P Gonçalves
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA.
| | - Beryl B Simpson
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA
| | - Edgardo M Ortiz
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA; Department of Ecology & Ecosystem Management, Plant Biodiversity Research, Technical University of Munich, Emil-Ramann Strasse 2, Freising D-85354, Germany
| | - Gustavo H Shimizu
- Department of Plant Biology, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Robert K Jansen
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA; Genomics and Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
141
|
Heckenhauer J, Paun O, Chase MW, Ashton PS, Kamariah AS, Samuel R. Molecular phylogenomics of the tribe Shoreeae (Dipterocarpaceae) using whole plastid genomes. ANNALS OF BOTANY 2019; 123:857-865. [PMID: 30541053 PMCID: PMC6526321 DOI: 10.1093/aob/mcy220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/12/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Phylogenetic relationships within tribe Shoreeae, containing the main elements of tropical forests in Southeast Asia, present a long-standing problem in the systematics of Dipterocarpaceae. Sequencing whole plastomes using next-generation sequencing- (NGS) based genome skimming is increasingly employed for investigating phylogenetic relationships of plants. Here, the usefulness of complete plastid genome sequences in resolving phylogenetic relationships within Shoreeae is evaluated. METHODS A pipeline to obtain alignments of whole plastid genome sequences across individuals with different amounts of available data is presented. In total, 48 individuals, representing 37 species and four genera of the ecologically and economically important tribe Shoreeae sensu Ashton, were investigated. Phylogenetic trees were reconstructed using maximum parsimony, maximum likelihood and Bayesian inference. KEY RESULTS Here, the first fully sequenced plastid genomes for the tribe Shoreeae are presented. Their size, GC content and gene order are comparable with those of other members of Malvales. Phylogenomic analyses demonstrate that whole plastid genomes are useful for inferring phylogenetic relationships among genera and groups of Shorea (Shoreeae) but fail to provide well-supported phylogenetic relationships among some of the most closely related species. Discordance in placement of Parashorea was observed between phylogenetic trees obtained from plastome analyses and those obtained from nuclear single nucleotide polymorphism (SNP) data sets identified in restriction-site associated sequencing (RADseq). CONCLUSIONS Phylogenomic analyses of the entire plastid genomes are useful for inferring phylogenetic relationships at lower taxonomic levels, but are not sufficient for detailed phylogenetic reconstructions of closely related species groups in Shoreeae. Discordance in placement of Parashorea was further investigated for evidence of ancient hybridization.
Collapse
Affiliation(s)
- Jacqueline Heckenhauer
- University of Vienna, Department of Botany and Biodiversity Research, Vienna, Austria
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - Ovidiu Paun
- University of Vienna, Department of Botany and Biodiversity Research, Vienna, Austria
| | - Mark W Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Bently, WA, Australia
| | - Peter S Ashton
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - A S Kamariah
- University of Brunei Darussalam, Environmental and Life Sciences, Faculty of Science, Gadong, Brunei Darussalam
| | - Rosabelle Samuel
- University of Vienna, Department of Botany and Biodiversity Research, Vienna, Austria
| |
Collapse
|
142
|
Plastid phylogenomic insights into the evolution of Caryophyllales. Mol Phylogenet Evol 2019; 134:74-86. [DOI: 10.1016/j.ympev.2018.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
|
143
|
Merwe M, Yap JS, Bragg JG, Cristofolini C, Foster CSP, Ho SYW, Rossetto M. Assemblage accumulation curves: A framework for resolving species accumulation in biological communities using DNA sequences. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marlien Merwe
- National Herbarium of New South Wales Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Jia‐Yee S. Yap
- National Herbarium of New South Wales Royal Botanic Garden Sydney Sydney New South Wales Australia
- Queensland Alliance of Agriculture and Food Innovation University of Queensland Brisbane Queensland Australia
| | - Jason G. Bragg
- National Herbarium of New South Wales Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Caroline Cristofolini
- National Herbarium of New South Wales Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Charles S. P. Foster
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Simon Y. W. Ho
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Maurizio Rossetto
- National Herbarium of New South Wales Royal Botanic Garden Sydney Sydney New South Wales Australia
- Queensland Alliance of Agriculture and Food Innovation University of Queensland Brisbane Queensland Australia
| |
Collapse
|
144
|
Thode VA, Sanmartín I, Lohmann LG. Contrasting patterns of diversification between Amazonian and Atlantic forest clades of Neotropical lianas (Amphilophium, Bignonieae) inferred from plastid genomic data. Mol Phylogenet Evol 2019; 133:92-106. [DOI: 10.1016/j.ympev.2018.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/20/2018] [Accepted: 12/16/2018] [Indexed: 01/23/2023]
|
145
|
Noutahi E, Calderon V, Blanchette M, El-Mabrouk N, Lang BF. Rapid Genetic Code Evolution in Green Algal Mitochondrial Genomes. Mol Biol Evol 2019; 36:766-783. [PMID: 30698742 PMCID: PMC6551751 DOI: 10.1093/molbev/msz016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genetic code deviations involving stop codons have been previously reported in mitochondrial genomes of several green plants (Viridiplantae), most notably chlorophyte algae (Chlorophyta). However, as changes in codon recognition from one amino acid to another are more difficult to infer, such changes might have gone unnoticed in particular lineages with high evolutionary rates that are otherwise prone to codon reassignments. To gain further insight into the evolution of the mitochondrial genetic code in green plants, we have conducted an in-depth study across mtDNAs from 51 green plants (32 chlorophytes and 19 streptophytes). Besides confirming known stop-to-sense reassignments, our study documents the first cases of sense-to-sense codon reassignments in Chlorophyta mtDNAs. In several Sphaeropleales, we report the decoding of AGG codons (normally arginine) as alanine, by tRNA(CCU) of various origins that carry the recognition signature for alanine tRNA synthetase. In Chromochloris, we identify tRNA variants decoding AGG as methionine and the synonymous codon CGG as leucine. Finally, we find strong evidence supporting the decoding of AUA codons (normally isoleucine) as methionine in Pycnococcus. Our results rely on a recently developed conceptual framework (CoreTracker) that predicts codon reassignments based on the disparity between DNA sequence (codons) and the derived protein sequence. These predictions are then validated by an evaluation of tRNA phylogeny, to identify the evolution of new tRNAs via gene duplication and loss, and structural modifications that lead to the assignment of new tRNA identities and a change in the genetic code.
Collapse
Affiliation(s)
- Emmanuel Noutahi
- Département d'Informatique et de Recherche opérationnelle (DIRO), Université de Montréal, CP 6128 succursale Centre-Ville, Montreal, QC, Canada
| | - Virginie Calderon
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill University, McConnell Engineering Bldg., Montréal, QC H3A 0E9, Canada
- McGill Centre for Bioinformatics, McGill University, Montréal, QC, Canada
| | - Nadia El-Mabrouk
- Département d'Informatique et de Recherche opérationnelle (DIRO), Université de Montréal, CP 6128 succursale Centre-Ville, Montreal, QC, Canada
| | - Bernd Franz Lang
- Département de Biochimie, Centre Robert Cedergren, Université de Montréal, CP 6128 succursale Centre-Ville, Montreal, QC, Canada
| |
Collapse
|
146
|
Parks MB, Wickett NJ, Alverson AJ. Signal, Uncertainty, and Conflict in Phylogenomic Data for a Diverse Lineage of Microbial Eukaryotes (Diatoms, Bacillariophyta). Mol Biol Evol 2019; 35:80-93. [PMID: 29040712 PMCID: PMC5850769 DOI: 10.1093/molbev/msx268] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diatoms (Bacillariophyta) are a species-rich group of eukaryotic microbes diverse in morphology, ecology, and metabolism. Previous reconstructions of the diatom phylogeny based on one or a few genes have resulted in inconsistent resolution or low support for critical nodes. We applied phylogenetic paralog pruning techniques to a data set of 94 diatom genomes and transcriptomes to infer perennially difficult species relationships, using concatenation and summary-coalescent methods to reconstruct species trees from data sets spanning a wide range of thresholds for taxon and column occupancy in gene alignments. Conflicts between gene and species trees decreased with both increasing taxon occupancy and bootstrap cutoffs applied to gene trees. Concordance between gene and species trees was lowest for short internodes and increased logarithmically with increasing edge length, suggesting that incomplete lineage sorting disproportionately affects species tree inference at short internodes, which are a common feature of the diatom phylogeny. Although species tree topologies were largely consistent across many data treatments, concatenation methods appeared to outperform summary-coalescent methods for sparse alignments. Our results underscore that approaches to species-tree inference based on few loci are likely to be misled by unrepresentative sampling of gene histories, particularly in lineages that may have diversified rapidly. In addition, phylogenomic studies of diatoms, and potentially other hyperdiverse groups, should maximize the number of gene trees with high taxon occupancy, though there is clearly a limit to how many of these genes will be available.
Collapse
Affiliation(s)
- Matthew B Parks
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, IL
| | - Norman J Wickett
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, IL
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR
| |
Collapse
|
147
|
Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proc Natl Acad Sci U S A 2019; 116:5015-5020. [PMID: 30804180 PMCID: PMC6421419 DOI: 10.1073/pnas.1812092116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The projected increase in drought severity and duration worldwide poses a significant threat to the health of terrestrial ecosystems. We reveal that unique genetic features of desiccation sensing and protection in streptophyte algae not only distinguish them from chlorophyte algae, but also represent a crucial evolutionary step that may have facilitated colonization and subsequent diversification of terrestrial habitats. We demonstrate the evolutionary significance of a molecular mechanism underlying how plants sense drought stress via the coordination of chloroplast retrograde signaling to trigger the closure of stomata, protecting vital photosynthetic tissue. Our findings constitute a significant step forward in understanding the evolution of plant drought tolerance, contributing to the diversification of terrestrial plant communities through past global climate transitions. Chloroplast retrograde signaling networks are vital for chloroplast biogenesis, operation, and signaling, including excess light and drought stress signaling. To date, retrograde signaling has been considered in the context of land plant adaptation, but not regarding the origin and evolution of signaling cascades linking chloroplast function to stomatal regulation. We show that key elements of the chloroplast retrograde signaling process, the nucleotide phosphatase (SAL1) and 3′-phosphoadenosine-5′-phosphate (PAP) metabolism, evolved in streptophyte algae—the algal ancestors of land plants. We discover an early evolution of SAL1-PAP chloroplast retrograde signaling in stomatal regulation based on conserved gene and protein structure, function, and enzyme activity and transit peptides of SAL1s in species including flowering plants, the fern Ceratopteris richardii, and the moss Physcomitrella patens. Moreover, we demonstrate that PAP regulates stomatal closure via secondary messengers and ion transport in guard cells of these diverse lineages. The origin of stomata facilitated gas exchange in the earliest land plants. Our findings suggest that the conquest of land by plants was enabled by rapid response to drought stress through the deployment of an ancestral SAL1-PAP signaling pathway, intersecting with the core abscisic acid signaling in stomatal guard cells.
Collapse
|
148
|
Ocaña-Pallarès E, Najle SR, Scazzocchio C, Ruiz-Trillo I. Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway. PLoS Genet 2019; 15:e1007986. [PMID: 30789903 PMCID: PMC6400420 DOI: 10.1371/journal.pgen.1007986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/05/2019] [Accepted: 01/25/2019] [Indexed: 01/17/2023] Open
Abstract
Genes and genomes can evolve through interchanging genetic material, this leading to reticular evolutionary patterns. However, the importance of reticulate evolution in eukaryotes, and in particular of horizontal gene transfer (HGT), remains controversial. Given that metabolic pathways with taxonomically-patchy distributions can be indicative of HGT events, the eukaryotic nitrate assimilation pathway is an ideal object of investigation, as previous results revealed a patchy distribution and suggested that the nitrate assimilation cluster of dikaryotic fungi (Opisthokonta) could have been originated and transferred from a lineage leading to Oomycota (Stramenopiles). We studied the origin and evolution of this pathway through both multi-scale bioinformatic and experimental approaches. Our taxon-rich genomic screening shows that nitrate assimilation is present in more lineages than previously reported, although being restricted to autotrophs and osmotrophs. The phylogenies indicate a pervasive role of HGT, with three bacterial transfers contributing to the pathway origin, and at least seven well-supported transfers between eukaryotes. In particular, we propose a distinct and more complex HGT path between Opisthokonta and Stramenopiles than the one previously suggested, involving at least two transfers of a nitrate assimilation gene cluster. We also found that gene fusion played an essential role in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, and of a chimeric nitrate reductase in Ichthyosporea (Opisthokonta). We show that the ichthyosporean pathway, including this novel nitrate reductase, is physiologically active and transcriptionally co-regulated, responding to different nitrogen sources; similarly to distant eukaryotes with independent HGT-acquisitions of the pathway. This indicates that this pattern of transcriptional control evolved convergently in eukaryotes, favoring the proper integration of the pathway in the metabolic landscape. Our results highlight the importance of reticulate evolution in eukaryotes, by showing the crucial contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway. One of the most relevant findings in evolution was that lineages, either genes or genomes, can evolve through interchanging genetic material. For example, exon shuffling can lead to genes with complete novel functions, and genomes can acquire novel functionalities by means of horizontal gene transfer (HGT). Whereas HGT is known to be an important driver of metabolic remodelling and ecological adaptations in Bacteria, its importance and prevalence in eukaryotes remains controversial. We show that HGT played a major role in the origin and evolution of the eukaryotic nitrate assimilation pathway, with several bacteria-to-eukaryote and eukaryote-to-eukaryote transfers promoting the acquisition of this ecologically-relevant pathway to autotrophs and to distinct groups of osmotrophs. Moreover, we also show that gene fusion was important in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, but also of a non-canonical nitrate reductase that we describe in Ichthyosporea, a poorly-characterized eukaryotic group that includes many parasitic species. In conclusion, our results highlight the importance of reticulate evolution in eukaryotes, by showing the contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway.
Collapse
Affiliation(s)
- Eduard Ocaña-Pallarès
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- * E-mail: (EOP); (IRT)
| | - Sebastián R. Najle
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, United Kingdom
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
- ICREA, Barcelona, Catalonia, Spain
- * E-mail: (EOP); (IRT)
| |
Collapse
|
149
|
Deng N, Hou C, Liu C, Li M, Bartish I, Tian Y, Chen W, Du C, Jiang Z, Shi S. Significance of Photosynthetic Characters in the Evolution of Asian Gnetum (Gnetales). FRONTIERS IN PLANT SCIENCE 2019; 10:39. [PMID: 30804953 PMCID: PMC6370715 DOI: 10.3389/fpls.2019.00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/10/2019] [Indexed: 05/23/2023]
Abstract
Gnetum is a genus in the Gnetales that has a unique but ambiguous placement within seed plant phylogeny. Previous studies have shown that Gnetum has lower values of photosynthetic characters than those of other seed plants, but few Gnetum species have been studied, and those that have been studied are restricted to narrow taxonomic and geographic ranges. In addition, the mechanism underlying the lower values of photosynthetic characters in Gnetum remains poorly understood. Here, we investigated the photosynthetic characters of a Chinese lianoid species, i.e., Gnetum parvifolium, and co-occurring woody angiosperms growing in the wild, as well as seedlings of five Chinese Gnetum species cultivated in a greenhouse. The five Gnetum species had considerably lower values for photosynthesis parameters (net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatal conductance) than those of other seed plant representatives. Interrelated analyses revealed that the low photosynthetic capacity may be an intrinsic property of Gnetum, and may be associated with its evolutionary history. Comparison of the chloroplast genomes (cpDNAs) of Gnetum with those of other seed plant representatives revealed that 17 coding genes are absent from the cpDNAs of all species of Gnetum. This lack of multiple functional genes from the cpDNAs probably leads to the low photosynthetic rates of Gnetum. Our results provide a new perspective on the evolutionary history of the Gnetales, and on the ecophysiological and genomic attributes of tropical biomes in general. These results could also be useful for the breeding and cultivation of Gnetum.
Collapse
Affiliation(s)
- Nan Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hunan Academy of Forestry, Changsha, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, China
| | - Chen Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Caixia Liu
- Hunan Academy of Forestry, Changsha, China
| | - Minghe Li
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Igor Bartish
- Department of Genetic Ecology, Institute of Botany, Academy of Sciences of Czech Republic, Praha, Czechia
| | - Yuxin Tian
- Hunan Academy of Forestry, Changsha, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, China
| | - Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Institute of Forest and Ecology Protection, Chinese Academy of Forestry, Beijing, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
150
|
Robison TA, Wolf PG. ReFernment: An R package for annotating RNA editing in plastid genomes. APPLICATIONS IN PLANT SCIENCES 2019; 7:e01216. [PMID: 30828503 PMCID: PMC6384294 DOI: 10.1002/aps3.1216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/14/2018] [Indexed: 05/15/2023]
Abstract
PREMISE OF THE STUDY In the absence of cDNA, the annotation of RNA editing in plastomes must be done manually, representing a significant time cost to those studying the organellar genomes of ferns and hornworts. METHODS AND RESULTS We developed an R package to automatically annotate apparent nonsense mutations in plastid genomes. The software successfully annotates such sites and results in no false positives for data with no sequencing or assembly errors. CONCLUSIONS Compared to manual annotation, ReFernment offers greater speed and accuracy for annotating RNA editing sites. This software should be especially useful for researchers generating large numbers of plastome sequences for taxa with high levels of RNA editing.
Collapse
Affiliation(s)
| | - Paul G. Wolf
- Department of BiologyUtah State UniversityLoganUtahUSA
| |
Collapse
|