101
|
Spaas JH, Chiers K, Bussche L, Burvenich C, Van de Walle GR. Stem/progenitor cells in non-lactating versus lactating equine mammary gland. Stem Cells Dev 2012; 21:3055-67. [PMID: 22574831 DOI: 10.1089/scd.2012.0042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation, and involution. Based on the facts that (i) mammary stem/progenitor cells (MaSC) are proposed to be the driving forces behind mammary growth and function and (ii) variation exists between mammalian species with regard to physiological and pathological functioning of this organ, we believe that studying MaSC from different mammals is of great comparative interest. Over the years, important data has been gathered on MaSC of men and mice, although knowledge on MaSC in other mammals remains limited. Therefore, the aim of this work was to isolate and characterize MaSC from the mammary gland of horses. Hereby, our salient findings were that the isolated equine cells met the 2 in vitro hallmark properties of stem cells, namely the ability to self-renew and to differentiate into multiple cell lineages. Moreover, the cells were immunophenotyped using markers for CD29, CD44, CD49f, and Ki67. Finally, we propose the mammosphere assay as a valuable in vitro assay to study MaSC during different physiological phases since it was observed that equine lactating mammary gland contains significantly more mammosphere-initiating cells than the inactive, nonlactating gland (a reflection of MaSC self-renewal) and, moreover, that these spheres were significantly larger in size upon initial cultivation (a reflection of progenitor cell proliferation). Taken together, this study not only extends the current knowledge of mammary gland biology, but also benefits the comparative approach to study and compare MaSC in different mammalian species.
Collapse
Affiliation(s)
- Jan H Spaas
- Department of Comparative Physiology and Biometrics, Ghent University, Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
102
|
Singer J, Weichselbaumer M, Stockner T, Mechtcheriakova D, Sobanov Y, Bajna E, Wrba F, Horvat R, Thalhammer JG, Willmann M, Jensen-Jarolim E. Comparative oncology: ErbB-1 and ErbB-2 homologues in canine cancer are susceptible to cetuximab and trastuzumab targeting. Mol Immunol 2012; 50:200-9. [PMID: 22424313 PMCID: PMC3318186 DOI: 10.1016/j.molimm.2012.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 01/01/2023]
Abstract
To facilitate comparative oncology trials we compared the biological and molecular homologies of canine (dog; Canis lupus familiaris) and human tumor-associated antigens ErbB-1 and -2. Further, we investigated whether they could serve as targets for anti-ErbB-1 (cetuximab) and anti-ErbB-2 antibodies (trastuzumab), which are highly relevant in human clinical oncology. Immunohistochemistry of canine mammary cancer showed ErbB-1 overexpression in 3/10 patients and ErbB-2 in 4/10. We report 91% amino acid homology for ErbB-1 and 92% for ErbB-2 between canine and human molecules. Modeling of canine on human ErbB-1 revealed that the cetuximab epitope only differs by 4 amino acids: Lys443 is replaced by Arg, Ser468 by Asn, Gly471 by Asp, and Asn473 by Lys in canines. The trastuzumab binding site is identical in human and canine ErbB-2 apart from a single amino acid change (Pro557 to Ser). Binding of cetuximab and trastuzumab to canine mammary carcinoma cells CF33, CF41, Sh1b and P114 was confirmed by flow cytometry. Both antibodies significantly inhibited canine tumor cell proliferation partly due to growth arrest in G0/G1 phase. We explain the lower efficiency on the tested canine than on human SKBR3 and A431 cells, by a 2-log lower expression level of the canine ErbB-1 and -2 molecules. Our results indicate significant homology of human and canine Erb-1 and -2 tumor associated antigens. The fact that the canine homologues express the cetuximab and trastuzumab epitopes may facilitate antibody-based immunotherapy in dogs. Importantly, the striking similarities of ErbB-1 and -2 molecules open up avenues towards comparative strategies for targeted drug development.
Collapse
Affiliation(s)
- Josef Singer
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Król M, Pawłowski KM, Szyszko K, Maciejewski H, Dolka I, Manuali E, Jank M, Motyl T. The gene expression profiles of canine mammary cancer cells grown with carcinoma-associated fibroblasts (CAFs) as a co-culture in vitro. BMC Vet Res 2012; 8:35. [PMID: 22453032 PMCID: PMC3355042 DOI: 10.1186/1746-6148-8-35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/27/2012] [Indexed: 12/11/2022] Open
Abstract
Background It is supposed that fibroblasts present in tumour microenvironment increase cancer invasiveness and its ability to metastasize but the mechanisms have not been clearly defined yet. Thus, the current study was designed to assess changes in gene expression in five various cancer cell lines grown as a co-culture with the carcinoma-associated fibroblasts (CAFs) in vitro. Results A carcinoma-associated fibroblast cell line was isolated from a canine mammary cancer. Then, a co-culture of cancer cells with the CAFs was established and maintained for 72 hrs. Having sorted the cells, a global gene expression in cancer cells using DNA microarrays was examined. The analysis revealed an up-regulation of 100 genes and a down-regulation of 106 genes in the cancer cells grown as a co-culture with the CAFs in comparison to control conditions. The PANTHER binomial statistics tool was applied to determine statistically over-manifested pathways (p < 0.05). Bulk of the up-regulated genes are involved in the adhesion, the angiogenesis, the epithelial-mesenchymal transition (EMT) and generally take part in the developmental processes. These results were further confirmed using real-time qPCR. Moreover, a wound-healing assay and growth characteristics on Matrigel matrix showed that CAFs increase cancer cell migration and matrix invasion. Conclusion The results of the current study showed that the co-culturing of cancer cells and the CAFs caused significant changes to the cancer gene expression. The presence of the CAFs in a microenvironment of cancer cells promotes adhesion, angiogenesis and EMT.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-WULS, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Canine tumors: a spontaneous animal model of human carcinogenesis. Transl Res 2012; 159:165-72. [PMID: 22340765 DOI: 10.1016/j.trsl.2011.11.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 11/24/2022]
Abstract
The enormous biologic complexity of human cancer has stimulated the development of more appropriate experimental models that could resemble in a natural and spontaneous manner the physiopathologic aspects of cancer biology. Companion animals have many desired characteristics that fill the gap between in vitro and in vivo studies, and these characteristics have proven to be important in understanding many complex molecular aspects of human cancer. Spontaneous tumors in dogs share a wide variety of epidemiologic, biologic, and clinical features with human cancer, which makes this animal model both attractive and underused in oncology research. In this review, we summarize the importance of naturally occurring canine tumors as valuable tools for studying numerous aspects of human cancer as well as the potential use of this animal model for the development of new cancer treatments. We address specifically the use of canine mammary tumors as an increasingly powerful model to study human breast cancer.
Collapse
|
105
|
Matos AJF, Baptista CS, Gärtner MF, Rutteman GR. Prognostic studies of canine and feline mammary tumours: the need for standardized procedures. Vet J 2012; 193:24-31. [PMID: 22296767 DOI: 10.1016/j.tvjl.2011.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/23/2011] [Accepted: 12/31/2011] [Indexed: 10/14/2022]
Abstract
For several years, veterinary oncologists have been struggling with the prognosis of mammary tumours in dogs and cats. Translation of tumour characteristics into prognostic information is an invaluable tool for the use of the most appropriate therapies, as well as for planning innovative therapeutic trials. Moreover, canine and feline spontaneous mammary gland tumours are good models for the study of human breast cancer. Collecting and interpreting information regarding the prognosis of canine and feline mammary tumours is difficult due to the fact that different methods have been applied to study various components and characteristics. This review identifies some of the challenges of prognostic studies of spontaneous canine and feline mammary tumours and suggests standardized procedures to overcome these challenges and facilitate reproducibility and assessment of results.
Collapse
Affiliation(s)
- A J F Matos
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Portugal.
| | | | | | | |
Collapse
|
106
|
Klopfleisch R, Gruber AD. Transcriptome and proteome research in veterinary science: what is possible and what questions can be asked? ScientificWorldJournal 2012; 2012:254962. [PMID: 22262952 PMCID: PMC3259802 DOI: 10.1100/2012/254962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/02/2011] [Indexed: 01/21/2023] Open
Abstract
In recent years several technologies for the complete analysis of the transcriptome and proteome have reached a technological level which allows their routine application as scientific tools. The principle of these methods is the identification and quantification of up to ten thousands of RNA and proteins species in a tissue, in contrast to the sequential analysis of conventional methods such as PCR and Western blotting. Due to their technical progress transcriptome and proteome analyses are becoming increasingly relevant in all fields of biological research. They are mainly used for the explorative identification of disease associated complex gene expression patterns and thereby set the stage for hypothesis-driven studies. This review gives an overview on the methods currently available for transcriptome analysis, that is, microarrays, Ref-Seq, quantitative PCR arrays and discusses their potentials and limitations. Second, the most powerful current approaches to proteome analysis are introduced, that is, 2D-gel electrophoresis, shotgun proteomics, MudPIT and the diverse technological concepts are reviewed. Finally, experimental strategies for biomarker discovery, experimental settings for the identification of prognostic gene sets and explorative versus hypothesis driven approaches for the elucidation of diseases associated genes and molecular pathways are described and their potential for studies in veterinary research is highlighted.
Collapse
Affiliation(s)
- Robert Klopfleisch
- Institut für Tierpathologie, Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany.
| | | |
Collapse
|
107
|
Matrix metalloproteinase-10 promotes Kras-mediated bronchio-alveolar stem cell expansion and lung cancer formation. PLoS One 2011; 6:e26439. [PMID: 22022614 PMCID: PMC3195727 DOI: 10.1371/journal.pone.0026439] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/27/2011] [Indexed: 01/08/2023] Open
Abstract
Matrix metalloproteinase 10 (MMP-10; stromelysin 2) is a member of a large family of structurally related matrix metalloproteinases, many of which have been implicated in tumor progression, invasion and metastasis. We recently identified Mmp10 as a gene that is highly induced in tumor-initiating lung bronchioalveolar stem cells (BASCs) upon activation of oncogenic Kras in a mouse model of lung adenocarcinoma. However, the potential role of Mmp10 in lung tumorigenesis has not been addressed. Here, we demonstrate that Mmp10 is overexpressed in lung tumors induced by either the smoke carcinogen urethane or oncogenic Kras. In addition, we report a significant reduction in lung tumor number and size after urethane exposure or genetic activation of oncogenic Kras in Mmp10 null (Mmp10−/−) mice. This inhibitory effect is reflected in a defect in the ability of Mmp10-deficient BASCs to expand and undergo transformation in response to urethane or oncogenic Kras in vivo and in vitro, demonstrating a role for Mmp10 in the tumor-initiating activity of Kras-transformed lung stem cells. To determine the potential relevance of MMP10 in human cancer we analyzed Mmp10 expression in publicly-available gene expression profiles of human cancers. Our analysis reveals that MMP10 is highly overexpressed in human lung tumors. Gene set enhancement analysis (GSEA) demonstrates that elevated MMP10 expression correlates with both cancer stem cell and tumor metastasis genomic signatures in human lung cancer. Finally, Mmp10 is elevated in many human tumor types suggesting a widespread role for Mmp10 in human malignancy. We conclude that Mmp10 plays an important role in lung tumor initiation via maintenance of a highly tumorigenic, cancer-initiating, stem-like cell population, and that Mmp10 expression is associated with stem-like, highly metastatic genotypes in human lung cancers. These results indicate that Mmp10 may represent a novel therapeutic approach to target lung cancer stem cells.
Collapse
|
108
|
da Costa A, Lenze D, Hummel M, Kohn B, Gruber AD, Klopfleisch R. Identification of six potential markers for the detection of circulating canine mammary tumour cells in the peripheral blood identified by microarray analysis. J Comp Pathol 2011; 146:143-51. [PMID: 21783201 DOI: 10.1016/j.jcpa.2011.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
The presence of circulating tumour cells (CTCs) in the peripheral blood is a prognostic factor for survival of human breast cancer patients. CTCs in the peripheral blood of dogs with mammary tumours have not been reported definitively. The present pilot study identifies mRNA markers for CTCs by comparing the transcriptome of canine mammary carcinoma cell lines CMM26 and CMM115 and peripheral blood leucocytes (PBLs). Genes with a 200-fold or higher mRNA expression in carcinoma cell lines were tested for specificity and sensitivity to detect CTCs using reverse transcriptase polymerase chain reaction (PCR). Six mRNA markers, AGR2, ATP8B1, CRYAB, F3 IRX3 and SLC1A1 were expressed in cell lines, but not PBL. All PCRs were able to detect one carcinoma cell admixed in 10(6) or more PBLs. The six mRNA markers may be suitable for detection of canine mammary CTCs and allow the analysis of their spatiotemporal distribution in dogs with mammary tumours.
Collapse
Affiliation(s)
- A da Costa
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
109
|
Immunopathogenic behaviors of canine transmissible venereal tumor in dogs following an immunotherapy using dendritic/tumor cell hybrid. Vet Immunol Immunopathol 2011; 139:187-99. [DOI: 10.1016/j.vetimm.2010.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/20/2010] [Accepted: 10/05/2010] [Indexed: 01/28/2023]
|
110
|
Klopfleisch R, von Euler H, Sarli G, Pinho SS, Gärtner F, Gruber AD. Molecular carcinogenesis of canine mammary tumors: news from an old disease. Vet Pathol 2010; 48:98-116. [PMID: 21149845 DOI: 10.1177/0300985810390826] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studies focusing on the molecular basis of canine mammary tumors (CMT) have long been hampered by limited numbers of molecular tools specific to the canine species. The lack of molecular information for CMT has impeded the identification of clinically relevant tumor markers beyond histopathology and the introduction of new therapeutic concepts. Additionally, the potential use for the dog as a model for human breast cancer is debatable until questions are answered regarding cellular origin, mechanisms, and cellular pathways. During the past years, increasing numbers of canine molecular tools have been developed on the genomic, RNA, and protein levels, and an increasing number of studies have shed light on specific aspects of canine carcinogenesis, particularly of the mammary gland. This review summarizes current knowledge on the molecular carcinogenesis of CMT, including the role of specific oncogenes, tumor suppressors, regulators of apoptosis and DNA repair, proliferation indices, adhesion molecules, circulating tumor cells, and mediators of angiogenesis in CMT progression and clinical behavior. Whereas the data available are far from complete, knowledge of molecular pathways has a significant potential to complement and refine the current diagnostic and therapeutic approach to this tumor type. Furthermore, current data show that significant similarities and differences exist between canine and human mammary tumors at the molecular level. Clearly, this is only the beginning of an understanding of the molecular mechanisms of CMT and their application in clinical patient management.
Collapse
Affiliation(s)
- R Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, reie Universität Berlin, Robert von Ostertag Str 15, D-14163 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
111
|
Rivera P, von Euler H. Molecular Biological Aspects on Canine and Human Mammary Tumors. Vet Pathol 2010; 48:132-46. [DOI: 10.1177/0300985810387939] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- P. Rivera
- Center of Clinical Comparative Oncology C3O, Department of Clinical Sciences, Division of Small Animals, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - H. von Euler
- Center of Clinical Comparative Oncology C3O, Department of Clinical Sciences, Division of Small Animals, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
112
|
The metastatic cascade is reflected in the transcriptome of metastatic canine mammary carcinomas. Vet J 2010; 190:236-243. [PMID: 21112801 DOI: 10.1016/j.tvjl.2010.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/18/2010] [Accepted: 10/25/2010] [Indexed: 01/28/2023]
Abstract
Proliferation, dedifferentiation and loss of cell-cell contacts are amongst the first steps of the metastatic cascade. The complex molecular pathways and gene expression changes associated with these events in canine mammary tumors are still largely undetermined. In this study, the transcriptome of 13 lymph node positive canine mammary carcinomas and corresponding non-neoplastic mammary glands were compared to identify the molecular pathways associated with metastatic progression. Differential gene expression was analyzed using gene set enrichment and pathway analysis and compared with gene expression data from human breast cancer. Metastatic canine carcinomas had 1312 significantly differentially expressed genes compared to normal mammary glands. This expression profile included a significant up-regulation of cell division and matrix invasion genes (MMP, SERPINE1, TIMP3). In contrast, genes associated with epithelial differentiation (EGF, EGFR, MAP2K6, STAT 5), cell adhesion (CLDN5, CTNNAL1, MUC1, PECAM1) and angiogenesis (ANGPT 2, ANGPTL1-4, FIGF, TIE1) were mostly down-regulated. Tumors had a significant decrease in membrane receptors and pathway gene expression (EGFR, FGFR1, GHR, PDGFR, TGFBR, TIE1) indicating a tendency towards independence from these proliferative stimuli. A number of the identified deregulated pathways overlapped with gene expression profiles of human breast cancer. Gene expression profiling of metastatic carcinomas, therefore, identified molecular pathways and functional gene families that are deregulated during malignant progression in canine mammary tumors.
Collapse
|
113
|
Klopfleisch R, Lenze D, Hummel M, Gruber AD. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles. BMC Cancer 2010; 10:618. [PMID: 21062462 PMCID: PMC2994823 DOI: 10.1186/1471-2407-10-618] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 11/09/2010] [Indexed: 12/04/2022] Open
Abstract
Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a translational model for human breast tumors in order to identify prognostic molecular signatures and potential therapeutic targets.
Collapse
Affiliation(s)
- Robert Klopfleisch
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany.
| | | | | | | |
Collapse
|
114
|
Cherrington BD, Morency E, Struble AM, Coonrod SA, Wakshlag JJ. Potential role for peptidylarginine deiminase 2 (PAD2) in citrullination of canine mammary epithelial cell histones. PLoS One 2010; 5:e11768. [PMID: 20668670 PMCID: PMC2909897 DOI: 10.1371/journal.pone.0011768] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/01/2010] [Indexed: 11/18/2022] Open
Abstract
Peptidylarginine Deiminases (PADs) convert arginine residues on substrate proteins to citrulline. Previous reports have documented that PAD2 expression and activity varies across the estrous cycle in the rodent uterus and pituitary gland, however, the expression and function of PAD2 in mammary tissue has not been previously reported. To gain more insight into potential reproductive roles for PAD2, in this study we evaluated PAD2 expression and localization throughout the estrous cycle in canine mammary tissue and then identified possible PAD2 enzymatic targets. Immunohistochemical and immunofluorescence analysis found PAD2 expression is low in anestrus, limited to a distinct, yet sparse, subset of epithelial cells within ductal alveoli during estrus/early diestrus, and encompasses the entire epithelium of the mammary duct in late diestrus. At the subcellular level, PAD2 is expressed in the cytoplasm, and to a lesser extent, the nucleus of these epithelial cells. Surprisingly, stimulation of canine mammary tumor cells (CMT25) shows that EGF, but not estrogen or progesterone, upregulates PAD2 transcription and translation suggesting EGF regulation of PAD2 and possibly citrullination in vivo. To identify potential PAD2 targets, anti-pan citrulline western blots were performed and results showed that citrullination activity is limited to diestrus with histones appearing to represent major enzymatic targets. Use of site-specific anti-citrullinated histone antibodies found that the N-terminus of histone H3, but not H4, appears to be the primary target of PAD activity in mammary epithelium. This observation supports the hypothesis that PAD2 may play a regulatory role in the expression of lactation related genes via histone citrullination during diestrus.
Collapse
Affiliation(s)
- Brian D. Cherrington
- J.A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Eric Morency
- J.A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Angela M. Struble
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Scott A. Coonrod
- J.A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Joseph J. Wakshlag
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
115
|
A vaccine targeting telomerase enhances survival of dogs affected by B-cell lymphoma. Mol Ther 2010; 18:1559-67. [PMID: 20531395 DOI: 10.1038/mt.2010.104] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Canine cancers occur with an incidence similar to that of humans and share many features with human malignancies including histological appearance, tumor genetics, biological behavior, and response to conventional therapies. As observed in humans, the telomerase reverse transcriptase (TERT) activity is largely confined to tumor tissues and absent in the majority of normal dog tissues. Therefore, dog TERT (dTERT) can constitute a valid target for translational cancer immunotherapy. We have evaluated the ability of adenovirus serotype 6 (Ad6) and DNA electroporation (DNA-EP) to induce immune responses against dTERT in dogs affected by malignant lymphoma (ML). The vaccine was combined with standard chemotherapy regimen [cyclophosphamide, vincristine, prednisone (COP)]. dTERT-specific immune response was induced in 13 out of 14 treated animals (93%) and remained detectable and long-lasting with the absence of autoimmunity or other side effects. Most interestingly, the survival time of vaccine/Chemo-treated dogs was significantly increased over historic controls of Chemo-treated animals (>97.8 versus 37 weeks, respectively, P = 0.001). Our results show that Ad6/DNA-EP-based cancer vaccine against dTERT overcomes host immune tolerance, should be combined with chemotherapy, induces long-lasting immune responses, and significantly prolongs the survival of ML canine patients. These data support further evaluation of this approach in human clinical trials.
Collapse
|
116
|
Estrela-Lima A, Araújo MSS, Costa-Neto JM, Teixeira-Carvalho A, Barrouin-Melo SM, Cardoso SV, Martins-Filho OA, Serakides R, Cassali GD. Immunophenotypic features of tumor infiltrating lymphocytes from mammary carcinomas in female dogs associated with prognostic factors and survival rates. BMC Cancer 2010; 10:256. [PMID: 20525350 PMCID: PMC2894795 DOI: 10.1186/1471-2407-10-256] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 06/04/2010] [Indexed: 11/25/2022] Open
Abstract
Background The immune system plays an important role in the multifactorial biologic system during the development of neoplasias. However, the involvement of the inflammatory response in the promotion/control of malignant cells is still controversial, and the cell subsets and the mechanisms involved are poorly investigated. The goal of this study was to characterize the clinical-pathological status and the immunophenotyping profile of tumor infiltrating lymphocytes and their association with the animal survival rates in canine mammary carcinomas. Methods Fifty-one animals with mammary carcinomas, classified as carcinomas in mixed tumors-MC-BMT = 31 and carcinomas-MC = 20 were submitted to systematic clinical-pathological analysis (tumor size; presence of lymph node and pulmonary metastasis; clinical stage; histological grade; inflammatory distribution and intensity as well as the lymphocytic infiltrate intensity) and survival rates. Twenty-four animals (MC-BMT = 16 and MC = 8) were elected to the immunophenotypic study performed by flow cytometry. Results Data analysis demonstrated that clinical stage II-IV and histological grade was I more frequent in MC-BMT as compared to MC. Univariate analysis demonstrated that the intensity of inflammation (moderate/intense) and the proportion of CD4+ (≥ 66.7%) or CD8+ T-cells (<33.3%) were not associated with worse survival rate. Multivariate analysis demonstrated that only lymphocytic infiltrate intensity ≥ 600 (P = 0.02) remained as independent prognostic factor. Despite the clinical manifestation, the lymphocytes represented the predominant cell type in the tumor infiltrate. The percentage of T-cells was higher in animals with MC-BMT without metastasis, while the percentage of B-lymphocytes was greater in animals with metastasized MC-BMT (P < 0.05). The relative percentage of CD4+ T-cells was significantly greater in metastasized tumors (both MC-BMT and MC), (P < 0.05) while the proportion of CD8+ T-cells was higher in MC-BMT without metastasis. Consequently, the CD4+/CD8+ ratio was significantly increased in both groups with metastasis. Regardless of the tumor type, the animals with high proportions of CD4+ and low CD8+ T-cells had decreased survival rates. Conclusion The intensity of lymphocytic infiltrate and probably the relative abundance of the CD4+ and CD8+ T-lymphocytes may represent important survival prognostic biomarkers for canine mammary carcinomas.
Collapse
Affiliation(s)
- Alessandra Estrela-Lima
- Departamento de Patologia e Clinicas, Escola de Medicina Veterinaria- Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Marra E, Uva P, Viti V, Simonelli V, Dogliotti E, De Rinaldis E, Lahm A, La Monica N, Nicosia A, Ciliberto G, Palombo F. Growth delay of human bladder cancer cells by Prostate Stem Cell Antigen downregulation is associated with activation of immune signaling pathways. BMC Cancer 2010; 10:129. [PMID: 20374648 PMCID: PMC2858747 DOI: 10.1186/1471-2407-10-129] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 04/07/2010] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI) anchored protein expressed not only in prostate but also in pancreas and bladder cancer as shown by immunohistochemistry and mRNA analysis. It has been targeted by monoclonal antibodies in preclinical animal models and more recently in a clinical trial in prostate cancer patients. The biological role played in tumor growth is presently unknown. In this report we have characterized the contribution of PSCA expression to tumor growth. METHODS A bladder cell line was engineered to express a doxycycline (dox) regulated shRNA against PSCA. To shed light on the PSCA biological role in tumor growth, microarray analysis was carried out as a function of PSCA expression. Expression of gene set of interest was further analyzed by qPCR RESULTS: Down regulation of the PSCA expression was associated with reduced cell proliferation in vitro and in vivo. Mice bearing subcutaneous tumors showed a reduced tumor growth upon treatment with dox, which effectively induced shRNA against PSCA as revealed by GFP expression. Pathway analysis of deregulated genes suggests a statistical significant association between PSCA downregulation and activation of genes downstream of the IFNalpha/beta receptor. CONCLUSIONS These experiments established for the first time a correlation between the level of PSCA expression and tumor growth and suggest a role of PSCA in counteracting the natural immune response.
Collapse
Affiliation(s)
- Emanuele Marra
- Istituto di Ricerche Biologia Molecolare P, Angeletti, Via Pontina Km 30,600 00040 Pomezia (Rome) Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Peruzzi D, Mesiti G, Ciliberto G, La Monica N, Aurisicchio L. Telomerase and HER-2/neu as targets of genetic cancer vaccines in dogs. Vaccine 2010; 28:1201-8. [DOI: 10.1016/j.vaccine.2009.11.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 11/05/2009] [Accepted: 11/11/2009] [Indexed: 12/24/2022]
|
119
|
Morris JS. Improving the diagnosis and treatment of canine mammary tumours: Immunohistochemical markers as prognostic tools. Vet J 2009; 184:3-4. [PMID: 19713137 DOI: 10.1016/j.tvjl.2009.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
|