101
|
Creane M, McElroy M, Duffy A, Dawood CS, O'Brien T. A 3-month Safety Assessment of Human Bone Marrow Derived Mesenchymal Stromal Cells Administered Once by the Intramuscular Route to Immunodeficient Mice. Toxicol Pathol 2018; 46:290-301. [PMID: 29504494 DOI: 10.1177/0192623318760516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Critical limb ischemia (CLI) represents the severest manifestation of peripheral arterial disease and is a major unmet medical need. This disease occurs when the arterial blood supply within the limb fails to meet the metabolic demands of the resting muscle or tissue, resulting in chronic ischemic rest pain and/or tissue necrosis. Human mesenchymal stromal cells, termed hMSCs, represent an exciting therapeutic modality for the treatment of this disease due to their immunomodulatory and tissue reparative functions. The aim of the study was to assess the preclinical toxicity profile of human bone marrow-derived MSCs in support of their use as a treatment for CLI. A 3-month toxicity study was carried out under good laboratory practices in immunodeficient mice who received, intramuscularly, a single dose of 3 × 105 (approximately 15 × 106 cells/kg) hMSCs manufactured under good manufacturing practices. No significant changes in body weight, food consumption, clinical signs, or histopathological changes were observed in the hMSC-treated mice in comparison to the controls. These results highlight that the administration of hMSCs during the 3-month study period was well tolerated and not associated with any test item-related tumors. This data set supported the initiation of a phase 1b first in human study in "no option" for revascularization patients with CLI.
Collapse
Affiliation(s)
- Michael Creane
- 1 Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Mary McElroy
- 2 Charles River Laboratories, Preclinical Services, Tranent (PCS-EDI), Edinburgh, UK
| | - Aoife Duffy
- 3 Centre for Cell Manufacturing in Ireland, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Chaansha Shaik Dawood
- 3 Centre for Cell Manufacturing in Ireland, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Timothy O'Brien
- 1 Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland.,3 Centre for Cell Manufacturing in Ireland, National University of Ireland Galway, Galway City, County Galway, Ireland
| |
Collapse
|
102
|
Frangogiannis NG. Cell therapy for peripheral artery disease. Curr Opin Pharmacol 2018; 39:27-34. [PMID: 29452987 DOI: 10.1016/j.coph.2018.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/28/2022]
Abstract
Patients with severe peripheral artery disease (PAD) who are not candidates for revascularization have poor prognosis. Cell therapy using peripheral blood-derived or bone marrow-derived mononuclear cells, mesenchymal stem cells, or marker-specific subsets of bone marrow cells with angiogenic properties may hold promise for no-option PAD patients. Injected cells may exert beneficial actions by enhancing local angiogenesis (either through maturation of endothelial progenitors, or through secretion of angiogenic mediators), or by transducing cytoprotective signals that preserve tissue structure. Despite extensive research, robust clinical evidence supporting the use of cell therapy in patients with critical limb ischemia is lacking. Larger, well-designed placebo-controlled clinical trials did not support the positive results of smaller less rigorous studies. There is a need for high-quality clinical studies to test the effectiveness of cell therapy in PAD patients. Moreover, fundamental cell biological studies are needed to identify the optimal cell types, and to develop strategies that may enhance homing, survival and effectiveness of the injected cells.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
103
|
Navarro-Requena C, Weaver JD, Clark AY, Clift DA, Pérez-Amodio S, Castaño Ó, Zhou DW, García AJ, Engel E. PEG hydrogel containing calcium-releasing particles and mesenchymal stromal cells promote vessel maturation. Acta Biomater 2018; 67:53-65. [PMID: 29246650 PMCID: PMC6534820 DOI: 10.1016/j.actbio.2017.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022]
Abstract
The use of human mesenchymal stromal cells (hMSC) for treating diseased tissues with poor vascularization has received significant attention, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have also been suggested as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. In this study, calcium-releasing particles and hMSC were combined within a hydrogel to examine their vasculogenic potential in vitro and in vivo. The particles provided sustained calcium release and showed proangiogenic stimulation in a chorioallantoic membrane (CAM) assay. The number of hMSC encapsulated in a degradable RGD-functionalized PEG hydrogel containing particles remained constant over time and IGF-1 release was increased. When implanted in the epidydimal fat pad of immunocompromised mice, this composite material improved cell survival and stimulated vessel formation and maturation. Thus, the combination of hMSC and calcium-releasing glass-ceramics represents a new strategy to achieve vessel stabilization, a key factor in the revascularization of ischemic tissues. STATEMENT OF SIGNIFICANCE Increasing blood vessel formation in diseased tissues with poor vascularization is a current clinical challenge. Cell therapy using human mesenchymal stem cells has received considerable interest, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have been explored as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. By incorporating both human mesenchymal stem cells and glass-ceramic particles in an implantable hydrogel, this study provides insights into the vasculogenic potential in soft tissues of the combined strategies. Enhancement of vessel formation and maturation supports further investigation of this strategy.
Collapse
Affiliation(s)
- Claudia Navarro-Requena
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain; Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain
| | - Jessica D Weaver
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amy Y Clark
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Douglas A Clift
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Soledad Pérez-Amodio
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain; Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain
| | - Óscar Castaño
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona 08028, Spain; Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain
| | - Dennis W Zhou
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain; Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain.
| |
Collapse
|
104
|
An Injectable Oxygen Release System to Augment Cell Survival and Promote Cardiac Repair Following Myocardial Infarction. Sci Rep 2018; 8:1371. [PMID: 29358595 PMCID: PMC5778078 DOI: 10.1038/s41598-018-19906-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 01/15/2023] Open
Abstract
Oxygen deficiency after myocardial infarction (MI) leads to massive cardiac cell death. Protection of cardiac cells and promotion of cardiac repair are key therapeutic goals. These goals may be achieved by re-introducing oxygen into the infarcted area. Yet current systemic oxygen delivery approaches cannot efficiently diffuse oxygen into the infarcted area that has extremely low blood flow. In this work, we developed a new oxygen delivery system that can be delivered specifically to the infarcted tissue, and continuously release oxygen to protect the cardiac cells. The system was based on a thermosensitive, injectable and fast gelation hydrogel, and oxygen releasing microspheres. The fast gelation hydrogel was used to increase microsphere retention in the heart tissue. The system was able to continuously release oxygen for 4 weeks. The released oxygen significantly increased survival of cardiac cells under the hypoxic condition (1% O2) mimicking that of the infarcted hearts. It also reduced myofibroblast formation under hypoxic condition (1% O2). After implanting into infarcted hearts for 4 weeks, the released oxygen significantly augmented cell survival, decreased macrophage density, reduced collagen deposition and myofibroblast density, and stimulated tissue angiogenesis, leading to a significant increase in cardiac function.
Collapse
|
105
|
Rengasamy M, Gupta PK, Kolkundkar U, Singh G, Balasubramanian S, SundarRaj S, Chullikana A, Majumdar AS. Preclinical safety & toxicity evaluation of pooled, allogeneic human bone marrow-derived mesenchymal stromal cells. Indian J Med Res 2018; 144:852-864. [PMID: 28474622 PMCID: PMC5433278 DOI: 10.4103/ijmr.ijmr_1842_15] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND & OBJECTIVES Administration of ex vivo-expanded human bone marrow-derived mesenchymal stromal cells (hBMMSC) obtained from single donors has shown therapeutic benefits in both preclinical and clinical studies. In this study, the safety, toxicity and biodistribution profiles of a pooled hBMMSC population, produced from three healthy donors were assessed in rodent and non-rodents. METHODS The pooled hBMMSC population was characterized by their expression of various cell surface markers, differentiation potential and immunomodulatory activity. To establish in vivo safety of the pooled cells, these were administered by various injection routes into rodents and non-rodents to determine overall toxicity, biodistribution and tumorigenic potential in a series of preclinical studies. RESULTS Single injections of hBMMSC at various doses through intravenous or intramuscular routes did not cause toxicity in rats and rabbits. In addition, repeat administration of hBMMSC was also well tolerated by rats, and no prenatal toxicity was observed by multiple administration in the same animal species. Ex vivo-expanded and cryopreserved hBMMSCs did not induce tumour formation in severe combined immunodeficient (SCID) mice. INTERPRETATION & CONCLUSIONS Our results showed that the pooled hBMMSC population was non-toxic, non-teratogenic and non-tumorigenic in animals. Further studies need to be done to find out if it can be safely administered in human patients.
Collapse
Affiliation(s)
- Mathiyazhagan Rengasamy
- Stempeutics Research Pvt. Ltd., Akshay Tech Park, No.72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bengaluru 560 066, India
| | - Pawan Kumar Gupta
- Stempeutics Research Pvt. Ltd., Akshay Tech Park, No.72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bengaluru 560 066, India
| | - Udaykumar Kolkundkar
- Stempeutics Research Pvt. Ltd., Akshay Tech Park, No.72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bengaluru 560 066, India
| | - Gurbind Singh
- Stempeutics Research Pvt. Ltd., Akshay Tech Park, No.72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bengaluru 560 066, India
| | - Sudha Balasubramanian
- Stempeutics Research Pvt. Ltd., Akshay Tech Park, No.72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bengaluru 560 066, India
| | - Swathi SundarRaj
- Stempeutics Research Pvt. Ltd., Akshay Tech Park, No.72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bengaluru 560 066, India
| | - Anoop Chullikana
- Stempeutics Research Pvt. Ltd., Akshay Tech Park, No.72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bengaluru 560 066, India
| | - Anish Sen Majumdar
- Stempeutics Research Pvt. Ltd., Akshay Tech Park, No.72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bengaluru 560 066, India
| |
Collapse
|
106
|
Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinical and Clinical Studies. Stem Cells 2018; 36:161-171. [DOI: 10.1002/stem.2751] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/31/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Mohammad Qadura
- Division of Vascular Surgery; St. Michael's Hospital; Toronto Ontario Canada
- Department of Surgery; University of Toronto; Toronto Ontario Canada
| | - Daniella C. Terenzi
- Division of Vascular Surgery; St. Michael's Hospital; Toronto Ontario Canada
- Department of Surgery; University of Toronto; Toronto Ontario Canada
| | - Subodh Verma
- Department of Surgery; University of Toronto; Toronto Ontario Canada
- Division of Cardiac Surgery; St. Michael's Hospital; Toronto Ontario Canada
| | - Mohammed Al-Omran
- Division of Vascular Surgery; St. Michael's Hospital; Toronto Ontario Canada
- Department of Surgery; University of Toronto; Toronto Ontario Canada
| | - David A. Hess
- Division of Vascular Surgery; St. Michael's Hospital; Toronto Ontario Canada
- Department of Surgery; University of Toronto; Toronto Ontario Canada
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; Western University; London Ontario Canada
| |
Collapse
|
107
|
IFN-γ and TNF-α Pre-licensing Protects Mesenchymal Stromal Cells from the Pro-inflammatory Effects of Palmitate. Mol Ther 2017; 26:860-873. [PMID: 29352647 DOI: 10.1016/j.ymthe.2017.12.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stromal cell (MSC) therapy for the treatment of type 2 diabetes (T2D) and T2D complications is promising; however, the investigation of MSC function in the setting of T2D has not been thoroughly explored. In our current study, we investigated the phenotype and function of MSCs in a simulated in vitro T2D environment. We show that palmitate, but not glucose, exposure impairs MSC metabolic activity with moderate increases in apoptosis, while drastically affecting proliferation and morphology. In co-culture with peripheral blood mononuclear cells (PBMCs), we found that MSCs not only lose their normal suppressive ability in high levels of palmitate, but actively support and enhance inflammation, resulting in elevated PBMC proliferation and pro-inflammatory cytokine release. The pro-inflammatory effect of MSCs in palmitate was partially reversed via palmitate removal and fully reversed through pre-licensing MSCs with interferon-gamma and tumor necrosis factor alpha. Thus, palmitate, a specific metabolic factor enriched within the T2D environment, is a potent modulator of MSC immunosuppressive function, which may in part explain the depressed potency observed in MSCs isolated from T2D patients. Importantly, we have also identified a robust and durable pre-licensing regimen that protects MSC immunosuppressive function in the setting of T2D.
Collapse
|
108
|
Wijnand JGJ, Teraa M, Gremmels H, van Rhijn-Brouwer FCC, de Borst GJ, Verhaar MC. Rationale and design of the SAIL trial for intramuscular injection of allogeneic mesenchymal stromal cells in no-option critical limb ischemia. J Vasc Surg 2017; 67:656-661. [PMID: 29242062 DOI: 10.1016/j.jvs.2017.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/30/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Critical limb ischemia (CLI) represents the most severe form of peripheral artery disease and has an immense impact on quality of life, morbidity, and mortality. A considerable proportion of CLI patients are ineligible for revascularization, leaving amputation as the only option. Mesenchymal stromal cells (MSCs), because of their vasculoregenerative and immunomodulatory characteristics, have emerged as a potential new treatment. METHODS The primary objective of this trial is to investigate whether intramuscular administration of allogeneic bone marrow (BM)-derived MSCs is safe and potentially effective. The SAIL (allogeneic mesenchymal Stromal cells for Angiogenesis and neovascularization in no-option Ischemic Limbs) trial is a double-blind, placebo-controlled randomized clinical trial to investigate the effect of allogeneic BM-MSCs in patients with CLI who are not eligible for conventional revascularization. A total of 66 patients will be included and randomized (1:1) to undergo 30 intramuscular injections with either BM-MSCs (5 × 106 MSCs per injection) or placebo in the ischemic lower extremity. Primary outcome, that is, therapy success, a composite outcome consisting of mortality, limb status, clinical status, and changes in pain score, will be assessed at 6 months. All study-related procedures will take place in the University Medical Center Utrecht in The Netherlands. CONCLUSIONS If our results indicate that intramuscular allogeneic BM-MSC therapy for CLI is safe and potentially effective, this will have important consequences for treatment of patients with CLI. A large multicenter clinical trial with longer follow-up focusing on hard end points should then be initiated to confirm these findings.
Collapse
Affiliation(s)
- Joep G J Wijnand
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin Teraa
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Gert J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
109
|
Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med 2017; 6:2173-2185. [PMID: 29076267 PMCID: PMC5702523 DOI: 10.1002/sctm.17-0129] [Citation(s) in RCA: 471] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185.
Collapse
Affiliation(s)
- Rebekah M. Samsonraj
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Department of Orthopaedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Michael Raghunath
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Center for Cell Biology and Tissue Engineering, Competence Center for Tissue Engineering and Substance Testing (TEDD)Institute for Chemistry and Biotechnology, ZHAW School of Life Sciences and Facility Management, Zurich University of Applied SciencesSwitzerland
| | - Victor Nurcombe
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
| | - James H. Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | | | - Simon M. Cool
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
110
|
Braid LR, Wood CA, Wiese DM, Ford BN. Intramuscular administration potentiates extended dwell time of mesenchymal stromal cells compared to other routes. Cytotherapy 2017; 20:232-244. [PMID: 29167063 DOI: 10.1016/j.jcyt.2017.09.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/30/2017] [Accepted: 09/27/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) offer great potential for diverse clinical applications. However, conventional systemic infusion of MSCs limits their therapeutic benefit, since intravenously (IV) infused cells become entrapped in the lungs where their dwell time is short. METHODS To explore possible alternatives to IV infusion, we used in vivo optical imaging to track the bio-distribution and survival of 1 million bioluminescent MSCs administered IV, intraperitoneally (IP), subcutaneously (SC) and intramuscularly (IM) in healthy athymic mice. RESULTS IV-infused MSCs were undetectable within days of administration, whereas MSCs implanted IP or SC were only detected for 3 to 4 weeks. In contrast, MSCs sourced from human umbilical cord matrix or bone marrow survived more than 5 months in situ when administered IM. Long-term survival was optimally achieved using low passage cells delivered IM. However, MSCs could undergo approximately 30 doublings before their dwell time was compromised. Cryo-preserved MSCs administered IM promptly after thaw were predominantly cleared after 3 days, whereas equivalent cells cultured overnight prior to implantation survived more than 3 months. DISCUSSION The IM route supports prolonged cell survival of both neo-natal and adult-derived MSCs, although short-term MSC survival was comparable between all tested routes up to day 3. IM implantation presents a useful alternative to achieve clinical benefits from prolonged MSC dwell time at a homeostatic implant site and is a minimally invasive delivery route suitable for many applications. However, optimized thaw protocols that restore full biological potential of cryo-preserved MSC therapies prior to implantation must be developed.
Collapse
Affiliation(s)
- Lorena R Braid
- Aurora BioSolutions Inc., Medicine Hat, Alberta, Canada.
| | | | | | - Barry N Ford
- DRDC Suffield Research Centre, Casualty Management Section, Medicine Hat, Alberta, Canada
| |
Collapse
|
111
|
Liang T, Zhu L, Gao W, Gong M, Ren J, Yao H, Wang K, Shi D. Coculture of endothelial progenitor cells and mesenchymal stem cells enhanced their proliferation and angiogenesis through PDGF and Notch signaling. FEBS Open Bio 2017; 7:1722-1736. [PMID: 29123981 PMCID: PMC5666384 DOI: 10.1002/2211-5463.12317] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/06/2023] Open
Abstract
The beneficial effects of combined use of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) on tissue repair and regeneration after injury have been demonstrated, but the underlying mechanism remains incompletely understood. This study aimed to investigate the effects of direct contact coculture of human bone marrow‐derived EPCs (hEPCs)/human bone marrow‐derived MSCs (hMSCs) on their proliferation and angiogenic capacities and the underlying mechanism. hEPCs and hMSCs were cocultured in a 2D mixed monolayer or a 3D transwell membrane cell‐to‐cell coculture system. Cell proliferation was determined by Cell Counting Kit‐8. Angiogenic capacity was evaluated by in vitro angiogenesis assay. Platelet‐derived growth factor‐BB (PDGF‐BB), PDGF receptor neutralizing antibody (AB‐PDGFR), and DAPT (a γ‐secretase inhibitor) were used to investigate PDGF and Notch signaling. Cell proliferation was significantly enhanced by hEPCs/hMSCs 3D‐coculture and PDGF‐BB treatment, but inhibited by AB‐PDGFR. Expression of cyclin D1, PDGFR, Notch1, and Hes1 was markedly enhanced by PDGF‐BB but inhibited by DAPT. In vitro angiogenesis assay showed that hEPCs/hMSCs coculture and PDGF‐BB significantly enhanced angiogenic capacity, whereas AB‐PDGFR significantly reduced the angiogenic capacity. PDGF‐BB increased the expression of kinase insert domain receptor (KDR, an endothelial marker) and activated Notch1 signaling in cocultured cells, while DAPT attenuated the promoting effect of PDGF‐BB on KDR expression of hEPCs/hMSCs coculture. hEPCs/hMSCs coculture enhanced their proliferation and angiogenic capacities. PDGF and Notch signaling pathways participated in the promoting effects of hEPCs/hMSCs coculture, and there was crosstalk between these two signaling pathways. Our findings should aid understanding of the mechanism of beneficial effects of hEPCs/hMSCs coculture.
Collapse
Affiliation(s)
- Tangzhao Liang
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Lei Zhu
- Department of Plastic and Reconstructive Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Wenling Gao
- Department of Periodontology Faculty of Dentistry Prince Philip Dental Hospital The University of Hong Kong China
| | - Ming Gong
- Department of Orthopedic Surgery Shenzhen Hospital of Southern Medical University China
| | - Jianhua Ren
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Hui Yao
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Kun Wang
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Dehai Shi
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| |
Collapse
|
112
|
Fujita Y, Kawamoto A. Stem cell-based peripheral vascular regeneration. Adv Drug Deliv Rev 2017; 120:25-40. [PMID: 28912015 DOI: 10.1016/j.addr.2017.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Chronic critical limb ischemia (CLI) represents an end-stage manifestation of peripheral arterial disease (PAD). CLI patients are at very high risk of amputation and cardiovascular complications, leading to severe morbidity and mortality. Because many patients with CLI are ineligible for conventional revascularization procedures, it is urgently needed to explore alternative strategies to improve blood supply in the ischemic tissue. Although researchers initially focused on gene/protein therapy using proangiogenic growth factors/cytokines, recent discovery of somatic stem/progenitor cells including bone marrow (BM)-derived endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) has drastically developed the field of therapeutic angiogenesis for CLI. Overall, early phase clinical trials demonstrated that stem/progenitor cell therapies may be safe, feasible and potentially effective. However, only few late-phase clinical trials have been conducted. This review provides an overview of the preclinical and clinical reports to demonstrate the usefulness and the current limitations of the cell-based therapies.
Collapse
Affiliation(s)
- Yasuyuki Fujita
- Division of Vascular Regeneration, Unit of Regenerative Medicine, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, Japan; Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Japan
| | - Atsuhiko Kawamoto
- Division of Vascular Regeneration, Unit of Regenerative Medicine, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, Japan; Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Japan.
| |
Collapse
|
113
|
Abstract
INTRODUCTION In specific forms of congenital heart defects and pulmonary hypertension, the right ventricle (RV) is exposed to systemic levels of pressure overload. The RV is prone to failure in these patients because of its vulnerability to chronic pressure overload. As patients with a systemic RV reach adulthood, an emerging epidemic of RV failure has become evident. Medical therapies proven for LV failure are ineffective in treating RV failure. Areas covered: In this review, the pathophysiology of the failing RV under pressure overload is discussed, with specific emphasis on the pivotal roles of angiogenesis and oxidative stress. Studies investigating the ability of stem cell therapy to improve angiogenesis and mitigate oxidative stress in the setting of pressure overload are then reviewed. Finally, clinical trials utilizing stem cell therapy to prevent RV failure under pressure overload in congenital heart disease will be discussed. Expert commentary: Although considerable hurdles remain before their mainstream clinical implementation, stem cell therapy possesses revolutionary potential in the treatment of patients with failing systemic RVs who currently have very limited long-term treatment options. Rigorous clinical trials of stem cell therapy for RV failure that target well-defined mechanisms will ensure success adoption of this therapeutic strategy.
Collapse
Affiliation(s)
- Ming-Sing Si
- a Department of Cardiac Surgery, Section of Pediatric Cardiovascular Surgery , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Richard G Ohye
- a Department of Cardiac Surgery, Section of Pediatric Cardiovascular Surgery , University of Michigan Medical School , Ann Arbor , MI , USA
| |
Collapse
|
114
|
Darinskas A, Paskevicius M, Apanavicius G, Vilkevicius G, Labanauskas L, Ichim TE, Rimdeika R. Stromal vascular fraction cells for the treatment of critical limb ischemia: a pilot study. J Transl Med 2017; 15:143. [PMID: 28629476 PMCID: PMC5477131 DOI: 10.1186/s12967-017-1243-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/13/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cell-based therapy is being explored as an alternative treatment option for critical limb ischemia (CLI), a disease associated with high amputation and mortality rates and poor quality of life. However, therapeutic potential of uncultured adipose-derived stromal vascular fraction (SVF) cells has not been evaluated as a possible treatment. In this pilot study, we investigated the efficacy of multiple injections of autologous uncultured adipose-derived SVF cells to treat patients with CLI. METHODS This study included 15 patients, from 35 to 77 years old, with rest pain and ulceration. SVF cells were injected once or twice in the ischemic limb along the arteries. Digital subtraction angiography was performed before and after cell therapy. The clinical follow up was carried out for the subsequent 12 months after the beginning of the treatment. RESULTS Multiple intramuscular SVF cell injections caused no complications during the follow-up period. Clinical improvement occurred in 86.7% of patients. Two patients required major amputation, and the amputation sites healed completely. The rest of patients achieved a complete ulcer healing, pain relief, improved ankle-brachial pressure index and claudication walking distance, and had ameliorated their quality of life. Digital subtraction angiography performed before and after SVF cell therapy showed formation of numerous vascular collateral networks across affected arteries. CONCLUSION Results of this pilot study demonstrate that the multiple intramuscular SVF cell injections stimulate regeneration of injured tissue and are effective alternative to achieve therapeutic angiogenesis in CLI patients who are not eligible for conventional treatment. Trial registration number at ISRCTN registry, ISRCTN13001382. Retrospectively registered at 26/04/2017.
Collapse
Affiliation(s)
- Adas Darinskas
- Laboratory of Immunology, National Cancer Institute, Santariskiu Str. 1, 08660 Vilnius, Lithuania
| | - Mindaugas Paskevicius
- Department of Vascular Surgery, Vilnius City Clinical Hospital, Antakalnio Str. 57, 10207 Vilnius, Lithuania
| | - Gintaras Apanavicius
- Department of Vascular Surgery, Vilnius City Clinical Hospital, Antakalnio Str. 57, 10207 Vilnius, Lithuania
| | - Gintaris Vilkevicius
- Northway Medical and Surgical Center, S.Zukausko Str. 19, 08234 Vilnius, Lithuania
- Clinics of Cardiovascular Diseases, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania
| | - Liutauras Labanauskas
- Department of Plastic and Reconstructive Surgery, Lithuanian University of Health Sciences, Medical Academy, University Clinics of Kaunas, Eiveniu Str. 2, 50009 Kaunas, Lithuania
| | | | - Rytis Rimdeika
- Department of Plastic and Reconstructive Surgery, Lithuanian University of Health Sciences, Medical Academy, University Clinics of Kaunas, Eiveniu Str. 2, 50009 Kaunas, Lithuania
| |
Collapse
|
115
|
Extracellular vesicles of ETV2 transfected fibroblasts stimulate endothelial cells and improve neovascularization in a murine model of hindlimb ischemia. Cytotechnology 2017; 69:801-814. [PMID: 28466428 DOI: 10.1007/s10616-017-0095-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/07/2017] [Indexed: 01/08/2023] Open
Abstract
Ischemia are common conditions related to lack of blood supply to tissues. Depending on the ischemic sites, ischemia can cause different diseases, such as hindlimb ischemia, heart infarction and stroke. This study aims to evaluate how extracellular vesicles (EVs) derived from ETV2 transfected fibroblasts affect endothelial cell proliferation and neovascularization in a murine model of hindlimb ischemia. Human fibroblasts were isolated and cultured under standard conditions and expanded to the 3th passage before use in experiments. Human fibroblasts were transduced with a viral vector containing the ETV2 gene. Transduced cells were selected by puromycin treatment. These cells were further cultured for collection of EVs, which were isolated from culture supernatant. Following co-culture with endothelial cells, EVs were evaluated for their effect on endothelial cell proliferation and were directly injected into ischemic tissues of a murine model of hindlimb ischemia. The results showed that EVs could induce endothelial cell proliferation in vitro and improved neovascularization in a murine model of hindlimb ischemia. Our results suggest that EVs derived from ETV2-transfected fibroblasts can be promising non-cellular products for the regeneration of blood vessels.
Collapse
|
116
|
Lakshmanan R, Ukani G, Rishi MT, Maulik N. Trimodal rescue of hind limb ischemia with growth factors, cells, and nanocarriers: fundamentals to clinical trials. Can J Physiol Pharmacol 2017; 95:1125-1140. [PMID: 28407473 DOI: 10.1139/cjpp-2016-0713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peripheral artery disease is a severe medical condition commonly characterized by critical or acute limb ischemia. Gradual accumulation of thrombotic plaques in peripheral arteries of the lower limb may lead to intermittent claudication or ischemia in muscle tissue. Ischemic muscle tissue with lesions may become infected, resulting in a non-healing wound. Stable progression of the non-healing wound associated with severe ischemia might lead to functional deterioration of the limb, which, depending on the severity, can result in amputation. Immediate rescue of ischemic muscles through revascularization strategies is considered the gold standard to treat critical limb ischemia. Growth factors offer multiple levels of protection in revascularization of ischemic tissue. In this review, the basic mechanism through which growth factors exert their beneficial properties to rescue the ischemic limb is extensively discussed. Moreover, clinical trials based on growth factor and stem cell therapy to treat critical limb ischemia are considered. The clinical utility of stem cell therapy for the treatment of limb ischemia is explained and recent advances in nanocarrier technology for selective growth factor and stem cell supplementation are summarized.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gopi Ukani
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Muhammad Tipu Rishi
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
117
|
Sherman SE, Kuljanin M, Cooper TT, Putman DM, Lajoie GA, Hess DA. High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential. Stem Cells 2017; 35:1542-1553. [DOI: 10.1002/stem.2612] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/20/2017] [Accepted: 02/19/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen E. Sherman
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group, Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; Western University; London Ontario Canada
| | - Miljan Kuljanin
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry; Western University; London Ontario Canada
| | - Tyler T. Cooper
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group, Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; Western University; London Ontario Canada
| | - David M. Putman
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group, Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; Western University; London Ontario Canada
| | - Gilles A. Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry; Western University; London Ontario Canada
| | - David A. Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group, Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; Western University; London Ontario Canada
| |
Collapse
|
118
|
Dubský M, Jirkovská A, Bem R, Nemcová A, Fejfarová V, Jude EB. Cell therapy of critical limb ischemia in diabetic patients - State of art. Diabetes Res Clin Pract 2017; 126:263-271. [PMID: 28288436 DOI: 10.1016/j.diabres.2017.02.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/19/2016] [Accepted: 02/22/2017] [Indexed: 01/15/2023]
Abstract
In this review we report on the state of cell therapy of critical limb ischemia (CLI) with respect to differences between diabetic and non-diabetic patients mainly from the clinical point of view. CLI is the most severe form of peripheral arterial disease and its diagnosis and treatment in diabetic patients is very difficult. The therapeutic effect of standard methods of CLI treatment is only partial - more than one third of diabetic patients are not eligible for standard revascularization; therefore, new therapeutic techniques such as cell therapy have been studied in clinical trials. Presence of CLI in patients with diabetic foot disease is associated with worse clinical outcomes such as lack of healing of foot ulcers, major amputations and premature mortality. A revascularization procedure cannot be successful as the only method in contrast to patients without diabetes, but it must always be part of a complex therapy focused not only on ischemia, but also on treatment of infection, off-loading, metabolic control of diabetes and nutrition, local therapy, etc. Therefore, the main criteria for cell therapy may vary in diabetic patients and non-diabetic persons and results of this treatment method should always be assessed in the context of ensuring comprehensive therapy. This review carries out an analysis of the source of precursor cells, route of administration and brings a brief report of published data with respect to diabetic and non-diabetic patients and our experience with autologous cell therapy of diabetic patients with CLI. Analysis of the studies in terms of diabetes is difficult, because in most of them sub-analysis for diabetic patients is not performed separately. The other problem is that it is not clear if diabetic patients received adequate complex treatment for their foot ulcers which can strongly affect the rate of major amputation as an outcome of CLI treatment.
Collapse
Affiliation(s)
- Michal Dubský
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | - Robert Bem
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Andrea Nemcová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Edward B Jude
- Diabetes Centre, Tameside Hospital NHS Foundation Trust and University of Manchester, Lancashire, UK
| |
Collapse
|
119
|
He S, Gleason J, Fik-Rymarkiewicz E, DiFiglia A, Bharathan M, Morschauser A, Djuretic I, Xu Y, Krakovsky M, Jankovic V, Buensuceso C, Edinger J, Herzberg U, Hofgartner W, Hariri R. Human Placenta-Derived Mesenchymal Stromal-Like Cells Enhance Angiogenesis via T Cell-Dependent Reprogramming of Macrophage Differentiation. Stem Cells 2017; 35:1603-1613. [PMID: 28233380 DOI: 10.1002/stem.2598] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/20/2017] [Accepted: 02/11/2017] [Indexed: 12/11/2022]
Abstract
Peripheral arterial disease (PAD) is a leading cause of limb loss and mortality worldwide with limited treatment options. Mesenchymal stromal cell (MSC) therapy has demonstrated positive effects on angiogenesis in preclinical models and promising therapeutic efficacy signals in early stage clinical studies; however, the mechanisms underlying MSC-mediated angiogenesis remain largely undefined. Here, we investigated the mechanism of action of human placenta-derived MSC-like cells (PDA-002) in inducing angiogenesis using mice hind limb ischemia model. We showed that PDA-002 improved blood flow and promoted collateral vessel formation in the injured limb. Histological analysis demonstrated that PDA-002 increased M2-like macrophages in ischemic tissue. Analysis of the changes in functional T cell phenotype in the draining lymph nodes revealed that PDA-002 treatment was associated with the induction of cytokine and gene expression signatures of Th2 response. Angiogenic effect of PDA-002 was markedly reduced in Balb/c nude mice compared with wild type. This reduction in efficacy was reversed by T cell reconstitution, suggesting T cells are essential for PDA-002-mediated angiogenesis. Furthermore, effect of PDA-002 on macrophage differentiation was also T cell-dependent as a PDA-002-mediated M2-like macrophage skewing was only observed in wild type and T cell reconstituted nude mice, but not in nude mice. Finally, we showed that PDA-002-treated animals had enhanced angiogenic recovery in response to the second injury when PDA-002 no longer persisted in vivo. These results suggest that PDA-002 enhances angiogenesis through an immunomodulatory mechanism involving T cell-dependent reprogramming of macrophage differentiation toward M2-like phenotype. Stem Cells 2017;35:1603-1613.
Collapse
Affiliation(s)
- Shuyang He
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | | | | | | | | | | | | | - Yan Xu
- Invivotek, Hamilton, New Jersey, USA
| | | | | | | | - James Edinger
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - Uri Herzberg
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | | | - Robert Hariri
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| |
Collapse
|
120
|
Thej C, Ramadasse B, Walvekar A, Majumdar AS, Balasubramanian S. Development of a surrogate potency assay to determine the angiogenic activity of Stempeucel®, a pooled, ex-vivo expanded, allogeneic human bone marrow mesenchymal stromal cell product. Stem Cell Res Ther 2017; 8:47. [PMID: 28245882 PMCID: PMC5331748 DOI: 10.1186/s13287-017-0488-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/07/2016] [Accepted: 01/24/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have emerged as a more beneficial alternative to conventional therapy and may offer a potential cure for unmet medical needs. MSCs are known to possess strong immunomodulatory and anti-inflammatory properties. Moreover, they promote angiogenesis and tissue regeneration through the secretion of trophic factors. For these reasons, the past decade witnessed a sharp increase in the number of clinical trials conducted with stem cells for various vascular diseases requiring angiogenesis. In this study, we evaluated the in vitro angiogenic potency of Stempeucel®, which is an allogeneic pooled human bone marrow-derived mesenchymal stromal cell (phBMMSC) product. We previously established the safety of Stempeucel® in our pre-clinical studies, and clinical trials conducted for critical limb ischaemia and acute myocardial infarction. METHODS Because the proposed mechanism of action of phBMMSCs is mainly through the secretion of pro-angiogenic cytokines, we developed a surrogate potency assay by screening various batches of large-scale expanded phBMMSCs for the expression of angiogenic factors and cytokines through gene expression and growth factor analyses, followed by in vitro functional assays. RESULTS The well characterized angiogenic vascular endothelial growth factor (VEGF) was selected and quantified in twenty six manufactured batches of phBMMSCs to establish consistency following the United States Food and Drug Administration recommendations. According to recommendations 21 CFR 211.165(e) and 211.194(a)(2), we also established and documented the specificity and reproducibility of the test methods employed through validation. Moreover, we also attempted to elucidate the mechanism of action of the cell population to ensure appropriate biological activity. The functional role of VEGF has been established through in vitro angiogenic assays and a dose-dependent correlation was observed with in vitro functional results. CONCLUSIONS The data generated from this study suggest the selection of VEGF as a single surrogate marker to test the angiogenic potency of phBMMSCs. Our study reports the quantification of VEGF in twenty six batches of large-scale manufactured phBMMSCs, and a concentration-dependent correlation of secreted VEGF to endothelial cell functions of migration, proliferation and tube formation, in the conditioned medium obtained from nine phBMMSC batches. To our cognizance, this is the first study in which a single angiogenic factor (VEGF) has been qualified as a surrogate potency marker through all three in vitro functional assays to determine the angiogenic potency of the phBMMSC population.
Collapse
Affiliation(s)
- Charan Thej
- Stempeutics Research Pvt. Ltd, Akshay Tech Park, #72 & 73, 2nd Floor, EPIP Zone, Phase 1, Bangalore, Whitefield, 560066, India.,Manipal University, Manipal, Karnataka, India
| | - Balamurugan Ramadasse
- Stempeutics Research Pvt. Ltd, Akshay Tech Park, #72 & 73, 2nd Floor, EPIP Zone, Phase 1, Bangalore, Whitefield, 560066, India
| | - Ankita Walvekar
- Stempeutics Research Pvt. Ltd, Akshay Tech Park, #72 & 73, 2nd Floor, EPIP Zone, Phase 1, Bangalore, Whitefield, 560066, India
| | - Anish S Majumdar
- Stempeutics Research Pvt. Ltd, Akshay Tech Park, #72 & 73, 2nd Floor, EPIP Zone, Phase 1, Bangalore, Whitefield, 560066, India.
| | - Sudha Balasubramanian
- Stempeutics Research Pvt. Ltd, Akshay Tech Park, #72 & 73, 2nd Floor, EPIP Zone, Phase 1, Bangalore, Whitefield, 560066, India.
| |
Collapse
|
121
|
Jin E, Chae DS, Son M, Kim SW. Angiogenic characteristics of human stromal vascular fraction in ischemic hindlimb. Int J Cardiol 2017; 234:38-47. [PMID: 28258850 DOI: 10.1016/j.ijcard.2017.02.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
INTRODUCTION In this study, we sought to characterize the angio-vasculogenic property of human adipose tissue-derived stromal vascular fraction (SVF) and to determine the therapeutic potential of SVF in the context of experimental ischemia. Although human SVF is used for cell therapy, its angiogenic and vasculogenic characteristics have not been fully elucidated. METHODS AND RESULTS We conducted flow cytometry, microarray, quantitative (q)-PCR, Matrigel tube formation assays and in vivo therapeutic assays using an ischemic hind limb mouse model. Gene/micro RNA microarray, quantitative (q)-PCR results revealed that the representative pro-angiogenic factors were highly upregulated in SVF compared with human adipose-derived mesenchymal stem cells (ASCs). In addition, SVF exhibited high expression of endothelium-specific genes and showed robust in vitro micro-vascular formation. SVF was transplanted into ischemic mouse hind limbs and compared with ASC transplantation. SVF transplantation prevented limb loss and augmented blood perfusion, indicating that SVF promotes neovascularization in hind limb ischemia. Transplanted SVF showed high vasculogenic potential in vivo compared with transplanted ASCs. CONCLUSIONS Our data indicate that SVF has remarkable therapeutic effects on hind limb ischemia via robust angiogenic and vasculogenic activity.
Collapse
Affiliation(s)
- Enze Jin
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Mina Son
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sung-Whan Kim
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.
| |
Collapse
|
122
|
Stoltz JF, Bensoussan D, De Isla N, Zhang L, Han Z, Magdalou J, Huselstein C, Ye J, Leballe B, Decot V, Reppel L. Stem cells and vascular regenerative medicine: A mini review. Clin Hemorheol Microcirc 2017; 64:613-633. [DOI: 10.3233/ch-168036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J.-F. Stoltz
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| | - D. Bensoussan
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| | - N. De Isla
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
| | - L. Zhang
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- Centre de Recherche, Calmette Hospital, Kunming, China
| | - Z. Han
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- Centre de Recvherche sur les cellules souches, Beijing et Tianjin, China
| | - J. Magdalou
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
| | - C. Huselstein
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
| | - J.S. Ye
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- Centre de Recherche, Calmette Hospital, Kunming, China
| | | | - V. Decot
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| | - L. Reppel
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| |
Collapse
|
123
|
Safety and Effectiveness of Bone Marrow Cell Concentrate in the Treatment of Chronic Critical Limb Ischemia Utilizing a Rapid Point-of-Care System. Stem Cells Int 2017; 2017:4137626. [PMID: 28194186 PMCID: PMC5282442 DOI: 10.1155/2017/4137626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/14/2016] [Indexed: 01/09/2023] Open
Abstract
Critical limb ischemia (CLI) is the end stage of lower extremity peripheral vascular disease (PVD) in which severe obstruction of blood flow results in ischemic rest pain, ulcers and/or gangrene, and a significant risk of limb loss. This open-label, single-arm feasibility study evaluated the safety and therapeutic effectiveness of autologous bone marrow cell (aBMC) concentrate in revascularization of CLI patients utilizing a rapid point-of-care device. Seventeen (17) no-option CLI patients with ischemic rest pain were enrolled in the study. Single dose of aBMC, prepared utilizing an intraoperative point-of-care device, the Res-Q™ 60 BMC system, was injected intramuscularly into the afflicted limb and patients were followed up at regular intervals for 12 months. A statistically significant improvement in Ankle Brachial Index (ABI), Transcutaneous Oxygen Pressure (TcPO2), mean rest pain and intermittent claudication pain scores, wound/ ulcer healing, and 6-minute walking distance was observed following aBMC treatment. Major amputation-free survival (mAFS) rate and amputation-free rates (AFR) at 12 months were 70.6% and 82.3%, respectively. In conclusion, aBMC injections were well tolerated with improved tissue perfusion, confirming the safety, feasibility, and preliminary effectiveness of aBMC treatment in CLI patients.
Collapse
|
124
|
Neale JPH, Pearson JT, Katare R, Schwenke DO. Ghrelin, MicroRNAs, and Critical Limb Ischemia: Hungering for a Novel Treatment Option. Front Endocrinol (Lausanne) 2017; 8:350. [PMID: 29326658 PMCID: PMC5733488 DOI: 10.3389/fendo.2017.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease. It is characterized by chronic pain at rest, skin ulcerations, and gangrene tissue loss. CLI is a highly morbid condition, resulting in a severely diminished quality of life and a significant risk of mortality. The primary goal of therapy for CLI is to restore blood flow to the affected limb, which is only possible by surgery, but is inadvisable in up to 50% of patients. This subset of patients who are not candidates for revascularisation are referred to as "no-option" patients and are the focus of investigation for novel therapeutic strategies. Angiogenesis, arteriogenesis and vasculogenesis are the processes whereby new blood vessel networks form from the pre-existing vasculature and primordial cells, respectively. In therapeutic angiogenesis, exogenous stimulants are administered to promote angiogenesis and augment limb perfusion, offering a potential treatment option for "no option" patients. However, to date, very few clinical trials of therapeutic angiogenesis in patients with CLI have reported clinically significant results, and it remains a major challenge. Ghrelin, a 28-amino acid peptide, is emerging as a potential novel therapeutic for CLI. In pre-clinical models, exogenous ghrelin has been shown to induce therapeutic angiogenesis, promote muscle regeneration, and reduce oxidative stress via the modulation of microRNAs (miRs). miRs are endogenous, small, non-coding ribonucleic acids of ~20-22 nucleotides which regulate gene expression at the post-transcriptional level by either translational inhibition or by messenger ribonucleic acid cleavage. This review focuses on the mounting evidence for the use of ghrelin as a novel therapeutic for CLI, and highlights the miRs which orchestrate these physiological events.
Collapse
Affiliation(s)
- Joshua P. H. Neale
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Rajesh Katare
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
- *Correspondence: Rajesh Katare, ; Daryl O. Schwenke,
| | - Daryl O. Schwenke
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
- *Correspondence: Rajesh Katare, ; Daryl O. Schwenke,
| |
Collapse
|
125
|
Gupta PK, Chullikana A, Rengasamy M, Shetty N, Pandey V, Agarwal V, Wagh SY, Vellotare PK, Damodaran D, Viswanathan P, Thej C, Balasubramanian S, Majumdar AS. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®): preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res Ther 2016; 18:301. [PMID: 27993154 PMCID: PMC5168586 DOI: 10.1186/s13075-016-1195-7] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/25/2016] [Indexed: 12/27/2022] Open
Abstract
Background Osteoarthritis (OA) is a common and debilitating chronic degenerative disease of the joints. Currently, cell-based therapy is being explored to address the repair of damaged articular cartilage in the knee joint. Methods The in vitro differentiation potential of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®) was determined by differentiating the cells toward the chondrogenic lineage and quantifying sulfated glycosaminoglycan (sGAG). The mono-iodoacetate (MIA)-induced preclinical model of OA has been used to demonstrate pain reduction and cartilage formation. In the clinical study, 60 OA patients were randomized to receive different doses of cells (25, 50, 75, or 150 million cells) or placebo. Stempeucel® was administered by intra-articular (IA) injection into the knee joint, followed by 2 ml hyaluronic acid (20 mg). Subjective evaluations—visual analog scale (VAS) for pain, intermittent and constant osteoarthritis pain (ICOAP), and Western Ontario and McMaster Universities Osteoarthritis (WOMAC-OA) index—were performed at baseline and at 1, 3, 6, and 12 months of follow-up. Magnetic resonance imaging of the knee was performed at baseline, and at 6 and 12 months follow-up for cartilage evaluation. Results Stempeucel® differentiated into the chondrogenic lineage in vitro with downregulation of Sox9 and upregulation of Col2A genes. Furthermore, Stempeucel® differentiated into chondrocytes and synthesized a significant amount of sGAG (30 ± 1.8 μg/μg GAG/DNA). In the preclinical model of OA, Stempeucel® reduced pain significantly and also repaired damaged articular cartilage in rats. In the clinical study, IA administration of Stempeucel® was safe, and a trend towards improvement was seen in the 25-million-cell dose group in all subjective parameters (VAS, ICOAP, andWOMAC-OA scores), although this was not statistically significant when compared to placebo. Adverse events were predominant in the higher dose groups (50, 75, and 150 million cells). Knee pain and swelling were the most common adverse events. The whole-organ magnetic resonance imaging score of the knee did not reveal any difference from baseline and the placebo group. Conclusion Intra-articular administration of Stempeucel® is safe. A twenty-five-million-cell dose may be the most effective among the doses tested for pain reduction. Clinical studies with a larger patient population are required to demonstrate a robust therapeutic efficacy of Stempeucel® in OA. Trial registration Clinicaltrials.gov NCT01453738. Registered 13 October 2011.
Collapse
Affiliation(s)
- Pawan Kumar Gupta
- Stempeutics Research Pvt Ltd, Akshay Tech Park, No. 72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bangalore, 560066, India.
| | - Anoop Chullikana
- Stempeutics Research Pvt Ltd, Akshay Tech Park, No. 72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bangalore, 560066, India
| | - Mathiyazhagan Rengasamy
- Stempeutics Research Pvt Ltd, Akshay Tech Park, No. 72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bangalore, 560066, India
| | - Naresh Shetty
- M.S Ramaiah Medical College & Hospitals, MSR Nagar, MSRIT Post, Bangalore, 560054, India
| | - Vivek Pandey
- Kasturba Medical College and Hospital, Madhav Nagar, Manipal, 576104, India
| | - Vikas Agarwal
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India
| | - Shrikant Yeshwant Wagh
- Jehangir Clinical Development Center, Jehangir Hospital, 33, Sasoon Road, Pune, 411001, India
| | - Prasanth Kulapurathu Vellotare
- Stempeutics Research Pvt Ltd, Akshay Tech Park, No. 72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bangalore, 560066, India
| | - Devi Damodaran
- Stempeutics Research Pvt Ltd, Akshay Tech Park, No. 72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bangalore, 560066, India
| | - Pachaiyappan Viswanathan
- Stempeutics Research Pvt Ltd, Akshay Tech Park, No. 72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bangalore, 560066, India
| | - Charan Thej
- Stempeutics Research Pvt Ltd, Akshay Tech Park, No. 72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bangalore, 560066, India.,Manipal University, Manipal, India
| | - Sudha Balasubramanian
- Stempeutics Research Pvt Ltd, Akshay Tech Park, No. 72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bangalore, 560066, India
| | - Anish Sen Majumdar
- Stempeutics Research Pvt Ltd, Akshay Tech Park, No. 72 & 73, 2nd Floor, EPIP Zone, Phase I-Area, Whitefield, Bangalore, 560066, India.
| |
Collapse
|
126
|
Han KH, Kim AK, Kim DI. Therapeutic Potential of Human Mesenchymal Stem Cells for Treating Ischemic Limb Diseases. Int J Stem Cells 2016; 9:163-168. [PMID: 27871151 PMCID: PMC5155711 DOI: 10.15283/ijsc16053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 12/19/2022] Open
Abstract
Ischemic limb diseases are induced by different obstructions of peripheral arteries. These obstructions result in insufficient nutrient and oxygen supplies to the extremities, thereby leading to severe tissue damage that is in turn related to severe morbidities and mortalities. Mesenchymal stem cells (MSCs) have been isolated from various sources. These cells are multipotent with respect to differentiation and are also characterized by migration, immune suppression, and secretion of paracrine factors. Mesenchymal stem cells have been proposed to have therapeutic potential for the treatment of ischemic limb diseases. In preclinical experiments, injection of single MSCs has been shown to increase angiogenesis and blood flow in ischemic hindlimb animal models; several molecular mechanisms of angiogenesis have also been elucidated. Furthermore, modified strategies have been developed for enhancing angiogenesis and the efficacy of MSCs. These strategies have demonstrated significant effects in pre-clinical studies. In clinical trials, MSCs have shown significant effects in the treatment of ischemic limb diseases. In this review, we focus on the therapeutic properties of human MSCs and the modified methods for enhancing angiogenesis in pre-clinical experiments. We also discuss the clinical applications of MSCs for treating limb ischemia.
Collapse
Affiliation(s)
- Kyu-Hyun Han
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ae-Kyeong Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
127
|
Burand AJ, Gramlich OW, Brown AJ, Ankrum JA. Function of Cryopreserved Mesenchymal Stromal Cells With and Without Interferon-γ Prelicensing is Context Dependent. Stem Cells 2016; 35:1437-1439. [PMID: 27758056 DOI: 10.1002/stem.2528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022]
Abstract
Tailoring MSCs to fit the disease. Fresh, cryopreserved and, prelicensed cryopreserved MSC are all being explored to treat numerous diseases, but all are not suitable to treat all conditions. injury. "*" denotes preferred therapeutic strategy when both fresh MSC and cryo-MSC have shown utility in treating the disease but one is more efficacious or logistically suitable. ABBREVIATIONS CLI, critical limb ischemia; GvHD. graft versus host disease; I/R, ischemia reperfusion (I/R); OI, osteogenesis imperfecta.
Collapse
Affiliation(s)
- Anthony J Burand
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA.,Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
| | - Oliver W Gramlich
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA
| | - Alex J Brown
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA.,Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
| | - James A Ankrum
- Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
| |
Collapse
|
128
|
Gupta PK, Krishna M, Chullikana A, Desai S, Murugesan R, Dutta S, Sarkar U, Raju R, Dhar A, Parakh R, Jeyaseelan L, Viswanathan P, Vellotare PK, Seetharam RN, Thej C, Rengasamy M, Balasubramanian S, Majumdar AS. Administration of Adult Human Bone Marrow-Derived, Cultured, Pooled, Allogeneic Mesenchymal Stromal Cells in Critical Limb Ischemia Due to Buerger's Disease: Phase II Study Report Suggests Clinical Efficacy. Stem Cells Transl Med 2016; 6:689-699. [PMID: 28297569 PMCID: PMC5442769 DOI: 10.5966/sctm.2016-0237] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022] Open
Abstract
Critical limb ischemia (CLI) due to Buerger’s disease is a major unmet medical need with a high incidence of morbidity. This phase II, prospective, nonrandomized, open‐label, multicentric, dose‐ranging study was conducted to assess the efficacy and safety of i.m. injection of adult human bone marrow‐derived, cultured, pooled, allogeneic mesenchymal stromal cells (BMMSC) in CLI due to Buerger’s disease. Patients were allocated to three groups: 1 and 2 million cells/kg body weight (36 patients each) and standard of care (SOC) (18 patients). BMMSCs were administered as 40–60 injections in the calf muscle and locally, around the ulcer. Most patients were young (age range, 38–42 years) and ex‐smokers, and all patients had at least one ulcer. Both the primary endpoints—reduction in rest pain (0.3 units per month [SE, 0.13]) and healing of ulcers (11% decrease in size per month [SE, 0.05])—were significantly better in the group receiving 2 million cells/kg body weight than in the SOC arm. Improvement in secondary endpoints, such as ankle brachial pressure index (0.03 [SE, 0.01] unit increase per month) and total walking distance (1.03 [SE, 0.02] times higher per month), were also significant in the group receiving 2 million cells/kg as compared with the SOC arm. Adverse events reported were remotely related or unrelated to BMMSCs. In conclusion, i.m. administration of BMMSC at a dose of 2 million cells/kg showed clinical benefit and may be the best regimen in patients with CLI due to Buerger’s disease. However, further randomized controlled trials are required to confirm the most appropriate dose. Stem Cells Translational Medicine2017;6:689–699
Collapse
Affiliation(s)
| | - Murali Krishna
- Department of Vascular Surgery, Sri Jayadeva Institute of Cardiovascular Sciences, Bangalore, India
| | | | - Sanjay Desai
- Department of Vascular Surgery, MS Ramaiah Medical College & Hospitals, Bangalore, India
| | | | - Santanu Dutta
- Department of Cardiovascular Surgery, Nightingale Hospital, Kolkata, India
| | - Uday Sarkar
- Department of Cardiovascular Surgery, Health Point Hospital, Kolkata, India
| | - Radhakrishnan Raju
- Department of Vascular Surgery, Sri Ramachandra Medical College, Chennai, India
| | - Anita Dhar
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | - Rajiv Parakh
- Division of Peripheral Vascular and Endovascular Sciences, Medanta‐The Medicity, Gurgaon, Haryana, India
| | | | | | | | | | - Charan Thej
- Stempeutics Research, Bangalore, India
- Manipal University, Manipal, India
| | | | | | | |
Collapse
|
129
|
Madaric J, Klepanec A, Valachovicova M, Mistrik M, Bucova M, Olejarova I, Necpal R, Madaricova T, Paulis L, Vulev I. Characteristics of responders to autologous bone marrow cell therapy for no-option critical limb ischemia. Stem Cell Res Ther 2016; 7:116. [PMID: 27530339 PMCID: PMC4987968 DOI: 10.1186/s13287-016-0379-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/16/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The present study investigated factors associated with therapeutic benefits after autologous bone marrow cell (BMC) therapy in patients with "no-option" critical limb ischemia (CLI). METHODS AND RESULTS Sixty-two patients with advanced CLI (Rutherford category 5 or 6) not eligible for revascularization were randomized to treatment with 40 ml of autologous BMCs (SmartPreP2) by local intramuscular (n = 32) or intra-arterial (n = 30) application. The primary endpoint was limb salvage and wound healing at 12 months. Seven patients (11 %) died during the follow-up from reasons unrelated to stem cell therapy. The BMC product of patients with limb salvage and wound healing (33/55) was characterized by a higher CD34(+) cell count (p = 0.001), as well as a higher number of total bone marrow mononuclear cells (BM-MNCs) (p = 0.032), than that of nonresponders (22/55). Patients with limb salvage and wound healing were younger (p = 0.028), had lower C-reactive protein levels (p = 0.038), and had higher transcutaneous oxygen pressure (tcpO2) (p = 0.003) before cell application than nonresponders. All patients with major tissue loss at baseline (Rutherford 6 stage of CLI, n = 5) showed progression of limb ischemia and required major limb amputation. In the multiple binary logistic regression model, the number of applied CD34(+) cells (p = 0.046) and baseline tcpO2 (p = 0.031) were independent predictors of limb salvage and wound healing. The number of administrated BM-MNCs strongly correlated with decreased peripheral leukocyte count after 6 months in surviving patients with limb salvage (p = 0.0008). CONCLUSION Patients who benefited from autologous BMC therapy for "no-option" CLI were treated with high doses of CD34(+) cells. The absolute number of applied BM-MNCs correlated with the improvement of inflammation. We hypothesize that the therapeutic benefit of cell therapy for peripheral artery disease is the result of synergistic effects mediated by a mixture of active cells with regenerative potential. Patients at the most advanced stage of CLI do not appear to be suitable candidates for cell therapy. TRIAL REGISTRATION The study was approved and registered by the ISRCTN registry. TRIAL REGISTRATION ISRCTN16096154 . Registered: 26 July 2016.
Collapse
Affiliation(s)
- Juraj Madaric
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia. .,Slovak Medical University, Bratislava, Slovakia.
| | - Andrej Klepanec
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | | | - Martin Mistrik
- Clinic of Haematology and Transfusiology, Faculty Hospital, Bratislava, Slovakia
| | - Maria Bucova
- Institute of Imunology, Faculty of Medicine Comenius University, Bratislava, Slovakia
| | - Ingrid Olejarova
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Roman Necpal
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Terezia Madaricova
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine Comenius University, Bratislava, Slovakia
| | - Ivan Vulev
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia.,Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
130
|
Chery J, Wong J, Huang S, Wang S, Si MS. Regenerative Medicine Strategies for Hypoplastic Left Heart Syndrome. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:459-469. [PMID: 27245633 DOI: 10.1089/ten.teb.2016.0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoplastic left heart syndrome (HLHS), the most severe and common form of single ventricle congenital heart lesions, is characterized by hypoplasia of the mitral valve, left ventricle (LV), and all LV outflow structures. While advances in surgical technique and medical management have allowed survival into adulthood, HLHS patients have severe morbidities, decreased quality of life, and a shortened lifespan. The single right ventricle (RV) is especially prone to early failure because of its vulnerability to chronic pressure overload, a mode of failure distinct from ischemic cardiomyopathy encountered in acquired heart disease. As these patients enter early adulthood, an emerging epidemic of RV failure has become evident. Regenerative medicine strategies may help preserve or boost RV function in children and adults with HLHS by promoting angiogenesis and mitigating oxidative stress. Rescuing a RV in decompensated failure may also require the creation of new, functional myocardium. Although considerable hurdles remain before their clinical translation, stem cell therapy and cardiac tissue engineering possess revolutionary potential in the treatment of pediatric and adult patients with HLHS who currently have very limited long-term treatment options.
Collapse
Affiliation(s)
- Josue Chery
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Joshua Wong
- 2 Department of Pediatric Cardiology, University of Michigan , Ann Arbor, Michigan
| | - Shan Huang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Shuyun Wang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Ming-Sing Si
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
131
|
Robinson ST, Douglas AM, Chadid T, Kuo K, Rajabalan A, Li H, Copland IB, Barker TH, Galipeau J, Brewster LP. A novel platelet lysate hydrogel for endothelial cell and mesenchymal stem cell-directed neovascularization. Acta Biomater 2016; 36:86-98. [PMID: 26961805 DOI: 10.1016/j.actbio.2016.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Mesenchymal stem cells (MSC) hold promise in promoting vascular regeneration of ischemic tissue in conditions like critical limb ischemia of the leg. However, this approach has been limited in part by poor cell retention and survival after delivery. New biomaterials offer an opportunity to localize cells to the desired tissue after delivery, but also to improve cell survival after delivery. Here we characterize the mechanical and microstructural properties of a novel hydrogel composed of pooled human platelet lysate (PL) and test its ability to promote MSC angiogenic activity using clinically relevant in vitro and in vivo models. This PL hydrogel had comparable storage and loss modulus and behaved as a viscoelastic solid similar to fibrin hydrogels despite having 1/4-1/10th the fibrin content of standard fibrin gels. Additionally, PL hydrogels enabled sustained release of endogenous PDGF-BB for up to 20days and were resistant to protease degradation. PL hydrogel stimulated pro-angiogenic activity by promoting human MSC growth and invasion in a 3D environment, and enhancing endothelial cell sprouting alone and in co-culture with MSCs. When delivered in vivo, the combination of PL and human MSCs improved local tissue perfusion after 8days compared to controls when assessed with laser Doppler perfusion imaging in a murine model of hind limb ischemia. These results support the use of a PL hydrogel as a scaffold for MSC delivery to promote vascular regeneration. STATEMENT OF SIGNIFICANCE Innovative strategies for improved retention and viability of mesenchymal stem cells (MSCs) are needed for cellular therapies. Human platelet lysate is a potent serum supplement that improves the expansion of MSCs. Here we characterize our novel PL hydrogel's desirable structural and biologic properties for human MSCs and endothelial cells. PL hydrogel can localize cells for retention in the desired tissue, improves cell viability, and augments MSCs' angiogenic activity. As a result of these unique traits, PL hydrogel is ideally suited to serve as a cell delivery vehicle for MSCs injected into ischemic tissues to promote vascular regeneration, as demonstrated here in a murine model of hindlimb ischemia.
Collapse
Affiliation(s)
| | - Alison M Douglas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Tatiana Chadid
- Emory University, Department of Surgery, Atlanta, GA 30322, USA
| | - Katie Kuo
- Emory University, Department of Surgery, Atlanta, GA 30322, USA
| | - Ajai Rajabalan
- Emory University, Department of Surgery, Atlanta, GA 30322, USA
| | - Haiyan Li
- Emory University, Department of Surgery, Atlanta, GA 30322, USA
| | - Ian B Copland
- Emory University, Department of Hematology and Oncology, Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Thomas H Barker
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Jacques Galipeau
- Emory University, Department of Hematology and Oncology, Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Luke P Brewster
- Emory University, Department of Surgery, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA; Atlanta Veterans Affairs Medical Center, Surgical and Research Services, Decatur, GA 30030, USA.
| |
Collapse
|
132
|
Abstract
Diabetes is one of the main economic burdens in health care, which threatens to worsen dramatically if prevalence forecasts are correct. What makes diabetes harmful is the multi-organ distribution of its microvascular and macrovascular complications. Regenerative medicine with cellular therapy could be the dam against life-threatening or life-altering complications. Bone marrow-derived stem cells are putative candidates to achieve this goal. Unfortunately, the bone marrow itself is affected by diabetes, as it can develop a microangiopathy and neuropathy similar to other body tissues. Neuropathy leads to impaired stem cell mobilization from marrow, the so-called mobilopathy. Here, we review the role of bone marrow-derived stem cells in diabetes: how they are affected by compromised bone marrow integrity, how they contribute to other diabetic complications, and how they can be used as a treatment for these. Eventually, we suggest new tactics to optimize stem cell therapy.
Collapse
Affiliation(s)
- Giuseppe Mangialardi
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS28HW UK
| | - Paolo Madeddu
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS28HW UK
| |
Collapse
|
133
|
Abstract
Clinical investigations using stem cell products in regenerative medicine are addressing a wide spectrum of conditions using a variety of stem cell types. To date, there have been few reports of safety issues arising from autologous or allogeneic transplants. Many cells administered show transient presence for a few days with trophic influences on immune or inflammatory responses. Limbal stem cells have been registered as a product for eye burns in Europe and mesenchymal stem cells have been approved for pediatric graft versus host disease in Canada and New Zealand. Many other applications are progressing in trials, some with early benefits to patients.
Collapse
Affiliation(s)
- Alan Trounson
- Hudson Institute for Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia.
| | - Courtney McDonald
- Hudson Institute for Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
| |
Collapse
|
134
|
Ai M, Yan CF, Xia FC, Zhou SL, He J, Li CP. Safety and efficacy of cell-based therapy on critical limb ischemia: A meta-analysis. Cytotherapy 2016; 18:712-24. [PMID: 27067609 DOI: 10.1016/j.jcyt.2016.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND AIMS Critical limb ischemia (CLI) is a major health problem worldwide, affecting approximately 500-1000 people per million per annum. Cell-based therapy has given new hope for the treatment of limb ischemia. This study assessed the safety and efficacy of cellular therapy CLI treatment. METHODS We searched the PubMed, Embase and Cochrane databases through October 20, 2015, and selected the controlled trials with cell-based therapy for CLI treatment compared with cell-free treatment. We assessed the results by meta-analysis using a variety of outcome measures, as well as the association of mononuclear cell dosage with treatment effect by dose-response meta-analysis. RESULTS Twenty-five trials were included. For the primary evaluation index, cell-based therapy significantly reduced the rate of major amputation (odds ratio [OR] 0.44, 95% confidence interval [CI] 0.32-0.60, P = 0.000) and significantly increased the rate of amputation-free survival (OR 2.80, 95% CI 1.70-4.61, P = 0.000). Trial sequence analysis indicated that optimal sample size (n = 3374) is needed to detect a plausible treatment effect in all-cause mortality. Cell-based therapy significantly improves ankle brachial index, increases the rate of ulcer healing, increases the transcutaneous pressure of oxygen, reduces limb pain and improves movement ability. Subgroup analysis indicated heterogeneity is caused by type of control, design bias and transplant route. In the dose-response analysis, there was no significant correlation between cell dosage and the therapeutic effect. CONCLUSIONS Cell-based therapy has a significant therapeutic effect on CLI, but randomized double-blind placebo-controlled trials are needed to improve the credibility of this conclusion. Assessment of all-cause mortality also requires a larger sample size to arrive at a strong conclusion. In dose-response analysis, increasing the dosage of cell injections does not significantly improve the therapeutic effects of cell-based therapy.
Collapse
Affiliation(s)
- Min Ai
- Pangang General Hospital, Panzhihua, Sichuan Provience, China
| | - Chang-Fu Yan
- Pangang General Hospital, Panzhihua, Sichuan Provience, China.
| | - Fu-Chun Xia
- Pangang General Hospital, Panzhihua, Sichuan Provience, China
| | - Shuang-Lu Zhou
- Pangang General Hospital, Panzhihua, Sichuan Provience, China
| | - Jian He
- Pangang General Hospital, Panzhihua, Sichuan Provience, China
| | - Cui-Ping Li
- Pangang General Hospital, Panzhihua, Sichuan Provience, China
| |
Collapse
|
135
|
Zou L, Chen Q, Quanbeck Z, Bechtold JE, Kaufman DS. Angiogenic activity mediates bone repair from human pluripotent stem cell-derived osteogenic cells. Sci Rep 2016; 6:22868. [PMID: 26980556 PMCID: PMC4793227 DOI: 10.1038/srep22868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/22/2016] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells provide a standardized resource for bone repair. However, criteria to determine which exogenous cells best heal orthopedic injuries remain poorly defined. We evaluated osteogenic progenitor cells derived from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Phenotypic and genotypic analyses demonstrated that these hESCs/hiPSCs are similar in their osteogenic differentiation efficiency and they generate osteogenic cells comparable to osteogenic cells derived from mesenchymal stromal cells (BM-MSCs). However, expression of angiogenic factors, such as vascular endothelial growth factor and basic fibroblast growth factor in these osteogenic progenitor cells are markedly different, suggesting distinct pro-angiogenic potential of these stem cell derivatives. Studies to repair a femur non-union fracture demonstrate only osteogenic progenitor cells with higher pro-angiogenic potential significantly enhance bone repair in vivo. Together, these studies highlight a key role of pro-angiogenic potential of transplanted osteogenic cells for effective cell-mediated bone repair.
Collapse
Affiliation(s)
- Li Zou
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Qingshan Chen
- Excelen Center for Bone &Joint Research and Education, Minneapolis, MN, 55415, USA
| | - Zachary Quanbeck
- Excelen Center for Bone &Joint Research and Education, Minneapolis, MN, 55415, USA
| | - Joan E Bechtold
- Excelen Center for Bone &Joint Research and Education, Minneapolis, MN, 55415, USA
| | - Dan S Kaufman
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
136
|
Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jocit.2014.12.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
137
|
Xu Y, Fu M, Li Z, Fan Z, Li X, Liu Y, Anderson PM, Xie X, Liu Z, Guan J. A prosurvival and proangiogenic stem cell delivery system to promote ischemic limb regeneration. Acta Biomater 2016; 31:99-113. [PMID: 26689466 DOI: 10.1016/j.actbio.2015.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/17/2015] [Accepted: 12/11/2015] [Indexed: 12/20/2022]
Abstract
Stem cell therapy is one of the most promising strategies to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the low oxygen and nutrient environment of the injured limbs. To increase therapeutic efficacy, high rates of both short- and long-term cell survival are essential, which current approaches do not support. In this work, we hypothesized that a high rate of short-term cell survival can be achieved by introducing a prosurvival environment into the stem cell delivery system to enhance cell survival before vascularization is established; and that a high rate of long-term cell survival can be attained by building a proangiogenic environment in the system to quickly vascularize the limbs. The system was based on a biodegradable and thermosensitive poly(N-Isopropylacrylamide)-based hydrogel, a prosurvival and proangiogenic growth factor bFGF, and bone marrow-derived mesenchymal stem cells (MSCs). bFGF can be continuously released from the system for 4weeks. The released bFGF significantly improved MSC survival and paracrine effects under low nutrient and oxygen conditions (0% FBS and 1% O2) in vitro. The prosurvival effect of the bFGF on MSCs was resulted from activating cell Kruppel-like factor 4 (KLF4) pathway. When transplanted into the ischemic limbs, the system dramatically improved MSC survival. Some of the engrafted cells were differentiated into skeletal muscle and endothelial cells, respectively. The system also promoted the proliferation of host cells. After only 2weeks of implantation, tissue blood perfusion was completely recovered; and after 4weeks, the muscle fiber diameter was restored similarly to that of the normal limbs. These pronounced results demonstrate that the developed stem cell delivery system has a potential for ischemic limb regeneration. STATEMENT OF SIGNIFICANCE Stem cell therapy is a promising strategy to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the ischemic environment of the injured limbs. To increase therapeutic efficacy, high rate of cell survival is essential, which current approaches do not support. In this work, we tested the hypothesis that a stem cell delivery system that can continuously release a prosurvival and proangiogenic growth factor will promote high rates of cell survival in the ischemic limbs. The prosurvival effect could augment cell survival before vascularization is established, while the proangiogenic effect could stimulate quick angiogenesis to achieve long-term cell survival. Meanwhile, the differentiation of stem cells into endothelial and myogenic lineages, and cell paracrine effects will enhance vascularization and muscle regeneration.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Minghuan Fu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Zhihong Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Division of General Surgery, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201200, China
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Ying Liu
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Peter M Anderson
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, OH 43210, United States
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Tongji Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
138
|
Shi XF, Wang H, Xiao FJ, Yin Y, Xu QQ, Ge RL, Wang LS. MiRNA-486 regulates angiogenic activity and survival of mesenchymal stem cells under hypoxia through modulating Akt signal. Biochem Biophys Res Commun 2016; 470:670-677. [PMID: 26801559 DOI: 10.1016/j.bbrc.2016.01.084] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/14/2016] [Indexed: 11/16/2022]
Abstract
MicroRNA-486 (miR-486) was first identified from human fetal liver cDNA library and validated as a regulator of hematopoiesis. Its roles in regulating the biological function of bone marrow-derived mesnechymal stem cells (BM-MSCs) under hypoxia have not been explored yet. In this study, we demonstrated that exposure to hypoxia upregulates miR-486 expression in BM-MSCs. Lentivirus-mediated overexpression of miR-486 resulted in increase of hepatocyte growth factor (HGF) and vascular endothelial growth factor(VEGF) in both mRNA and protein levels. MiR-486 expression also promotes proliferation and reduces apoptosis of BM-MSCs. Whereas MiR-486 knockdown downregulated the secretion of HGF and VEGF and induced apoptosis of BM-MSCs. Furthermore, PTEN-PI3K/AKT signaling was validated to be involved in changes of BM-MSC biological functions regulated by miR-486. These results suggested that MiR-486 mediated the hypoxia-induced angiogenic activity and promoted the proliferation and survival of BM-MSCs through regulating PTEN-PI3K/AKT signaling. These findings might provide a novel understanding of effective therapeutic strategy for hypoxic-ischemic diseases.
Collapse
Affiliation(s)
- Xue-Feng Shi
- High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001, PR China; Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China; Department of Respiration, Qinghai Provincial People's Hospital, Xining, PR China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Feng-Jun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yue Yin
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China; Department of Hematology, Peking University First Hospital, Beijing, PR China
| | - Qin-Qin Xu
- High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001, PR China; Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Ri-Li Ge
- High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001, PR China.
| | - Li-Sheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
139
|
|
140
|
Abstract
In 2015, it can be said that the diabetic foot is no longer the Cinderella of diabetic complications. Thirty years ago there was little evidence-based research taking place on the diabetic foot, and there were no international meetings addressing this topic. Since then, the biennial Malvern Diabetic Foot meetings started in 1986, the American Diabetes Association founded their Foot Council in 1987, and the European Association for the Study of Diabetes established a Foot Study Group in 1998. The first International Symposium on the Diabetic Foot in The Netherlands was convened in 1991, and this was soon followed by the establishment of the International Working Group on the Diabetic Foot that has produced useful guidelines in several areas of investigation and the management of diabetic foot problems. There has been an exponential rise in publications on diabetic foot problems in high impact factor journals, and a comprehensive evidence-base now exists for many areas of treatment. Despite the extensive evidence available, it, unfortunately, remains difficult to demonstrate that most types of education are efficient in reducing the incidence of foot ulcers. However, there is evidence that education as part of a multi-disciplinary approach to diabetic foot ulceration plays a pivotal role in incidence reduction. With respect to treatment, strong evidence exists that offloading is the best modality for healing plantar neuropathic foot ulcers, and there is also evidence from two randomized controlled trials to support the use of negative-pressure wound therapy in complex post-surgical diabetic foot wounds. Hyperbaric oxygen therapy exhibits the same evidence level and strength of recommendation. International guidelines exist on the management of infection in the diabetic foot. Many randomized trials have been performed, and these have shown that the agents studied generally produced comparable results, with the exception of one study in which tigecycline was shown to be clinically inferior to ertapenem ± vancomycin. Similarly, there are numerous types of wound dressings that might be used in treatment and which have shown efficacy, but no single type (or brand) has shown superiority over others. Peripheral artery disease is another major contributory factor in the development of ulceration, and its presence is a strong predictor of non-healing and amputation. Despite the proliferation of endovascular procedures in addition to open revascularization, many patients continue to suffer from severely impaired perfusion and exhaust all treatment options. Finally, the question of the true aetiopathogenesis of Charcot neuroarthropathy remains enigmatic, although much work is currently being undertaken in this area. In this area, it is most important to remember that a clinically uninfected, warm, insensate foot in a diabetic patient should be considered as a Charcot foot until proven otherwise, and, as such, treated with offloading, preferably in a cast.
Collapse
Affiliation(s)
- K Markakis
- Manchester Royal Infirmary, Manchester, UK
| | - F L Bowling
- Manchester Royal Infirmary, Manchester, UK
- University of Manchester, Manchester, UK
| | - A J M Boulton
- Manchester Royal Infirmary, Manchester, UK
- University of Manchester, Manchester, UK
| |
Collapse
|
141
|
Mesenchymal Stem/Stromal Cells from Discarded Neonatal Sternal Tissue: In Vitro Characterization and Angiogenic Properties. Stem Cells Int 2015; 2016:5098747. [PMID: 26770206 PMCID: PMC4684890 DOI: 10.1155/2016/5098747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022] Open
Abstract
Autologous and nonautologous bone marrow mesenchymal stem/stromal cells (MSCs) are being evaluated as proangiogenic agents for ischemic and vascular disease in adults but not in children. A significant number of newborns and infants with critical congenital heart disease who undergo cardiac surgery already have or are at risk of developing conditions related to inadequate tissue perfusion. During neonatal cardiac surgery, a small amount of sternal tissue is usually discarded. Here we demonstrate that MSCs can be isolated from human neonatal sternal tissue using a nonenzymatic explant culture method. Neonatal sternal bone MSCs (sbMSCs) were clonogenic, had a surface marker expression profile that was characteristic of bone marrow MSCs, were multipotent, and expressed pluripotency-related genes at low levels. Neonatal sbMSCs also demonstrated in vitro proangiogenic properties. Sternal bone MSCs cooperated with human umbilical vein endothelial cells (HUVECs) to form 3D networks and tubes in vitro. Conditioned media from sbMSCs cultured in hypoxia also promoted HUVEC survival and migration. Given the neonatal source, ease of isolation, and proangiogenic properties, sbMSCs may have relevance to therapeutic applications.
Collapse
|
142
|
Peeters Weem S, Teraa M, de Borst G, Verhaar M, Moll F. Bone Marrow derived Cell Therapy in Critical Limb Ischemia: A Meta-analysis of Randomized Placebo Controlled Trials. Eur J Vasc Endovasc Surg 2015; 50:775-83. [DOI: 10.1016/j.ejvs.2015.08.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/22/2015] [Indexed: 01/13/2023]
|
143
|
Sanz-Nogués C, O'Brien T. MSCs isolated from patients with ischemic vascular disease have normal angiogenic potential. Mol Ther 2015; 22:1888-9. [PMID: 25365987 DOI: 10.1038/mt.2014.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Clara Sanz-Nogués
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
144
|
Fernandez-Moure JS, Corradetti B, Chan P, Van Eps JL, Janecek T, Rameshwar P, Weiner BK, Tasciotti E. Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis. Stem Cell Res Ther 2015; 6:203. [PMID: 26503337 PMCID: PMC4620594 DOI: 10.1186/s13287-015-0193-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/20/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) hold great promise for regenerative therapies in the musculoskeletal system. Although MSCs from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) have been extensively characterized, there is still debate as to the ideal source of MSCs for tissue-engineering applications in bone repair. Methods MSCs were isolated from cortical bone fragments (CBF-MSCs) obtained from patients undergoing laminectomy, selected by fluorescence-activated cell sorting analysis, and tested for their potential to undergo mesodermic differentiation. CBF-MSCs were then compared with BM-MSCs and AD-MSCs for their colony-forming unit capability and osteogenic potential in both normoxia and hypoxia. After 2 and 4 weeks in inducing media, differentiation was assessed qualitatively and quantitatively by the evaluation of alkaline phosphatase (ALP) expression and mineral deposition (Von Kossa staining). Transcriptional activity of osteoblastogenesis-associated genes (Alp, RUNX2, Spp1, and Bglap) was also analyzed. Results The cortical fraction of the bone contains a subset of cells positive for MSC-associated markers and capable of tri-lineage differentiation. The hypoxic conditions were generally more effective in inducing osteogenesis for the three cell lines. However, at 2 and 4 weeks, greater calcium deposition and ALP expression were observed in both hypoxic and normoxic conditions in CBF-MSCs compared with AD- and BM-MSCs. These functional observations were further corroborated by gene expression analysis, which showed a significant upregulation of Bglap, Alp, and Spp1, with a 22.50 (±4.55)-, 46.56 (±7.4)-, 71.46 (±4.16)-fold increase compared with their uninduced counterparts. Conclusions This novel population of MSCs retains a greater biosynthetic activity in vitro, which was found increased in hypoxic conditions. The present study demonstrates that quantitative differences between MSCs retrieved from bone marrow, adipose, and the cortical portion of the bone with respect to their osteogenic potential exist and suggests the cortical bone as suitable candidate to use for orthopedic tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Joseph S Fernandez-Moure
- Houston Methodist Hospital Department of Surgery, Houston, USA. .,Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
| | - Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA. .,Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy.
| | - Paige Chan
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
| | - Jeffrey L Van Eps
- Houston Methodist Hospital Department of Surgery, Houston, USA. .,Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
| | - Trevor Janecek
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA.
| | - Bradley K Weiner
- Houston Methodist Hospital Department of Orthopedic Surgery, 6565 Fannin Street, Houston, TX, 77030, USA.
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
145
|
Xu Y, Li Z, Li X, Fan Z, Liu Z, Xie X, Guan J. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels. Acta Biomater 2015; 26:23-33. [PMID: 26277379 DOI: 10.1016/j.actbio.2015.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 01/02/2023]
Abstract
Stem cell therapy has potential to regenerate skeletal muscle tissue in ischemic limb. However, the delivered stem cells experience low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as their modulus may be tailored to induce the differentiation. Yet current approaches used to manipulate hydrogel modulus often simultaneously vary other properties that also affect stem cell differentiation, such as chemical structure, composition and water content. Thus it is challenging to demonstrate the decoupled effect of hydrogel modulus on stem cell differentiation. In this report, we decoupled the hydrogel modulus from chemical structure, composition, and water content using injectable and thermosensitive hydrogels. The hydrogels were synthesized from N-isopropylacrylamide (NIPAAm), acrylic acid (AAc), and degradable macromer 2-hydroxyethyl methacrylate-oligomer [oligolatide, oligohydroxybutyrate, or oligo(trimethylene carbonate)]. We found that using the same monomer composition and oligomer chemical structure but different oligomer length can independently vary hydrogel modulus. Rat bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels with elastic expansion moduli of 11, 20, and 40 kPa, respectively. After 14 days of culture, significant myogenic differentiation was achieved for the hydrogel with elastic expansion modulus of 20 kPa, as judged from both the gene and protein expression. In addition, MSCs exhibited an elastic expansion modulus-dependent proliferation rate. The most significant proliferation was observed in the hydrogel with elastic expansion modulus of 40 kPa. These results demonstrate that the developed injectable and thermosensitive hydrogels with suitable modulus has the potential to deliver stem cells into ischemic limb for enhanced myogenic differentiation and muscle regeneration. STATEMENT OF SIGNIFICANCE Stem cell therapy for skeletal muscle regeneration in ischemic limb experiences low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as hydrogel modulus may be modulated to induce the differentiation. Yet current approaches used to modulate hydrogel modulus may simultaneously vary other properties that also affect stem cell myogenic differentiation, such as chemistry, composition and water content. In this report, we decoupled the hydrogel modulus from chemistry, composition, and water content using injectable and thermosensitive hydrogels. We found that mesenchymal stem cells best differentiated into myogenic lineage in the hydrogel with elastic modulus of 20 kPa.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhenqing Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Tongji Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
146
|
Bader AM, Klose K, Bieback K, Korinth D, Schneider M, Seifert M, Choi YH, Kurtz A, Falk V, Stamm C. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro. PLoS One 2015; 10:e0138477. [PMID: 26380983 PMCID: PMC4575058 DOI: 10.1371/journal.pone.0138477] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Hypoxic preconditioning was shown to improve the therapeutic efficacy of bone marrow-derived multipotent mesenchymal stromal cells (MSCs) upon transplantation in ischemic tissue. Given the interest in clinical applications of umbilical cord blood-derived MSCs, we developed a specific hypoxic preconditioning protocol and investigated its anti-apoptotic and pro-angiogenic effects on cord blood MSCs undergoing simulated ischemia in vitro by subjecting them to hypoxia and nutrient deprivation with or without preceding hypoxic preconditioning. Cell number, metabolic activity, surface marker expression, chromosomal stability, apoptosis (caspases-3/7 activity) and necrosis were determined, and phosphorylation, mRNA expression and protein secretion of selected apoptosis and angiogenesis-regulating factors were quantified. Then, human umbilical vein endothelial cells (HUVEC) were subjected to simulated ischemia in co-culture with hypoxically preconditioned or naïve cord blood MSCs, and HUVEC proliferation was measured. Migration, proliferation and nitric oxide production of HUVECs were determined in presence of cord blood MSC-conditioned medium. Cord blood MSCs proved least sensitive to simulated ischemia when they were preconditioned for 24 h, while their basic behavior, immunophenotype and karyotype in culture remained unchanged. Here, “post-ischemic” cell number and metabolic activity were enhanced and caspase-3/7 activity and lactate dehydrogenase release were reduced as compared to non-preconditioned cells. Phosphorylation of AKT and BAD, mRNA expression of BCL-XL, BAG1 and VEGF, and VEGF protein secretion were higher in preconditioned cells. Hypoxically preconditioned cord blood MSCs enhanced HUVEC proliferation and migration, while nitric oxide production remained unchanged. We conclude that hypoxic preconditioning protects cord blood MSCs by activation of anti-apoptotic signaling mechanisms and enhances their angiogenic potential. Hence, hypoxic preconditioning might be a translationally relevant strategy to increase the tolerance of cord blood MSCs to ischemia and improve their therapeutic efficacy in clinical applications.
Collapse
Affiliation(s)
- Andreas Matthäus Bader
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Kristin Klose
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | | | - Maria Schneider
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Seifert
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Andreas Kurtz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
147
|
Suzuki E, Fujita D, Takahashi M, Oba S, Nishimatsu H. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease. World J Cardiol 2015; 7:454-465. [PMID: 26322185 PMCID: PMC4549779 DOI: 10.4330/wjc.v7.i8.454] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissue-resident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction (AMI), ischemic cardiomyopathy (ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application.
Collapse
|
148
|
Liew A, Bhattacharya V, Shaw J, Stansby G. Cell Therapy for Critical Limb Ischemia: A Meta-Analysis of Randomized Controlled Trials. Angiology 2015. [PMID: 26195561 DOI: 10.1177/0003319715595172] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Early-phase trials showed the feasibility and potential efficacy of cell therapy in patients with critical limb ischemia (CLI). For systematic review, randomized controlled trials (RCTs) of cell therapy versus no cell therapy in CLI were searched from PubMed and the Cochrane library databases. Outcome measures included major amputation, complete ulcer healing, ankle-brachial index (ABI), and all-cause mortality. Data were pooled using 16 RCTs, involving 774 patients. Compared with no cell therapy, cell therapy significantly reduced major amputation (odds ratio [OR]: 0.54; 95% CI: 0.34-0.87:P= .01) and improved ulcer healing (OR: 2.90; 95% confidence interval [CI]: 1.44-5.82;P< .01) and ABI (OR: 5.91; 95% CI: 1.85-18.86:P< .01). Peripheral blood-derived mononuclear cells (PB-MNCs; OR: 0.29; 95% CI: 0.12-0.72;P< .01) and bone marrow concentrate (OR: 0.44; 95% CI: 0.21-0.93;P= .03) significantly lowered the risk of major amputation. The PB-MNCs also significantly increased ulcer healing (OR: 5.77; 95% CI: 1.77-18.87;P< .01). All-cause mortality was similar in both groups (OR: 0.78; 95% CI: 0.44-1.40;P= .41). However, all estimates were nonsignificant following reanalysis using placebo-controlled RCTs only. Cell therapy remains a potential therapeutic option in CLI, but further larger placebo-controlled RCTs are needed.
Collapse
Affiliation(s)
- Aaron Liew
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | | | - James Shaw
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Gerard Stansby
- Freeman Hospital, High Heaton, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
149
|
Merfeld-Clauss S, Lupov IP, Lu H, March KL, Traktuev DO. Adipose Stromal Cell Contact with Endothelial Cells Results in Loss of Complementary Vasculogenic Activity Mediated by Induction of Activin A. Stem Cells 2015; 33:3039-51. [PMID: 26037810 DOI: 10.1002/stem.2074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/07/2015] [Indexed: 12/30/2022]
Abstract
Adipose stem/stromal cells (ASCs) after isolation produce numerous angiogenic growth factors. This justifies their use to promote angiogenesis per transplantation. In parallel, local coimplantation of ASC with endothelial cells (ECs) leading to formation of functional vessels by the donor cells suggests the existence of a mechanism responsible for fine-tuning ASC paracrine activity essential for vasculogenesis. As expected, conditioned media (CM) from ASC promoted ECs survival, proliferation, migration, and vasculogenesis. In contrast, media from EC-ASC cocultures had neutral effects upon EC responses. Media from cocultures exhibited lower levels of vascular endothelial growth factor (VEGF), hepatic growth factor, angiopoietin-1, and stromal cell-derived factor-1 compared with those in ASC CM. Activin A was induced in ASC in response to EC exposure and was responsible for overall antivasculogenic activity of EC-ASC CM. Except for VEGF, activin A diminished secretion of all tested factors by ASC. Activin A mediated induction of VEGF expression in ASC, but also upregulated expression of VEGF scavenger receptor FLT-1 in EC in EC-ASC cocultures. Blocking the FLT-1 expression in EC led to an increase in VEGF concentration in CM. In vitro pre-exposure of ASC to low number of EC before subcutaneous coimplantation with EC resulted in decrease in vessel density in the implants. In vitro tests suggested that activin A was partially responsible for this diminished ASC activity. This study shows that neovessel formation is associated with induction of activin A expression in ASC; this factor, by affecting the bioactivity of both ASC and EC, directs the crosstalk between these complementary cell types to establish stable vessels.
Collapse
Affiliation(s)
- Stephanie Merfeld-Clauss
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Ivan P Lupov
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Hongyan Lu
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Keith L March
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dmitry O Traktuev
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
150
|
Han JW, Choi D, Lee MY, Huh YH, Yoon YS. Bone Marrow-Derived Mesenchymal Stem Cells Improve Diabetic Neuropathy by Direct Modulation of Both Angiogenesis and Myelination in Peripheral Nerves. Cell Transplant 2015; 25:313-26. [PMID: 25975801 PMCID: PMC4889908 DOI: 10.3727/096368915x688209] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent evidence has suggested that diabetic neuropathy (DN) is pathophysiologically related to both impaired angiogenesis and a deficiency of neurotrophic factors in the nerves. It is widely known that vascular and neural growths are intimately associated. Mesenchymal stem cells (MSCs) promote angiogenesis in ischemic diseases and have neuroprotective effects, particularly on Schwann cells. Accordingly, we investigated whether DN could be improved by local transplantation of MSCs by augmenting angiogenesis and neural regeneration such as remyelination. In sciatic nerves of streptozotocin (STZ)-induced diabetic rats, motor and sensory nerve conduction velocities (NCVs) and capillary density were reduced, and axonal atrophy and demyelination were observed. After injection of bone marrow-derived MSCs (BM-MSCs) into hindlimb muscles, NCVs were restored to near-normal levels. Histological examination demonstrated that injected MSCs were preferentially and durably engrafted in the sciatic nerves, and a portion of the engrafted MSCs were distinctively localized close to vasa nervora of sciatic nerves. Furthermore, vasa nervora increased in density, and the ultrastructure of myelinated fibers in nerves was observed to be restored. Real-time RT-PCR experiments showed that gene expression of multiple factors involved in angiogenesis, neural function, and myelination were increased in the MSC-injected nerves. These findings suggest that MSC transplantation improved DN through direct peripheral nerve angiogenesis, neurotrophic effects, and restoration of myelination.
Collapse
Affiliation(s)
- Ji Woong Han
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Dabin Choi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Min Young Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yang Hoon Huh
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon, Korea
| | - Young-sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|