101
|
Astrocytic transporters in Alzheimer's disease. Biochem J 2017; 474:333-355. [DOI: 10.1042/bcj20160505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022]
Abstract
Astrocytes play a fundamental role in maintaining the health and function of the central nervous system. Increasing evidence indicates that astrocytes undergo both cellular and molecular changes at an early stage in neurological diseases, including Alzheimer's disease (AD). These changes may reflect a change from a neuroprotective to a neurotoxic phenotype. Given the lack of current disease-modifying therapies for AD, astrocytes have become an interesting and viable target for therapeutic intervention. The astrocyte transport system covers a diverse array of proteins involved in metabolic support, neurotransmission and synaptic architecture. Therefore, specific targeting of individual transporter families has the potential to suppress neurodegeneration, a characteristic hallmark of AD. A small number of the 400 transporter superfamilies are expressed in astrocytes, with evidence highlighting a fraction of these are implicated in AD. Here, we review the current evidence for six astrocytic transporter subfamilies involved in AD, as reported in both animal and human studies. This review confirms that astrocytes are indeed a viable target, highlights the complexities of studying astrocytes and provides future directives to exploit the potential of astrocytes in tackling AD.
Collapse
|
102
|
Distinct and Shared Determinants of Cardiomyocyte Contractility in Multi-Lineage Competent Ethnically Diverse Human iPSCs. Sci Rep 2016; 6:37637. [PMID: 27917881 PMCID: PMC5137163 DOI: 10.1038/srep37637] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022] Open
Abstract
The realization of personalized medicine through human induced pluripotent stem cell (iPSC) technology can be advanced by transcriptomics, epigenomics, and bioinformatics that inform on genetic pathways directing tissue development and function. When possible, population diversity should be included in new studies as resources become available. Previously we derived replicate iPSC lines of African American, Hispanic-Latino and Asian self-designated ethnically diverse (ED) origins with normal karyotype, verified teratoma formation, pluripotency biomarkers, and tri-lineage in vitro commitment. Here we perform bioinformatics of RNA-Seq and ChIP-seq pluripotency data sets for two replicate Asian and Hispanic-Latino ED-iPSC lines that reveal differences in generation of contractile cardiomyocytes but similar and robust differentiation to multiple neural, pancreatic, and smooth muscle cell types. We identify shared and distinct genes and contributing pathways in the replicate ED-iPSC lines to enhance our ability to understand how reprogramming to iPSC impacts genes and pathways contributing to cardiomyocyte contractility potential.
Collapse
|
103
|
Abstract
Huntington's disease (HD) is a fatal genetic disorder, which causes the
progressive breakdown of neurons in the human brain. HD deteriorates human
physical and mental abilities over time and has no cure. Stem cell-based
technologies are promising novel treatments, and in HD, they aim to replace lost
neurons and/or to prevent neural cell death. Herein we discuss the use of human
fetal tissue (hFT), neural stem cells (NSCs) of hFT origin or embryonic stem
cells (ESCs) and induced pluripotent stem cells (IPSCs), in clinical and
pre-clinical studies. The in vivo use of mesenchymal stem cells
(MSCs), which are derived from non-neural tissues, will also be discussed. All
these studies prove the potential of stem cells for transplantation therapy in
HD, demonstrating cell grafting and the ability to differentiate into mature
neurons, resulting in behavioral improvements. We claim that there are still
many problems to overcome before these technologies become available for HD
patient treatment, such as: a) safety regarding the use of NSCs and pluripotent stem cells, which
are potentially teratogenic; b) safety regarding the transplantation procedure itself, which
represents a risk and needs to be better studied; and finally c) technical and ethical issues regarding cells of fetal and
embryonic origin.
Collapse
Affiliation(s)
- Mônica Santoro Haddad
- MD. Faculdade de Medicina da Universidade de São Paulo - Neurologia São Paulo, São Paulo, SP, Brazil
| | | | - Celine Pompeia
- MD. Instituto Butantan - Genética, São Paulo, SP, Brazil
| | - Irina Kerkis
- MD, PhD. Instituto Butantan - Genética, São Paulo, São Paulo, Brazil
| |
Collapse
|
104
|
Park JK, Peng H, Katsnelson J, Yang W, Kaplan N, Dong Y, Rappoport JZ, He C, Lavker RM. MicroRNAs-103/107 coordinately regulate macropinocytosis and autophagy. J Cell Biol 2016; 215:667-685. [PMID: 27872138 PMCID: PMC5146999 DOI: 10.1083/jcb.201604032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/29/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022] Open
Abstract
The miR-103/107 family is preferentially expressed in the stem cell–enriched limbal epithelium and regulates multiple characteristics associated with stem cells. Park et al. show that miR-103/107 also contribute to limbal epithelial homeostasis by suppressing macropinocytosis and preserving end-stage autophagy. Macropinocytosis, by which cells ingest large amounts of fluid, and autophagy, the lysosome-based catabolic process, involve vesicular biogenesis (early stage) and turnover (end stage). Much is known about early-stage events; however, our understanding of how the end stages of these processes are governed is incomplete. Here we demonstrate that the microRNA-103/107(miR-103/107) family, which is preferentially expressed in the stem cell–enriched limbal epithelium, coordinately regulates aspects of both these activities. Loss of miR-103/107 causes dysregulation of macropinocytosis with the formation of large vacuoles, primarily through up-regulation of Src, Ras, and Ankfy1. Vacuole accumulation is not a malfunction of early-stage autophagy; rather, miR-103/107 ensure proper end-stage autophagy by regulating diacylglycerol/protein kinase C and cyclin-dependent kinase 5 signaling, which enables dynamin to function in vacuole clearance. Our findings unveil a key biological function for miR-103/107 in coordinately suppressing macropinocytosis and preserving end-stage autophagy, thereby contributing to maintenance of a stem cell–enriched epithelium.
Collapse
Affiliation(s)
- Jong Kook Park
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | | | - Wending Yang
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | - Ying Dong
- Department of Dermatology, Northwestern University, Chicago, IL 60611.,Department of Ophthalmology, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100048, China
| | - Joshua Z Rappoport
- Center for Advanced Microscopy and Nikon Imaging Center, Northwestern University, Chicago, IL 60611
| | - CongCong He
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| |
Collapse
|
105
|
Hill E, Nagel D, Parri R, Coleman M. Stem cell-derived astrocytes: are they physiologically credible? J Physiol 2016; 594:6595-6606. [PMID: 26634807 PMCID: PMC5108894 DOI: 10.1113/jp270658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/28/2015] [Indexed: 01/29/2023] Open
Abstract
Astrocytes are now increasingly acknowledged as having fundamental and sophisticated roles in brain function and dysfunction. Unravelling the complex mechanisms that underlie human brain astrocyte-neuron interactions is therefore an essential step on the way to understanding how the brain operates. Insights into astrocyte function to date have almost exclusively been derived from studies conducted using murine or rodent models. Whilst these have led to significant discoveries, preliminary work with human astrocytes has revealed a hitherto unknown range of astrocyte types with potentially greater functional complexity and increased neuronal interaction with respect to animal astrocytes. It is becoming apparent, therefore, that many important functions of astrocytes will only be discovered by direct physiological interrogation of human astrocytes. Recent advancements in the field of stem cell biology have provided a source of human-based models. These will provide a platform to facilitate our understanding of normal astrocyte functions as well as their role in CNS pathology. A number of recent studies have demonstrated that stem cell-derived astrocytes exhibit a range of properties, suggesting that they may be functionally equivalent to their in vivo counterparts. Further validation against in vivo models will ultimately confirm the future utility of these stem cell-based approaches in fulfilling the need for human-based cellular models for basic and clinical research. In this review we discuss the roles of astrocytes in the brain and highlight the extent to which human stem cell-derived astrocytes have demonstrated functional activities that are equivalent to those observed in vivo.
Collapse
Affiliation(s)
- Eric Hill
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| | - David Nagel
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| | - Rheinallt Parri
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| | - Michael Coleman
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| |
Collapse
|
106
|
Jaworska E, Kozlowska E, Switonski PM, Krzyzosiak WJ. Modeling simple repeat expansion diseases with iPSC technology. Cell Mol Life Sci 2016; 73:4085-100. [PMID: 27261369 PMCID: PMC11108530 DOI: 10.1007/s00018-016-2284-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
A number of human genetic disorders, including Huntington's disease, myotonic dystrophy type 1, C9ORF72 form of amyotrophic lateral sclerosis and several spinocerebellar ataxias, are caused by the expansion of various microsatellite sequences in single implicated genes. The neurodegenerative and neuromuscular nature of the repeat expansion disorders considerably limits the access of researchers to appropriate cellular models of these diseases. This limitation, however, can be overcome by the application of induced pluripotent stem cell (iPSC) technology. In this paper, we review the current knowledge on the modeling of repeat expansion diseases with human iPSCs and iPSC-derived cells, focusing on the disease phenotypes recapitulated in these models. In subsequent sections, we provide basic practical knowledge regarding iPSC generation, characterization and differentiation into neurons. We also cover disease modeling in iPSCs, neuronal stem cells and specialized neuronal cultures. Furthermore, we also summarize the therapeutic potential of iPSC technology in repeat expansion diseases.
Collapse
Affiliation(s)
- Edyta Jaworska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704, Poznan, Poland
| | - Emilia Kozlowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704, Poznan, Poland
| | - Pawel M Switonski
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704, Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704, Poznan, Poland.
| |
Collapse
|
107
|
Zhang F, Hammack C, Ogden SC, Cheng Y, Lee EM, Wen Z, Qian X, Nguyen HN, Li Y, Yao B, Xu M, Xu T, Chen L, Wang Z, Feng H, Huang WK, Yoon KJ, Shan C, Huang L, Qin Z, Christian KM, Shi PY, Xu M, Xia M, Zheng W, Wu H, Song H, Tang H, Ming GL, Jin P. Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res 2016; 44:8610-8620. [PMID: 27580721 PMCID: PMC5063002 DOI: 10.1093/nar/gkw765] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) infection causes microcephaly and has been linked to other brain abnormalities. How ZIKV impairs brain development and function is unclear. Here we systematically profiled transcriptomes of human neural progenitor cells exposed to Asian ZIKVC, African ZIKVM, and dengue virus (DENV). In contrast to the robust global transcriptome changes induced by DENV, ZIKV has a more selective and larger impact on expression of genes involved in DNA replication and repair. While overall expression profiles are similar, ZIKVC, but not ZIKVM, induces upregulation of viral response genes and TP53. P53 inhibitors can block the apoptosis induced by both ZIKVC and ZIKVM in hNPCs, with higher potency against ZIKVC-induced apoptosis. Our analyses reveal virus- and strain-specific molecular signatures associated with ZIKV infection. These datasets will help to investigate ZIKV-host interactions and identify neurovirulence determinants of ZIKV.
Collapse
Affiliation(s)
- Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christy Hammack
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Sarah C Ogden
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Emily M Lee
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Departments of Psychiatry and Behavioral Science, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xuyu Qian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ha Nam Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Tianlei Xu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Li Chen
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Zhiqin Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Feng
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Wei-Kai Huang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ki-Jun Yoon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, Department of Pharmacology & Toxicology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luoxiu Huang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, Department of Pharmacology & Toxicology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
108
|
Chandrasekaran A, Avci HX, Leist M, Kobolák J, Dinnyés A. Astrocyte Differentiation of Human Pluripotent Stem Cells: New Tools for Neurological Disorder Research. Front Cell Neurosci 2016; 10:215. [PMID: 27725795 PMCID: PMC5035736 DOI: 10.3389/fncel.2016.00215] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022] Open
Abstract
Astrocytes have a central role in brain development and function, and so have gained increasing attention over the past two decades. Consequently, our knowledge about their origin, differentiation and function has increased significantly, with new research showing that astrocytes cultured alone or co-cultured with neurons have the potential to improve our understanding of various central nervous system diseases, such as amyotrophic lateral sclerosis, Alzheimer’s disease, or Alexander disease. The generation of astrocytes derived from pluripotent stem cells (PSCs) opens up a new area for studying neurologic diseases in vitro; these models could be exploited to identify and validate potential drugs by detecting adverse effects in the early stages of drug development. However, as it is now known that a range of astrocyte populations exist in the brain, it will be important in vitro to develop standardized protocols for the in vitro generation of astrocyte subsets with defined maturity status and phenotypic properties. This will then open new possibilities for co-cultures with neurons and the generation of neural organoids for research purposes. The aim of this review article is to compare and summarize the currently available protocols and their strategies to generate human astrocytes from PSCs. Furthermore, we discuss the potential role of human-induced PSCs derived astrocytes in disease modeling.
Collapse
Affiliation(s)
| | - Hasan X Avci
- BioTalentum LtdGödöllő, Hungary; Department of Medical Chemistry, University of SzegedSzeged, Hungary
| | - Marcel Leist
- Dorenkamp-Zbinden Chair, Faculty of Mathematics and Sciences, University of Konstanz Konstanz, Germany
| | | | - Andras Dinnyés
- BioTalentum LtdGödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan UniversityGödöllő, Hungary
| |
Collapse
|
109
|
Barral S, Kurian MA. Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders. Front Mol Neurosci 2016; 9:78. [PMID: 27656126 PMCID: PMC5012159 DOI: 10.3389/fnmol.2016.00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 12/15/2022] Open
Abstract
The study of neurological disorders often presents with significant challenges due to the inaccessibility of human neuronal cells for further investigation. Advances in cellular reprogramming techniques, have however provided a new source of human cells for laboratory-based research. Patient-derived induced pluripotent stem cells (iPSCs) can now be robustly differentiated into specific neural subtypes, including dopaminergic, inhibitory GABAergic, motorneurons and cortical neurons. These neurons can then be utilized for in vitro studies to elucidate molecular causes underpinning neurological disease. Although human iPSC-derived neuronal models are increasingly regarded as a useful tool in cell biology, there are a number of limitations, including the relatively early, fetal stage of differentiated cells and the mainly two dimensional, simple nature of the in vitro system. Furthermore, clonal variation is a well-described phenomenon in iPSC lines. In order to account for this, robust baseline data from multiple control lines is necessary to determine whether a particular gene defect leads to a specific cellular phenotype. Over the last few years patient-derived neural cells have proven very useful in addressing several mechanistic questions related to central nervous system diseases, including early-onset neurological disorders of childhood. Many studies report the clinical utility of human-derived neural cells for testing known drugs with repurposing potential, novel compounds and gene therapies, which then can be translated to clinical reality. iPSCs derived neural cells, therefore provide great promise and potential to gain insight into, and treat early-onset neurological disorders.
Collapse
Affiliation(s)
- Serena Barral
- Neurogenetics Group, Molecular Neurosciences, UCL Institute of Child Health,University College London London, UK
| | - Manju A Kurian
- Neurogenetics Group, Molecular Neurosciences, UCL Institute of Child Health,University College LondonLondon, UK; Department of Neurology, Great Ormond Street HospitalLondon, UK
| |
Collapse
|
110
|
Chamberlain SJ. Disease modelling using human iPSCs. Hum Mol Genet 2016; 25:R173-R181. [PMID: 27493026 DOI: 10.1093/hmg/ddw209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
111
|
Kondo T, Funayama M, Miyake M, Tsukita K, Era T, Osaka H, Ayaki T, Takahashi R, Inoue H. Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes. Acta Neuropathol Commun 2016; 4:69. [PMID: 27402089 PMCID: PMC4940830 DOI: 10.1186/s40478-016-0337-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/15/2016] [Indexed: 01/28/2023] Open
Abstract
Alexander disease is a fatal neurological illness characterized by white-matter degeneration and formation of Rosenthal fibers, which contain glial fibrillary acidic protein as astrocytic inclusion. Alexander disease is mainly caused by a gene mutation encoding glial fibrillary acidic protein, although the underlying pathomechanism remains unclear. We established induced pluripotent stem cells from Alexander disease patients, and differentiated induced pluripotent stem cells into astrocytes. Alexander disease patient astrocytes exhibited Rosenthal fiber-like structures, a key Alexander disease pathology, and increased inflammatory cytokine release compared to healthy control. These results suggested that Alexander disease astrocytes contribute to leukodystrophy and a variety of symptoms as an inflammatory source in the Alexander disease patient brain. Astrocytes, differentiated from induced pluripotent stem cells of Alexander disease, could be a cellular model for future translational medicine.
Collapse
|
112
|
Trehalose rescues glial cell dysfunction in striatal cultures from HD R6/1 mice at early postnatal development. Mol Cell Neurosci 2016; 74:128-45. [DOI: 10.1016/j.mcn.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 03/29/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
|
113
|
Abstract
Astrocytes abound in the human central nervous system (CNS) and play a multitude of indispensable roles in neuronal homeostasis and regulation of synaptic plasticity. While traditionally considered to be merely ancillary supportive cells, their complex yet fundamental relevance to brain physiology and pathology have only become apparent in recent times. Beyond their myriad canonical functions, previously unrecognised region-specific functional heterogeneity of astrocytes is emerging as an important attribute and challenges the traditional perspective of CNS-wide astrocyte homogeneity. Animal models have undeniably provided crucial insights into astrocyte biology, yet interspecies differences may limit the translational yield of such studies. Indeed, experimental systems aiming to understand the function of human astrocytes in health and disease have been hampered by accessibility to enriched cultures. Human induced pluripotent stem cells (hiPSCs) now offer an unparalleled model system to interrogate the role of astrocytes in neurodegenerative disorders. By virtue of their ability to convey mutations at pathophysiological levels in a human system, hiPSCs may serve as an ideal pre-clinical platform for both resolution of pathogenic mechanisms and drug discovery. Here, we review astrocyte specification from hiPSCs and discuss their role in modelling human neurological diseases.
Collapse
|
114
|
Nagaraj S. Resurrection of neurodegenerative diseases via stem cells. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
115
|
Du X, Parent JM. Using Patient-Derived Induced Pluripotent Stem Cells to Model and Treat Epilepsies. Curr Neurol Neurosci Rep 2016; 15:71. [PMID: 26319172 DOI: 10.1007/s11910-015-0588-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) are transforming the fields of disease modeling and precision therapy. For the treatment of neurological disorders, iPSCs introduce the possibility for targeted cell-based therapies by deriving patient-specific neural tissue in vitro that may ultimately be used for transplantation. We review iPSC technologies and their applications that have already advanced our understanding of neurological disorders, focusing on the epilepsies. We also discuss the application of powerful new tools such as genome editing and multi-well, multi-electrode array recording platforms to iPSC disease modeling and therapy development for the epilepsies. Despite some limitations, the field of iPSCs is evolving rapidly and is quickly becoming vital for understanding mechanisms of genetic epilepsies and for future patient-specific therapeutic applications.
Collapse
Affiliation(s)
- Xixi Du
- Neuroscience Graduate Program, Medical Scientist Training Program, Department of Neurology, University of Michigan Medical Center, University of Michigan, 5078 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA,
| | | |
Collapse
|
116
|
Spitalieri P, Talarico VR, Murdocca M, Novelli G, Sangiuolo F. Human induced pluripotent stem cells for monogenic disease modelling and therapy. World J Stem Cells 2016; 8:118-35. [PMID: 27114745 PMCID: PMC4835672 DOI: 10.4252/wjsc.v8.i4.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/21/2016] [Accepted: 02/14/2016] [Indexed: 02/06/2023] Open
Abstract
Recent and advanced protocols are now available to derive human induced pluripotent stem cells (hiPSCs) from patients affected by genetic diseases. No curative treatments are available for many of these diseases; thus, hiPSCs represent a major impact on patient' health. hiPSCs represent a valid model for the in vitro study of monogenic diseases, together with a better comprehension of the pathogenic mechanisms of the pathology, for both cell and gene therapy protocol applications. Moreover, these pluripotent cells represent a good opportunity to test innovative pharmacological treatments focused on evaluating the efficacy and toxicity of novel drugs. Today, innovative gene therapy protocols, especially gene editing-based, are being developed, allowing the use of these cells not only as in vitro disease models but also as an unlimited source of cells useful for tissue regeneration and regenerative medicine, eluding ethical and immune rejection problems. In this review, we will provide an up-to-date of modelling monogenic disease by using hiPSCs and the ultimate applications of these in vitro models for cell therapy. We consider and summarize some peculiar aspects such as the type of parental cells used for reprogramming, the methods currently used to induce the transcription of the reprogramming factors, and the type of iPSC-derived differentiated cells, relating them to the genetic basis of diseases and to their inheritance model.
Collapse
Affiliation(s)
- Paola Spitalieri
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Valentina Rosa Talarico
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Michela Murdocca
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Giuseppe Novelli
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Federica Sangiuolo
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
117
|
Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases. Int J Mol Sci 2016; 17:ijms17040607. [PMID: 27110774 PMCID: PMC4849058 DOI: 10.3390/ijms17040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS) for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS) represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.
Collapse
|
118
|
Tidball AM, Neely MD, Chamberlin R, Aboud AA, Kumar KK, Han B, Bryan MR, Aschner M, Ess KC, Bowman AB. Genomic Instability Associated with p53 Knockdown in the Generation of Huntington's Disease Human Induced Pluripotent Stem Cells. PLoS One 2016; 11:e0150372. [PMID: 26982737 PMCID: PMC4794230 DOI: 10.1371/journal.pone.0150372] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 02/13/2016] [Indexed: 12/20/2022] Open
Abstract
Alterations in DNA damage response and repair have been observed in Huntington's disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis, while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX, indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus, increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown.
Collapse
Affiliation(s)
- Andrew M. Tidball
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37240, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, United States of America
| | - M. Diana Neely
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37240, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, United States of America
| | - Reed Chamberlin
- Genetics Associates Inc., Nashville, TN, 37203, United States of America
| | - Asad A. Aboud
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37240, United States of America
| | - Kevin K. Kumar
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37240, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, United States of America
| | - Bingying Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37240, United States of America
| | - Miles R. Bryan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37240, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, United States of America
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States of America
| | - Kevin C. Ess
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37240, United States of America
| | - Aaron B. Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37240, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, United States of America
- Center in Molecular Toxicology, Vanderbilt University, Nashville, TN, 37232, United States of America
- * E-mail:
| |
Collapse
|
119
|
Lopes C, Aubert S, Bourgois-Rocha F, Barnat M, Rego AC, Déglon N, Perrier AL, Humbert S. Dominant-Negative Effects of Adult-Onset Huntingtin Mutations Alter the Division of Human Embryonic Stem Cells-Derived Neural Cells. PLoS One 2016; 11:e0148680. [PMID: 26863614 PMCID: PMC4749329 DOI: 10.1371/journal.pone.0148680] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/20/2016] [Indexed: 01/30/2023] Open
Abstract
Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington’s disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions.
Collapse
Affiliation(s)
- Carla Lopes
- Grenoble Institut des Neurosciences, Grenoble, France
- INSERM U836, Grenoble, France
- Grenoble Alpes University, Grenoble, France
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research of the University of Coimbra (IIIUC), Coimbra, Portugal
| | | | - Fany Bourgois-Rocha
- Inserm U861, I-STEM, AFM, Corbeil-Essonnes, France
- UEVE U861, I-STEM, AFM, Evry, France
| | - Monia Barnat
- Grenoble Institut des Neurosciences, Grenoble, France
- INSERM U836, Grenoble, France
- Grenoble Alpes University, Grenoble, France
| | - Ana Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nicole Déglon
- Lausanne University Hospital (CHUV), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Lausanne, Switzerland
| | - Anselme L. Perrier
- Inserm U861, I-STEM, AFM, Corbeil-Essonnes, France
- UEVE U861, I-STEM, AFM, Evry, France
- * E-mail: (ALP); (SH)
| | - Sandrine Humbert
- Grenoble Institut des Neurosciences, Grenoble, France
- INSERM U836, Grenoble, France
- Grenoble Alpes University, Grenoble, France
- * E-mail: (ALP); (SH)
| |
Collapse
|
120
|
Wen Z, Christian KM, Song H, Ming GL. Modeling psychiatric disorders with patient-derived iPSCs. Curr Opin Neurobiol 2016; 36:118-27. [PMID: 26705693 PMCID: PMC4738077 DOI: 10.1016/j.conb.2015.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022]
Abstract
Psychiatric disorders are heterogeneous disorders characterized by complex genetics, variable symptomatology, and anatomically distributed pathology, all of which present challenges for effective treatment. Current treatments are often blunt tools used to ameliorate the most severe symptoms, often at the risk of disrupting functional neural systems, thus there is a pressing need to develop rational therapeutics. Induced pluripotent stem cells (iPSCs) reprogrammed from patient somatic cells offer an unprecedented opportunity to recapitulate both normal and pathologic human tissue and organ development, and provides new approaches for understanding disease mechanisms and for drug discovery with higher predictability of their effects in humans. Here we review recent progress and challenges in using human iPSCs for modeling neuropsychiatric disorders and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
121
|
A Dishful of a Troubled Mind: Induced Pluripotent Stem Cells in Psychiatric Research. Stem Cells Int 2015; 2016:7909176. [PMID: 26839567 PMCID: PMC4709917 DOI: 10.1155/2016/7909176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Neuronal differentiation of induced pluripotent stem cells and direct reprogramming represent powerful methods for modeling the development of neurons in vitro. Moreover, this approach is also a means for comparing various cellular phenotypes between cell lines originating from healthy and diseased individuals or isogenic cell lines engineered to differ at only one or a few genomic loci. Despite methodological constraints and initial skepticism regarding this approach, the field is expanding at a fast pace. The improvements include the development of new differentiation protocols resulting in selected neuronal populations (e.g., dopaminergic, GABAergic, hippocampal, and cortical), the widespread use of genome editing methods, and single-cell techniques. A major challenge awaiting in vitro disease modeling is the integration of clinical data in the models, by selection of well characterized clinical populations. Ideally, these models will also demonstrate how different diagnostic categories share overlapping molecular disease mechanisms, but also have unique characteristics. In this review we evaluate studies with regard to the described developments, to demonstrate how differentiation of induced pluripotent stem cells and direct reprogramming can contribute to psychiatry.
Collapse
|
122
|
Russo FB, Cugola FR, Fernandes IR, Pignatari GC, Beltrão-Braga PCB. Induced pluripotent stem cells for modeling neurological disorders. World J Transplant 2015; 5:209-221. [PMID: 26722648 PMCID: PMC4689931 DOI: 10.5500/wjt.v5.i4.209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/23/2015] [Accepted: 09/28/2015] [Indexed: 02/05/2023] Open
Abstract
Several diseases have been successfully modeled since the development of induced pluripotent stem cell (iPSC) technology in 2006. Since then, methods for increased reprogramming efficiency and cell culture maintenance have been optimized and many protocols for differentiating stem cell lines have been successfully developed, allowing the generation of several cellular subtypes in vitro. Gene editing technologies have also greatly advanced lately, enhancing disease-specific phenotypes by creating isogenic cell lines, allowing mutations to be corrected in affected samples or inserted in control lines. Neurological disorders have benefited the most from iPSC-disease modeling for its capability for generating disease-relevant cell types in vitro from the central nervous system, such as neurons and glial cells, otherwise only available from post-mortem samples. Patient-specific iPSC-derived neural cells can recapitulate the phenotypes of these diseases and therefore, considerably enrich our understanding of pathogenesis, disease mechanism and facilitate the development of drug screening platforms for novel therapeutic targets. Here, we review the accomplishments and the current progress in human neurological disorders by using iPSC modeling for Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, spinal muscular atrophy, amyotrophic lateral sclerosis, duchenne muscular dystrophy, schizophrenia and autism spectrum disorders, which include Timothy syndrome, Fragile X syndrome, Angelman syndrome, Prader-Willi syndrome, Phelan-McDermid, Rett syndrome as well as Nonsyndromic Autism.
Collapse
|
123
|
Kleiderman S, Sá JV, Teixeira AP, Brito C, Gutbier S, Evje LG, Hadera MG, Glaab E, Henry M, Sachinidis A, Alves PM, Sonnewald U, Leist M. Functional and phenotypic differences of pure populations of stem cell-derived astrocytes and neuronal precursor cells. Glia 2015; 64:695-715. [DOI: 10.1002/glia.22954] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Susanne Kleiderman
- The Doerenkamp-Zbinden Chair of in-Vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation; University of Konstanz; Konstanz Germany
| | - João V. Sá
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
- IBET; Instituto de Biologia Experimental e Tecnológica; Apartado 12 2780-901 Oeiras Portugal
| | - Ana P. Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
- IBET; Instituto de Biologia Experimental e Tecnológica; Apartado 12 2780-901 Oeiras Portugal
| | - Catarina Brito
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
- IBET; Instituto de Biologia Experimental e Tecnológica; Apartado 12 2780-901 Oeiras Portugal
| | - Simon Gutbier
- The Doerenkamp-Zbinden Chair of in-Vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation; University of Konstanz; Konstanz Germany
| | - Lars G. Evje
- Department of Earth Science, University of Bergen; Allégaten 41 5007 Bergen Norway
| | - Mussie G. Hadera
- Department of Pharmacy; College of Health Sciences; Mekelle University, Tigray Ethiopia
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg; Belvaux L-4366 Luxembourg
| | - Margit Henry
- Institute of Neurophysiology and Center for Molecular Medicine, Cologne (CMMC), University of Cologne; Cologne Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine, Cologne (CMMC), University of Cologne; Cologne Germany
| | - Paula M. Alves
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
- IBET; Instituto de Biologia Experimental e Tecnológica; Apartado 12 2780-901 Oeiras Portugal
| | - Ursula Sonnewald
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; Copenhagen Denmark
- Department of Neuroscience; Norwegian University of Science and Technology; Faculty of Medicine; Trondheim Norway
| | - Marcel Leist
- The Doerenkamp-Zbinden Chair of in-Vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation; University of Konstanz; Konstanz Germany
| |
Collapse
|
124
|
Liu L, Huang JS, Han C, Zhang GX, Xu XY, Shen Y, Li J, Jiang HY, Lin ZC, Xiong N, Wang T. Induced Pluripotent Stem Cells in Huntington's Disease: Disease Modeling and the Potential for Cell-Based Therapy. Mol Neurobiol 2015; 53:6698-6708. [PMID: 26659595 DOI: 10.1007/s12035-015-9601-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder that is characterized by motor dysfunction, cognitive impairment, and behavioral abnormalities. It is an autosomal dominant disorder caused by a CAG repeat expansion in the huntingtin gene, resulting in progressive neuronal loss predominately in the striatum and cortex. Despite the discovery of the causative gene in 1993, the exact mechanisms underlying HD pathogenesis have yet to be elucidated. Treatments that slow or halt the disease process are currently unavailable. Recent advances in induced pluripotent stem cell (iPSC) technologies have transformed our ability to study disease in human neural cells. Here, we firstly review the progress made to model HD in vitro using patient-derived iPSCs, which reveal unique insights into illuminating molecular mechanisms and provide a novel human cell-based platform for drug discovery. We then highlight the promises and challenges for pluripotent stem cells that might be used as a therapeutic source for cell replacement therapy of the lost neurons in HD brains.
Collapse
Affiliation(s)
- Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin-Sha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo-Xin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Yun Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai-Yang Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Cheng Lin
- Department of Psychiatry, Harvard Medical School; Division of Alcohol and Drug Abuse, and Mailman Neuroscience Research Center, McLean Hospital, Belmont, MA, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
125
|
Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. Int J Mol Sci 2015; 16:28614-34. [PMID: 26633382 PMCID: PMC4691066 DOI: 10.3390/ijms161226119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem cells (ESCs) are chiefly characterized by their ability to self-renew and to differentiate into any cell type derived from the three main germ layers. It was demonstrated that somatic cells could be reprogrammed to form induced pluripotent stem cells (iPSCs) via various strategies. Gene editing is a technique that can be used to make targeted changes in the genome, and the efficiency of this process has been significantly enhanced by recent advancements. The use of engineered endonucleases, such as homing endonucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Cas9 of the CRISPR system, has significantly enhanced the efficiency of gene editing. The combination of somatic cell reprogramming with gene editing enables us to model human diseases in vitro, in a manner considered superior to animal disease models. In this review, we discuss the various strategies of reprogramming and gene targeting with an emphasis on the current advancements and challenges of using these techniques to model human diseases.
Collapse
|
126
|
Back and forth in time: Directing age in iPSC-derived lineages. Brain Res 2015; 1656:14-26. [PMID: 26592774 DOI: 10.1016/j.brainres.2015.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/19/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
Abstract
The advent of induced pluripotent stem cells (iPSC) has transformed the classic approach of studying human disease, providing in vitro access to disease-relevant cells from patients for the study of disease pathogenesis and for drug screening. However, in spite of the broad repertoire of iPSC-based disease models developed in recent years, increasing evidence suggests that this technology might not be fully suitable for the study of conditions of old age, such as neurodegeneration. The difficulty in recapitulating late-stage features of disease in cells of pluripotent origin is believed to be a discrepancy between the fetal-like nature of iPSC-progeny and the advanced age of onset of neurodegenerative syndromes. In parallel to the issue of functional immaturity known to affect derivatives of pluripotent cells, latest findings suggest that reprogramming also subjects cells to a process of "rejuvenation", giving rise to cells that are too "young" to manifest phenotypes of age-related diseases. Thus, following the significant progress in manipulating cellular fate, the stem cell field will now have to face the new challenge of controlling cellular age, in order to fully harness the potential of iPSC-technology to advance the research and cure of diseases of the aging brain. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
|
127
|
Rapid and robust generation of long-term self-renewing human neural stem cells with the ability to generate mature astroglia. Sci Rep 2015; 5:16321. [PMID: 26541394 PMCID: PMC4635383 DOI: 10.1038/srep16321] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cell bear the potential to differentiate into any desired cell type and hold large promise for disease-in-a-dish cell-modeling approaches. With the latest advances in the field of reprogramming technology, the generation of patient-specific cells has become a standard technology. However, directed and homogenous differentiation of human pluripotent stem cells into desired specific cell types remains an experimental challenge. Here, we report the development of a novel hiPSCs-based protocol enabling the generation of expandable homogenous human neural stem cells (hNSCs) that can be maintained under self-renewing conditions over high passage numbers. Our newly generated hNSCs retained differentiation potential as evidenced by the reliable generation of mature astrocytes that display typical properties as glutamate up-take and expression of aquaporin-4. The hNSC-derived astrocytes showed high activity of pyruvate carboxylase as assessed by stable isotope assisted metabolic profiling. Moreover, using a cell transplantation approach, we showed that grafted hNSCs were not only able to survive but also to differentiate into astroglial in vivo. Engraftments of pluripotent stem cells derived from somatic cells carry an inherent tumor formation potential. Our results demonstrate that hNSCs with self-renewing and differentiation potential may provide a safer alternative strategy, with promising applications especially for neurodegenerative disorders.
Collapse
|
128
|
Haston KM, Finkbeiner S. Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases. Annu Rev Pharmacol Toxicol 2015; 56:489-510. [PMID: 26514199 PMCID: PMC4868344 DOI: 10.1146/annurev-pharmtox-010715-103548] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are a leading cause of death. No disease-modifying therapies are available, and preclinical animal model data have routinely failed to translate into success for therapeutics. Induced pluripotent stem cell (iPSC) biology holds great promise for human in vitro disease modeling because these cells can give rise to any cell in the human brain and display phenotypes specific to neurodegenerative diseases previously identified in postmortem and clinical samples. Here, we explore the potential and caveats of iPSC technology as a platform for drug development and screening, and the future potential to use large cohorts of disease-bearing iPSCs to perform clinical trials in a dish.
Collapse
Affiliation(s)
- Kelly M Haston
- Gladstone Institute of Neurological Disease, San Francisco, California 94158;
| | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease, San Francisco, California 94158;
- Taube/Koret Center for Neurodegenerative Disease and the Hellman Family Foundation Program in Alzheimer's Disease Research, San Francisco, California 94158
- Departments of Neurology and Physiology, University of California, San Francisco, California 94143
| |
Collapse
|
129
|
Modeling Huntington׳s disease with patient-derived neurons. Brain Res 2015; 1656:76-87. [PMID: 26459990 DOI: 10.1016/j.brainres.2015.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/17/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
Huntington׳s Disease (HD) is a fatal neurodegenerative disorder caused by expanded polyglutamine repeats in the Huntingtin (HTT) gene. While the gene was identified over two decades ago, it remains poorly understood why mutant HTT (mtHTT) is initially toxic to striatal medium spiny neurons (MSNs). Models of HD using non-neuronal human patient cells and rodents exhibit some characteristic HD phenotypes. While these current models have contributed to the field, they are limited in disease manifestation and may vary in their response to treatments. As such, human HD patient MSNs for disease modeling could greatly expand the current understanding of HD and facilitate the search for a successful treatment. It is now possible to use pluripotent stem cells, which can generate any tissue type in the body, to study and potentially treat HD. This review covers disease modeling in vitro and, via chimeric animal generation, in vivo using human HD patient MSNs differentiated from embryonic stem cells or induced pluripotent stem cells. This includes an overview of the differentiation of pluripotent cells into MSNs, the established phenotypes found in cell-based models and transplantation studies using these cells. This review not only outlines the advancements in the rapidly progressing field of HD modeling using neurons derived from human pluripotent cells, but also it highlights several remaining controversial issues such as the 'ideal' series of pluripotent lines, the optimal cell types to use and the study of a primarily adult-onset disease in a developmental model. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
|
130
|
Chen C, Chan A, Wen H, Chung SH, Deng W, Jiang P. Stem and Progenitor Cell-Derived Astroglia Therapies for Neurological Diseases. Trends Mol Med 2015; 21:715-729. [PMID: 26443123 DOI: 10.1016/j.molmed.2015.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023]
Abstract
Astroglia are a major cellular constituent of the central nervous system (CNS) and play crucial roles in brain development, function, and integrity. Increasing evidence demonstrates that astroglia dysfunction occurs in a variety of neurological disorders ranging from CNS injuries to genetic diseases and chronic degenerative conditions. These new insights herald the concept that transplantation of astroglia could be of therapeutic value in treating the injured or diseased CNS. Recent technological advances in the generation of human astroglia from stem and progenitor cells have been prominent. We propose that a better understanding of the suitability of astroglial cells in transplantation as well as of their therapeutic effects in animal models may lead to the establishment of astroglia-based therapies to treat neurological diseases.
Collapse
Affiliation(s)
- Chen Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Albert Chan
- Department of Pediatrics, University of California, Davis, CA, USA
| | - Han Wen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | | | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA.
| | - Peng Jiang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
131
|
Zhang N, Bailus BJ, Ring KL, Ellerby LM. iPSC-based drug screening for Huntington's disease. Brain Res 2015; 1638:42-56. [PMID: 26428226 DOI: 10.1016/j.brainres.2015.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 01/29/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. The disease generally manifests in middle age with both physical and mental symptoms. There are no effective treatments or cures and death usually occurs 10-20 years after initial symptoms. Since the original identification of the Huntington disease associated gene, in 1993, a variety of models have been created and used to advance our understanding of HD. The most recent advances have utilized stem cell models derived from HD-patient induced pluripotent stem cells (iPSCs) offering a variety of screening and model options that were not previously available. The discovery and advancement of technology to make human iPSCs has allowed for a more thorough characterization of human HD on a cellular and developmental level. The interaction between the genome editing and the stem cell fields promises to further expand the variety of HD cellular models available for researchers. In this review, we will discuss the history of Huntington's disease models, common screening assays, currently available models and future directions for modeling HD using iPSCs-derived from HD patients. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Ningzhe Zhang
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Barbara J Bailus
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Karen L Ring
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States.
| |
Collapse
|
132
|
Li W, Chen S, Li JY. Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling. Prog Neurobiol 2015; 134:161-77. [PMID: 26408505 DOI: 10.1016/j.pneurobio.2015.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are two novel cell sources for studying neurodegenerative diseases. Dopaminergic neurons derived from hiPSCs/hESCs have been implicated to be very useful in Parkinson's disease (PD) research, including cell replacement therapy, disease modeling and drug screening. Recently, great efforts have been made to improve the application of hiPSCs/hESCs in PD research. Considerable advances have been made in recent years, including advanced reprogramming strategies without the use of viruses or using fewer transcriptional factors, optimized methods for generating highly homogeneous neural progenitors with a larger proportion of mature dopaminergic neurons and better survival and integration after transplantation. Here we outline the progress that has been made in these aspects in recent years, particularly during the last year, and also discuss existing issues that need to be addressed.
Collapse
Affiliation(s)
- Wen Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China.
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden.
| |
Collapse
|
133
|
El-Daher MT, Hangen E, Bruyère J, Poizat G, Al-Ramahi I, Pardo R, Bourg N, Souquere S, Mayet C, Pierron G, Lévêque-Fort S, Botas J, Humbert S, Saudou F. Huntingtin proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1 dysregulation. EMBO J 2015; 34:2255-71. [PMID: 26165689 DOI: 10.15252/embj.201490808] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/12/2015] [Indexed: 12/11/2022] Open
Abstract
Cleavage of mutant huntingtin (HTT) is an essential process in Huntington's disease (HD), an inherited neurodegenerative disorder. Cleavage generates N-ter fragments that contain the polyQ stretch and whose nuclear toxicity is well established. However, the functional defects induced by cleavage of full-length HTT remain elusive. Moreover, the contribution of non-polyQ C-terminal fragments is unknown. Using time- and site-specific control of full-length HTT proteolysis, we show that specific cleavages are required to disrupt intramolecular interactions within HTT and to cause toxicity in cells and flies. Surprisingly, in addition to the canonical pathogenic N-ter fragments, the C-ter fragments generated, that do not contain the polyQ stretch, induced toxicity via dilation of the endoplasmic reticulum (ER) and increased ER stress. C-ter HTT bound to dynamin 1 and subsequently impaired its activity at ER membranes. Our findings support a role for HTT on dynamin 1 function and ER homoeostasis. Proteolysis-induced alteration of this function may be relevant to disease.
Collapse
Affiliation(s)
| | - Emilie Hangen
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France
| | - Julie Bruyère
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France Inserm U836, Grenoble, France Grenoble Institut des Neurosciences, GIN University of Grenoble Alpes, Grenoble, France
| | - Ghislaine Poizat
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Raul Pardo
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France
| | - Nicolas Bourg
- ISMO, CNRS UMR8214 University of Paris Sud, Orsay, France CPBM FR2764 University of Paris Sud, Orsay, France
| | - Sylvie Souquere
- CNRS UMR8122, Villejuif, France Institut Gustave Roussy, Villejuif, France
| | - Céline Mayet
- ISMO, CNRS UMR8214 University of Paris Sud, Orsay, France CPBM FR2764 University of Paris Sud, Orsay, France
| | - Gérard Pierron
- CNRS UMR8122, Villejuif, France Institut Gustave Roussy, Villejuif, France
| | - Sandrine Lévêque-Fort
- ISMO, CNRS UMR8214 University of Paris Sud, Orsay, France CPBM FR2764 University of Paris Sud, Orsay, France
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sandrine Humbert
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France Inserm U836, Grenoble, France Grenoble Institut des Neurosciences, GIN University of Grenoble Alpes, Grenoble, France
| | - Frédéric Saudou
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France Inserm U836, Grenoble, France Grenoble Institut des Neurosciences, GIN University of Grenoble Alpes, Grenoble, France CHU de Grenoble, Grenoble, France
| |
Collapse
|
134
|
Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases. Stem Cells Int 2015; 2015:382530. [PMID: 26240571 PMCID: PMC4512612 DOI: 10.1155/2015/382530] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022] Open
Abstract
Neurodegeneration is the umbrella term for the progressive loss of structure or function of neurons. Incurable neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) show dramatic rising trends particularly in the advanced age groups. However, the underlying mechanisms are not yet fully elucidated, and to date there are no biomarkers for early detection or effective treatments for the underlying causes of these diseases. Furthermore, due to species variation and differences between animal models (e.g., mouse transgenic and knockout models) of neurodegenerative diseases, substantial debate focuses on whether animal and cell culture disease models can correctly model the condition in human patients. In 2006, Yamanaka of Kyoto University first demonstrated a novel approach for the preparation of induced pluripotent stem cells (iPSCs), which displayed similar pluripotency potential to embryonic stem cells (ESCs). Currently, iPSCs studies are permeating many sectors of disease research. Patient sample-derived iPSCs can be used to construct patient-specific disease models to elucidate the pathogenic mechanisms of disease development and to test new therapeutic strategies. Accordingly, the present review will focus on recent progress in iPSC research in the modeling of neurodegenerative disorders and in the development of novel therapeutic options.
Collapse
|
135
|
Holmqvist S, Brouwer M, Djelloul M, Diaz AG, Devine MJ, Hammarberg A, Fog K, Kunath T, Roybon L. Generation of human pluripotent stem cell reporter lines for the isolation of and reporting on astrocytes generated from ventral midbrain and ventral spinal cord neural progenitors. Stem Cell Res 2015; 15:203-20. [DOI: 10.1016/j.scr.2015.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/28/2015] [Accepted: 05/28/2015] [Indexed: 12/20/2022] Open
|
136
|
Ohgidani M, Kato TA, Kanba S. Introducing directly induced microglia-like (iMG) cells from fresh human monocytes: a novel translational research tool for psychiatric disorders. Front Cell Neurosci 2015; 9:184. [PMID: 26074765 PMCID: PMC4444822 DOI: 10.3389/fncel.2015.00184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022] Open
Abstract
Microglia, glial cells with immunological functions, have been implicated in various neurological diseases and psychiatric disorders in rodent studies, and human postmortem and PET studies. However, the deeper molecular implications of living human microglia have not been clarified. Here, we introduce a novel translational research approach focusing on human microglia. We have recently developed a new technique for creating induced microglia-like (iMG) cells from human peripheral blood. Two cytokines, GM-CSF and IL-34, converted human monocytes into the iMG cells within 14 days, which show various microglial characterizations; expressing markers, forming a ramified morphology, and phagocytic activity with various cytokine releases. We have already confirmed the applicability of this technique by analyzing iMG cells from a patient of Nasu-Hakola disease (NHD; Ohgidani et al., 2014). We herein show possible applications of the iMG cells in translational research. We believe that this iMG technique will open the door to explore various unknown dynamic aspects of human microglia in psychiatric disorders. This also opens new routes for psychopharmacological approach such as drug efficacy screening and personalized medicine.
Collapse
Affiliation(s)
- Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan ; Brain Research Unit, Innovation Center for Medical Redox Navigation, Kyushu University Fukuoka, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| |
Collapse
|
137
|
Dametti S, Faravelli I, Ruggieri M, Ramirez A, Nizzardo M, Corti S. Experimental Advances Towards Neural Regeneration from Induced Stem Cells to Direct In Vivo Reprogramming. Mol Neurobiol 2015; 53:2124-31. [PMID: 25934102 DOI: 10.1007/s12035-015-9181-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
Neuronal loss is a common substrate of many neurological diseases that still lack effective treatments and highly burden lives of affected individuals. The discovery of self-renewing stem cells within the central nervous system (CNS) has opened the doors to the possibility of using the plasticity of CNS as a potential strategy for the development of regenerative therapies after injuries. The role of neural progenitor cells appears to be crucial, but insufficient in reparative processes after damage. In addition, the mechanisms that regulate these events are still largely unknown. Stem cell-based therapeutic approaches have primarily focused on the use of either induced pluripotent stem cells or induced neural stem cells as sources for cell transplantation. More recently, in vivo direct reprogramming of endogenous CNS cells into multipotent neural stem/progenitor cells has been proposed as an alternative strategy that could overcome the limits connected with both the invasiveness of exogenous cell transplantation and the technical issues of in vitro reprogramming (i.e., the time requested and the limited available amount of directly induced neuronal cells). In this review, we aim to highlight the recent studies on in vivo direct reprogramming, focusing on astrocytes conversion to neurons or to neural stem/precursors cells, in the perspective of future therapeutic purposes for neurological disorders.
Collapse
Affiliation(s)
- Sara Dametti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Margherita Ruggieri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Agnese Ramirez
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
138
|
Ichida JK, Kiskinis E. Probing disorders of the nervous system using reprogramming approaches. EMBO J 2015; 34:1456-77. [PMID: 25925386 PMCID: PMC4474524 DOI: 10.15252/embj.201591267] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/14/2015] [Indexed: 11/09/2022] Open
Abstract
The groundbreaking technologies of induced pluripotency and lineage conversion have generated a genuine opportunity to address fundamental aspects of the diseases that affect the nervous system. These approaches have granted us unrestricted access to the brain and spinal cord of patients and have allowed for the study of disease in the context of human cells, expressing physiological levels of proteins and under each patient's unique genetic constellation. Along with this unprecedented opportunity have come significant challenges, particularly in relation to patient variability, experimental design and data interpretation. Nevertheless, significant progress has been achieved over the past few years both in our ability to create the various neural subtypes that comprise the nervous system and in our efforts to develop cellular models of disease that recapitulate clinical findings identified in patients. In this Review, we present tables listing the various human neural cell types that can be generated and the neurological disease modeling studies that have been reported, describe the current state of the field, highlight important breakthroughs and discuss the next steps and future challenges.
Collapse
Affiliation(s)
- Justin K Ichida
- Department of Stem Cells and Regenerative Medicine, Eli and Edythe Broad, CIRM Center for Regenerative Medicine and Stem Cell Research at USC, University of Southern California, Los Angeles, CA, USA
| | - Evangelos Kiskinis
- The Ken and Ruth Davee Department of Neurology & Clinical Neurological Sciences and Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
139
|
Drouin-Ouellet J. The potential of alternate sources of cells for neural grafting in Parkinson's and Huntington's disease. Neurodegener Dis Manag 2015; 4:297-307. [PMID: 25313986 DOI: 10.2217/nmt.14.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell-based therapies for Parkinson's and Huntington's disease have provided mixed clinical outcomes and one of the reasons underlying this is the use of primary fetal tissue as the source of grafted cells. An alternate source of cells, such as stem cells, could overcome many of the issues associated with primary fetal tissue and would help bring forward cell replacement therapy as a reliable and effective treatment for these two neurodegenerative disorders. This review will discuss which stem cells are likely to go to clinic in the next generation of cells, based on trials for Parkinson's and Huntington's disease.
Collapse
|
140
|
Phatnani H, Maniatis T. Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a020628. [PMID: 25877220 DOI: 10.1101/cshperspect.a020628] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astrocytes contribute to the maintenance of the health and function of the central nervous system (CNS). Thus, it is not surprising that these multifunctional cells have been implicated in the onset and progression of several neurodegenerative diseases. The involvement of astrocytes in the neuropathology of these diseases is likely a consequence of both the loss of normal homeostatic functions and gain of toxic functions. Intracellular aggregates in astrocytes are a common feature of various neurodegenerative diseases, and these aggregates perturb normal astrocytic functions in ways that can be harmful to neuronal viability. Here, we review the role of astrocytes in neurodegenerative diseases, focusing on their dysfunction in Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Hemali Phatnani
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, New York, New York 10032
| | - Tom Maniatis
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, New York, New York 10032
| |
Collapse
|
141
|
Nicaise C, Mitrecic D, Falnikar A, Lepore AC. Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury. World J Stem Cells 2015; 7:380-398. [PMID: 25815122 PMCID: PMC4369494 DOI: 10.4252/wjsc.v7.i2.380] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/07/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Neglected for years, astrocytes are now recognized to fulfill and support many, if not all, homeostatic functions of the healthy central nervous system (CNS). During neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI), astrocytes in the vicinity of degenerating areas undergo both morphological and functional changes that might compromise their intrinsic properties. Evidence from human and animal studies show that deficient astrocyte functions or loss-of-astrocytes largely contribute to increased susceptibility to cell death for neurons, oligodendrocytes and axons during ALS and SCI disease progression. Despite exciting advances in experimental CNS repair, most of current approaches that are translated into clinical trials focus on the replacement or support of spinal neurons through stem cell transplantation, while none focus on the specific replacement of astroglial populations. Knowing the important functions carried out by astrocytes in the CNS, astrocyte replacement-based therapies might be a promising approach to alleviate overall astrocyte dysfunction, deliver neurotrophic support to degenerating spinal tissue and stimulate endogenous CNS repair abilities. Enclosed in this review, we gathered experimental evidence that argue in favor of astrocyte transplantation during ALS and SCI. Based on their intrinsic properties and according to the cell type transplanted, astrocyte precursors or stem cell-derived astrocytes promote axonal growth, support mechanisms and cells involved in myelination, are able to modulate the host immune response, deliver neurotrophic factors and provide protective molecules against oxidative or excitotoxic insults, amongst many possible benefits. Embryonic or adult stem cells can even be genetically engineered in order to deliver missing gene products and therefore maximize the chance of neuroprotection and functional recovery. However, before broad clinical translation, further preclinical data on safety, reliability and therapeutic efficiency should be collected. Although several technical challenges need to be overcome, we discuss the major hurdles that have already been met or solved by targeting the astrocyte population in experimental ALS and SCI models and we discuss avenues for future directions based on latest molecular findings regarding astrocyte biology.
Collapse
|
142
|
Crook JM, Wallace G, Tomaskovic-Crook E. The potential of induced pluripotent stem cells in models of neurological disorders: implications on future therapy. Expert Rev Neurother 2015; 15:295-304. [PMID: 25664599 DOI: 10.1586/14737175.2015.1013096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is an urgent need for new and advanced approaches to modeling the pathological mechanisms of complex human neurological disorders. This is underscored by the decline in pharmaceutical research and development efficiency resulting in a relative decrease in new drug launches in the last several decades. Induced pluripotent stem cells represent a new tool to overcome many of the shortcomings of conventional methods, enabling live human neural cell modeling of complex conditions relating to aberrant neurodevelopment, such as schizophrenia, epilepsy and autism as well as age-associated neurodegeneration. This review considers the current status of induced pluripotent stem cell-based modeling of neurological disorders, canvassing proven and putative advantages, current constraints, and future prospects of next-generation culture systems for biomedical research and translation.
Collapse
Affiliation(s)
- Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, New South Wales 2519, Australia
| | | | | |
Collapse
|
143
|
Datta D, Kim KS. Induced Pluripotent Stem Cells (iPSCs) to Study and Treat Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
144
|
Caiazzo M, Giannelli S, Valente P, Lignani G, Carissimo A, Sessa A, Colasante G, Bartolomeo R, Massimino L, Ferroni S, Settembre C, Benfenati F, Broccoli V. Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports 2014; 4:25-36. [PMID: 25556566 PMCID: PMC4297873 DOI: 10.1016/j.stemcr.2014.12.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 01/04/2023] Open
Abstract
Direct cell reprogramming enables direct conversion of fibroblasts into functional neurons and oligodendrocytes using a minimal set of cell-lineage-specific transcription factors. This approach is rapid and simple, generating the cell types of interest in one step. However, it remains unknown whether this technology can be applied to convert fibroblasts into astrocytes, the third neural lineage. Astrocytes play crucial roles in neuronal homeostasis, and their dysfunctions contribute to the origin and progression of multiple human diseases. Herein, we carried out a screening using several transcription factors involved in defining the astroglial cell fate and identified NFIA, NFIB, and SOX9 to be sufficient to convert with high efficiency embryonic and postnatal mouse fibroblasts into astrocytes (iAstrocytes). We proved both by gene-expression profiling and functional tests that iAstrocytes are comparable to native brain astrocytes. This protocol can be then employed to generate functional iAstrocytes for a wide range of experimental applications. NFIA, NFIB, and SOX9 reprogram fibroblasts into induced astrocytes (iAstrocytes) iAstrocytes reprogramming induces a global change in gene-expression profiling iAstrocytes are functionally comparable to native astrocytes NFIA, NFIB, and SOX9 induce an astrocytic phenotype in human fibroblasts
Collapse
Affiliation(s)
- Massimiliano Caiazzo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy.
| | - Serena Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Pierluigi Valente
- Section of Physiology, Department of Experimental Medicine, University of Genoa and National Institute of Neuroscience, 16132 Genoa, Italy
| | - Gabriele Lignani
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, 16132 Genoa, Italy
| | | | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Rosa Bartolomeo
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy; Dulbecco Telethon Institute
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Stefano Ferroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy; Dulbecco Telethon Institute; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Medical Genetics, Department of Medical and Translational Science Unit, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Fabio Benfenati
- Section of Physiology, Department of Experimental Medicine, University of Genoa and National Institute of Neuroscience, 16132 Genoa, Italy; Department of Neuroscience and Brain Technologies, Italian Institute of Technology, 16132 Genoa, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy.
| |
Collapse
|
145
|
The Potential for iPS-Derived Stem Cells as a Therapeutic Strategy for Spinal Cord Injury: Opportunities and Challenges. J Clin Med 2014; 4:37-65. [PMID: 26237017 PMCID: PMC4470238 DOI: 10.3390/jcm4010037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/28/2014] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating trauma causing long-lasting disability. Although advances have occurred in the last decade in the medical, surgical and rehabilitative treatments of SCI, the therapeutic approaches are still not ideal. The use of cell transplantation as a therapeutic strategy for the treatment of SCI is promising, particularly since it can target cell replacement, neuroprotection and regeneration. Cell therapies for treating SCI are limited due to several translational roadblocks, including ethical and practical concerns regarding cell sources. The use of iPSCs has been particularly attractive, since they avoid the ethical and moral concerns that surround other stem cells. Furthermore, various cell types with potential for application in the treatment of SCI can be created from autologous sources using iPSCs. For applications in SCI, the iPSCs can be differentiated into neural precursor cells, neurons, oligodendrocytes, astrocytes, neural crest cells and mesenchymal stromal cells that can act by replacing lost cells or providing environmental support. Some methods, such as direct reprogramming, are being investigated to reduce tumorigenicity and improve reprogramming efficiencies, which have been some of the issues surrounding the use of iPSCs clinically to date. Recently, iPSCs have entered clinical trials for use in age-related macular degeneration, further supporting their promise for translation in other conditions, including SCI.
Collapse
|
146
|
Brändl B, Schneider SA, Loring JF, Hardy J, Gribbon P, Müller FJ. Stem cell reprogramming: basic implications and future perspective for movement disorders. Mov Disord 2014; 30:301-12. [PMID: 25546831 DOI: 10.1002/mds.26113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/03/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022] Open
Abstract
The introduction of stem cell-associated molecular factors into human patient-derived cells allows for their reprogramming in the laboratory environment. As a result, human induced pluripotent stem cells (hiPSC) can now be reprogrammed epigenetically without disruption of their overall genomic integrity. For patients with neurodegenerative diseases characterized by progressive loss of functional neurons, the ability to reprogram any individual's cells and drive their differentiation toward susceptible neuronal subtypes holds great promise. Apart from applications in regenerative medicine and cell replacement-based therapy, hiPSCs are increasingly used in preclinical research for establishing disease models and screening for drug toxicities. The rapid developments in this field prompted us to review recent progress toward the applications of stem cell technologies for movement disorders. We introduce reprogramming strategies and explain the critical steps in the differentiation of hiPSCs to clinical relevant subtypes of cells in the context of movement disorders. We summarize and discuss recent discoveries in this field, which, based on the rapidly expanding basic science literature as well as upcoming trends in personalized medicine, will strongly influence the future therapeutic options available to practitioners working with patients suffering from such disorders.
Collapse
Affiliation(s)
- Björn Brändl
- Center for Psychiatry, University Hospital Schleswig Holstein, Campus Kiel, Germany
| | | | | | | | | | | |
Collapse
|
147
|
Freude K, Pires C, Hyttel P, Hall VJ. Induced Pluripotent Stem Cells Derived from Alzheimer's Disease Patients: The Promise, the Hope and the Path Ahead. J Clin Med 2014; 3:1402-36. [PMID: 26237610 PMCID: PMC4470192 DOI: 10.3390/jcm3041402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023] Open
Abstract
The future hope of generated induced pluripotent stem cells (iPS cells) from Alzheimer’s disease patients is multifold. Firstly, they may help to uncover novel mechanisms of the disease, which could lead to the development of new and unprecedented drugs for patients and secondly, they could also be directly used for screening and testing of potential new compounds for drug discovery. In addition, in the case of familial known mutations, these cells could be targeted by use of advanced gene-editing techniques to correct the mutation and be used for future cell transplantation therapies. This review summarizes the work so far in regards to production and characterization of iPS cell lines from both sporadic and familial Alzheimer’s patients and from other iPS cell lines that may help to model the disease. It provides a detailed comparison between published reports and states the present hurdles we face with this new technology. The promise of new gene-editing techniques and accelerated aging models also aim to move this field further by providing better control cell lines for comparisons and potentially better phenotypes, respectively.
Collapse
Affiliation(s)
- Kristine Freude
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Carlota Pires
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Vanessa Jane Hall
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| |
Collapse
|
148
|
Tidball AM, Bryan MR, Uhouse MA, Kumar KK, Aboud AA, Feist JE, Ess KC, Neely MD, Aschner M, Bowman AB. A novel manganese-dependent ATM-p53 signaling pathway is selectively impaired in patient-based neuroprogenitor and murine striatal models of Huntington's disease. Hum Mol Genet 2014; 24:1929-44. [PMID: 25489053 DOI: 10.1093/hmg/ddu609] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The essential micronutrient manganese is enriched in brain, especially in the basal ganglia. We sought to identify neuronal signaling pathways responsive to neurologically relevant manganese levels, as previous data suggested that alterations in striatal manganese handling occur in Huntington's disease (HD) models. We found that p53 phosphorylation at serine 15 is the most responsive cell signaling event to manganese exposure (of 18 tested) in human neuroprogenitors and a mouse striatal cell line. Manganese-dependent activation of p53 was severely diminished in HD cells. Inhibitors of ataxia telangiectasia mutated (ATM) kinase decreased manganese-dependent phosphorylation of p53. Likewise, analysis of ATM autophosphorylation and additional ATM kinase targets, H2AX and CHK2, support a role for ATM in the activation of p53 by manganese and that a defect in this process occurs in HD. Furthermore, the deficit in Mn-dependent activation of ATM kinase in HD neuroprogenitors was highly selective, as DNA damage and oxidative injury, canonical activators of ATM, did not show similar deficits. We assessed cellular manganese handling to test for correlations with the ATM-p53 pathway, and we observed reduced Mn accumulation in HD human neuroprogenitors and HD mouse striatal cells at manganese exposures associated with altered p53 activation. To determine if this phenotype contributes to the deficit in manganese-dependent ATM activation, we used pharmacological manipulation to equalize manganese levels between HD and control mouse striatal cells and rescued the ATM-p53 signaling deficit. Collectively, our data demonstrate selective alterations in manganese biology in cellular models of HD manifest in ATM-p53 signaling.
Collapse
Affiliation(s)
| | | | | | | | - Asad A Aboud
- Department of Neurology, Vanderbilt Brain Institute
| | | | - Kevin C Ess
- Department of Neurology, Vanderbilt Brain Institute, Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M Diana Neely
- Department of Neurology, Vanderbilt Brain Institute, Vanderbilt Kennedy Center, Vanderbilt Center in Molecular Toxicology
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt Brain Institute, Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt Center in Molecular Toxicology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
149
|
Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, Kim NS, Yoon KJ, Shin J, Zhang C, Makri G, Nauen D, Yu H, Guzman E, Chiang CH, Yoritomo N, Kaibuchi K, Zou J, Christian KM, Cheng L, Ross CA, Margolis RL, Chen G, Kosik KS, Song H, Ming GL. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 2014; 515:414-8. [PMID: 25132547 PMCID: PMC4501856 DOI: 10.1038/nature13716] [Citation(s) in RCA: 409] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 07/28/2014] [Indexed: 12/13/2022]
Abstract
Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders, and 'a disease of synapses' is the major hypothesis for the biological basis of schizophrenia. Although this hypothesis has gained indirect support from human post-mortem brain analyses and genetic studies, little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes. Rare, multiply affected, large families in which a single genetic locus is probably responsible for conferring susceptibility have proven invaluable for the study of complex disorders. Here we generated induced pluripotent stem (iPS) cells from four members of a family in which a frameshift mutation of disrupted in schizophrenia 1 (DISC1) co-segregated with major psychiatric disorders and we further produced different isogenic iPS cell lines via gene editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPS-cell-derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 protein and, furthermore, dysregulates expression of many genes related to synapses and psychiatric disorders in human forebrain neurons. Our study reveals that a psychiatric disorder relevant mutation causes synapse deficits and transcriptional dysregulation in human neurons and our findings provide new insight into the molecular and synaptic etiopathology of psychiatric disorders.
Collapse
Affiliation(s)
- Zhexing Wen
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3]
| | - Ha Nam Nguyen
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3]
| | - Ziyuan Guo
- 1] Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA [2]
| | - Matthew A Lalli
- Neuroscience Research Institute, Department of Molecular Cellular and Developmental Biology, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Xinyuan Wang
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yijing Su
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Nam-Shik Kim
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ki-Jun Yoon
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jaehoon Shin
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ce Zhang
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Georgia Makri
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - David Nauen
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Huimei Yu
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Elmer Guzman
- Neuroscience Research Institute, Department of Molecular Cellular and Developmental Biology, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Cheng-Hsuan Chiang
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Nadine Yoritomo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8550, Japan
| | - Jizhong Zou
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kimberly M Christian
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Linzhao Cheng
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Christopher A Ross
- 1] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Russell L Margolis
- 1] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular Cellular and Developmental Biology, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Hongjun Song
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [4] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Guo-li Ming
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [4] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
150
|
Chew LJ, DeBoy CA, Senatorov VV. Finding degrees of separation: experimental approaches for astroglial and oligodendroglial cell isolation and genetic targeting. J Neurosci Methods 2014; 236:125-47. [PMID: 25169049 PMCID: PMC4171043 DOI: 10.1016/j.jneumeth.2014.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022]
Abstract
The study of CNS glial cell function requires experimental methods to detect, purify, and manipulate each cell population with fidelity and specificity. With the identification and cloning of cell- and stage-specific markers, glial cell analysis techniques have grown beyond physical methods of tissue dissociation and cell culture, and become highly specific with immunoselection of cell cultures in vitro and genetic targeting in vivo. The unique plasticity of glial cells offers the potential for cell replacement therapies in neurological disease that utilize neural cells derived from transplanted neural stem and progenitor cells. In this mini-review, we outline general physical and genetic approaches for macroglial cell generation. We summarize cell culture methods to obtain astrocytes and oligodendrocytes and their precursors, from developing and adult tissue, as well as approaches to obtain human neural progenitor cells through the establishment of stem cells. We discuss popular targeting rodent strains designed for cell-specific detection, selection and manipulation of neuroglial cell progenitors and their committed progeny. Based on shared markers between astrocytes and stem cells, we discuss genetically modified mouse strains with overlapping expression, and highlight SOX-expressing strains available for targeting of stem and progenitor cell populations. We also include recently established mouse strains for detection, and tag-assisted RNA and miRNA analysis. This discussion aims to provide a brief overview of the rapidly expanding collection of experimental approaches and genetic resources for the isolation and targeting of macroglial cells, their sources, progeny and gene products to facilitate our understanding of their properties and potential application in pathology.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, United States.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, United States
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|