101
|
|
102
|
Combined therapeutic application of mTOR inhibitor and vitamin D(3) for inflammatory bone destruction of rheumatoid arthritis. Med Hypotheses 2012; 79:757-60. [PMID: 22967804 DOI: 10.1016/j.mehy.2012.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 08/21/2012] [Indexed: 11/21/2022]
Abstract
Inflammatory bone destruction is a prominent feature and a cause of substantial morbidity in several inflammatory diseases, including rheumatoid arthritis (RA), periodontitis, and peri-prosthetic loosening. Osteoclasts are unique, multinucleated giant cells that effectively resorb bone and thus are directly responsible for bone destruction in several inflammatory diseases. PI3K/Akt/mTOR pathway has been well known to play important roles in regulating adaptive and innate immune cell function. In addition to play roles in immune responses, several lines of evidence demonstrate that PI3K/Akt/mTOR pathway is critical for osteoclast differentiation and survival. These results suggest that inhibition of PI3K/Akt/mTOR pathway could protect against bone destruction in inflammatory diseases, including RA. However, the clinical use of mTOR inhibitors may be hampered due to limited clinical efficacy and frequent toxic side effects. In the treatment of RA, combination therapy with various disease-modifying antirheumatic drugs (DMARDs) has been suggested to improve the therapeutic efficacy and limit the side effects. In this report, we show several experimental evidences that vitamin D(3) modulates mTOR pathway, and present a hypothesis that the combination of mTOR inhibitor and vitamin D(3) can effectively inhibit osteoclast differentiation and function in chronic inflammatory condition such as RA, therefore this combination will be a powerful therapeutic regimen in preventing the inflammation-induced bone destruction in RA.
Collapse
|
103
|
Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 2012; 51 Suppl 5:v3-11. [PMID: 22718924 DOI: 10.1093/rheumatology/kes113] [Citation(s) in RCA: 561] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RA is a progressive inflammatory autoimmune disease with articular and systemic effects. Its exact cause is unknown, but genetic and environmental factors are contributory. T cells, B cells and the orchestrated interaction of pro-inflammatory cytokines play key roles in the pathophysiology of RA. Differentiation of naïve T cells into Th 17 (T(H)17) cells results in the production of IL-17, a potent cytokine that promotes synovitis. B cells further the pathogenic process through antigen presentation and autoantibody and cytokine production. Joint damage begins at the synovial membrane, where the influx and/or local activation of mononuclear cells and the formation of new blood vessels cause synovitis. Pannus, the osteoclast-rich portion of the synovial membrane, destroys bone, whereas enzymes secreted by synoviocytes and chondrocytes degrade cartilage. Antigen-activated CD4(+) T cells amplify the immune response by stimulating other mononuclear cells, synovial fibroblasts, chondrocytes and osteoclasts. The release of cytokines, especially TNF-α, IL-6 and IL-1, causes synovial inflammation. In addition to their articular effects, pro-inflammatory cytokines promote the development of systemic effects, including production of acute-phase proteins (such as CRP), anaemia of chronic disease, cardiovascular disease and osteoporosis and affect the hypothalamic-pituitary-adrenal axis, resulting in fatigue and depression.
Collapse
Affiliation(s)
- Ernest Choy
- King's Musculoskeletal Clinical Trials Unit, King's College London, London, UK.
| |
Collapse
|
104
|
Keller KK, Lindgaard LM, Wogensen L, Dagnæs-Hansen F, Thomsen JS, Sakaguchi S, Stengaard-Pedersen K, Hauge EM. SKG arthritis as a model for evaluating therapies in rheumatoid arthritis with special focus on bone changes. Rheumatol Int 2012; 33:1127-33. [PMID: 22948540 DOI: 10.1007/s00296-012-2500-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 08/22/2012] [Indexed: 12/19/2022]
Abstract
The aim was to further characterize the SKG model of rheumatoid arthritis (RA) and its potential for studying intervention treatments, with special focus on bone targeting therapies. Three individual studies were conducted, using a total of 71 SKG mice, comparing arthritis induction with mannan versus zymosan A, female versus male mice, and the effect of dexamethasone intervention treatment initiated at different time points after arthritis induction. Hind paws were embedded undecalcified in methyl methacrylate, and sections were stained with Masson-Goldner trichrome. Areal Bone Mineral Density (aBMD) of the femora was determined with pDXA. RNA was extracted from the hind paws followed by the quantification by reverse transcriptase PCR. SKG mice stimulated with mannan presented a higher arthritis score than mice stimulated with zymosan A. Female SKG mice developed a more severe arthritis than male SKG mice. Dexamethasone inhibited arthritis clinically as well as histologically when the treatment was initiated prophylactically or within the first week of arthritis. Femoral aBMD was lower in animals with arthritis than in control animals. The RANKL RNA expression was elevated in arthritic mice, whereas OPG RNA expression was unchanged. The results suggest mannan as arthritis inductor and female instead of male mice in experiments as well as an optimal time window for the initiation of treatment. Systemic bone loss as well as local up regulation of RANKL was present early in SKG arthritis. These results demonstrate that SKG arthritis is a suitable new model for evaluating therapies in RA.
Collapse
Affiliation(s)
- Kresten Krarup Keller
- Department of Rheumatology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Transgenic mice for a tamoxifen-induced, conditional expression of the Cre recombinase in osteoclasts. PLoS One 2012; 7:e37592. [PMID: 22624050 PMCID: PMC3356310 DOI: 10.1371/journal.pone.0037592] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/23/2012] [Indexed: 11/29/2022] Open
Abstract
Background Studies on osteoclasts, the bone resorbing cells, have remained limited due to the lack of transgenic mice allowing the conditional knockout of genes in osteoclasts at any time during development or adulthood. Methodology/Principal Finding We report here on the generation of transgenic mice which specifically express a tamoxifen-inducible Cre recombinase in osteoclasts. These mice, generated on C57BL/6 and FVB background, express a fusion Cre recombinase-ERT2 protein whose expression is driven by the promoter of cathepsin K (CtsK), a gene highly expressed in osteoclasts. We tested the cellular specificity of Cre activity in CtsKCreERT2 strains by breeding with Rosa26LacZ reporter mice. PCR and histological analyses of the CtsKCreERT2LacZ positive adult mice and E17.5 embryos show that Cre activity is restricted largely to bone tissue. In vitro, primary osteoclasts derived from the bone marrow of CtsKCreERT2+/−LacZ+/− adult mice show a Cre-dependent β-galactosidase activity after tamoxifen stimulation. Conclusions/Significance We have generated transgenic lines that enable the tamoxifen-induced, conditional deletion of loxP-flanked genes in osteoclasts, thus circumventing embryonic and postnatal gene lethality and avoiding gene deletion in other cell types. Such CtsKCreERT2 mice provide a convenient tool to study in vivo the different facets of osteoclast function in bone physiology during different developmental stages and adulthood of mice.
Collapse
|
106
|
Swanson CD, Akama-Garren EH, Stein EA, Petralia JD, Ruiz PJ, Edalati A, Lindstrom TM, Robinson WH. Inhibition of epidermal growth factor receptor tyrosine kinase ameliorates collagen-induced arthritis. THE JOURNAL OF IMMUNOLOGY 2012; 188:3513-21. [PMID: 22393153 DOI: 10.4049/jimmunol.1102693] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune synovitis characterized by the formation of pannus and the destruction of cartilage and bone in the synovial joints. Although immune cells, which infiltrate the pannus and promote inflammation, play a prominent role in the pathogenesis of RA, other cell types also contribute. Proliferation of synovial fibroblasts, for example, underlies the formation of the pannus, while proliferation of endothelial cells results in neovascularization, which supports the growth of the pannus by supplying it with nutrients and oxygen. The synovial fibroblasts also promote inflammation in the synovium by producing cytokines and chemokines. Finally, osteoclasts cause the destruction of bone. In this study, we show that erlotinib, an inhibitor of the tyrosine kinase epidermal growth factor receptor (EGFR), reduces the severity of established collagen-induced arthritis, a mouse model of RA, and that it does so by targeting synovial fibroblasts, endothelial cells, and osteoclasts. Erlotinib-induced attenuation of autoimmune arthritis was associated with a reduction in number of osteoclasts and blood vessels, and erlotinib inhibited the formation of murine osteoclasts and the proliferation of human endothelial cells in vitro. Erlotinib also inhibited the proliferation and cytokine production of human synovial fibroblasts in vitro. Moreover, EGFR was highly expressed and activated in the synovium of mice with collagen-induced arthritis and patients with RA. Taken together, these findings suggest that EGFR plays a central role in the pathogenesis of RA and that EGFR inhibition may provide benefits in the treatment of RA.
Collapse
Affiliation(s)
- Christina D Swanson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Doody KM, Bussières-Marmen S, Li A, Paquet M, Henderson JE, Tremblay ML. T cell protein tyrosine phosphatase deficiency results in spontaneous synovitis and subchondral bone resorption in mice. ACTA ACUST UNITED AC 2012; 64:752-61. [DOI: 10.1002/art.33399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
108
|
MacLellan LM, Montgomery J, Sugiyama F, Kitson SM, Thümmler K, Silverman GJ, Beers SA, Nibbs RJB, McInnes IB, Goodyear CS. Co-opting endogenous immunoglobulin for the regulation of inflammation and osteoclastogenesis in humans and mice. ACTA ACUST UNITED AC 2012; 63:3897-907. [PMID: 22127707 DOI: 10.1002/art.30629] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Cells of the monocytic lineage play fundamental roles in the regulation of health, ranging from the initiation and resolution of inflammation to bone homeostasis. In rheumatoid arthritis (RA), the inflamed synovium exhibits characteristic infiltration of macrophages along with local osteoclast maturation, which, together, drive chronic inflammation and downstream articular destruction. The aim of this study was to explore an entirely novel route of immunoglobulin-mediated regulation, involving simultaneous suppression of the inflammatory and erosive processes in the synovium. METHODS Using in vivo and in vitro studies of human cells and a murine model of RA, the ability of staphylococcal protein A (SPA) to interact with and modulate cells of the monocytic lineage was tested. In addition, the efficacy of SPA as a therapeutic agent was evaluated in murine collagen-induced arthritis (CIA). RESULTS SPA showed a capacity to appropriate circulating IgG, by generating small immunoglobulin complexes that interacted with monocytes, macrophages, and preosteoclasts. Formation of these complexes resulted in Fcγ receptor type I-dependent polarization of macrophages to a regulatory phenotype, rendering them unresponsive to activators such as interferon-γ. The antiinflammatory complexes also had the capacity to directly inhibit differentiation of preosteoclasts into osteoclasts in humans. Moreover, administration of SPA in the early stages of disease substantially alleviated the clinical and histologic erosive features of CIA in mice. CONCLUSION These findings demonstrate the overarching utility of immunoglobulin complexes for the prevention and treatment of inflammatory diseases. The results shed light on the interface between immunoglobulin complex-mediated pathways, osteoclastogenesis, and associated pathologic processes. Thus, therapeutic agents designed to harness all of these properties may be an effective treatment for arthritis, by targeting both the innate inflammatory response and prodestructive pathways.
Collapse
MESH Headings
- Animals
- Antigen-Antibody Complex/pharmacology
- Antigen-Antibody Complex/therapeutic use
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/therapeutic use
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/physiopathology
- Cell Differentiation/physiology
- Cell Proliferation
- Cells, Cultured
- Cytokines/physiology
- Disease Models, Animal
- Humans
- Immunoglobulins/physiology
- Immunoglobulins/therapeutic use
- Inflammation/drug therapy
- Inflammation/physiopathology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/physiology
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Osteoclasts/cytology
- Osteoclasts/drug effects
- Osteoclasts/physiology
- Receptors, IgG/genetics
- Receptors, IgG/physiology
- Staphylococcal Protein A/pharmacology
- Staphylococcal Protein A/therapeutic use
- Stem Cells/cytology
- Stem Cells/drug effects
- Stem Cells/physiology
Collapse
|
109
|
Schurgers E, Billiau A, Matthys P. Collagen-induced arthritis as an animal model for rheumatoid arthritis: focus on interferon-γ. J Interferon Cytokine Res 2011; 31:917-26. [PMID: 21905879 DOI: 10.1089/jir.2011.0056] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease causing inflammation, destruction, and deformity of the joints, affects around 1% of the world population. It is a systemic disease as patients exhibit extra-articular manifestations as well. Collagen-induced arthritis (CIA) in DBA/1 mice is one of the many animal models used to study possible pathogenic mechanisms of RA. It involves immunizing mice with collagen type II in complete Freund's adjuvant. Here we briefly review the general characteristics of RA and CIA and present an overview of data obtained by studying CIA in several gene knockout mice. In particular, detailed analysis of CIA in interferon-gamma (IFN-γ) receptor-deficient mice has pin-pointed IFN-γ as an important cytokine in the pathogenesis and has exposed new functions of IFN-γ in immunological processes. Pilot trials with exogenous IFN-γ in RA have been indicative of a beneficial effect. That improvement of the disease symptoms by IFN-γ treatment was not spectacular may be explained by the fact that RA is a heterogeneous disease in which the severity of the autoimmune disease is strongly determined by environmental factors.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/prevention & control
- Disease Models, Animal
- Humans
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Mice
- Mice, Knockout
- Models, Immunological
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/immunology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Evelien Schurgers
- Laboratory of Immunobiology, Faculty of Medicine, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
110
|
Mediero A, Kara FM, Wilder T, Cronstein BN. Adenosine A(2A) receptor ligation inhibits osteoclast formation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:775-86. [PMID: 22138579 DOI: 10.1016/j.ajpath.2011.10.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/04/2011] [Accepted: 10/11/2011] [Indexed: 01/25/2023]
Abstract
Adenosine is generated in increased concentrations at sites of injury/hypoxia and mediates a variety of physiological and pharmacological effects via G protein-coupled receptors (A(1), A(2A), A(2B), and A(3)). Because all adenosine receptors are expressed on osteoclasts, we determined the role of A(2A) receptor in the regulation of osteoclast differentiation. Differentiation and bone resorption were studied as the macrophage colony-stimulating factor-1-receptor activator of NF-κB ligand formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive cells from primary murine bone marrow-derived precursors. A(2A) receptor and osteoclast marker expression levels were studied by RT-PCR. Cytokine secretion was assayed by enzyme-linked immunosorbent assay. In vivo examination of A(2A) knockout (KO)/control bones was determined by TRAP staining, micro-computed tomography, and electron microscopy. The A(2A) receptor agonist, CGS21680, inhibited osteoclast differentiation and function (half maximal inhibitory concentration, 50 nmol/L), increased the percentage of immature osteoclast precursors, and decreased IL-1β and tumor necrosis factor-α secretion, an effect that was reversed by the A(2A) antagonist, ZM241385. Cathepsin K and osteopontin mRNA expression increased in control and ZM241385-pretreated osteoclasts, and this was blocked by CGS21680. Micro-computed tomography of A(2A)KO mouse femurs showed a significantly decreased bone volume/trabecular bone volume ratio, decreased trabecular number, and increased trabecular space. A(2A)KO femurs showed an increased TRAP-positive osteoclast. Electron microscopy in A(2A)KO femurs showed marked osteoclast membrane folding and increased bone resorption. Thus, adenosine, acting via the A(2A) receptor, inhibits macrophage colony-stimulating factor-1-receptor activator of NF-κB ligand-stimulated osteoclast differentiation and may regulate bone turnover under conditions in which adenosine levels are elevated.
Collapse
Affiliation(s)
- Aránzazu Mediero
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
111
|
Hashimoto T, Yasuda S, Koide H, Kataoka H, Horita T, Atsumi T, Koike T. Aberrant splicing of the hRasGRP4 transcript and decreased levels of this signaling protein in the peripheral blood mononuclear cells in a subset of patients with rheumatoid arthritis. Arthritis Res Ther 2011; 13:R154. [PMID: 21933395 PMCID: PMC3308084 DOI: 10.1186/ar3470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/25/2011] [Accepted: 09/20/2011] [Indexed: 12/26/2022] Open
Abstract
Introduction An unidentified population of peripheral blood mononuclear cells (PBMCs) express Ras guanine nucleotide releasing protein 4 (RasGRP4). The aim of our study was to identify the cells in human blood that express hRasGRP4, and then to determine if hRasGRP4 was altered in any patient with rheumatoid arthritis (RA). Methods Monocytes and T cells were purified from PBMCs of normal individuals, and were evaluated for their expression of RasGRP4 mRNA/protein. The levels of RasGRP4 transcripts were evaluated in the PBMCs from healthy volunteers and RA patients by real-time quantitative PCR. The nucleotide sequences of RasGRP4 cDNAs were also determined. RasGRP4 protein expression in PBMCs/monocytes was evaluated. Recombinant hRasGRP4 was expressed in mammalian cells. Results Circulating CD14+ cells in normal individuals were found to express hRasGRP4. The levels of the hRasGRP4 transcript were significantly higher in the PBMCs of our RA patients relative to healthy individuals. Sequence analysis of hRasGRP4 cDNAs from these PBMCs revealed 10 novel splice variants. Aberrantly spliced hRasGRP4 transcripts were more frequent in the RA patients than in normal individuals. The presence of one of these abnormal splice variants was linked to RA. The levels of hRasGRP4 protein in PBMCs tended to be lower. As expected, the defective transcripts led to altered and/or nonfunctional protein in terms of P44/42 mitogen-activated protein (MAP) kinase activation. Conclusions The identification of defective isoforms of hRasGRP4 transcripts in the PBMCs of RA patients raises the possibility that dysregulated expression of hRasGRP4 in developing monocytes plays a pathogenic role in a subset of RA patients.
Collapse
Affiliation(s)
- Toko Hashimoto
- Department of Medicine II, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
112
|
|
113
|
Benson R, Patakas A, McQueenie R, Ross K, McInnes I, Brewer J, Garside P. Arthritis in space and time - To boldly go! FEBS Lett 2011; 585:3640-8. [DOI: 10.1016/j.febslet.2011.04.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 01/13/2023]
|
114
|
Ho HY, Wu JB, Lin WC. Flemingia macrophylla Extract Ameliorates Experimental Osteoporosis in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:752302. [PMID: 19942664 PMCID: PMC3137550 DOI: 10.1093/ecam/nep179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 10/06/2009] [Indexed: 12/03/2022]
Abstract
Flemingia macrophylla (Leguminosae), a native plant of Taiwan, is used as folk medicine. An in vitro study showed that a 75% ethanolic extract of F. macrophylla (FME) inhibited osteoclast differentiation of cultured rat bone marrow cells, and the active component, lespedezaflavanone A (LDF-A), was isolated. It was found that oral administration of FME for 13 weeks suppressed bone loss in ovariectomized rats, an experimental model of osteoporosis. In addition, FME decreased urinary deoxypyridinoline concentrations but did not inhibit serum alkaline phosphatase activities, indicating that it ameliorated bone loss via inhibition of bone resorption. These results suggest that FME may represent a useful remedy for the treatment of bone resorption diseases, such as osteoporosis. In addition, LDF-A could be used as a marker compound to control the quality of FME.
Collapse
Affiliation(s)
- Hui-Ya Ho
- Graduate Institute of Pharmaceutical Chemistry, School of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | |
Collapse
|
115
|
Grassi F, Manferdini C, Cattini L, Piacentini A, Gabusi E, Facchini A, Lisignoli G. T cell suppression by osteoclasts in vitro. J Cell Physiol 2011; 226:982-90. [DOI: 10.1002/jcp.22411] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
116
|
Ah Kioon MD, Asensio C, Ea HK, Uzan B, Cohen-Solal M, Lioté F. Adrenomedullin increases fibroblast-like synoviocyte adhesion to extracellular matrix proteins by upregulating integrin activation. Arthritis Res Ther 2010; 12:R190. [PMID: 20942979 PMCID: PMC2991025 DOI: 10.1186/ar3160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 07/23/2010] [Accepted: 10/14/2010] [Indexed: 11/17/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is characterized by bone and cartilage invasion by fibroblast-like synoviocytes (FLSs). Adrenomedullin, a peptide with anabolic and antiapoptotic properties, is secreted by rheumatoid FLSs. Adrenomedullin also increases the expression of adhesion molecules in endothelial cells and keratinocytes. Here, we investigated whether adrenomedullin mediated FLS adhesion to extracellular matrix (ECM) proteins. Methods FLSs were isolated from synovial tissues from RA and osteoarthritis (OA) patients. Plates were coated overnight with the ECM proteins vitronectin, fibronectin, and type I collagen (Coll.I). Adrenomedullin was used as a soluble FLS ligand before plating. We tested interactions with the adrenomedullin receptor antagonist (22-52)adrenomedullin and with the protein kinase A (PKA) inhibitor H-89, and inhibition of co-receptor RAMP-2 by siRNA. Cell adhesion was measured by using color densitometry. Activation of α2 and β1 integrins was evaluated by fluorescent microscopy; integrin inhibition, by RGD peptides; and the talin-integrin interaction, by immunoprecipitation (IP). Results Adrenomedullin specifically increased RA-FLS adhesion to vitronectin, fibronectin, and Coll.I; no such effect was found for OA-FLS adhesion. Basal or adrenomedullin-stimulated RA-FLS adhesion was inhibited by (22-52)adrenomedullin, H-89, and RAMP-2 siRNA. Adrenomedullin-stimulated adhesion was inhibited by RGD peptides, and associated with α2 and β1 integrin activation. This activation was shown with IP to be related to an integrin-talin interaction and was significantly decreased by (22-52)adrenomedullin. Conclusions Adrenomedullin-stimulated RA-FLS adhesion was specific for ECM proteins and mediated by α2 and β1 integrins. This effect of adrenomedullin was dependent on adrenomedullin receptors. These results support a new role for adrenomedullin in rheumatoid synovial fibroblast pathobiology.
Collapse
|
117
|
Soory M. Association of periodontitis with rheumatoid arthritis and atherosclerosis: Novel paradigms in etiopathogeneses and management? Open Access Rheumatol 2010; 2:1-16. [PMID: 27789992 PMCID: PMC5074770 DOI: 10.2147/oarrr.s10928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
There is increasing documentation of a link between inflammatory periodontal disease affecting the supporting structure of teeth, rheumatoid arthritis, and coronary artery disease. Periodontitis is initiated predominantly by Gram-negative bacteria and progresses as a consequence of the host inflammatory response to periodontal pathogens. Lipopolysaccharide, a cell wall constituent stimulates the production of inflammatory cytokines via the activation of signaling pathways perpetuating inflammatory pathogenesis in a cyclical manner in susceptible individuals; with an element of autoimmune stimulation, not dissimilar to the sequential events seen in RA. Periodontitis, also implicated as a risk factor for cardiovascular disease, promotes mechanisms for atherosclerosis by enhancing an imbalance in systemic inflammatory mediators; more direct mechanisms attributed to microbial products are also implicated in both RA and atherogenesis. Severe periodontal disease characterized by clinical and radiographic parameters has been associated with ischemic stroke risk, significant levels of C-reactive protein and serum amyloid A, amongst others common to both periodontitis and atherosclerosis. Existing data supports the hypothesis that persistent localized infection in periodontitis may influence systemic levels of inflammatory markers and pose a risk for RA and atherosclerosis. A common nucleus of activity in their pathogeneses provides novel paradigms of therapeutic targeting for reciprocal benefit.
Collapse
Affiliation(s)
- Mena Soory
- King's College London Dental Institute, Denmark Hill, London UK
| |
Collapse
|
118
|
Hoff M, Boyesen P, Haugeberg G, Vis M, Woolf AD, Havaardsholm EA, Dijkmans BAC, Kvien TK, Uhlig T, Lems WF. High disease activity is a predictor of cortical hand bone loss in post-menopausal patients with established rheumatoid arthritis: a 5-year multicentre longitudinal study. Rheumatology (Oxford) 2010; 49:1676-82. [DOI: 10.1093/rheumatology/keq125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
119
|
Hoff M, Haugeberg G. Using hand bone mass measurements to assess progression of rheumatoid arthritis. Ther Adv Musculoskelet Dis 2010; 2:79-87. [PMID: 22870439 PMCID: PMC3383477 DOI: 10.1177/1759720x10362297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In rheumatoid arthritis (RA) bone involvement presents as joint erosions in addition to generalized and periarticular osteoporosis. Joint erosions on radiographs of the hands and feet are considered to be the gold standard to evaluate progression of bone and joint damage in RA, even though erosions on radiographs are not used as a marker of early bone involvement. Periarticular bone loss seen on radiographs may be the first sign of bone involvement in RA. Over the last decade there has been an increased awareness of the importance of early aggressive treatment in RA, leading to a need for methods which can identify bone involvement in the early stages of RA. As inflammatory bone loss, especially at the hand, has been shown to occur early in RA, quantitative measures of hand bone loss have been proposed as an outcome measure for the detection of bone involvement. In this review article we present data supporting the hypothesis that both erosions and osteoporosis in RA occur as a result of the same pathophysiological mechanisms activating the osteoclast. Furthermore the role of hand bone loss as an early marker of inflammatory bone involvement, a predictor of subsequent radiographic joint damage and a response variable to anti-inflammatory treatment is discussed.
Collapse
Affiliation(s)
- Mari Hoff
- Department of Rheumatology, St Olavs Hospital, University Hospital of Trondheim, Norway and Norwegian University of Science and Technology, Trondheim, Norway
| | - Glenn Haugeberg
- Department of Rheumatology, St Olavs Hospital, University Hospital of Trondheim, Norway and Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
120
|
Kara FM, Doty SB, Boskey A, Goldring S, Zaidi M, Fredholm BB, Cronstein BN. Adenosine A(1) receptors regulate bone resorption in mice: adenosine A(1) receptor blockade or deletion increases bone density and prevents ovariectomy-induced bone loss in adenosine A(1) receptor-knockout mice. ACTA ACUST UNITED AC 2010; 62:534-41. [PMID: 20112380 DOI: 10.1002/art.27219] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Accelerated osteoclastic bone resorption plays a central role in the pathogenesis of osteoporosis and other bone diseases. Because identifying the molecular pathways that regulate osteoclast activity provides a key to understanding the causes of these diseases and developing new treatments, we studied the effect of adenosine A(1) receptor blockade or deletion on bone density. METHODS The bone mineral density (BMD) in adenosine A(1) receptor-knockout (A(1)R-knockout) mice was analyzed by dual x-ray absorptiometry (DXA) scanning, and the trabecular and cortical bone volume was determined by microfocal computed tomography (micro-CT). The mice were ovariectomized or sham-operated, and 5 weeks after surgery, when osteopenia had developed, several parameters were analyzed by DXA scanning and micro-CT. A histologic examination of bones obtained from A(1)R-knockout and wild-type mice was carried out. Visualization of osteoblast function (bone formation) after tetracycline double-labeling was performed by fluorescence microscopy. RESULTS Micro-CT analysis of bones from A(1)R-knockout mice showed significantly increased bone volume. Electron microscopy of bones from A(1)R-knockout mice showed the absence of ruffled borders of osteoclasts and osteoclast bone resorption. Immunohistologic analysis demonstrated that although osteoclasts were present in the A(1)R-knockout mice, they were smaller and often not associated with bone. No morphologic changes in osteoblasts were observed, and bone-labeling studies revealed no change in the bone formation rates in A(1)R-knockout mice. CONCLUSION These results suggest that the adenosine A(1) receptor may be a useful target in treating diseases characterized by excessive bone turnover, such as osteoporosis and prosthetic joint loosening.
Collapse
Affiliation(s)
- Firas M Kara
- New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Verdrengh M, Bokarewa M, Ohlsson C, Stolina M, Tarkowski A. RANKL-targeted therapy inhibits bone resorption in experimental Staphylococcus aureus-induced arthritis. Bone 2010; 46:752-8. [PMID: 19879986 DOI: 10.1016/j.bone.2009.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/11/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Bacterial arthritis causes rapidly progressing joint destruction in humans. We have shown that addition of bisphosphonates or corticosteroids to conventional antimicrobial agents decreases the activity of osteoclasts, thereby reducing bone destruction. Here we assess the effect of RANKL-targeted treatments using soluble receptor decoy and osteprotegerin (OPG) on the course and outcome of staphylococcal arthritis. METHODS Treatment was initiated 3 days after Staphylococcus aureus inoculation and included RANK-Fc, OPG-Fc, and OPG-Fc in combination with antibiotics. Control groups were treated with antibiotics, huFc, and PBS. Joints were evaluated for clinical signs of arthritis and histologically for bone and cartilage destruction. Bone mineral density (BMD) was evaluated using a peripheral quantitative computed tomography. Circulating markers of bone metabolism, inflammatory cytokines, and chemokines were analyzed in each group. RESULTS Mice treated with RANK-Fc or OPG-Fc in combination with antibiotics preserved total BMD and trabecular bone as compared to huFc or antibiotics. Treatment with RANK-Fc or OPG-Fc diminished the levels of bone resorption markers (osteocalcin, CTX-I, and TRACP5b). Neither RANK-Fc nor OPG-Fc influenced significantly the frequency and severity of arthritis. CONCLUSIONS Inhibition of RANKL signalling efficiently prevents bone loss in the mouse model of bacterial arthritis even when started in the overt phase of infection.
Collapse
Affiliation(s)
- Margareta Verdrengh
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, Guldhedsgatan 10A, S-41346 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
122
|
Miyamoto K, Ninomiya K, Sonoda KH, Miyauchi Y, Hoshi H, Iwasaki R, Miyamoto H, Yoshida S, Sato Y, Morioka H, Chiba K, Egashira K, Suda T, Toyama Y, Miyamoto T. MCP-1 expressed by osteoclasts stimulates osteoclastogenesis in an autocrine/paracrine manner. Biochem Biophys Res Commun 2009; 383:373-7. [DOI: 10.1016/j.bbrc.2009.04.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/05/2009] [Indexed: 11/15/2022]
|
123
|
Wakchoure S, Swain TM, Hentunen TA, Bauskin AR, Brown DA, Breit SN, Vuopala KS, Harris KW, Selander KS. Expression of macrophage inhibitory cytokine-1 in prostate cancer bone metastases induces osteoclast activation and weight loss. Prostate 2009; 69:652-61. [PMID: 19152406 DOI: 10.1002/pros.20913] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Macrophage inhibitory cytokine-1 (MIC-1) belongs to the bone morphogenic protein/transforming growth factor-beta (BMP/TGF-beta) superfamily. Serum MIC-1 concentrations are elevated in patients with advanced prostate cancer. The effects of MIC-1 on prostate cancer bone metastases are unknown. METHODS In vitro effects of MIC-1 on osteoblast differentiation and activity were analyzed with alkaline phosphatase and mineralization assays; osteoclast numbers were counted microscopically. MIC-1 effects on TLR9 expression were studied with Western blotting. Human Du-145 prostate cancer cells were stably transfected with a cDNA encoding for mature MIC-1 or with an empty vector. The in vivo growth characteristics of the characterized cells were studied with the intra-tibial model of bone metastasis. Tumor associated bone changes were viewed with X-rays, histology, and histomorphometry. Bone formation was assayed by measuring serum PINP. RESULTS MIC-1 induced osteoblast differentiation and activity and osteoclast formation in vitro. These effects were independent of TLR9 expression, which was promoted by MIC-1. Both MIC-1 and control tumors induced mixed sclerotic/lytic bone lesions, but MIC-1 increased the osteolytic component of tumors. Osteoclast formation at the tumor-bone interface was significantly higher in the MIC-1 tumors, whereas bone formation was significantly higher in the control mice. At sacrifice, the mice bearing MIC-1 tumors were significantly lighter with significantly smaller tumors. CONCLUSIONS MIC-1 up-regulates TLR9 expression in various cells. MIC-1 stimulates both osteoblast and osteoclast differentiation in vitro, independently of TLR9. MIC-1 over-expressing prostate cancer cells that grow in bone induce osteoclast formation and cachexia.
Collapse
Affiliation(s)
- Savita Wakchoure
- Division of Hematology-Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Pratt AG, Isaacs JD, Mattey DL. Current concepts in the pathogenesis of early rheumatoid arthritis. Best Pract Res Clin Rheumatol 2009; 23:37-48. [PMID: 19233044 PMCID: PMC2652659 DOI: 10.1016/j.berh.2008.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease with a predilection for symmetrically distributed diarthroidal joints. It is clinically heterogeneous, with particular disease phenotypes defined according to a complex interplay of genes and the environment. In this chapter we first summarize current knowledge of RA genetic susceptibility, a field which has been transformed in recent years by powerful modern genotyping technologies. The importance of a recently described subclassification for the disease based upon the presence or absence of circulating autoantibodies to citrullinated peptides has further informed genetic studies, and we consider the implications for our understanding of RA pathogenesis. We then review the cellular and molecular processes that initiate and perpetuate joint destruction.
Collapse
Affiliation(s)
- Arthur G Pratt
- Musculoskeletal Research Group, Institute for Cellular Medicine, School of Clinical Medical Sciences, Newcastle University, Newcastle, UK.
| | | | | |
Collapse
|
125
|
Penolazzi L, Lampronti I, Borgatti M, Khan MTH, Zennaro M, Piva R, Gambari R. Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2008; 8:59. [PMID: 18973662 PMCID: PMC2587459 DOI: 10.1186/1472-6882-8-59] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/30/2008] [Indexed: 12/19/2022]
Abstract
Background Osteoclasts (OCs) are involved in rheumatoid arthritis and in several pathologies associated with bone loss. Recent results support the concept that some medicinal plants and derived natural products are of great interest for developing therapeutic strategies against bone disorders, including rheumatoid arthritis and osteoporosis. In this study we determined whether extracts of Emblica officinalis fruits display activity of possible interest for the treatment of rheumatoid arthritis and osteoporosis by activating programmed cell death of human primary osteoclasts. Methods The effects of extracts from Emblica officinalis on differentiation and survival of human primary OCs cultures obtained from peripheral blood were determined by tartrate-acid resistant acid phosphatase (TRAP)-positivity and colorimetric MTT assay. The effects of Emblica officinalis extracts on induction of OCs apoptosis were studied using TUNEL and immunocytochemical analysis of FAS receptor expression. Finally, in vitro effects of Emblica officinalis extracts on NF-kB transcription factor activity were determined by gel shift experiments. Results Extracts of Emblica officinalis were able to induce programmed cell death of mature OCs, without altering, at the concentrations employed in our study, the process of osteoclastogenesis. Emblica officinalis increased the expression levels of Fas, a critical member of the apoptotic pathway. Gel shift experiments demonstrated that Emblica officinalis extracts act by interfering with NF-kB activity, a transcription factor involved in osteoclast biology. The data obtained demonstrate that Emblica officinalis extracts selectively compete with the binding of transcription factor NF-kB to its specific target DNA sequences. This effect might explain the observed effects of Emblica officinalis on the expression levels of interleukin-6, a NF-kB specific target gene. Conclusion Induction of apoptosis of osteoclasts could be an important strategy both in interfering with rheumatoid arthritis complications of the bone skeleton leading to joint destruction, and preventing and reducing osteoporosis. Accordingly, we suggest the application of Emblica officinalis extracts as an alternative tool for therapy applied to bone diseases.
Collapse
|
126
|
Abstract
Findings from basic research in combination with precise clinical observations of the disease course in rheumatoid arthritis (RA) have led to the development of a multistage model to explain the pathophysiology of RA. Different cellular and soluble mediators, which play principal roles at different phases of the disease, have been identified. New therapeutic agents, which specifically target these factors, now allow us to intervene at several levels of the pathogenesis. This has already resulted in significant improvements for patients suffering from RA, and the development of new promising agents continues at a high pace. However, many questions concerning the optimal use of the new therapies remain unanswered. Combined efforts of basic research and clinical trials investigating the optimal timing and combination of the new treatments will be necessary to allow them to achieve their full potential and to result in the maximum benefit for patients.
Collapse
|
127
|
Herman S, Krönke G, Schett G. Molecular mechanisms of inflammatory bone damage: emerging targets for therapy. Trends Mol Med 2008; 14:245-53. [PMID: 18468489 DOI: 10.1016/j.molmed.2008.04.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/31/2008] [Accepted: 04/04/2008] [Indexed: 01/01/2023]
Abstract
Chronic inflammatory bone diseases, such as rheumatoid arthritis (RA), ankylosing spondylitis and periodontal disease, demonstrate the major impact of chronic inflammation on both bone metabolism and bone architecture. During the past decade, scientists have gained increasing insight into the link between inflammation and bone. As a result of new discoveries about the molecular mechanisms of inflammatory bone loss, several molecules have been identified that are attractive and novel targets for the treatment of inflammatory bone loss. These novel therapeutic approaches include anti-tumor necrosis factor (TNF)-alpha blocking agents, neutralizing antibodies against certain pro-inflammatory cytokines, such as interleukin (IL)-6 and IL-17, and a set of other promising targets that still require extensive research, such as the Wnt signaling network.
Collapse
Affiliation(s)
- Sonja Herman
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Krankenhausstrasse 12, D-91054 Erlangen, Germany
| | | | | |
Collapse
|
128
|
The ubiquitin-mediated degradation of Jak1 modulates osteoclastogenesis by limiting interferon-beta-induced inhibitory signaling. Blood 2007; 111:885-93. [PMID: 17928529 DOI: 10.1182/blood-2007-03-082941] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interferons (IFNs) have been shown to negatively regulate osteoclastogenesis. In a proteomic study to assess protein expression during osteoclastogenesis, we discovered that the expression level of Jak1 was significantly decreased during the early stage of osteoclast differentiation from mouse bone marrow macrophages (BMMs) upon stimulation with receptor activator of nuclear factor kappaB ligand (RANKL). RANKL induced Jak1 ubiquitination, and a proteasome inhibitor MG132 efficiently blocked the RANKL-induced degradation of Jak1. The expression level of Jak1 correlated with the susceptibility of osteoclast precursors to the negative regulatory effects of IFN-beta on osteoclastogenesis, since preosteoclasts (pOCs) in which Jak1 expression is significantly reduced could proceed with osteoclastogenesis in the presence of IFN-beta. Forced down-regulation of Jak1 by small interfering RNA (siRNA) resulted in the efficient osteoclast differentiation of BMMs in the presence of inhibitory IFN-beta, while overexpression of Jak1 in pOCs elicited IFN-beta-dependent inhibition of osteoclastogenesis. Furthermore, we found that the IFN-beta-induced inhibition of osteoclastogenesis required STAT3 downstream of Jak1. These data suggest that the regulation of Jak1 expression during osteoclast differentiation might serve as an intrinsic mechanism that determines osteoclast lineage commitment by modulating the negative regulation by IFN-beta.
Collapse
|
129
|
Murakami A, Song M, Katsumata SI, Uehara M, Suzuki K, Ohigashi H. Citrus nobiletin suppresses bone loss in ovariectomized ddY mice and collagen-induced arthritis in DBA/1J mice: possible involvement of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclastogenesis regulation. Biofactors 2007; 30:179-92. [PMID: 18525112 DOI: 10.1002/biof.5520300305] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bone resorption is known to accelerate during the onset of several disorders, including osteoporosis (OP) and rheumatoid arthritis (RA). Some epidemiological surveys have suggested that a high intake of vegetables and fruits has an inverse relation to such disease incidence, though the number of active constituents elucidated thus far is limited. In the present study, we examined the efficacy of various food phytochemicals using two animal models. First, female ddY mice were ovariectomized (OVX) or sham-operated (sham), after which five different compounds (phenethyl isothiocyanate, zerumbone, auraptene, 1'-acetoxychavicol acetate, and nobiletin) were administered separately to OVX mice with a mini-osmotic pump at doses of 0.25 or 0.5 mg/day for 4 weeks, with 17beta-estradiol (E_{2}, 0.03 microg/day) used as a positive control. Nobiletin, in contrast to the other tested phytochemicals, significantly (P<0.05) suppressed the reduction of whole bone mineral density by 61%, which was comparable to or higher than the efficacy of E_{2}. Next, nobiletin given as an i.p. administration at 20 mg/kg of body weight, but not 2 mg/kg, to male DBA/1J mice every 2 days for 12 days led to a marked decrease in type II collagen-induced arthritis by 45% (P < 0.05). Furthermore, the flavonoid (4-50 microM) attenuated receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclastogenesis of RAW264.7 cells, as detected by tartarate-resistant acid phosphatase activity and microscopic observations. Of note, nobiletin also suppressed RANKL-activated extracellular signal-regulated kinase1/2, c-Jun N-terminal kinase1/2, and p38 mitogen-activated protein kinase activities, and thereby regulated the promoter activation of nuclear factor kappaB (NFkappaB) and activator protein-1, key transcription factors for differentiation. Together, our results suggest that nobiletin is a promising phytochemical for the prevention or treatment of osteoclastogenesis-related disorders, including OP and RA, with reasonable action mechanisms.
Collapse
Affiliation(s)
- Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | | | |
Collapse
|