101
|
Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res 2017; 370:53-70. [PMID: 28413859 DOI: 10.1007/s00441-017-2613-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/17/2017] [Indexed: 01/07/2023]
Abstract
The degradation of cartilage in the human body is impacted by aging, disease, genetic predisposition and continued insults resulting from daily activity. The burden of cartilage defects (osteoarthritis, rheumatoid arthritis, intervertebral disc damage, knee replacement surgeries, etc.) is daunting in light of substantial economic and social stresses. This review strives to broaden the scope of regenerative medicine and tissue engineering approaches used for cartilage repair by comparing and contrasting the anatomical and functional nature of the meniscus, articular cartilage (AC) and nucleus pulposus (NP). Many review papers have provided detailed evaluations of these cartilages and cartilage-like tissues individually but none have comprehensively examined the parallels and inconsistencies in signaling, genetic expression and extracellular matrix composition between tissues. For the first time, this review outlines the importance of understanding these three tissues as unique entities, providing a comparative analysis of anatomy, ultrastructure, biochemistry and function for each tissue. This novel approach highlights the similarities and differences between tissues, progressing research toward an understanding of what defines each tissue as distinctive. The goal of this paper is to provide researchers with the fundamental knowledge to correctly engineer the meniscus, AC and NP without inadvertently developing the wrong tissue function or biochemistry.
Collapse
Affiliation(s)
- Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, One Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Peiliang Fu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Haishan Wu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, One Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
| |
Collapse
|
102
|
Tavakoli J. Tissue Engineering of the Intervertebral Disc's Annulus Fibrosus: A Scaffold-Based Review Study. Tissue Eng Regen Med 2017; 14:81-91. [PMID: 30603465 PMCID: PMC6171584 DOI: 10.1007/s13770-017-0024-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/10/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering as a high technology solution for treating disc's problem has been the focus of some researches recently; however, the upcoming successful results in this area depends on understanding the complexities of biology and engineering interface. Whereas the major responsibility of the nucleus pulposus is to provide a sustainable hydrated environment within the disc, the function of the annulus fibrosus (AF) is more mechanical, facilitating joint mobility and preventing radial bulging by confining of the central part, which makes the AF reconstruction important. Although the body of knowledge regarding the AF tissue engineering has grown rapidly, the opportunities to improve current understanding of how artificial scaffolds are able to mimic the AF concentric structure-including inter-lamellar matrix and cross-bridges-addressed unresolved research questions. The aim of this literature review was to collect and discuss, from the international scientific literature, information about tissue engineering of the AF based on scaffold fabrication and material properties, useful for developing new strategies in disc tissue engineering. The key parameter of this research was understanding if role of cross-bridges and inter-lamellar matrix has been considered on tissue engineering of the AF.
Collapse
Affiliation(s)
- Javad Tavakoli
- Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
103
|
RNA in situ hybridization characterization of non-enzymatic derived bovine intervertebral disc cell lineages suggests progenitor cell potential. Acta Histochem 2017; 119:150-160. [PMID: 28063600 DOI: 10.1016/j.acthis.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Degeneration of the intervertebral disc (IVD) is a meritorious target for therapeutic cell based regenerative medicine approaches, however, controversy over what defines the precise identity of mature IVD cells and lack of single cell based quality control measures is of concern. Bos taurus and human IVDs are histologically more similar than is Mus musculus. The mature bovine IVD is well suited as model system for technology development to be translated into therapeutic cell based regenerative medicine applications. We present a reproducible non-enzymatic protocol to isolate cell progenitor populations of three distinct areas of the mature bovine IVD. Bovine specific RNA probes were validated in situ and employed to assess fate changes, heterogeneity, stem cell characteristics and differentiation potential of the cultures. Quality control measures with single cell resolution like RNA in situ hybridization to assess culture heterogeneity (PISH) followed by optimization of culture conditions could be translated to human IVD cell culture to increase the safety of cell based regenerative medicine.
Collapse
|
104
|
Arkesteijn ITM, Potier E, Ito K. The Regenerative Potential of Notochordal Cells in a Nucleus Pulposus Explant. Global Spine J 2017; 7:14-20. [PMID: 28451504 PMCID: PMC5400162 DOI: 10.1055/s-0036-1583174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
STUDY DESIGN In vitro disk explant culture. OBJECTIVE Notochordal cells (NCs) have been shown to upregulate matrix production by nucleus pulposus (NP) cells in coculture. To examine the translation of these in vitro results to a nativelike setting, the regenerative potential of NCs injected into NP tissue was assessed in this study. METHODS NP explants were cultured after injection with NCs in phosphate-buffered saline (PBS) or with PBS alone (sham). At days 0 and 42, cell viability and morphology, water, DNA, sulfated glycosaminoglycan and hydroxyproline content, and gene expression of anabolic markers were analyzed. RESULTS NCs remained viable during culture, but their morphology changed. The biochemical content remained unchanged, except for the DNA content in the NC group. Overall ACAN expression remained unchanged, whereas COL2A1 decreased during culture. CONCLUSIONS No overall anabolic response was observed when NCs were injected into NP explants. NCs were found to survive but did not display the typical NC morphology by the end of the culture period.
Collapse
Affiliation(s)
- Irene T. M. Arkesteijn
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Esther Potier
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Department of Osteoarticular Bioengineering and Bioimaging, University Paris Diderot, Paris, France
| | - Keita Ito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands,Address for correspondence Keita Ito, MD, ScD, Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z 4.115, 5600 MB, Eindhoven, The Netherlands (e-mail: )
| |
Collapse
|
105
|
Kraus P, Lufkin T. Bovine annulus fibrosus cell lines isolated from intervertebral discs. GENOMICS DATA 2016; 10:83-84. [PMID: 27752468 PMCID: PMC5061063 DOI: 10.1016/j.gdata.2016.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/29/2016] [Indexed: 11/03/2022]
Abstract
The adult bovine (Bos taurus) intervertebral disc is primarily comprised of two major tissue types: The outer annulus fibrosus (AF) and the central nucleus pulposus (NP). We isolated several primary cell lineages of passage (P) 0 cells from the AF tissue omitting typically used enzymatic tissue digestion protocols. The cells grow past p10 without signs of senescence in DMEM + 10% FCS on 0.1% gelatin coated/uncoated surfaces of standard cell culture plates and survive freeze-thawing. Preliminary analysis of the AF derived cells for expression of the two structural genes Col1a1 and Col2a1 was performed by PISH recapitulating the expression observed in vivo.
Collapse
Affiliation(s)
- Petra Kraus
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Thomas Lufkin
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|
106
|
Lv FJ, Peng Y, Lim FL, Sun Y, Lv M, Zhou L, Wang H, Zheng Z, Cheung KMC, Leung VYL. Matrix metalloproteinase 12 is an indicator of intervertebral disc degeneration co-expressed with fibrotic markers. Osteoarthritis Cartilage 2016; 24:1826-1836. [PMID: 27211863 DOI: 10.1016/j.joca.2016.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 04/25/2016] [Accepted: 05/11/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recent evidence suggests a role of fibrogenesis in intervertebral disc (IVD) degeneration. We aim to explore if fibrotic genes may serve as IVD degeneration indicators, and if their expression is associated with myofibroblast activity. DESIGN Transcriptional expression of fibrosis markers (COL1A1, COL3A1, FN1, HSP47, MMP12, RASAL1) were analyzed in degenerated (D) and non-degenerated (ND) human nucleus pulposus (NP) and annulus fibrosus (AF) cells, along with traditional (SOX9, ACAN) and newly established degeneration markers (CDH2, KRT19, KRT18, FBLN1, MGP, and COMP). Protein expression was investigated by immunohistochemistry in human IVDs, and in rodent IVDs undergoing natural ageing or puncture-induced degeneration. Co-expression with myofibroblast markers was examined by double staining on human and rat specimens. Disc degeneration severity and extent of fibrosis were determined by histological scoring and picrosirius red staining respectively. RESULTS Human D-NP showed more intensive staining for picrosirius red than ND-NP. Among the genes examined, D-NP showed significantly higher MMP12 expression along with lower KRT19 expression. Protein expression analysis revealed increased MMP12(+) cells in human D-IVD. Histological scoring indicated mild degeneration in the punctured rat discs and discs of ageing mouse. Higher MMP12 positivity was found in peripheral NP and AF of the degenerative rat discs and in NP of the aged mice. In addition, human D-NP and D-AF showed increased α-SMA(+) cells, indicating enhanced myofibroblast activity. MMP12 was found co-expressed with α-SMA, FSP1 and FAP-α in human and rat degenerative IVDs. CONCLUSIONS Our study suggests that in addition to a reduced KRT19 expression, an increased expression of MMP12, a profibrotic mediator, is characteristic of disc degenerative changes. Co-expression study indicates an association of the increased MMP12 positivity with myofibroblast activity in degenerated IVDs. Overall, our findings implicate an impact of MMP12 in disc cell homeostasis. The precise role of MMP12 in IVD degeneration warrants further investigation.
Collapse
Affiliation(s)
- F-J Lv
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; HKU Shenzhen Institute of Research and Innovation, China; Center for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Stem Cell & Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong, China.
| | - Y Peng
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - F L Lim
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Y Sun
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; Stem Cell & Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong, China.
| | - M Lv
- Advanced Technology Research Institution of China Science Institution, Shenzhen, China.
| | - L Zhou
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - H Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Gaungdong, China.
| | - Z Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Gaungdong, China.
| | - K M C Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; Center for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Stem Cell & Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong, China.
| | - V Y L Leung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; HKU Shenzhen Institute of Research and Innovation, China; Center for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Stem Cell & Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
107
|
Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun 2016; 7:12503. [PMID: 27527664 PMCID: PMC4990710 DOI: 10.1038/ncomms12503] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 07/07/2016] [Indexed: 01/07/2023] Open
Abstract
The main pathogenesis of intervertebral disc (IVD) herniation involves disruption of the annulus fibrosus (AF) caused by ageing or excessive mechanical stress and the resulting prolapse of the nucleus pulposus. Owing to the avascular nature of the IVD and lack of understanding the mechanisms that maintain the IVD, current therapies do not lead to tissue regeneration. Here we show that homeobox protein Mohawk (Mkx) is a key transcription factor that regulates AF development, maintenance and regeneration. Mkx is mainly expressed in the outer AF (OAF) of humans and mice. In Mkx−/− mice, the OAF displays a deficiency of multiple tendon/ligament-related genes, a smaller OAF collagen fibril diameter and a more rapid progression of IVD degeneration compared with the wild type. Mesenchymal stem cells overexpressing Mkx promote functional AF regeneration in a mouse AF defect model, with abundant collagen fibril formation. Our results indicate a therapeutic strategy for AF regeneration. Homeobox protein Mohwak (Mkx) is involved in tendon and ligament development. Here the authors show that Mkx in the outer annulus fibrosus of the intervertebral disc plays a role in maintenance of the IVD, showing that stem cells overexpressing Mkx enhance therapeutic IVD regeneration in mice.
Collapse
|
108
|
Rodrigues‐Pinto R, Berry A, Piper‐Hanley K, Hanley N, Richardson SM, Hoyland JA. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res 2016; 34:1327-40. [PMID: 26910849 PMCID: PMC5021113 DOI: 10.1002/jor.23205] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte-like cells. Although animal studies indicate that notochord-derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5-18 weeks post-conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E-cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co-expressed by sclerotomal cells. CD90, Tie2, and E-cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord-specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327-1340, 2016.
Collapse
Affiliation(s)
- Ricardo Rodrigues‐Pinto
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
- Department of OrthopaedicsCentro Hospitalar do Porto—Hospital de Santo AntónioLargo Prof. Abel SalazarPorto4099‐001Portugal
| | - Andrew Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Karen Piper‐Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Neil Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Stephen M. Richardson
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Judith A. Hoyland
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
- NIHR Manchester Musculoskeletal Biomedical Research UnitManchester Academic Health Science CentreManchesterUnited Kingdom
| |
Collapse
|
109
|
Tang X, Jing L, Richardson WJ, Isaacs RE, Fitch RD, Brown CR, Erickson MM, Setton LA, Chen J. Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res 2016; 34:1316-26. [PMID: 27018499 PMCID: PMC5321132 DOI: 10.1002/jor.23244] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Previous study claimed that disc degeneration may be preceded by structure and matrix changes in the intervertebral disc (IVD) which coincide with the loss of distinct notochordally derived nucleus pulposus (NP) cells. However, the fate of notochordal cells and their molecular phenotype change during aging and degeneration in human are still unknown. In this study, a set of novel molecular phenotype markers of notochordal NP cells during aging and degeneration in human IVD tissue were revealed with immunostaining and flow cytometry. Furthermore, the potential of phenotype juvenilization and matrix regeneration of IVD cells in a laminin-rich pseudo-3D culture system were evaluated at day 28 by immunostaining, Safranin O, and type II collagen staining. Immunostaining and flow cytometry demonstrated that transcriptional factor Brachyury T, neuronal-related proteins (brain abundant membrane attached signal protein 1, Basp1; Neurochondrin, Ncdn; Neuropilin, Nrp-1), CD24, and CD221 were expressed only in juvenile human NP tissue, which suggested that these proteins may be served as the notochordal NP cell markers. However, the increased expression of CD54 and CD166 with aging indicated that they might be referenced as the potential biomarker for disc degeneration. In addition, 3D culture maintained most of markers in juvenile NP, and rescued the expression of Basp1, Ncdn, and Nrp 1 that disappeared in adult NP native tissue. These findings provided new insight into molecular profile that may be used to characterize the existence of a unique notochordal NP cells during aging and degeneration in human IVD cells, which will facilitate cell-based therapy for IVD regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1316-1326, 2016.
Collapse
Affiliation(s)
- Xinyan Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA,Orthopaedic Surgery Department, University of California, San Francisco, CA, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - William J Richardson
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Robert E Isaacs
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Robert D Fitch
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Christopher R Brown
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Melissa M Erickson
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Lori A Setton
- Department of Biomedical Engineering, Duke University, Durham, NC, USA,Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jun Chen
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
110
|
Chou PH, Wang ST, Ma HL, Liu CL, Chang MC, Lee OKS. Development of a two-step protocol for culture expansion of human annulus fibrosus cells with TGF-β1 and FGF-2. Stem Cell Res Ther 2016; 7:89. [PMID: 27405858 PMCID: PMC4942939 DOI: 10.1186/s13287-016-0332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Different biologic approaches to treat disc regeneration, including growth factors (GFs) application, are currently under investigation. Human annulus fibrosus (hAF) repair or regeneration is one of the key elements for maintenance and restoration of nucleus pulposus function. However, so far there is no effective treatment for this purpose. The aim of the present study was to investigate the response of hAF cells to different combinations of GFs, and develop a protocol for efficient culture expansion. METHODS hAF cells were harvested from degenerated disc tissues during surgical intervertebral disc removal, and hAF cells were expanded in a monolayer. The experiments were categorized based on different protocols with transforming growth factor (TGF-β1) and fibroblast growth factor (FGF-2) culture for 14 days: group 1 had no GFs (control group); group 2 received TGF-β1; group 3 received FGF-2; group 4 received both GFs; and group 5 (two-step) received both GFs for the first 10 days and TGF-β1 only for the next 4 days. Cell proliferation, collagen, and noncollagen extracellular matrix (ECM) production and genes expression were compared among these groups. RESULTS At days 3, 7 and 10 of cultivation, groups 4 and 5 had significantly more cell numbers and faster cell proliferation rates than groups 1, 2, and 3. At 14 days of cultivation, significantly more cell numbers were observed in groups 3 and 4 than in group 5. The group 4 had the most cell numbers and the fastest proliferation rate at 14 days of cultivation. After normalization for cell numbers, group 5 (two-step) produced the most collagen and noncollagen ECM at 10 and 14 days of cultivation among the five groups. In group 5, ECM gene expression was significantly upregulated. High expression of matrix metalloproteinase-1 was upregulated with FGF-2 on the different days as compared to the other groups. Annulus fibrosus cell phenotypes were only marginally retained under the different protocols based on quantitative polymerase chain reaction results. CONCLUSION Taken together, the two-step protocol was the most efficient among these different protocols with the most abundant ECM production after normalization for cell numbers for culture expansion of hAF cells. The protocol may be useful in further cell therapy and tissue engineering approaches for disc regeneration.
Collapse
Affiliation(s)
- Po-Hsin Chou
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei city, Taiwan.,School of Medicine, National Yang-Ming University, Taipei city, Taiwan
| | - Shih-Tien Wang
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei city, Taiwan.,School of Medicine, National Yang-Ming University, Taipei city, Taiwan
| | - Hsiao-Li Ma
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei city, Taiwan.,School of Medicine, National Yang-Ming University, Taipei city, Taiwan
| | - Chien-Lin Liu
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei city, Taiwan.,School of Medicine, National Yang-Ming University, Taipei city, Taiwan
| | - Ming-Chau Chang
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei city, Taiwan.,School of Medicine, National Yang-Ming University, Taipei city, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University , Taipei city, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei city, Taiwan. .,Taipei City General Hospital, No.145, Zhengzhou Rd., Datong Dist., Taipei City, 10341, Taiwan (R.O.C.).
| |
Collapse
|
111
|
N-cadherin is Key to Expression of the Nucleus Pulposus Cell Phenotype under Selective Substrate Culture Conditions. Sci Rep 2016; 6:28038. [PMID: 27292569 PMCID: PMC4904275 DOI: 10.1038/srep28038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/27/2016] [Indexed: 12/19/2022] Open
Abstract
Nucleus pulposus (NP) cells of the intervertebral disc are essential for synthesizing extracellular matrix that contributes to disc health and mechanical function. NP cells have a unique morphology and molecular expression pattern derived from their notochordal origin, and reside in N-cadherin (CDH2) positive cell clusters in vivo. With disc degeneration, NP cells undergo morphologic and phenotypic changes including loss of CDH2 expression and ability to form cell clusters. Here, we investigate the role of CDH2 positive cell clusters in preserving healthy, biosynthetically active NP cells. Using a laminin-functionalized hydrogel system designed to mimic features of the native NP microenvironment, we demonstrate NP cell phenotype and morphology is preserved only when NP cells form CDH2 positive cell clusters. Knockdown (CRISPRi) or blocking CDH2 expression in vitro and in vivo results in loss of a healthy NP cell. Findings also reveal that degenerate human NP cells that are CDH2 negative can be promoted to re-express CDH2 and healthy, juvenile NP matrix synthesis patterns by promoting cell clustering for controlled microenvironment conditions. This work also identifies CDH2 interactions with β-catenin-regulated signaling as one mechanism by which CDH2-mediated cell interactions can control NP cell phenotype and biosynthesis towards maintenance of healthy intervertebral disc tissues.
Collapse
|
112
|
Decoding the intervertebral disc: Unravelling the complexities of cell phenotypes and pathways associated with degeneration and mechanotransduction. Semin Cell Dev Biol 2016; 62:94-103. [PMID: 27208724 DOI: 10.1016/j.semcdb.2016.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Back pain is the most common cause of pain and disability worldwide. While its etiology remains unknown, it is typically associated with intervertebral disc (IVD) degeneration. Despite the prevalence of back pain, relatively little is known about the specific cellular pathways and mechanisms that contribute to the development, function and degeneration of the IVD. Consequently, current treatments for back pain are largely limited to symptomatic interventions. However, major progress is being made in multiple research directions to unravel the biology and pathology of the IVD, raising hope that effective disease-modifying interventions will soon be developed. In this review, we will discuss our current knowledge and gaps in knowledge on the developmental origin of the IVD, the phenotype of the distinct cell types found within the IVD tissues, molecular targets in IVD degeneration identified using bioinformatics strategies, and mechanotransduction pathways that influence IVD cell fate and function.
Collapse
|
113
|
Dex S, Lin D, Shukunami C, Docheva D. Tenogenic modulating insider factor: Systematic assessment on the functions of tenomodulin gene. Gene 2016; 587:1-17. [PMID: 27129941 DOI: 10.1016/j.gene.2016.04.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023]
Abstract
Tenomodulin (TNMD, Tnmd) is a gene highly expressed in tendon known to be important for tendon maturation with key implications for the residing tendon stem/progenitor cells as well as for the regulation of endothelial cell migration in chordae tendineae cordis in the heart and in experimental tumour models. This review aims at providing an encompassing overview of this gene and its protein. In addition, its known expression pattern as well as putative signalling pathways will be described. A chronological overview of the discovered functions of this gene in tendon and other tissues and cells is provided as well as its use as a tendon and ligament lineage marker is assessed in detail and discussed. Last, information about the possible connections between TNMD genomic mutations and mRNA expression to various diseases is delivered. Taken together this review offers a solid synopsis on the up-to-date information available about TNMD and aids at directing and focusing the future research to fully uncover the roles and implications of this interesting gene.
Collapse
Affiliation(s)
- Sarah Dex
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Dasheng Lin
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany; Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
114
|
Wang H, Zhou Y, Chu TW, Li CQ, Wang J, Zhang ZF, Huang B. Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 25:2691-704. [PMID: 26984881 DOI: 10.1007/s00586-016-4522-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/05/2016] [Accepted: 03/06/2016] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Several types of stem cells have been successfully demonstrated to exist in the human degenerated intervertebral disc (IVD), which is composed of annulus fibrosus (AF), nucleus pulposus (NP) and cartilage endplate (CEP). However, the differences in the biological characteristics among these and bone marrow derived mesenchymal stem cells (BM-MSCs) remain unclear. MATERIALS AND METHODS To investigate this issue, cells were harvested from human AF, NP, CEP, and bone marrow, respectively; passage 2 cells were selected using the agarose suspension culture system to obtain stem cell clones. Following expansion in vitro, stem cells from different anatomical regions were compared regarding the morphology, proliferation ability, immunophenotypic expression, and multi-lineage differentiation capacity. In addition, stem cell-alginate bead compositions were constructed for the comparison of DNA and sGAG content. RESULTS There were subtle differences regarding cell morphology, but no significant differences in proliferation ability among the four types of stem cells. For the immunophenotypic analysis, all stem cells basically fulfilled the criteria for mesenchymal stem cells (MSCs), which have been published by the International Society for Cellular Therapy (ISCT), with a significant difference in CD105 expression. A comparison of the osteogenic capacities indicated: cartilage endplate-derived stem cells (CESCs) > annulus fibrosus-derived stem cells (AFSCs) > BM-MSCs > nucleus pulposus-derived stem cells (NPSCs). The chondrogenesis difference was similar to osteogenesis. For adipogenesis: BM-MSCs >NPSCs >CESCs >AFSCs. In the stem cell/alginate composition, the CESCs consistently showed the superior chondrogenic potential among all those cell types. CONCLUSIONS Our data indicated that all the four types of stem cells shared some similar biological properties (regarding shape, proliferation ability and immunophenotypic expression). CESCs, which had the strongest osteogenic and chondrogenic potentials, may serve as excellent seed cells for NP/cartilage or bone tissue engineering.
Collapse
Affiliation(s)
- Hai Wang
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, People's Republic of China
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Tong-Wei Chu
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Chang-Qing Li
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Jian Wang
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Zheng-Feng Zhang
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Bo Huang
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
115
|
Unique glycosignature for intervertebral disc and articular cartilage cells and tissues in immaturity and maturity. Sci Rep 2016; 6:23062. [PMID: 26965377 PMCID: PMC4786852 DOI: 10.1038/srep23062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/29/2016] [Indexed: 01/07/2023] Open
Abstract
In this study, on/off markers for intervertebral disc (IVD) and articular cartilage (AC) cells (chondrocytes) and distinct glycoprofiles of cell and tissue-types were identified from immaturity to maturity. Three and eleven month-old ovine IVD and AC tissues were histochemically profiled with a panel of lectins and antibodies. Relationships between tissue and cell types were analysed by hierarchical clustering. Chondroitin sulfate (CS) composition of annulus fibrosus (AF), nucleus pulposus (NP) and AC tissues was determined by HPLC analysis. Clear on/off cell type markers were identified, which enabled the discrimination of chondrocytes, AF and NP cells. AF and NP cells were distinguishable using MAA, SNA-I, SBA and WFA lectins, which bound to both NP cells and chondrocytes but not AF cells. Chondrocytes were distinguished from NP and AF cells with a specific binding of LTA and PNA lectins to chondrocytes. Each tissue showed a unique CS composition with a distinct switch in sulfation pattern in AF and NP tissues upon disc maturity while cartilage maintained the same sulfation pattern over time. In conclusion, distinct glycoprofiles for cell and tissue-types across age groups were identified in addition to altered CS composition and sulfation patterns for tissue types upon maturity.
Collapse
|
116
|
Ye D, Liang W, Dai L, Zhou L, Yao Y, Zhong X, Chen H, Xu J. Comparative and quantitative proteomic analysis of normal and degenerated human annulus fibrosus cells. Clin Exp Pharmacol Physiol 2016; 42:530-6. [PMID: 25739836 DOI: 10.1111/1440-1681.12386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 02/06/2023]
Abstract
Degeneration of the intervertebral disc (IVD) is a major chronic medical condition associated with back pain. To better understand the pathogenesis of IVD degeneration, we performed comparative and quantitative proteomic analyses of normal and degenerated human annulus fibrosus (AF) cells and identified proteins that are differentially expressed between them. Annulus fibrosus cells were isolated and cultured from patients with lumbar disc herniation (the experimental group, degenerated AF cells) and scoliosis patients who underwent orthopaedic surgery (the control group, normal AF cells). Comparative proteomic analyses of normal and degenerated cultured AF cells were carried out using 2-D electrophoresis, mass spectrometric analyses, and database searching. Quantitative analyses of silver-stained 2-D electrophoresis gels of normal and degenerated cultured AF cells identified 10 protein spots that showed the most altered differential expression levels between the two groups. Among these, three proteins were decreased, including heat shock cognate 71-kDa protein, glucose-6-phosphate 1-dehydrogenase, and protocadherin-23, whereas seven proteins were increased, including guanine nucleotide-binding protein G(i) subunit α-2, superoxide dismutase, transmembrane protein 51, adenosine receptor A3, 26S protease regulatory subunit 8, lipid phosphate phosphatase-related protein, and fatty acyl-crotonic acid reductase 1. These differentially expressed proteins might be involved in the pathophysiological process of IVD degeneration and have potential values as biomarkers of the degeneration of IVD.
Collapse
Affiliation(s)
- Dongping Ye
- The Fourth Affiliated Hospital of the Medical College, Jinan University, Guangzhou Institute of Traumatic Surgery, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
117
|
van den Akker GGH, Surtel DAM, Cremers A, Richardson SM, Hoyland JA, van Rhijn LW, Voncken JW, Welting TJM. Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus. PLoS One 2016; 11:e0144497. [PMID: 26794306 PMCID: PMC4721917 DOI: 10.1371/journal.pone.0144497] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022] Open
Abstract
Introduction Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Methods Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). Results The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. Conclusion We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Don A. M. Surtel
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Andy Cremers
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Stephen M. Richardson
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, United Kingdom
| | - Judith A. Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, United Kingdom
| | - Lodewijk W. van Rhijn
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
- * E-mail: (JWV); (TJMW)
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- * E-mail: (JWV); (TJMW)
| |
Collapse
|
118
|
Thorpe AA, Binch AL, Creemers LB, Sammon C, Le Maitre CL. Nucleus pulposus phenotypic markers to determine stem cell differentiation: fact or fiction? Oncotarget 2016; 7:2189-200. [PMID: 26735178 PMCID: PMC4823028 DOI: 10.18632/oncotarget.6782] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Progress in mesenchymal stem cell (MSC) based therapies for nucleus pulposus (NP) regeneration are hampered by a lack of understanding and consensus of the normal NP cell phenotype. Despite the recent consensus paper on NP markers, there is still a need to further validate proposed markers. This study aimed to determine whether an NP phenotypic profile could be identified within a large population of mature NP samples.qRT-PCR was conducted to assess mRNA expression of 13 genes within human non-degenerate articular chondrocytes (AC) (n=10) and NP cells extracted from patients across a spectrum of histological degeneration grades (n=71). qRT-PCR results were used to select NP marker candidates for protein expression analysis.Differential expression at mRNA between AC and non-degenerate NP cells was only observed for Paired Box Protein 1 (PAX1) and Forkhead box F1 (FOXF1). In contrast no other previously suggested markers displayed differential expression between non-degenerate NP and AC at mRNA level. PAX1 and FOXF1 protein expression was significantly higher in the NP compared to annulus fibrosus (AF), cartilaginous endplate (CEP) and AC. In contrast Laminin-5 (LAM-332), Keratin-19 (KRT-19) and Hypoxia Inducible Factor 1 alpha (HIF1α) showed no differential expression in NP cells compared with AC cells.A marker which exclusively differentiates NP cells from AF and AC cells remains to be identified, raising the question: is the NP a heterogeneous population of cells? Or does the natural biological variation during IVD development, degeneration state and even the life cycle of cells make finding one definitive marker impossible?
Collapse
Affiliation(s)
- Abbey A. Thorpe
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Abbie L.A. Binch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | - Christopher Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | | |
Collapse
|
119
|
Numaguchi S, Esumi M, Sakamoto M, Endo M, Ebihara T, Soma H, Yoshida A, Tokuhashi Y. Passive cigarette smoking changes the circadian rhythm of clock genes in rat intervertebral discs. J Orthop Res 2016; 34:39-47. [PMID: 25939642 DOI: 10.1002/jor.22941] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 05/01/2015] [Indexed: 02/04/2023]
Abstract
We aimed to elucidate the molecular changes in intervertebral discs (IVDs) caused by passive smoking. Rats were subjected to 8 weeks of passive smoking; thereafter, their lumbar vertebrae were harvested. The annulus fibrosus and cartilage endplate (AF/CEP) were harvested together, and the nucleus pulposus (NP) was isolated separately. The expression of 27,342 rat genes was analyzed. In 3 "nonsmoking" rats, 96 of 112 genes whose expression varied ≥10-fold between the AF/CEP and NP were more highly expressed in the AF/CEP. With these differentially expressed genes, we uncovered novel AF/CEP and NP marker genes and indicated their possible novel functions. Although passive smoking induced less marked alteration in the gene expression profiles of both the AF/CEP and NP, multiple clock-related genes showed altered expression. These genes were expressed with a circadian rhythm in IVD cells, and most genes showed a phase shift of -6 to -9 h induced by passive smoking. Some clock-related genes showed abolished oscillation in the NP. Passive smoking also changed the expression levels of proteases and protease inhibitors and reduced the expression of NP marker genes. Thus, passive smoking induces changes in the circadian rhythm of a peripheral clock (IVD clock) that might be involved in molecular events related to IVD degeneration.
Collapse
Affiliation(s)
- Shumpei Numaguchi
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Mariko Esumi
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Mika Sakamoto
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Michiko Endo
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Takayuki Ebihara
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Hirotoki Soma
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Akio Yoshida
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Yasuaki Tokuhashi
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| |
Collapse
|
120
|
Chan SCW, Tekari A, Benneker LM, Heini PF, Gantenbein B. Osteogenic differentiation of bone marrow stromal cells is hindered by the presence of intervertebral disc cells. Arthritis Res Ther 2015; 18:29. [PMID: 26809343 PMCID: PMC4727301 DOI: 10.1186/s13075-015-0900-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023] Open
Abstract
Background Clinical observations indicate that the presence of nucleus pulposus (NP) tissue during spinal fusion hinders the rate of disc ossification. While the underlying mechanism remains unknown, this observation could be due to incomplete removal of NP cells (NPCs) that secrete factors preventing disc calcification, such as bone morphogenetic protein (BMP) antagonists including noggin and members of the DAN (differential screening selected gene aberrative in neuroblastoma) family. Methods Monolayer human bone marrow-derived mesenchymal stem cells (MSCs) were cocultured withNPCs and annulus fibrosus cells (AFCs) embedded in alginate for 21 days. At the end of coculture, MSCs were stained for mineral deposition by alizarin red, and relative expression of bone-related genes [Runt-related transcription factor 2, (RUNX2), Osteopontin (OPN), and Alkaline phosphatase (ALP)] and ALP activity were analyzed. Relative expression of three BMP antagonists, chordin (CHRD), gremlin (GREM1), and noggin (NOG), was determined in primary human NPCs and AFCs. These cells were also stained for Gremlin and Noggin by immunocytochemistry. Results Alizarin red staining showed that MSC osteogenesis in monolayer cultures was inhibited by coculture with NPCs or AFCs. ALP activity and RT-PCR analyses confirmed these results and demonstrated inhibition of osteogenesis of MSC in the presence of disc cells. NOG was significantly up-regulated in MSCs after coculture. Relative gene expression of intervertebral disc (IVD) cells showed higher expression of GREM1 in NPCs than in AFCs. Conclusions We show that primary IVD cells inhibit osteogenesis of MSCs. BMP inhibitors NOG, GREM1 and CHRD were expressed in IVD cells. GREM1 appears to be differentially expressed in NPCs and AFCs. Our results have implications for the design and development of treatments for non-union in spinal fusion.
Collapse
Affiliation(s)
- Samantha C W Chan
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, Bern, CH-3014, Switzerland. .,Biointerfaces, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St Gallen, CH-9014, Switzerland.
| | - Adel Tekari
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, Bern, CH-3014, Switzerland.
| | - Lorin M Benneker
- Department for Orthopedic Surgery and Traumatology, Inselspital, University of Bern, Freiburgstrasse 4, Bern, CH-3010, Switzerland. .,AOSpine Research Network, Stettbachstrasse 6, Dübendorf, CH-8600, Switzerland.
| | - Paul F Heini
- Orthopedic Department, Sonnenhof Clinic, Buchserstrasse 30, Bern, CH-3006, Switzerland.
| | - Benjamin Gantenbein
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, Bern, CH-3014, Switzerland. .,AOSpine Research Network, Stettbachstrasse 6, Dübendorf, CH-8600, Switzerland.
| |
Collapse
|
121
|
Lee JTY, Cheung KMC, Leung VYL. Systematic study of cell isolation from bovine nucleus pulposus: Improving cell yield and experiment reliability. J Orthop Res 2015; 33:1743-55. [PMID: 26036782 DOI: 10.1002/jor.22942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/08/2015] [Indexed: 02/04/2023]
Abstract
Differences in matrix compositions in human nucleus pulposus (NP) clinical samples demand different cell isolation protocols for optimal results but there is no clear guide about this to date. Sub-optimal protocols may result in low cell yield, limited reliability of results or even failure of experiments. Cell yield, viability and attachment of cells isolated from bovine NP tissue with different protocols were estimated by cell counting, Trypan blue staining and cell culturing respectively. RNA was extracted from isolated cells and quantified by Nanodrop spectrometry and RT-qPCR. Higher collagenase concentration, longer digestion duration and pronase pre-treatment increased the cell yield. Cell viability remained high (<5% dead cells) even after 0.2% collagenase treatment for overnight. NP cells remained to have high ACAN, COL2A1, CDH2, KRT18, and KRT19 expression compared to muscle cells for different cell isolation conditions tested. Digestion by collagenase alone without the use of pronase could isolate cells from human degenerated NP tissue but clusters of cells were observed. We suggest the use of the disappearance of tissue as an indirect measure of cells released. This study provides a guide for researchers to decide the parameters involved in NP cell isolation for optimal outcome.
Collapse
Affiliation(s)
- Juliana T Y Lee
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Victor Y L Leung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
122
|
Potier E, Ito K. Can notochordal cells promote bone marrow stromal cell potential for nucleus pulposus enrichment? A simplified in vitro system. Tissue Eng Part A 2015; 20:3241-51. [PMID: 24873993 DOI: 10.1089/ten.tea.2013.0703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) have shown promising potential to stop intervertebral disc degeneration in several animal models. In order to restore a healthy state, though, this potential should be further stimulated. Notochordal cells (NCs), influential in disc development, have been shown to stimulate BMSC differentiation, but it is unclear how this effect will translate in an environment where resident disc cells (nucleus pulposus cells [NPCs]) could also influence BMSCs. The goal of this study was, therefore, to evaluate the effects of NCs on BMSCs when cocultured with NPCs, in a simplified 3D in vitro system. Bovine BMSCs and NPCs were mixed (Mix) and seeded into alginate beads. Using culture inserts, the Mix was then cocultured with porcine NCs (alginate beads) and compared to coculture with empty beads or porcine skin fibroblasts (SFs, alginate beads). NPCs alone were also cocultured with NCs, and BMSCs alone cultured under chondrogenic conditions. The effects of coculture conditions on cell viability, matrix production (proteoglycan and collagen), and gene expression of disc markers (aggrecan, type II collagen, and SOX9) were assessed after 4 weeks of culture. The NC phenotype and gene expression profile were also analyzed. Coculture with NCs did not significantly influence cell viability, proteoglycan production, or disc marker gene expression of the Mix. When compared to NPCs, the Mix produced the same amount of proteoglycan and displayed a higher expression of disc marker, indicating a stimulation of the BMSCs (and/or NPCs) in the Mix. Additionally, during the 4 weeks of culture, the NC phenotype changed drastically (morphology, gene expression profile). These results show that NCs might not be as stimulatory for BMSCs in an NPC-rich environment, as believed from individual cultures. This absence of effects could be explained by a mild stimulation provided by (de)differentiating NCs and the costimulation of BMSCs and NPCs by each other.
Collapse
Affiliation(s)
- Esther Potier
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | | |
Collapse
|
123
|
Chen S, Hu ZJ, Zhou ZJ, Lin XF, Zhao FD, Ma JJ, Zhang JF, Wang JY, Qin A, Fan SW. Evaluation of 12 Novel Molecular Markers for Degenerated Nucleus Pulposus in a Chinese Population. Spine (Phila Pa 1976) 2015; 40:1252-60. [PMID: 25893345 DOI: 10.1097/brs.0000000000000929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A transcriptional expression assessment of human samples. OBJECTIVE To evaluate 12 new candidate nucleus pulposus (NP) markers in degenerative disc disease in a Chinese population. SUMMARY OF BACKGROUND DATA Disc degeneration is a major contributor of low back pain. However, no specific and reliable markers of degeneration of NP are available. METHODS Specimens of NP were collected from 81 patients and grouped into the degenerated disc group (undergoing discectomy and fusion with significant signs of disc degeneration) and the trauma control group (undergoing anterior vertebral body and disc excision and fusion without signs of disc degeneration). Lumbar spine magnetic resonance imaging, hematoxylin-eosin staining, and safranin O staining of sections of NP tissues were conducted to evaluate the severity of the disc degeneration in all samples. Quantitative reverse transcription polymerase chain reaction was performed to investigate the levels of mRNA expression of these genes, as well as those of aggrecan, type II collagen, and SRY-box 9 (SOX-9). Degenerated samples were also divided into groups according to Pfirrmann grading system to elucidate the association of severity of degeneration and gene transcriptional levels. We also tested the relationship between mRNA levels of these genes and clinical characteristics such as hypertension and diabetes mellitus. RESULTS We demonstrated that 11 of the 12 candidates showed significant differential expression in degenerated discs. Changes in the expression of these 11 genes were determined to be risk factors in degenerative disc diseases. The expression of neurochondrin (NCDN), keratin 8 (KRT8), and matrix Gla protein (MGP) even showed significant changes among subgroups of patients with degenerative disc disease stratified according to the Pfirrmann grading system. The expression of keratin 18 (KRT18), cadherin 2 (CDH2), synaptosomal-associated protein 25 (SNAP25), KRT8, and NCDN was significantly decreased in patients with hypertension. In contrast, the expression of MGP and cartilage oligomeric matrix protein was significantly upregulated in patients with diabetes mellitus. CONCLUSION Overall, we demonstrated the clinical utility of 11 novel NP markers for degenerative disc disease. Among them, the expression of NCDN, KRT8, and MGP may indicate the severity of disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Shuai Chen
- *Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China †Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China; and ‡Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Molinos M, Almeida CR, Gonçalves RM, Barbosa MA. Improvement of Bovine Nucleus Pulposus Cells Isolation Leads to Identification of Three Phenotypically Distinct Cell Subpopulations. Tissue Eng Part A 2015; 21:2216-27. [DOI: 10.1089/ten.tea.2014.0461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Maria Molinos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Catarina R. Almeida
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Raquel M. Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Mário A. Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
125
|
Sun Y, Lv M, Zhou L, Tam V, Lv F, Chan D, Wang H, Zheng Z, Cheung KMC, Leung VYL. Enrichment of committed human nucleus pulposus cells expressing chondroitin sulfate proteoglycans under alginate encapsulation. Osteoarthritis Cartilage 2015; 23:1194-203. [PMID: 25749011 DOI: 10.1016/j.joca.2015.02.166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 01/30/2015] [Accepted: 02/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Intervertebral disc (IVD) degeneration is associated with a malfunction of the nucleus pulposus (NP). Alginate culturing provides a favorable microenvironment for the phenotypic maintenance of chondrocyte-like NP cells. However, NP cells are recently evidenced to present heterogeneous populations, including progenitors, fibroblastic cells and primitive NP cells. The aim of this study is to profile the phenotypic changes of distinct human NP cells populations and describe the dynamic expression of chondroitin sulfate glycosaminoglycans (CS-GAGs) in extended alginate encapsulation. METHOD Non-degenerated (ND-NPC) and degenerated (D-NPC) NP cells were expanded in monolayers, and subject to 28-day culture in alginate after serial passaging. CS-GAG compositional expression in monolayer-/alginate-cultured NP cells was evaluated by carbohydrate electrophoresis. Cellular phenotypic changes were assessed by immunologic detection and gene expression analysis. RESULTS Relative to D-NPC, ND-NPC displayed remarkably higher expression levels of chondroitin-4-sulfate GAGs over the 28-day culture. Compared with monolayer culture, ND-NPC showed increased NP marker expression of KRT18, KRT19, and CDH2, as well as chondrocyte markers SOX9 and MIA in alginate culture. In contrast, expression of fibroblastic marker COL1A1, COL3A1, and FN1 were reduced. Interestingly, ND-NPC showed a loss of Tie2+ but gain in KRT19+/CD24+ population during alginate culture. In contrast, D-NPC showed more consistent expression levels of NP surface markers during culture. CONCLUSION We demonstrate for the first time that extended alginate culture selectively enriches the committed NP cells and favors chondroitin-4-sulfate proteoglycan production. These findings suggest its validity as a model to investigate IVD cell function.
Collapse
Affiliation(s)
- Y Sun
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - M Lv
- Advanced Technology Research Institution of China Science Institution, Shenzhen, China
| | - L Zhou
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - V Tam
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Biochemistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - F Lv
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Biochemistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - D Chan
- Department of Biochemistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - H Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Z Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - K M C Cheung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - V Y L Leung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
126
|
Chan WCW, Au TYK, Tam V, Cheah KSE, Chan D. Coming together is a beginning: the making of an intervertebral disc. ACTA ACUST UNITED AC 2015; 102:83-100. [PMID: 24677725 DOI: 10.1002/bdrc.21061] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/27/2014] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) is a complex fibrocartilaginous structure located between the vertebral bodies that allows for movement and acts as a shock absorber in our spine for daily activities. It is composed of three components: the nucleus pulposus (NP), annulus fibrosus, and cartilaginous endplate. The characteristics of these cells are different, as they produce specific extracellular matrix (ECM) for tissue function and the niche in supporting the differentiation status of the cells in the IVD. Furthermore, cell heterogeneities exist in each compartment. The cells and the supporting ECM change as we age, leading to degenerative outcomes that often lead to pathological symptoms such as back pain and sciatica. There are speculations as to the potential of cell therapy or the use of tissue engineering as treatments. However, the nature of the cells present in the IVD that support tissue function is not clear. This review looks at the origin of cells in the making of an IVD, from the earliest stages of embryogenesis in the formation of the notochord, and its role as a signaling center, guiding the formation of spine, and in its journey to become the NP at the center of the IVD. While our current understanding of the molecular signatures of IVD cells is still limited, the field is moving fast and the potential is enormous as we begin to understand the progenitor and differentiated cells present, their molecular signatures, and signals that we could harness in directing the appropriate in vitro and in vivo cellular responses in our quest to regain or maintain a healthy IVD as we age.
Collapse
Affiliation(s)
- Wilson C W Chan
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
127
|
Gorth DJ, Lothstein KE, Chiaro JA, Farrell MJ, Dodge GR, Elliott DM, Malhotra NR, Mauck RL, Smith LJ. Hypoxic regulation of functional extracellular matrix elaboration by nucleus pulposus cells in long-term agarose culture. J Orthop Res 2015; 33:747-54. [PMID: 25640328 PMCID: PMC4408762 DOI: 10.1002/jor.22821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/06/2015] [Indexed: 02/04/2023]
Abstract
Degeneration of the intervertebral discs is strongly implicated as a cause of low back pain. Since current treatments for discogenic low back pain show poor long-term efficacy, a number of new biological strategies are being pursued. For such therapies to succeed, it is critical that they be validated in conditions that mimic the unique biochemical microenvironment of the nucleus pulposus (NP), which include low oxygen tension. Therefore, the objective of this study was to investigate the effects of oxygen tension on NP cell functional extracellular matrix elaboration in 3D culture. Bovine NP cells were encapsulated in agarose constructs and cultured for 14 or 42 days in either 20% or 2% oxygen in defined media containing transforming growth factor beta-3. At each time point, extracellular matrix composition, biomechanics, and mRNA expression of key phenotypic markers were evaluated. Results showed that while bulk mechanics and composition were largely independent of oxygen level, low oxygen promoted improved restoration of the NP phenotype, higher mRNA expression of extracellular matrix and NP specific markers, and more uniform matrix elaboration. These findings indicate that culture under physiological oxygen levels is an important consideration for successful development of cell and growth factor-based regenerative strategies for the disc.
Collapse
Affiliation(s)
- Deborah J Gorth
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
,Translational Musculoskeletal Research Center, Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Katherine E Lothstein
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
,Translational Musculoskeletal Research Center, Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Joseph A Chiaro
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
,Translational Musculoskeletal Research Center, Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Megan J Farrell
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - George R Dodge
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
,Translational Musculoskeletal Research Center, Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, DE, USA
| | - Neil R Malhotra
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
,Translational Musculoskeletal Research Center, Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
,Translational Musculoskeletal Research Center, Veterans Affairs Medical Center, Philadelphia, PA, USA
,Correspondence Department of Neurosurgery, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA, Phone: 215 746 2169, Fax: 215 573 2133,
| |
Collapse
|
128
|
Sakai D, Grad S. Advancing the cellular and molecular therapy for intervertebral disc disease. Adv Drug Deliv Rev 2015; 84:159-71. [PMID: 24993611 DOI: 10.1016/j.addr.2014.06.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/07/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
Abstract
The healthy intervertebral disc (IVD) fulfils the essential function of load absorption, while maintaining multi-axial flexibility of the spine. The interrelated tissues of the IVD, the annulus fibrosus, the nucleus pulposus, and the cartilaginous endplate, are characterised by their specific niche, implying avascularity, hypoxia, acidic environment, low nutrition, and low cellularity. Anabolic and catabolic factors balance a slow physiological turnover of extracellular matrix synthesis and breakdown. Deviations in mechanical load, nutrient supply, cellular activity, matrix composition and metabolism may initiate a cascade ultimately leading to tissue dehydration, fibrosis, nerve and vessel ingrowth, disc height loss and disc herniation. Spinal instability, inflammation and neural sensitisation are sources of back pain, a worldwide leading burden that is challenging to cure. In this review, advances in cell and molecular therapy, including mobilisation and activation of endogenous progenitor cells, progenitor cell homing, and targeted delivery of cells, genes, or bioactive factors are discussed.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan; Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland.
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland.
| |
Collapse
|
129
|
Arkesteijn ITM, Smolders LA, Spillekom S, Riemers FM, Potier E, Meij BP, Ito K, Tryfonidou MA. Effect of coculturing canine notochordal, nucleus pulposus and mesenchymal stromal cells for intervertebral disc regeneration. Arthritis Res Ther 2015; 17:60. [PMID: 25890127 PMCID: PMC4396569 DOI: 10.1186/s13075-015-0569-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 02/19/2015] [Indexed: 12/27/2022] Open
Abstract
Introduction Early degenerative changes in the nucleus pulposus (NP) are observed after the disappearance of notochordal cells (NCs). Thus, it has been suggested that NCs play an important role in maintaining the NP and may have a regenerative potential on other cells of the NP. As the number of resident NP cells (NPCs) decreases in a degenerating disc, mesenchymal stromal (stem) cells (MSCs) may be used for cell supplementation. In this study, using cells of one species, the regenerative potential of canine NCs was assessed in long-term three-dimensional coculture with canine NPCs or MSCs. Methods Canine NCs and canine NPCs or MSCs were cocultured in alginate beads for 28 days under hypoxic and high-osmolarity conditions. Cell viability, cell morphology and DNA content, extracellular matrix production and expression of genes related to NC markers (Brachyury, KRT18) and NP matrix production (ACAN, COL2A1, COL1A1) were assessed after 1, 15 and 28 days of culture. Results NCs did not completely maintain their phenotype (morphology, matrix production, gene expression) during 28 days of culture. In cocultures of NPCs and NCs, both extracellular matrix content and anabolic gene expression remained unchanged compared with monoculture groups, whereas cocultures of MSCs and NCs showed increased glycosaminoglycan/DNA. However, the deposition of these proteoglycans was observed near the NCs and not the MSCs. Brachyury expression in the MSC and NC coculture group increased in time. The latter two findings indicate a trophic effect of MSCs on NCs rather than vice versa. Conclusions No regenerative potential of canine NCs on canine NPCs or MSCs was observed in this study. However, significant changes in NC phenotype in long-term culture may have resulted in a suboptimal regenerative potential of these NCs. In this respect, NC-conditioned medium may be better than coculture for future studies of the regenerative potential of NCs. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0569-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene T M Arkesteijn
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Lucas A Smolders
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, NL-3508 TD, Utrecht, The Netherlands. .,Clinic for Small Animal Surgery, Vetsuisse Faculty, Zurich University, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | - Sandra Spillekom
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, NL-3508 TD, Utrecht, The Netherlands.
| | - Frank M Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, NL-3508 TD, Utrecht, The Netherlands.
| | - Esther Potier
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands. .,Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaire (B2OA), UMR CNRS 7052, Université Denis Diderot Paris 7, Sorbonne Paris Cité, 690, Paris, France.
| | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, NL-3508 TD, Utrecht, The Netherlands.
| | - Keita Ito
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands. .,Department of Orthopedics, University Medical Center Utrecht, P.O. Box 85500, HP G05.228, 3508 GA, Utrecht, The Netherlands.
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
130
|
Risbud MV, Schoepflin ZR, Mwale F, Kandel RA, Grad S, Iatridis JC, Sakai D, Hoyland JA. Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting. J Orthop Res 2015; 33:283-93. [PMID: 25411088 PMCID: PMC4399824 DOI: 10.1002/jor.22789] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 02/04/2023]
Abstract
Low back pain is a major physical and socioeconomic problem. Degeneration of the intervertebral disc and especially that of nucleus pulposus (NP) has been linked to low back pain. In spite of much research focusing on the NP, consensus among the research community is lacking in defining the NP cell phenotype. A consensus agreement will allow easier distinguishing of NP cells from annulus fibrosus (AF) cells and endplate chondrocytes, a better gauge of therapeutic success, and a better guidance of tissue-engineering-based regenerative strategies that attempt to replace lost NP tissue. Most importantly, a clear definition will further the understanding of physiology and function of NP cells, ultimately driving development of novel cell-based therapeutic modalities. The Spine Research Interest Group at the 2014 Annual ORS Meeting in New Orleans convened with the task of compiling a working definition of the NP cell phenotype with hope that a consensus statement will propel disc research forward into the future. Based on evaluation of recent studies describing characteristic NP markers and their physiologic relevance, we make the recommendation of the following healthy NP phenotypic markers: stabilized expression of HIF-1α, GLUT-1, aggrecan/collagen II ratio >20, Shh, Brachyury, KRT18/19, CA12, and CD24.
Collapse
Affiliation(s)
- Makarand V. Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia PA
| | - Zachary R. Schoepflin
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia PA
| | - Fackson Mwale
- Division of Orthopaedic Surgery, McGill University, Lady Davis Institute for Medical Research, Montreal, Quebec H3T 1E2, Canada
| | - Rita A. Kandel
- Department of Pathology and Laboratory Medicine, Lunenfeld Tannenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - James C. Iatridis
- Department of Orthopaedics and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Judith A. Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
131
|
Sakai D, Andersson GBJ. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat Rev Rheumatol 2015; 11:243-56. [PMID: 25708497 DOI: 10.1038/nrrheum.2015.13] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intervertebral disc (IVD) degeneration is frequently associated with low back and neck pain, which accounts for disability worldwide. Despite the known outcomes of the IVD degeneration cascade, the treatment of IVD degeneration is limited in that available conservative and surgical treatments do not reverse the pathology or restore the IVD tissue. Regenerative medicine for IVD degeneration, by injection of IVD cells, chondrocytes or stem cells, has been extensively studied in the past decade in various animal models of induced IVD degeneration, and has progressed to clinical trials in the treatment of various spinal conditions. Despite preliminary results showing positive effects of cell-injection strategies for IVD regeneration, detailed basic research on IVD cells and their niche indicates that transplanted cells are unable to survive and adapt in the avascular niche of the IVD. For this therapeutic strategy to succeed, the indications for its use and the patients who would benefit need to be better defined. To surmount these obstacles, the solution will be identified only by focused research, both in the laboratory and in the clinic.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Gunnar B J Andersson
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
132
|
Abstract
Low back pain is the most common musculoskeletal problem and the single most common cause of disability, often attributed to degeneration of the intervertebral disc. Lack of effective treatment is directly related to our limited understanding of the pathways responsible for maintaining disc health. While transcriptional analysis has permitted initial insights into the biology of the intervertebral disc, complete proteomic characterization is required. We therefore employed liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) protein/peptide separation and mass spectrometric analyses to characterize the protein content of intervertebral discs from skeletally mature wild-type mice. A total of 1360 proteins were identified and categorized using PANTHER. Identified proteins were primarily intracellular/plasma membrane (35%), organelle (30%), macromolecular complex (10%), extracellular region (9%). Molecular function categorization resulted in three distinct categories: catalytic activity (33%), binding (molecule interactions) (29%), and structural activity (13%). To validate our list, we confirmed the presence of 14 of 20 previously identified IVD-associated markers, including matrix proteins, transcriptional regulators, and secreted proteins. Immunohistochemical analysis confirmed distinct localization patterns of select protein with the intervertebral disc. Characterization of the protein composition of healthy intervertebral disc tissue is an important first step in identifying cellular processes and pathways disrupted during aging or disease progression.
Collapse
|
133
|
Kim DH, Martin JT, Elliott DM, Smith LJ, Mauck RL. Phenotypic stability, matrix elaboration and functional maturation of nucleus pulposus cells encapsulated in photocrosslinkable hyaluronic acid hydrogels. Acta Biomater 2015; 12:21-29. [PMID: 25448344 PMCID: PMC4274233 DOI: 10.1016/j.actbio.2014.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
Degradation of the nucleus pulposus (NP) is an early hallmark of intervertebral disc degeneration. The capacity for endogenous regeneration in the NP is limited due to the low cellularity and poor nutrient and vascular supply. Towards restoring the NP, a number of biomaterials have been explored for cell delivery. These materials must support the NP cell phenotype while promoting the elaboration of an NP-like extracellular matrix in the shortest possible time. Our previous work with chondrocytes and mesenchymal stem cells demonstrated that hydrogels based on hyaluronic acid (HA) are effective at promoting matrix production and the development of functional material properties. However, this material has not been evaluated in the context of NP cells. Therefore, to test this material for NP regeneration, bovine NP cells were encapsulated in 1%w/vol HA hydrogels at either a low seeding density (20×10(6)cellsml(-1)) or a high seeding density (60×10(6)cellsml(-1)), and constructs were cultured over an 8week period. These NP cell-laden HA hydrogels showed functional matrix accumulation, with increasing matrix content and mechanical properties with time in culture at both seeding densities. Furthermore, encapsulated cells showed NP-specific gene expression profiles that were significantly higher than expanded NP cells prior to encapsulation, suggesting a restoration of phenotype. Interestingly, these levels were higher at the lower seeding density compared to the higher seeding density. These findings support the use of HA-based hydrogels for NP tissue engineering and cellular therapies directed at restoration or replacement of the endogenous NP.
Collapse
Affiliation(s)
- Dong Hwa Kim
- Department of Orthopaedic Surgery, University of Pennsylvania, McKay Orthopaedic Research Laboratory, 36th Street and Hamilton Walk, 424 Stemmler Hall, Philadelphia, PA 19104-6081, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, 3900 Woodland Avenue, Building 21, Room A222, Philadelphia, PA 19104, USA
| | - John T Martin
- Department of Orthopaedic Surgery, University of Pennsylvania, McKay Orthopaedic Research Laboratory, 36th Street and Hamilton Walk, 424 Stemmler Hall, Philadelphia, PA 19104-6081, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, 3900 Woodland Avenue, Building 21, Room A222, Philadelphia, PA 19104, USA; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 South 33rd Street, 229 Towne Building, Philadelphia, PA 19104-6315, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Room 161 Colburn Laboratory, Newark, DE 19716 , USA
| | - Lachlan J Smith
- Department of Orthopaedic Surgery, University of Pennsylvania, McKay Orthopaedic Research Laboratory, 36th Street and Hamilton Walk, 424 Stemmler Hall, Philadelphia, PA 19104-6081, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, 3900 Woodland Avenue, Building 21, Room A222, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, 3400 Spruce Street, 3rd Floor, Silverstein Pavilion, Philadelphia, PA 19104, USA
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, McKay Orthopaedic Research Laboratory, 36th Street and Hamilton Walk, 424 Stemmler Hall, Philadelphia, PA 19104-6081, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, 3900 Woodland Avenue, Building 21, Room A222, Philadelphia, PA 19104, USA; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 South 33rd Street, 229 Towne Building, Philadelphia, PA 19104-6315, USA; Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Suite 240, Skirkanich Hall, Philadelphia, PA 19104-6321, USA.
| |
Collapse
|
134
|
N-Cadherin-Mediated Signaling Regulates Cell Phenotype for Nucleus Pulposus Cells of the Intervertebral Disc. Cell Mol Bioeng 2014; 8:51-62. [PMID: 25848407 DOI: 10.1007/s12195-014-0373-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Juvenile nucleus pulposus (NP) cells of the intervertebral disc (IVD) are large, vacuolated cells that form cell clusters with strong cell-cell interactions. With maturation and aging, NP cells lose their ability to form these cell clusters, with aging-associated changes in NP cell phenotype, morphology, and proteoglycan synthesis that may contribute to IVD degeneration. Therefore, it is important to understand the mechanisms governing juvenile NP cell cluster behavior towards the goal of revealing factors that can promote juvenile, healthy NP cell phenotypes. N-cadherin has been identified as a cell-cell adhesion marker that is present in juvenile NP cells, but disappears with age. The goal of this study was to reveal the importance of N-cadherin in regulating cell-cell interactions in juvenile NP cell cluster formation and test for a regulatory role in maintaining a juvenile NP phenotype in vitro. Juvenile porcine IVD cells, of notochordal origin, were promoted to form cell clusters in vitro, and analyzed for preservation of the juvenile NP phenotype. Additionally, cadherin-blocking experiments were performed to prevent cluster formation in order to study the importance of cluster formation in NP cell signaling. Findings reveal N-cadherin-mediated cell-cell contacts promote cell clustering behavior and regulate NP cell matrix production and preservation of NP-specific markers. Inhibition of N-cadherin-mediated contacts resulted in loss of all features of the juvenile NP cell. These results establish a regulatory role for N-cadherin in juvenile NP cells, and suggest that preservation of the N-cadherin mediated cell-cell contact is important for preserving juvenile NP cell phenotype and morphology.
Collapse
|
135
|
Hwang PY, Chen J, Jing L, Hoffman BD, Setton LA. The role of extracellular matrix elasticity and composition in regulating the nucleus pulposus cell phenotype in the intervertebral disc: a narrative review. J Biomech Eng 2014; 136:021010. [PMID: 24390195 DOI: 10.1115/1.4026360] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/26/2013] [Indexed: 01/07/2023]
Abstract
Intervertebral disc (IVD) disorders are a major contributor to disability and societal health care costs. Nucleus pulposus (NP) cells of the IVD exhibit changes in both phenotype and morphology with aging-related IVD degeneration that may impact the onset and progression of IVD pathology. Studies have demonstrated that immature NP cell interactions with their extracellular matrix (ECM) may be key regulators of cellular phenotype, metabolism and morphology. The objective of this article is to review our recent experience with studies of NP cell-ECM interactions that reveal how ECM cues can be manipulated to promote an immature NP cell phenotype and morphology. Findings demonstrate the importance of a soft (<700 Pa), laminin-containing ECM in regulating healthy, immature NP cells. Knowledge of NP cell-ECM interactions can be used for development of tissue engineering or cell delivery strategies to treat IVD-related disorders.
Collapse
|
136
|
Gantenbein B, Calandriello E, Wuertz-Kozak K, Benneker LM, Keel MJB, Chan SCW. Activation of intervertebral disc cells by co-culture with notochordal cells, conditioned medium and hypoxia. BMC Musculoskelet Disord 2014; 15:422. [PMID: 25496082 PMCID: PMC4295479 DOI: 10.1186/1471-2474-15-422] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/01/2014] [Indexed: 12/14/2022] Open
Abstract
Background Notochordal cells (NC) remain in the focus of research for regenerative therapy for the degenerated intervertebral disc (IVD) due to their progenitor status. Recent findings suggested their regenerative action on more mature disc cells, presumably by the secretion of specific factors, which has been described as notochordal cell conditioned medium (NCCM). The aim of this study was to determine NC culture conditions (2D/3D, fetal calf serum, oxygen level) that lead to significant IVD cell activation in an indirect co-culture system under normoxia and hypoxia (2% oxygen). Methods Porcine NC was kept in 2D monolayer and in 3D alginate bead culture to identify a suitable culture system for these cells. To test stimulating effects of NC, co-cultures of NC and bovine derived coccygeal IVD cells were conducted in a 1:1 ratio with no direct cell contact between NC and bovine nucleus pulposus cell (NPC) or annulus fibrosus cells (AFC) in 3D alginate beads under normoxia and hypoxia (2%) for 7 and 14 days. As a positive control, NPC and AFC were stimulated with NC-derived conditioned medium (NCCM). Cell activity, glycosaminoglycan (GAG) content, DNA content and relative gene expression was measured. Mass spectrometry analysis of the NCCM was conducted. Results We provide evidence by flow cytometry that monolayer culture is not favorable for NC culture with respect to maintaining NC phenotype. In 3D alginate culture, NC activated NPC either in indirect co-culture or by addition of NCCM as indicated by the gene expression ratio of aggrecan/collagen type 2. This effect was strongest with 10% fetal calf serum and under hypoxia. Conversely, AFC seemed unresponsive to co-culture with pNC or to the NCCM. Further, the results showed that hypoxia led to decelerated metabolic activity, but did not lead to a significant change in the GAG/DNA ratio. Mass spectrometry identified connective tissue growth factor (CTGF, syn. CCN2) in the NCCM. Conclusions Our results confirm the requirement to culture NC in 3D to best maintain their phenotype, preferentially in hypoxia and with the supplementation of FCS in the culture media. Despite these advancements, the ideal culture condition remains to be identified. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-422) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Tissue & Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
137
|
Saggese T, Redey P, McGlashan SR. Same-species phenotypic comparison of notochordal and mature nucleus pulposus cells. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 24:1976-85. [PMID: 25476137 DOI: 10.1007/s00586-014-3697-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 12/27/2022]
Abstract
PURPOSE The ratio of notochordal (NC) cells to mature nucleus pulposus (MNP) cells in the nucleus pulposus varies with species, age and health. Studies suggest that loss of NC cells is a key component of intervertebral disc degeneration. However, few studies have examined the phenotypes of these two cell populations. Therefore, this study aimed to isolate NC and MNP cells from the same intervertebral disc and study phenotypic differences in extracellular matrix production and cell morphology in 3D culture over 7 days. METHODS Sequential mechanical dissociation and enzymatic digestion were used to isolate NC cell clusters and single MNP cells from bovine caudal discs. Cells were cultured in alginate beads and subsequently analysed for viability, cytokeratin-8 expression, GAG production and extracellular matrix gene expression. RESULTS Mechanical dissociation allowed NC cells to be extracted as intact cell clusters. NC cells represented 8% of the NP cell population and expressed both cytokeratin-8 and vimentin. MNP cells expressed vimentin, only. Both cells types were viable for 7 days. In addition to morphological differences, NC cells produced up to 30 times more total proteoglycan than MNP cells. NC cells had significantly higher aggrecan and brachyury expression. CONCLUSIONS NC and MNP cells can be isolated from the same bovine disc and maintain their distinct phenotypes in 3D culture.
Collapse
Affiliation(s)
- Taryn Saggese
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1021, New Zealand
| | | | | |
Collapse
|
138
|
Gupta MS, Nicoll SB. Duration of TGF-β3 Exposure Impacts the Chondrogenic Maturation of Human MSCs in Photocrosslinked Carboxymethylcellulose Hydrogels. Ann Biomed Eng 2014; 43:1145-57. [DOI: 10.1007/s10439-014-1179-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/29/2014] [Indexed: 12/11/2022]
|
139
|
Marfia G, Navone SE, Di Vito C, Tabano S, Giammattei L, Di Cristofori A, Gualtierotti R, Tremolada C, Zavanone M, Caroli M, Torchia F, Miozzo M, Rampini P, Riboni L, Campanella R. Gene expression profile analysis of human mesenchymal stem cells from herniated and degenerated intervertebral discs reveals different expression of osteopontin. Stem Cells Dev 2014; 24:320-8. [PMID: 25203751 DOI: 10.1089/scd.2014.0282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene expression analysis provides an effective methodology to identify clinically relevant genes implicated in intervertebral disc (IVD) pathology. The analysis of gene profile in mesenchymal stem cells (MSCs) from human herniated IVD (H-IVD) and degenerated IVD (D-IVD) has not yet been investigated. We present in this study a characterization of MSCs isolated from clinically categorized H-IVD and D-IVD disc samples. H-IVD-MSCs and D-IVD-MSCs showed multipotent mesenchymal differentiation ability, expressing positivity for adipogenic, osteogenic, and chondrogenic markers with an immunophenotypical profile representative of MSCs. FACS analyses revealed a higher expression of CD44 in D-IVD-MSCs compared to H-IVD-MSCs. Gene expression profile revealed that most genes under investigation displayed large variations and were not significantly different in the two types of analyzed IVD-MSCs. Conversely, the gene expression of osteopontin (OPN), a protein involved in bone matrix mineralization and extracellular matrix destruction, was found markedly increased (more than 400-fold) in D-IVD-MSCs compared to H-IVD-MSCs. Moreover, the OPN protein expression was detectable only in D-IVD-MSCs, and its levels were directly related with D-IVD severity. These findings suggest that an abnormal expression of OPN in D-IVD-MSCs occurs and plays a pivotal role in the pathophysiological process of human disc degeneration. We speculate that the regulation of the OPN pathway might be a therapeutic target to counteract disc degeneration.
Collapse
Affiliation(s)
- Giovanni Marfia
- 1 Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan , Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Tsai TL, Nelson BC, Anderson PA, Zdeblick TA, Li WJ. Intervertebral disc and stem cells cocultured in biomimetic extracellular matrix stimulated by cyclic compression in perfusion bioreactor. Spine J 2014; 14:2127-40. [PMID: 24882152 DOI: 10.1016/j.spinee.2013.11.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 05/10/2013] [Accepted: 11/21/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Intervertebral disc (IVD) degeneration often causes back pain. Current treatments for disc degeneration, including both surgical and nonsurgical approaches, tend to compromise the disc movement and cannot fully restore functions of the IVD. Instead, cell-based IVD tissue engineering seems promising as an ultimate therapy for IVD degeneration. PURPOSE To tissue-engineer an IVD ex vivo as a biological substitute to replace degenerative IVD. STUDY DESIGN An extracellular matrix (ECM) structure-mimetic scaffold, cocultured human IVD cells and human mesenchymal stem cells (hMSCs), and mechanical stimulation were used to biofabricate a tissue-engineered IVD. METHODS An optimal ratio of human annulus fibrosus (hAF) cells to hMSCs for AF generation within aligned nanofibers, and that of human nucleus pulposus (hNP) cells to hMSCs for NP generation within hydrogels were first determined after comparing different coculture ratios of hAF or hNP cells to hMSCs. Nanofibrous strips seeded with cocultured hAF cells/hMSCs were constructed into multilayer concentric rings, enclosing an inner core of hydrogel seeded with hNP cells/hMSCs. A piece of nonwoven nanofibrous mat seeded with hMSC-derived osteoblasts was assembled on the top of the cellular nanofiber/hydrogel assembly, as an interface layer between the cartilagenous end plate and vertebral body. The final assembled construct was then maintained in an osteochondral cocktail medium and stimulated with compressive loading to further enhance the hAF and hNP cells differentiation and increase the IVD ECM production. RESULTS Among all cocultured groups, hAF cells and hMSCs in the ratio of 2:1 cultured in nanofibers showed the closest mRNA expression levels of AF-related markers to positive control hAF cells, whereas hNP cells and hMSCs in the ratio of 1:2 cultured in hydrogels showed the closest expression levels of NP-related markers to positive control hNP cells. The effects of compressive loading on chondrogenesis of hAF or hNP cell and hMSC coculture were dependent on the scaffold structure; the expression of cartilage-related markers in AF nanofibers was downregulated, whereas that in NP hydrogel was upregulated. Interestingly, we found that hMSC-derived osteogenic cells in the interface layer were turned into chondrogenic lineage cells, with decreased expression of osteogenic markers and increased expression of chondrogenic markers. CONCLUSIONS We demonstrate a unique approach using a biomimetic scaffold, IVD and stem cell coculture, and mechanical stimulation to tissue-engineer a biological IVD substitute. The results show that our approach provides both favorable physical and chemical cues through cell-matrix and cell-cell interactions and mechanobiological induction to enhance IVD generation ex vivo. Our findings may lead to viable tissue engineering applications of generating a functional biological IVD for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1685 Highland Ave, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, USA
| | - Brenton C Nelson
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1685 Highland Ave, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, USA
| | - Paul A Anderson
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1685 Highland Ave, Madison, WI, USA
| | - Thomas A Zdeblick
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1685 Highland Ave, Madison, WI, USA
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1685 Highland Ave, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, USA.
| |
Collapse
|
141
|
Lee JTY, Cheung KMC, Leung VYL. Correction for concentration overestimation of nucleic acids with phenol. Anal Biochem 2014; 465:179-86. [PMID: 25132565 DOI: 10.1016/j.ab.2014.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022]
Abstract
We report a computational method based on ultraviolet (UV) spectra for correcting the overestimated concentrations of nucleic acid samples contaminated with TRIzol/phenol. The derived correction formulas were validated using RNA solutions, double-stranded DNA solutions, and single-stranded oligonucleotide solutions. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) with SYBR Green was performed to assess the level of TRIzol contamination that can be tolerated for gene expression quantification. After the correction, the accuracy of the RNA concentrations was greatly improved and there was no significant difference in the threshold cycle (Ct) values for GAPDH and ACAN genes in RT-qPCR obtained for RNA contaminated with up to 0.1% TRIzol (phenol level index [PLI]∼5.8-5.9). Similarly, accuracy improvements were also observed for DNA or oligonucleotides contaminated with phenol using different concentration correction formulas. In addition, the Ct values and amplification efficiency of DNA in qPCR were not affected by TRIzol contamination below 1%. This computational method is easy and convenient to use and reduces the concentration overestimations greatly.
Collapse
Affiliation(s)
- Juliana T Y Lee
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong.
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong.
| | - Victor Y L Leung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong.
| |
Collapse
|
142
|
Gupta MS, Nicoll SB. Functional nucleus pulposus-like matrix assembly by human mesenchymal stromal cells is directed by macromer concentration in photocrosslinked carboxymethylcellulose hydrogels. Cell Tissue Res 2014; 358:527-39. [PMID: 25092545 DOI: 10.1007/s00441-014-1962-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023]
Abstract
Intervertebral disc (IVD) degeneration is associated with several pathophysiologic changes of the IVD, including dehydration of the nucleus pulposus (NP). Tissue engineering strategies may be used to restore both biological and mechanical function of the IVD following removal of NP tissue during surgical intervention. Recently, photocrosslinked carboxymethylcellulose (CMC) hydrogels were shown to support chondrogenic, NP-like extracellular matrix (ECM) elaboration by human mesenchymal stromal cells (hMSCs) when supplemented with TGF-β3; however, mechanical properties of these constructs did not reach native values. Fabrication parameters (i.e., composition, crosslinking density) can influence the bulk mechanical properties of hydrogel scaffolds, as well as cellular behavior and differentiation patterns. The objective of this study was to evaluate the influence of CMC macromer concentration (1.5, 2.5 and 3.5 % weight/volume) on bulk hydrogel properties and NP-like matrix elaboration by hMSCs. The lowest macromer concentration of 1.5 % exhibited the highest gene expression levels of aggrecan and collagen II at day 7, corresponding with the largest accumulation of glycosaminoglycans and collagen II by day 42. The ECM elaboration in the 1.5 % constructs was more homogeneously distributed compared to primarily pericellular localization in 3.5 % gels. The 1.5 % gels also displayed significant improvements in mechanical functionality by day 42 compared to earlier time points, which was not seen in the other groups. The effects of macromer concentration on matrix accumulation and organization are likely attributed to quantifiable differences in polymer crosslinking density and diffusive properties between the various hydrogel formulations. Taken together, these results demonstrate that macromer concentration of CMC hydrogels can direct hMSC matrix elaboration, such that a lower polymer concentration allows for greater NP-like ECM assembly and improvement of mechanical properties over time.
Collapse
Affiliation(s)
- Michelle S Gupta
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | | |
Collapse
|
143
|
Dynamic pressurization induces transition of notochordal cells to a mature phenotype while retaining production of important patterning ligands from development. Arthritis Res Ther 2014; 15:R122. [PMID: 24427812 PMCID: PMC3978427 DOI: 10.1186/ar4302] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Introduction Notochordal cells (NCs) pattern aneural and avascular intervertebral discs (IVDs), and their disappearance, is associated with onset of IVD degeneration. This study induced and characterized the maturation of nucleus pulposus (NP) tissue from a gelatinous NC-rich structure to a matrix-rich structure populated by small NP cells using dynamic pressurization in an ex vivo culture model, and also identified soluble factors from NCs with therapeutic potential. Methods Porcine NC-rich NP tissue was cultured and loaded with hydrostatic pressure (0.5 to 2 MPa at 0.1 Hz for 2 hours) either Daily, for 1 Dose, or Control (no pressurization) groups for up to eight days. Cell phenotype and tissue maturation was characterized with measurements of cell viability, cytomorphology, nitric oxide, metabolic activity, matrix composition, gene expression, and proteomics. Results Daily pressurization induced transition of NCs to small NP cells with 73.8%, 44%, and 28% NCs for Control, 1 Dose and Daily groups, respectively (P < 0.0002) and no relevant cell death. Dynamic loading matured NP tissue by significantly increasing metabolic activity and accumulating Safranin-O-stained matrix. Load-induced maturation was also apparent from the significantly decreased glycolytic, cytoskeletal (Vimentin) and stress-inducible (HSP70) proteins assessed with proteomics. Loading increased the production of bioactive proteins Sonic Hedgehog (SHH) and Noggin, and maintained Semaphorin3A (Sema3A). Discussion NP tissue maturation was induced from dynamic hydrostatic pressurization in a controlled ex vivo environment without influence from systemic effects or surrounding structures. NCs transitioned into small nonvacuolated NP cells probably via differentiation as evidenced by high cell viability, lack of nitric oxide and downregulation of stress-inducible and cytoskeletal proteins. SHH, Sema3A, and Noggin, which have patterning and neurovascular-inhibiting properties, were produced in both notochordal and matured porcine NP. Results therefore provide an important piece of evidence suggesting the transition of NCs to small NP cells is a natural part of aging and not the initiation of degeneration. Bioactive candidates identified from young porcine IVDs may be isolated and harnessed for therapies to target discogenic back pain.
Collapse
|
144
|
Modulating notochordal differentiation of human induced pluripotent stem cells using natural nucleus pulposus tissue matrix. PLoS One 2014; 9:e100885. [PMID: 25054208 PMCID: PMC4108471 DOI: 10.1371/journal.pone.0100885] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/02/2014] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can differentiate into notochordal cell (NC)-like cells when cultured in the presence of natural porcine nucleus pulposus (NP) tissue matrix. The method promises massive production of high-quality, functional cells to treat degenerative intervertebral discs (IVDs). Based on our previous work, we further examined the effect of cell-NP matrix contact and culture medium on the differentiation, and further assessed the functional differentiation ability of the generated NC-like. The study showed that direct contact between hiPSCs and NP matrix can promote the differentiation yield, whilst both the contact and non-contact cultures can generate functional NC-like cells. The generated NC-like cells are highly homogenous regarding the expression of notochordal marker genes. A culture medium containing a cocktail of growth factors (FGF, EGF, VEGF and IGF-1) also supported the notochordal differentiation in the presence of NP matrix. The NC-like cells showed excellent functional differentiation ability to generate NP-like tissue which was rich in aggrecan and collagen type II; and particularly, the proteoglycan to collagen content ratio was as high as 12.5–17.5 which represents a phenotype close to NP rather than hyaline cartilage. Collectively, the present study confirmed the effectiveness and flexibility of using natural NP tissue matrix to direct notochordal differentiation of hiPSCs, and the potential of using the generated NC-like cells for treating IVD degeneration.
Collapse
|
145
|
Leung VY, Aladin DM, Lv F, Tam V, Sun Y, Lau RY, Hung SC, Ngan AH, Tang B, Lim CT, Wu EX, Luk KD, Lu WW, Masuda K, Chan D, Cheung KM. Mesenchymal Stem Cells Reduce Intervertebral Disc Fibrosis and Facilitate Repair. Stem Cells 2014; 32:2164-77. [DOI: 10.1002/stem.1717] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/01/2014] [Accepted: 03/20/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Victor Y.L. Leung
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
- Department of Biochemistry; The University of Hong Kong; Hong Kong SAR People's Republic of China
- Centre for Reproduction, Development, and Growth; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Darwesh M.K. Aladin
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
- Mechanobiology Institute; National University of Singapore; Singapore
| | - Fengjuan Lv
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Vivian Tam
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Yi Sun
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Roy Y.C. Lau
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Siu-Chun Hung
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Alfonso H.W. Ngan
- Department of Mechanical Engineering; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Bin Tang
- Department of Micro-nano Materials and Devices; South University of Science and Technology of China; Guangzhou People's Republic of China
| | - Chwee Teck Lim
- Mechanobiology Institute; National University of Singapore; Singapore
- Department of Bioengineering; National University of Singapore; Singapore
- Department of Mechanical Engineering; National University of Singapore; Singapore
| | - Ed X. Wu
- Department of Electrical & Electronic Engineering; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Keith D.K. Luk
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - William W. Lu
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Koichi Masuda
- Department of Orthopaedic Surgery; University of California; San Diego California USA
| | - Danny Chan
- Department of Biochemistry; The University of Hong Kong; Hong Kong SAR People's Republic of China
- Centre for Reproduction, Development, and Growth; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Kenneth M.C. Cheung
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
- Centre for Reproduction, Development, and Growth; The University of Hong Kong; Hong Kong SAR People's Republic of China
| |
Collapse
|
146
|
van den Akker GGH, Surtel DAM, Cremers A, Rodrigues-Pinto R, Richardson SM, Hoyland JA, van Rhijn LW, Welting TJM, Voncken JW. Novel immortal human cell lines reveal subpopulations in the nucleus pulposus. Arthritis Res Ther 2014; 16:R135. [PMID: 24972717 PMCID: PMC4227062 DOI: 10.1186/ar4597] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 06/19/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Relatively little is known about cellular subpopulations in the mature nucleus pulposus (NP). Detailed understanding of the ontogenetic, cellular and molecular characteristics of functional intervertebral disc (IVD) cell populations is pivotal to the successful development of cell replacement therapies and IVD regeneration. In this study, we aimed to investigate whether phenotypically distinct clonal cell lines representing different subpopulations in the human NP could be generated using immortalization strategies. Methods Nondegenerate healthy disc material (age range, 8 to 15 years) was obtained as surplus surgical material. Early passage NP monolayer cell cultures were initially characterized using a recently established NP marker set. NP cells were immortalized by simian virus 40 large T antigen (SV40LTag) and human telomerase reverse transcriptase expression. Immortalized cells were clonally expanded and characterized based on collagen type I, collagen type II, α1 (COL2A1), and SRY-box 9 (SOX9) protein expression profiles, as well as on expression of a subset of established in vivo NP cell lineage markers. Results A total of 54 immortal clones were generated. Profiling of a set of novel NP markers (CD24, CA12, PAX1, PTN, FOXF1 and KRT19 mRNA) in a representative set of subclones substantiated successful immortalization of multiple cellular subpopulations from primary isolates and confirmed their NP origin and/or phenotype. We were able to identify two predominant clonal NP subtypes based on their morphological characteristics and their ability to induce SOX9 and COL2A1 under conventional differentiation conditions. In addition, cluster of differentiation 24 (CD24)–negative NP responder clones formed spheroid structures in various culture systems, suggesting the preservation of a more immature phenotype compared to CD24-positive nonresponder clones. Conclusions Here we report the generation of clonal NP cell lines from nondegenerate human IVD tissue and present a detailed characterization of NP cellular subpopulations. Differential cell surface marker expression and divergent responses to differentiation conditions suggest that the NP subtypes may correspond to distinct maturation stages and represent distinct NP cell subpopulations. Hence, we provide evidence that the immortalization strategy that we applied is capable of detecting cell heterogeneity in the NP. Our cell lines yield novel insights into NP biology and provide promising new tools for studies of IVD development, cell function and disease.
Collapse
|
147
|
Smith CA, Richardson SM, Eagle MJ, Rooney P, Board T, Hoyland JA. The use of a novel bone allograft wash process to generate a biocompatible, mechanically stable and osteoinductive biological scaffold for use in bone tissue engineering. J Tissue Eng Regen Med 2014; 9:595-604. [PMID: 24945627 DOI: 10.1002/term.1934] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/29/2014] [Accepted: 05/21/2014] [Indexed: 01/02/2023]
Abstract
Fresh-frozen biological allograft remains the most effective substitute for the 'gold standard' autograft, sharing many of its osteogenic properties but, conversely, lacking viable osteogenic cells. Tissue engineering offers the opportunity to improve the osseointegration of this material through the addition of mesenchymal stem cells (MSCs). However, the presence of dead, immunogenic and potentially harmful bone marrow could hinder cell adhesion and differentiation, graft augmentation and incorporation, and wash procedures are therefore being utilized to remove the marrow, thereby improving the material's safety. To this end, we assessed the efficiency of a novel wash technique to produce a biocompatible, biological scaffold void of cellular material that was mechanically stable and had osteoinductive potential. The outcomes of our investigations demonstrated the efficient removal of marrow components (~99.6%), resulting in a biocompatible material with conserved biomechanical stability. Additionally, the scaffold was able to induce osteogenic differentiation of MSCs, with increases in osteogenic gene expression observed following extended culture. This study demonstrates the efficiency of the novel wash process and the potential of the resultant biological material to serve as a scaffold in bone allograft tissue engineering.
Collapse
Affiliation(s)
- C A Smith
- Centre for Tissue Injury and Repair, University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
148
|
Liu Y, Fu S, Rahaman MN, Mao JJ, Bal BS. Native nucleus pulposus tissue matrix promotes notochordal differentiation of human induced pluripotent stem cells with potential for treating intervertebral disc degeneration. J Biomed Mater Res A 2014; 103:1053-9. [PMID: 24889905 DOI: 10.1002/jbm.a.35243] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/17/2022]
Abstract
Native porcine nucleus pulposus (NP) tissue harbors a number of notochordal cells (NCs). Whether the native NP matrix supports the homeostasis of notochordal cells is poorly understood. We hypothesized the NP matrix alone may contain sufficient regulatory factors and can serve as stimuli to generate notochordal cells (NCs) from human pluripotent stem cells. NCs are a promising cell sources for cell-based therapy to treat some types of intervertebral disc (IVD) degeneration. One major limitation of this emerging technique is the lack of available NCs as a potential therapeutic cell source. Human pluripotent stem cells derived from reprogramming or somatic cell nuclear transfer technique may yield stable and unlimited source for therapeutic use. We devised a new method to use porcine NP matrix to direct notochordal differentiation of human induced pluripotent stem cells (hiPSCs). The results showed that hiPSCs successfully differentiated into NC-like cells under the influence of devitalized porcine NP matrix. The NC-like cells expressed typical notochordal marker genes including brachyury (T), cytokeratin-8 (CK-8) and cytokeratin-18 (CK-18), and they displayed the ability to generate NP-like tissue in vitro, which was rich in aggrecan and collagen type II. These findings demonstrated the proof of concept for using native NP matrix to direct notochordal differentiation of hiPSCs. It provides a foundation for further understanding the biology of NCs, and eventually towards regenerative therapies for disc degeneration.
Collapse
Affiliation(s)
- Yongxing Liu
- Center for Bone and Tissue Repair and Regeneration, and Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri, 65409; Innovative Elements LLC, New York, New York, 10032
| | | | | | | | | |
Collapse
|
149
|
Li Z, Kaplan KM, Wertzel A, Peroglio M, Amit B, Alini M, Grad S, Yayon A. Biomimetic fibrin–hyaluronan hydrogels for nucleus pulposus regeneration. Regen Med 2014; 9:309-26. [DOI: 10.2217/rme.14.5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: To develop a biomimetic polymeric injectable hydrogel that can support nucleus pulposus (NP) regeneration. Materials & methods: Natural polymer-based hydrogels were synthesized using fibrinogen (FBG) and hyaluronic acid (HA), conjugated by a novel two-step procedure. Bovine NP cells were cultured in FBG–HA conjugate-based 3D beads in vitro and in a nucleotomized organ culture model. Results: FBG–HA conjugate-based hydrogels prepared with 235 KDa HA at a FBG/HA w/w ratio of 17:1 showed superior gel stability and mechanical properties and markedly increased glycosaminoglycan synthesis compared with a FBG/HA mixture-based hydrogels or fibrin gels. Gene-expression levels of NP markers were maintained in vitro. In organ culture, NP cells seeded in FBG–HA conjugate-based hydrogels showed better integration with native NP tissue compared with fibrin gels. Moreover, FBG–HA conjugate-based hydrogels restored compressive stiffness and disc height after nucleotomy under dynamic load. Conclusion: Specific FBG–HA conjugate-based hydrogels may be suitable as injectable materials for minimally invasive, biological NP regeneration.
Collapse
Affiliation(s)
- Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | | | | | | | - Boaz Amit
- ProCore Biomed Ltd, Weizman Science Park, Nes Ziona, Israel
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Avner Yayon
- ProCore Biomed Ltd, Weizman Science Park, Nes Ziona, Israel
| |
Collapse
|
150
|
An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:1803-14. [DOI: 10.1007/s00586-014-3305-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/21/2014] [Accepted: 04/06/2014] [Indexed: 12/29/2022]
|