101
|
Mallick P, Maity S, Chakrabarti O, Chakrabarti S. Role of systems biology and multi-omics analyses in delineating spatial interconnectivity and temporal dynamicity of ER stress mediated cellular responses. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119210. [PMID: 35032474 DOI: 10.1016/j.bbamcr.2022.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous organelle involved in calcium storage, lipid biosynthesis, protein folding and processing. Many patho-physiological conditions and pharmacological agents are known to perturb normal ER function and can lead to ER stress, which severely compromise protein folding mechanism and hence poses high risk of proteotoxicity. Upon sensing ER stress, the different stress signaling pathways interconnect with each other and work together to preserve cellular homeostasis. ER stress response is a part of the integrative stress response (ISR) and might play an important role in the pathogenesis of chronic neurodegenerative diseases, where misfolded protein accumulation and cell death are common. The initiation, manifestation and progression of ER stress mediated unfolded protein response (UPR) is a complex procedure involving multiple proteins, pathways and cellular organelles. To understand the cause and consequences of such complex processes, implementation of an integrative holistic approach is required to identify novel players and regulators of ER stress. As multi-omics data-based systems analyses have shown potential to unravel the underneath molecular mechanism of complex biological systems, it is important to emphasize the utility of this approach in understanding the ER stress biology. In this review we first discuss the ER stress signaling pathways and regulatory players, along with their inter-connectivity. We next highlight the importance of systems and network biology approaches using multi-omics data in understanding ER stress mediated cellular responses. This report would help advance our current understanding of the multivariate spatial interconnectivity and temporal dynamicity of ER stress.
Collapse
Affiliation(s)
- Priyanka Mallick
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata Pin 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata Pin 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
102
|
Dutta N, Garcia G, Higuchi-Sanabria R. Hijacking Cellular Stress Responses to Promote Lifespan. FRONTIERS IN AGING 2022; 3:860404. [PMID: 35821861 PMCID: PMC9261414 DOI: 10.3389/fragi.2022.860404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.
Collapse
|
103
|
Bian XK, Guo JL, Xu SX, Han YW, Lee SC, Zhao JZ. Hexavalent chromium induces centrosome amplification through ROS-ATF6-PLK4 pathway in colon cancer cells. Cell Biol Int 2022; 46:1128-1136. [PMID: 35293662 DOI: 10.1002/cbin.11791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/11/2022]
Abstract
Centrosome amplification (CA) refers to a numerical increase in centrosomes resulting in cells with more than two centrosomes. CA has been shown to initiate tumorigenesis and increase the invasive potential of cancer cells in genetically modified experimental models. Hexavalent chromium is a recognized carcinogen that causes CA and tumorigenesis as well as promotes cancer metastasis. Thus, CA appears to be a biological link between chromium and cancer. In the present study we investigated how chromium triggers CA. Our results showed that a sub-toxic concentration of chromium induced CA in HCT116 colon cancer cells, resulted in the production of reactive oxygen species (ROS), activated ATF6 without causing endoplasmic reticulum stress, and upregulated the protein level of PLK4. Inhibition of ROS production, ATF6 activation, or PLK4 upregulation attenuated CA. Inhibition of ROS using N-acetyl-L-cysteine (NAC) inhibited chromium-induced activation of ATF6 and upregulation of PLK4. ATF6-specific siRNA knocked down the protein level and activation of ATF6, and upregulated PLK4, with no effect on ROS production. Knockdown of PLK4 protein had no effect on chromium-induced ROS production or activation of ATF6. In conclusion, our results suggest that hexavalent chromium induces CA via the ROS-ATF6-PLK4 pathway and provides molecular targets for inhibiting chromium-mediated CA, which may be useful for the assessment of CA in chromium-promoted tumorigenesis and cancer cell metastasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xue Kai Bian
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| | - Jia Li Guo
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| | - Si Xian Xu
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| | - Ya Wen Han
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| | - Shao Chin Lee
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| | - Ji Zhong Zhao
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Jiangsu, 221112, PR China
| |
Collapse
|
104
|
Zhou CQ, Ka W, Zhang HJ, Li YL, Gao P, Long RJ, Yang SW, Wang JL. RNA-Seq Analysis of the Key Long Noncoding RNAs and mRNAs Related to the Regulation of Acute Heat Stress in Rainbow Trout. Animals (Basel) 2022; 12:ani12030325. [PMID: 35158649 PMCID: PMC8833469 DOI: 10.3390/ani12030325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 01/14/2023] Open
Abstract
Simple Summary At present, climate warming is a very serious environmental problem. A sudden and large increase or decrease in temperature is likely to cause stress response in animals. Rainbow trout is a kind of cultured cold-water fish, which is very sensitive to high temperature. Therefore, it is very vulnerable to heat waves during production. The current study found that the behavior, antioxidant capacity, and natural immune function of rainbow trout under acute heat stress were significantly enhanced in the early stages of stress response, but its anti-stress ability decreased with an increase in stress intensity and duration. Transcriptome sequencing and bioinformatics analysis showed that some non-coding RNAs could competitively bind to target genes, and jointly participate in metabolism, apoptosis, and the immune regulation of rainbow trout under stress environments. In conclusion, our study can lay a theoretical foundation for the breeding of heat-resistant rainbow trout varieties. Abstract As the global climate warms, more creatures are threatened by high temperatures, especially cold-water fish such as rainbow trout. Evidence has demonstrated that long noncoding RNAs (lncRNAs) play a pivotal role in regulating heat stress in animals, but we have little understanding of this regulatory mechanism. The present study aimed to identify potential key lncRNAs involved in regulating acute heat stress in rainbow trout. lncRNA and mRNA expression profiles of rainbow trout head kidney were analyzed via high-throughput RNA sequencing, which exhibited that 1256 lncRNAs (802 up-regulation, 454 down-regulation) and 604 mRNAs (353 up-regulation, 251 down-regulation) were differentially expressed. These differentially expressed genes were confirmed to be primarily associated with immune regulation, apoptosis, and metabolic process signaling pathways through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and coding-noncoding co-expression network analysis. These results suggested that 18 key lncRNA-mRNA pairs are essential in regulating acute heat stress in rainbow trout. Overall, these analyses showed the effects of heat stress on various physiological functions in rainbow trout at the transcriptome level, providing a theoretical basis for improving the production and breeding of rainbow trout and the selection of new heat-resistant varieties.
Collapse
Affiliation(s)
- Chang-Qing Zhou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (C.-Q.Z.); (P.G.)
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Wei Ka
- Gansu Fishery Research Institute, Lanzhou 730000, China;
| | - Hui-Jun Zhang
- Gansu Agriculture Technology College, Lanzhou 730000, China; (H.-J.Z.); (Y.-L.L.)
| | - Ya-Lan Li
- Gansu Agriculture Technology College, Lanzhou 730000, China; (H.-J.Z.); (Y.-L.L.)
| | - Pan Gao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (C.-Q.Z.); (P.G.)
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Rui-Jun Long
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Shun-Wen Yang
- Gansu Fishery Research Institute, Lanzhou 730000, China;
- Correspondence: (S.-W.Y.); (J.-L.W.)
| | - Jian-Lin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (C.-Q.Z.); (P.G.)
- Correspondence: (S.-W.Y.); (J.-L.W.)
| |
Collapse
|
105
|
Yan S, Sun M, Gao L, Yao N, Feng T, Yang Y, Li X, Hu W, Cui W, Li B. Identification of Key LncRNAs and Pathways in Prediabetes and Type 2 Diabetes Mellitus for Hypertriglyceridemia Patients Based on Weighted Gene Co-Expression Network Analysis. Front Endocrinol (Lausanne) 2022; 12:800123. [PMID: 35140684 PMCID: PMC8818867 DOI: 10.3389/fendo.2021.800123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
Aims Prevalence of prediabetes and type 2 diabetes mellitus(T2DM) are increasing worldwide. Key lncRNAs were detected to provide a reference for searching potential biomarkers of prediabetes and T2DM in hypertriglyceridemia patients. Methods The study included 18 hypertriglyceridemia patients: 6 newly diagnosed type 2 diabetes patients, 6 samples with prediabetes and 6 samples with normal blood glucose. Weighted gene co-expression network analysis (WGCNA) was conducted to construct co-expression network and obtain modules related to blood glucose, thus detecting key lncRNAs. Results The green, yellow and yellow module was significantly related to blood glucose in T2DM versus normal controls, T2DM versus prediabetes, prediabetes versus normal controls, respectively. ENST00000503273, ENST00000462720, ENST00000480633 and ENST00000485392 were detected as key lncRNAs for the above three groups, respectively. Conclusions For hypertriglyceridemia patients with different blood glucose levels, ENST00000503273, ENST00000462720 and ENST00000480633 could be potential biomarkers of T2DM.
Collapse
Affiliation(s)
- Shoumeng Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Mengzi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Lichao Gao
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, China
| | - Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Tianyu Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Wenyu Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
106
|
Shivarudrappa AH, Sharan K, Ponesakki G. Lutein activates downstream signaling pathways of unfolded protein response in hyperglycemic ARPE-19 cells. Eur J Pharmacol 2022; 914:174663. [PMID: 34861209 DOI: 10.1016/j.ejphar.2021.174663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
We have earlier demonstrated that lutein effectively prevents hyperglycemia generated sustained oxidative stress in ARPE-19 cells by activating Nrf2 (nuclear factor erythroid 2-related factor 2) signaling. Since evidence portrays an intricate connection between ER (endoplasmic reticulum) stress and hyperglycemia-mediated oxidative stress, we aimed to explore the protective mechanism of lutein on hyperglycemia-induced ER stress in ARPE-19 cells. To determine the effect of lutein, we probed three major downstream branches of unfolded protein response (UPR) signaling pathways using western blot, immunofluorescent and RT-PCR techniques. The data showed a reduction (38%) in protein expression of an imperative ER chaperon, BiP (binding immunoglobulin protein), in glucose-treated ARPE-19 cells. At the same time, lutein pretreatment blocked this glucose-mediated effect, leading to a significant increase in BiP expression. Lutein promoted the phosphorylation of IRE1 (inositol requiring enzyme 1) and subsequent splicing of XBP1 (X-box binding protein 1), leading to enhanced nuclear translocation. Likewise, lutein activated the expression and translocation of transcription factors, ATF6 (activating transcription factor 6) and ATF4 (activating transcription factor 4) suppressed by hyperglycemia. Lutein also increased CHOP (C/EBP-homologous protein) levels in ARPE-19 cultured under high glucose conditions. The mRNA expression study showed that lutein pretreatment upregulates downstream UPR genes HRD1 (ERAD-associated E3 ubiquitin-protein ligase HRD1), p58IPK (protein kinase inhibitor p58) compared to high glucose treatment alone. From our study, it is clear that lutein show protection against hyperglycemia-mediated ER stress in ARPE-19 cells by activating IRE1-XBP1, ATF6, and ATF4 pathways and their downstream activators. Thus, lutein may have the pharmacological potential for protection against widespread disease conditions of ER stress.
Collapse
Affiliation(s)
- Arpitha Haranahalli Shivarudrappa
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ganesan Ponesakki
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute (CLRI), Chennai, 600 020, India.
| |
Collapse
|
107
|
Chlorocholine chloride induced testosterone secretion inhibition mediated by endoplasmic reticulum stress in primary rat Leydig cells. Toxicol Lett 2021; 356:161-171. [PMID: 34958886 DOI: 10.1016/j.toxlet.2021.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Chlorocholine chloride (CCC) is well acknowledged as a plant growth regulator and may be considered as a potential environmental endocrine disrupting chemical. In our previous studies, it was found that CCC exposure at a pubertal stage reduced the serum and testicular levels of testosterone, decreased the sperm motility and delayed the puberty onset. However, the molecular mechanisms of CCC-induced testosterone secretion disorders remain unclear. In this study, we found that CCC exposure above 20 μg/mL inhibited the secretion of testosterone in Sprague-Dawley rats Leydig cells. Proteomic and pathway enrichment analysis indicated that CCC might induce endoplasmic reticulum (ER) stress. Western blot detection showed CCC exposure at 100, 200 μg/mL increased the protein level of glucose-regulated protein 78 (GPR78), C/EBP-homologous protein (CHOP), the ubiquitin-conjugating enzyme E2 D1 (UBE2D1) and the ring finger protein (RNF185) in the Leydig cells. The Leydig cells treated with 4-phenyl butyric acid (4-PBA), an ER stress inhibitor, rescued the testosterone secretion disorders and alleviated CCC-induced increase in the ER stress related protein levels at 200 μg/mL CCC treatment. Overall, CCC in vitro exposure might disturb testosterone production of Leydig cells and endoplasmic reticulum stress was involved in it.
Collapse
|
108
|
Ramdas Nair A, Lakhiani P, Zhang C, Macchi F, Sadler KC. A permissive epigenetic landscape facilitates distinct transcriptional signatures of activating transcription factor 6 in the liver. Genomics 2021; 114:107-124. [PMID: 34863900 DOI: 10.1016/j.ygeno.2021.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/31/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022]
Abstract
Restoring homeostasis following proteostatic stress hinges on a stress-specific transcriptional signature. How these signatures are regulated is unknown. We use functional genomics to uncover how activating transcription factor 6 (ATF6), a central factor in the unfolded protein response, regulates its target genes in response to toxicant induced and physiological stress in the liver. We identified 652 conserved putative ATF6 targets (CPATs), which functioned in metabolism, development and proteostasis. Strikingly, Atf6 activation in the zebrafish liver by transgenic nAtf6 overexpression, ethanol and arsenic exposure resulted in a distinct CPAT signature for each; with only 34 CPATs differentially expressed in all conditions. In contrast, during liver regeneration in mice resulted in a dynamic differential expression pattern of 53% of CPATs. These CPATs were distinguished by residing in open chromatin, H3K4me3 occupancy and the absence of H3K27me3 on their promoters. This suggests that a permissive epigenetic landscape allows stress-specific Atf6 target gene expression.
Collapse
Affiliation(s)
- Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, PO Box. 129188, Abu Dhabi, United Arab Emirates
| | - Priyanka Lakhiani
- Program in Biology, New York University Abu Dhabi, PO Box. 129188, Abu Dhabi, United Arab Emirates
| | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, PO Box. 129188, Abu Dhabi, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, PO Box. 129188, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, PO Box. 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
109
|
Increased Post-Hypoxic Oxidative Stress and Activation of the PERK Branch of the UPR in Trap1-Deficient Drosophila melanogaster Is Abrogated by Metformin. Int J Mol Sci 2021; 22:ijms222111586. [PMID: 34769067 PMCID: PMC8583878 DOI: 10.3390/ijms222111586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is known to impair mitochondrial and endoplasmic reticulum (ER) homeostasis. Post-hypoxic perturbations of the ER proteostasis result in the accumulation of misfolded/unfolded proteins leading to the activation of the Unfolded Protein Response (UPR). Mitochondrial chaperone TNF receptor-associated protein 1 (TRAP1) is reported to preserve mitochondrial membrane potential and to impede reactive oxygen species (ROS) production thereby protecting cells from ER stress as well as oxidative stress. The first-line antidiabetic drug Metformin has been attributed a neuroprotective role after hypoxia. Interestingly, Metformin has been reported to rescue mitochondrial deficits in fibroblasts derived from a patient carrying a homozygous TRAP1 loss-of-function mutation. We sought to investigate a putative link between Metformin, TRAP1, and the UPR after hypoxia. We assessed post-hypoxic/reperfusion longevity, mortality, negative geotaxis, ROS production, metabolic activity, gene expression of antioxidant proteins, and activation of the UPR in Trap1-deficient flies. Following hypoxia, Trap1 deficiency caused higher mortality and greater impairments in negative geotaxis compared to controls. Similarly, post-hypoxic production of ROS and UPR activation was significantly higher in Trap1-deficient compared to control flies. Metformin counteracted the deleterious effects of hypoxia in Trap1-deficient flies but had no protective effect in wild-type flies. We provide evidence that TRAP1 is crucially involved in the post-hypoxic regulation of mitochondrial/ER stress and the activation of the UPR. Metformin appears to rescue Trap1-deficiency after hypoxia mitigating ROS production and downregulating the pro-apoptotic PERK (protein kinase R-like ER kinase) arm of the UPR.
Collapse
|
110
|
Chaudhary P, Sharma S, Singh R, Arya R. Elucidation of ER stress and UPR pathway in sialic acid-deficient cells: Pathological relevance to GNEM. J Cell Biochem 2021; 122:1886-1902. [PMID: 34555215 DOI: 10.1002/jcb.30148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022]
Abstract
Accumulation of misfolded proteins in endoplasmic reticulum (ER) generates a stress condition in the cell. The cell combats ER stress by activating unfolded protein response (UPR) and ERAD (ER stress-associated degradation) pathway. Failure to restore favorable folding environment results in cell dysfunction and apoptosis. Various neurodegenerative disorders are characterized by the accumulation of misfolded protein, protein aggregates, and ER stress. GNE myopathy (GNEM) is a neuromuscular disorder pathologically characterized by rimmed vacuole formation due to the accumulation of protein aggregates. More than 200 mutations in key sialic acid biosynthetic enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) have been identified worldwide in the muscle biopsies of GNE myopathy patients. However, the cellular and molecular pathomechanism leading to the disease ar poorly understood. In the present study, the phenomenon of ER stress has been elucidated in GNE mutant cells overexpressing GNE mutations of Indian origin. The effect of GNE mutations on activation of UPR signaling via inositol-requiring transmembrane kinase/endoribonuclease 1 (IRE-1), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor-6 (ATF6) were deciphered to understand the effect of GNE mutations on these proteins. GRP78 was upregulated with increased X-box-binding protein-1 (XBP-1) splicing and CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) upregulation leading to increased apoptosis of GNE mutant cells. Insulin-like growth factor 1 (IGF-1) ligand rescued the cells from apoptotic phenotype by supporting cell survival mechanism. Our study indicates a balance of cell death and survival that decides cell fate and offers potential therapeutic targets to combat ER stress in diseases associated with dysfunctional UPR pathway.
Collapse
Affiliation(s)
| | - Shweta Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Reema Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
111
|
Gao X, Xu Y. Therapeutic Effects of Natural Compounds and Small Molecule Inhibitors Targeting Endoplasmic Reticulum Stress in Alzheimer's Disease. Front Cell Dev Biol 2021; 9:745011. [PMID: 34540853 PMCID: PMC8440892 DOI: 10.3389/fcell.2021.745011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease, characterized by progressive cognitive impairment and memory loss. So far, the pathogenesis of AD has not been fully understood. Research have shown that endoplasmic reticulum (ER) stress and unfolded protein response (UPR) participate in the occurrence and development of AD. Furthermore, various studies, both in vivo and in vitro, have shown that targeting ER stress and ER stress-mediated apoptosis contribute to the recovery of AD. Thus, targeting ER stress and ER stress-mediated apoptosis may be effective for treating AD. In this review, the molecular mechanism of ER stress and ER stress-mediated apoptosis, as well as the therapeutic effects of some natural compounds and small molecule inhibitors targeting ER stress and ER stress-mediated apoptosis in AD will be introduced.
Collapse
Affiliation(s)
- Xun Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
112
|
Endoplasmic reticulum stress: Multiple regulatory roles in hepatocellular carcinoma. Biomed Pharmacother 2021; 142:112005. [PMID: 34426262 DOI: 10.1016/j.biopha.2021.112005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress is a basic cellular stress response that maintains cellular protein homeostasis under endogenous or exogenous stimuli, which depends on the stimulus, its intensity, and action time. The ER produces a corresponding cascade reaction for crosstalk of adaptive and/or pro-death regulation with other organelles. Hepatocellular carcinoma(HCC) is one of the most common malignant solid tumors with an extremely poor prognosis. Viral hepatitis infection, cirrhosis, and steatohepatitis are closely related to the occurrence and development of HCC, and ER stress has gradually been shown to be a major mechanism. Moreover, an increasing need for protein and lipid products and relative deficiencies of oxygen and nutrients for rapid proliferation and endoplasmic reticulum stress are undoubtedly involved. Therefore, to fully and comprehensively understand the regulatory role of endoplasmic reticulum stress in the occurrence and progression of HCC is of vital importance to explore its pathogenesis and develop novel anti-cancer strategies. METHODOLOGY We searched for relevant publications in the PubMed databases using the keywords "Endoplasmic reticulum stress", "hepatocellular carcinoma" in last five years,and present an overview of the current knowledge that links ER stress and HCC, which includes carcinogenesis, progression, and anti-cancer strategies, and propose directions of future research. RESULT ER stress were confirmed to be multiple regulators or effectors of cancer, which also be confirmed to drive tumorigenesis and progression of HCC. Targeting ER stress signaling pathway and related molecules could play a critical role for anti-HCC and has become a research hotspot for anti-cancer in recent years. CONCLUSION ER stress are critical for the processes of the tumorigenesis and progression of tumors. For HCC, ER stress was associated with tumorigenesis, development, metastasis, angiogenesis and drug resistance, targeting ER stress has emerged as a potential anti-tumor strategy.
Collapse
|
113
|
Ma M, Li H, Wang P, Yang W, Mi R, Zhuang J, Jiang Y, Lu Y, Shen X, Wu Y, Shen H. ATF6 aggravates angiogenesis-osteogenesis coupling during ankylosing spondylitis by mediating FGF2 expression in chondrocytes. iScience 2021; 24:102791. [PMID: 34296071 PMCID: PMC8281657 DOI: 10.1016/j.isci.2021.102791] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023] Open
Abstract
Although angiogenesis-osteogenesis coupling is important in ankylosing spondylitis (AS), therapeutic agents targeting the vasculature remain elusive. Here, we identified activating transcription factor 6 (ATF6) as an important regulator of angiogenesis in the pathogenesis of AS. First, we found that ATF6 and fibroblast growth factor 2 (FGF2) levels were higher in SKG mice and in cartilage of pateints with AS1. The proangiogenic activity of human chondrocytes was enhanced by the activation of the ATF6-FGF2 axis following 7 days of stimulation with inflammatory factors, e.g., tumor necrosis factor alpha (TNF-α), interferon-γ (IFN-γ) or interleukin-17 (IL-17). Mechanistically, ATF6 interacted with the FGF2 promotor and promoted its transcription. Treatment with the ATF6 inhibitor Ceapin-A7 inhibited angiogenesis in vitro and angiogenesis-osteogenesis coupling in vivo. ATF6 may aggravate angiogenesis-osteogenesis coupling during AS by mediating FGF2 transcription in chondrocytes, implying that ATF6 represents a promising therapeutic target for AS.
Collapse
Affiliation(s)
- Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Hongyu Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Wen Yang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Jiahao Zhuang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yuhang Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yixuan Lu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Xin Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
114
|
Mustapha S, Mohammed M, Azemi AK, Jatau AI, Shehu A, Mustapha L, Aliyu IM, Danraka RN, Amin A, Bala AA, Ahmad WANW, Rasool AHG, Mustafa MR, Mokhtar SS. Current Status of Endoplasmic Reticulum Stress in Type II Diabetes. Molecules 2021; 26:4362. [PMID: 34299638 PMCID: PMC8307902 DOI: 10.3390/molecules26144362] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/10/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) plays a multifunctional role in lipid biosynthesis, calcium storage, protein folding, and processing. Thus, maintaining ER homeostasis is essential for cellular functions. Several pathophysiological conditions and pharmacological agents are known to disrupt ER homeostasis, thereby, causing ER stress. The cells react to ER stress by initiating an adaptive signaling process called the unfolded protein response (UPR). However, the ER initiates death signaling pathways when ER stress persists. ER stress is linked to several diseases, such as cancer, obesity, and diabetes. Thus, its regulation can provide possible therapeutic targets for these. Current evidence suggests that chronic hyperglycemia and hyperlipidemia linked to type II diabetes disrupt ER homeostasis, thereby, resulting in irreversible UPR activation and cell death. Despite progress in understanding the pathophysiology of the UPR and ER stress, to date, the mechanisms of ER stress in relation to type II diabetes remain unclear. This review provides up-to-date information regarding the UPR, ER stress mechanisms, insulin dysfunction, oxidative stress, and the therapeutic potential of targeting specific ER stress pathways.
Collapse
Affiliation(s)
- Sagir Mustapha
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (S.M.); (A.K.A.); (A.H.G.R.)
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria 810107, Kaduna, Nigeria; (A.S.); (I.M.A.); (R.N.D.)
| | - Mustapha Mohammed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Pulau Pinang, Malaysia;
- Department of Clinical Pharmacy and Pharmacy Practice, Ahmadu Bello University, Zaria 810107, Kaduna, Nigeria
| | - Ahmad Khusairi Azemi
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (S.M.); (A.K.A.); (A.H.G.R.)
| | - Abubakar Ibrahim Jatau
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Aishatu Shehu
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria 810107, Kaduna, Nigeria; (A.S.); (I.M.A.); (R.N.D.)
| | - Lukman Mustapha
- Department of Pharmaceutical and Medicinal Chemistry, Kaduna State University, Kaduna 800241, Kaduna, Nigeria;
| | - Ibrahim Muazzamu Aliyu
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria 810107, Kaduna, Nigeria; (A.S.); (I.M.A.); (R.N.D.)
| | - Rabi’u Nuhu Danraka
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria 810107, Kaduna, Nigeria; (A.S.); (I.M.A.); (R.N.D.)
| | - Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin 240103, Kwara, Nigeria;
- Membrane Traffic Group, Instituto Gulbenkian de Ciencia, 2784-156 Lisbon, Portugal
| | - Auwal Adam Bala
- Department of Pharmacology, College of Medicine and Health Sciences, Federal University Dutse, Dutse 720281, Jigawa, Nigeria;
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University Kano, Kano 700241, Kano, Nigeria
| | - Wan Amir Nizam Wan Ahmad
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (S.M.); (A.K.A.); (A.H.G.R.)
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (S.M.); (A.K.A.); (A.H.G.R.)
| |
Collapse
|
115
|
Ren H, Zhai W, Lu X, Wang G. The Cross-Links of Endoplasmic Reticulum Stress, Autophagy, and Neurodegeneration in Parkinson's Disease. Front Aging Neurosci 2021; 13:691881. [PMID: 34168552 PMCID: PMC8218021 DOI: 10.3389/fnagi.2021.691881] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, and it is characterized by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), as well as the presence of intracellular inclusions with α-synuclein as the main component in surviving DA neurons. Emerging evidence suggests that the imbalance of proteostasis is a key pathogenic factor for PD. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and autophagy, two major pathways for maintaining proteostasis, play important roles in PD pathology and are considered as attractive therapeutic targets for PD treatment. However, although ER stress/UPR and autophagy appear to be independent cellular processes, they are closely related to each other. In this review, we focused on the roles and molecular cross-links between ER stress/UPR and autophagy in PD pathology. We systematically reviewed and summarized the most recent advances in regulation of ER stress/UPR and autophagy, and their cross-linking mechanisms. We also reviewed and discussed the mechanisms of the coexisting ER stress/UPR activation and dysregulated autophagy in the lesion regions of PD patients, and the underlying roles and molecular crosslinks between ER stress/UPR activation and the dysregulated autophagy in DA neurodegeneration induced by PD-associated genetic factors and PD-related neurotoxins. Finally, we indicate that the combined regulation of ER stress/UPR and autophagy would be a more effective treatment for PD rather than regulating one of these conditions alone.
Collapse
Affiliation(s)
- Haigang Ren
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wanqing Zhai
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Xiaojun Lu
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Guanghui Wang
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
116
|
Maintenance of Endoplasmic Reticulum Protein Homeostasis in Cancer: Friend or Foe. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021. [PMID: 34050868 DOI: 10.1007/978-3-030-67696-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The endoplasmic reticulum, as the site of synthesis for proteins in the secretory pathway has evolved select machineries to ensure the correct folding and modification of proteins. However, sometimes these quality control mechanisms fail and proteins are misfolded. Other factors, such as nutrient deprivation, hypoxia or an increased demand on protein synthesis can also cause the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. There are mechanisms that recognise and deal with this accumulation of protein through degradation and/or export. Many diseases are associated with aberrant quality control mechanisms, and among these, cancer has emerged as a group of diseases that rely on endoplasmic reticulum homeostasis to sustain development and growth. The knowledge of how protein quality control operates in cancer has identified opportunities for these pathways to be pharmacologically targeted, which could lead to newer or more effective treatments in the future.
Collapse
|
117
|
Gonzalez-Gronow M, Gopal U, Austin RC, Pizzo SV. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life 2021; 73:843-854. [PMID: 33960608 DOI: 10.1002/iub.2502] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum (ER)-resident molecular chaperone. GRP78 is a member of the 70 kDa heat shock family of proteins involved in correcting and clearing misfolded proteins in the ER. In response to cellular stress, GRP78 escapes from the ER and moves to the plasma membrane where it (a) functions as a receptor for many ligands, and (b) behaves as an autoantigen for autoantibodies that contribute to human disease and cancer. Cell surface GRP78 (csGRP78) associates with the major histocompatibility complex class I (MHC-I), and is the port of entry for several viruses, including the predictive binding of the novel SARS-CoV-2. Furthermore, csGRP78 is found in association with partners as diverse as the teratocarcinoma-derived growth factor 1 (Cripto), the melanocortin-4 receptor (MC4R) and the DnaJ-like protein MTJ-1. CsGRP78 also serves as a receptor for a large variety of ligands including activated α2 -macroglobulin (α2 M*), plasminogen kringle 5 (K5), microplasminogen, the voltage-dependent anion channel (VDAC), tissue factor (TF), and the prostate apoptosis response-4 protein (Par-4). In this review, we discuss the mechanisms involved in the translocation of GRP78 from the ER to the cell surface, and the role of secreted GRP78 and its autoantibodies in cancer and neurological disorders.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile.,Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Udhayakumar Gopal
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University and The Research Institute of St. Joseph's Hamilton, Hamilton, Ontario, Canada
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
118
|
Vidal RL, Sepulveda D, Troncoso-Escudero P, Garcia-Huerta P, Gonzalez C, Plate L, Jerez C, Canovas J, Rivera CA, Castillo V, Cisternas M, Leal S, Martinez A, Grandjean J, Sonia D, Lashuel HA, Martin AJM, Latapiat V, Matus S, Sardi SP, Wiseman RL, Hetz C. Enforced dimerization between XBP1s and ATF6f enhances the protective effects of the UPR in models of neurodegeneration. Mol Ther 2021; 29:1862-1882. [PMID: 33545358 PMCID: PMC8116614 DOI: 10.1016/j.ymthe.2021.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/14/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Alteration to endoplasmic reticulum (ER) proteostasis is observed in a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene expression programs through the concerted action of the transcription factors ATF4, ATF6f, and XBP1s. Although UPR signaling is generally studied as unique linear signaling branches, correlative evidence suggests that ATF6f and XBP1s may physically interact to regulate a subset of UPR target genes. In this study, we designed an ATF6f/XBP1s fusion protein termed UPRplus that behaves as a heterodimer in terms of its selective transcriptional activity. Cell-based studies demonstrated that UPRplus has a stronger effect in reducing the abnormal aggregation of mutant huntingtin and α-synuclein when compared to XBP1s or ATF6 alone. We developed a gene transfer approach to deliver UPRplus into the brain using adeno-associated viruses (AAVs) and demonstrated potent neuroprotection in vivo in preclinical models of Parkinson's disease and Huntington's disease. These results support the concept in which directing UPR-mediated gene expression toward specific adaptive programs may serve as a possible strategy to optimize the beneficial effects of the pathway in different disease conditions.
Collapse
Affiliation(s)
- René L Vidal
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Denisse Sepulveda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Paulina Troncoso-Escudero
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Paula Garcia-Huerta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Constanza Gonzalez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Lars Plate
- Department of Chemistry, Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Carolina Jerez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - José Canovas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudia A Rivera
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Valentina Castillo
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Marisol Cisternas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Sirley Leal
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Alexis Martinez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Julia Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Donzelli Sonia
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alberto J M Martin
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Veronica Latapiat
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Soledad Matus
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Fundacion Ciencia Vida, Santiago 7780272, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia 7510157, Santiago, Chile
| | - S Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi, 49 New York Avenue, Framingham, MA, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
119
|
Yuan S, Fang Y, Tang M, Hu Z, Rao C, Chen J, Xia Y, Zhang M, Yan J, Tang B, He X, Xie J, Mao X, Li Q. Tauroursodeoxycholic acid prevents Burkholderia pseudomallei-induced endoplasmic reticulum stress and is protective during melioidosis in mice. BMC Microbiol 2021; 21:137. [PMID: 33947331 PMCID: PMC8094575 DOI: 10.1186/s12866-021-02199-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background Burkholderia pseudomallei, a facultative intracellular bacterium, is the aetiological agent of melioidosis that is responsible for up to 40% sepsis-related mortality in epidemic areas. However, no effective vaccine is available currently, and the drug resistance is also a major problem in the treatment of melioidosis. Therefore, finding new clinical treatment strategies in melioidosis is extremely urgent. Results We demonstrated that tauroursodeoxycholic acid (TUDCA), a clinically available endoplasmic reticulum (ER) stress inhibitor, can promote B. pseudomallei clearance both in vivo and in vitro. In this study, we investigated the effects of TUDCA on the survival of melioidosis mice, and found that treatment with TUDCA significantly decreased intracellular survival of B. pseudomallei. Mechanistically, we found that B. pseudomallei induced apoptosis and activated IRE1 and PERK signaling ways of ER stress in RAW264.7 macrophages. TUDCA treatment could reduce B. pseudomallei-induced ER stress in vitro, and TUDCA is protective in vivo. Conclusion Taken together, our study has demonstrated that B. pseudomallei infection results in ER stress-induced apoptosis, and TUDCA enhances the clearance of B. pseudomallei by inhibiting ER stress-induced apoptosis both in vivo and in vitro, suggesting that TUDCA could be used as a potentially alternative treatment for melioidosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02199-x.
Collapse
Affiliation(s)
- Siqi Yuan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China.,Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yao Fang
- Department of Respiratory, General Hospital of Center Theater Command, Wuhan, 400070, China
| | - Mengling Tang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China.,Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Zhiqiang Hu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiangao Chen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China.,Department of General Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yupei Xia
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Meijuan Zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Bin Tang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaoyi He
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
120
|
Store-Operated Calcium Entry: Shaping the Transcriptional and Epigenetic Landscape in Pancreatic Cancer. Cells 2021; 10:cells10050966. [PMID: 33919156 PMCID: PMC8143176 DOI: 10.3390/cells10050966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) displays a particularly poor prognosis and low survival rate, mainly due to late diagnosis and high incidence of chemotherapy resistance. Genomic aberrations, together with changes in the epigenomic profile, elicit a shift in cellular signaling response and a transcriptional reprograming in pancreatic tumors. This endows them with malignant attributes that enable them to not only overcome chemotherapeutic challenges, but to also attain diverse oncogenic properties. In fact, certain genetic amplifications elicit a rewiring of calcium signaling, which can confer ER stress resistance to tumors while also aberrantly activating known drivers of oncogenic programs such as NFAT. While calcium is a well-known second messenger, the transcriptional programs driven by aberrant calcium signaling remain largely undescribed in pancreatic cancer. In this review, we focus on calcium-dependent signaling and its role in epigenetic programs and transcriptional regulation. We also briefly discuss genetic aberration events, exemplifying how genetic alterations can rewire cellular signaling cascades, including calcium-dependent ones.
Collapse
|
121
|
Wu L, Guo T, Deng R, Liu L, Yu Y. Apigenin Ameliorates Insulin Resistance and Lipid Accumulation by Endoplasmic Reticulum Stress and SREBP-1c/SREBP-2 Pathway in Palmitate-Induced HepG2 Cells and High-Fat Diet-Fed Mice. J Pharmacol Exp Ther 2021; 377:146-156. [PMID: 33509902 DOI: 10.1124/jpet.120.000162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is the common basis of diabetes and cardiovascular diseases, and its development is closely associated with lipid metabolism disorder. Flavonoids have definite chemical defense effects, including anti-inflammatory effects, anticancer effects, and antimutation effects. However, the function and mechanism of apigenin (AP, a kind of flavonoid) in IR are still unclear. In our study, intracellular fat accumulation model cells and high-fat diet (HFD)-fed model mice were established using palmitate (PA) and HFD. Mechanistically, we first demonstrated that AP could notably downregulate sterol regulatory element-binding protein 1c (SREBP-1c), sterol regulatory element-binding protein 2 (SREBP-2), fatty acid synthase, stearyl-CoA desaturase 1, and 3-hydroxy-3-methyl-glutaryl-CoA reductase in PA-induced hyperlipidemic cells and mice. Functionally, we verified that AP could markedly reduce lipid accumulation in PA-induced hyperlipidemic cells and decrease the body weight, visceral fat weight, IR, and lipid accumulation in HFD-induced hyperlipidemic mice. Besides, we showed that PA could significantly downregulate endoplasmic reticulum stress (ERS)-related proteins and inhibit ERS. Furthermore, we proved that AP could reduce blood lipids by inhibiting ERS in PA-induced hyperlipidemic cells. Meanwhile, 4-phenyl butyric acid (also called ERS alleviator), like AP, could significantly reduce blood lipids and alleviate IR in HFD-fed model mice. Therefore, we concluded that AP could substantially improve the disorder of lipid metabolism, and its mechanism might be related to the decrease of SREBP-1c, SREBP-2, and downstream genes, the inhibition of ERS, and the reduction of blood lipids and IR. SIGNIFICANCE STATEMENT: Apigenin, a nontoxic and naturally sourced flavonoid, has antihyperlipidemic properties in mice and hepatocyte. This study highlights a new mechanism of apigenin and proposes that these hypolipidemic effects are associated with the mitigation of endoplasmic reticulum stress and insulin resistance in diet-induced obesity. This study might provide translational insight into the prevention and treatment of apigenin in hyperlipidemia-related diseases.
Collapse
Affiliation(s)
- Liling Wu
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tingdong Guo
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ranxi Deng
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lusheng Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
122
|
Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: a dynamic duo in multiple myeloma. Cell Mol Life Sci 2021; 78:3883-3906. [PMID: 33599798 PMCID: PMC8106603 DOI: 10.1007/s00018-021-03756-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Under physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.
Collapse
Affiliation(s)
- Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| | - Jianbiao Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
123
|
Caengprasath N, Theerapanon T, Porntaveetus T, Shotelersuk V. MBTPS2, a membrane bound protease, underlying several distinct skin and bone disorders. J Transl Med 2021; 19:114. [PMID: 33743732 PMCID: PMC7981912 DOI: 10.1186/s12967-021-02779-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
The MBTPS2 gene on the X-chromosome encodes the membrane-bound transcription factor protease, site-2 (MBTPS2) or site-2 protease (S2P) which cleaves and activates several signaling and regulatory proteins from the membrane. The MBTPS2 is critical for a myriad of cellular processes, ranging from the regulation of cholesterol homeostasis to unfolded protein responses. While its functional role has become much clearer in the recent years, how mutations in the MBTPS2 gene lead to several human disorders with different phenotypes including Ichthyosis Follicularis, Atrichia and Photophobia syndrome (IFAP) with or without BRESHECK syndrome, Keratosis Follicularis Spinulosa Decalvans (KFSD), Olmsted syndrome, and Osteogenesis Imperfecta type XIX remains obscure. This review presents the biological role of MBTPS2 in development, summarizes its mutations and implicated disorders, and discusses outstanding unanswered questions.
Collapse
Affiliation(s)
- Natarin Caengprasath
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
124
|
Araújo de Melo Campos JT, Dantas de Medeiros JL, Cardoso de Melo ME, Alvares da Silva M, Oliveira de Sena M, Sales Craveiro Sarmento A, Fassarella Agnez Lima L, de Freitas Fregonezi GA, Gomes Lima J. Endoplasmic reticulum stress and muscle dysfunction in congenital lipodystrophies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166120. [PMID: 33713793 DOI: 10.1016/j.bbadis.2021.166120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/17/2023]
Abstract
Lipodystrophy syndromes are a group of rare diseases related to the pathological impairment of adipose tissue and metabolic comorbidities, including dyslipidemia, diabetes, insulin resistance, hypoleptinemia, and hypoadiponectinemia. They can be categorized as partial or generalized according to the degree of fat loss, and inherited or acquired disorders, if they are associated with genetic mutations or are related to autoimmunity, respectively. Some types of lipodystrophies have been associated with changes in both redox and endoplasmic reticulum (ER) homeostasis as well as muscle dysfunction (MD). Although ER stress (ERS) has been related to muscle dysfunction (MD) in many diseases, there is no data concerning its role in lipodystrophies' muscle physiopathology. Here we focused on congenital lipodystrophies associated with ERS and MD. We also described recent advances in our understanding of the relationships among ERS, MD, and genetic lipodystrophies, highlighting the adiponectin-protective roles.
Collapse
Affiliation(s)
- Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Jorge Luiz Dantas de Medeiros
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Maria Eduarda Cardoso de Melo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Monique Alvares da Silva
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Matheus Oliveira de Sena
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Aquiles Sales Craveiro Sarmento
- Unidade de Laboratório de Análises Clínicas e Anatomia Patológica, Hospital Universitário de Lagarto (HUL)/UFS, Lagarto, SE, Brazil
| | - Lucymara Fassarella Agnez Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Guilherme Augusto de Freitas Fregonezi
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Laboratório de Inovação Tecnológica em Reabilitação, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes (HUOL)/UFRN, Natal, RN, Brazil
| |
Collapse
|
125
|
Liu J, Yi S, Shi W, Zhang G, Wang S, Qi Q, Cong B, Li Y. The Pathology of Morphine-Inhibited Nerve Repair and Morphine-Induced Nerve Damage Is Mediated via Endoplasmic Reticulum Stress. Front Neurosci 2021; 15:618190. [PMID: 33679302 PMCID: PMC7935558 DOI: 10.3389/fnins.2021.618190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023] Open
Abstract
Objective The aim of the present study was to observe the pathological damage in the cerebral cortex of rats under acute morphine exposure (AME) and different durations of morphine dependence (MD), explore whether endoplasmic reticulum stress (ERS) is involved in the damage process, and assess the effect of morphine exposure on the proliferation and differentiation of newborn neurons. Methods Rat models of AME and different durations of MD were established. Pathological changes in cortical neurons were assessed by hematoxylin and eosin (H&E) and thionine staining. The expression of nuclear receptor-related factor 1 (NURR1) and that of the ERS-related proteins glucose-regulated protein 78 (GRP78), p-eIF2α, activating transcription factor 6 (ATF6), and CHOP in cortical neurons was assessed by immunohistochemistry. Double immunofluorescence labeling was used to observe the expression of Ki-67. Results H&E and thionine staining revealed that AME resulted in pyknotic changes in cortical neurons. With prolonged morphine exposure, the number of pyknotic neurons was significantly increased, the protein expression of Ki-67 and NURR1 was significantly decreased, and the protein levels of GRP78, p-eIF2α, ATF6, and CHOP showed marked dynamic changes. Conclusion AME and different durations of MD caused varying degrees of pathological changes in the cortex. Furthermore, the dynamic changes observed in ERS-related protein expression suggested that ERS may be associated with cortical injury. Different durations of MD inhibited the proliferation, differentiation, and migration of newborn neurons, which may affect the nerve repair process after injury.
Collapse
Affiliation(s)
- Jie Liu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Center of Basic Medical Sciences, Department of Pathology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Shanyong Yi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Weibo Shi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guozhong Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Songjun Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Qian Qi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
126
|
Orhan C, Tuzcu M, Gencoglu H, Sahin E, Sahin N, Ozercan IH, Namjoshi T, Srivastava V, Morde A, Rai D, Padigaru M, Sahin K. Different Doses of β-Cryptoxanthin May Secure the Retina from Photooxidative Injury Resulted from Common LED Sources. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6672525. [PMID: 33628377 PMCID: PMC7895591 DOI: 10.1155/2021/6672525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
Retinal damage associated with loss of photoreceptors is a hallmark of eye diseases such as age-related macular degeneration (AMD) and diabetic retinopathy. Potent nutritional antioxidants were previously shown to abate the degenerative process in AMD. β-Cryptoxanthin (BCX) is an essential dietary carotenoid with antioxidant, anti-inflammatory, and provitamin A activity. It is a potential candidate for developing intervention strategies to delay the development/progression of AMD. In the current study, the effect of a novel, highly purified BCX oral formulation on the rat retinal damage model was evaluated. Rats were fed with BCX for four weeks at the doses of 2 and 4 mg/kg body weight in the form of highly bioavailable oil suspension, followed by retinal damage by exposing to the bright light-emitting diode (LED) light (750 lux) for 48 hrs. Animals were sacrificed after 48 hours, and eyes and blood samples were collected and analyzed. BCX supplementations (2 and 4 mg/kg) showed improvements in the visual condition as demonstrated by histopathology of the retina and measured parameters such as total retinal thickness and outer nuclear layer thickness. BCX supplementation helped reduce the burden of oxidative stress as seen by decreased serum and retinal tissue levels of malondialdehyde (MDA) and restored the antioxidant enzyme activities in BCX groups. Further, BCX supplementation modulated inflammatory markers (IL-1β, IL-6, and NF-κB), apoptotic proteins (Bax, Bcl-2, caspase 3), growth proteins and factors (GAP43, VEGF), glial and neuronal proteins (GFAP, NCAM), and heme oxygenase-1 (HO-1), along with the mitochondrial stress markers (ATF4, ATF6, Grp78, Grp94) in the rat retinal tissue. This study indicates that oral supplementation of BCX exerts a protective effect on light-induced retinal damage in the rats via reducing oxidative stress and inflammation, also protected against mitochondrial DNA damage and cellular death.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey
| | - Hasan Gencoglu
- Division of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| | | | - Tejas Namjoshi
- OmniActive Health Technologies, Biotechnology Park, Pune 411057, India
| | | | - Abhijeet Morde
- OmniActive Health Technologies, Wagle Estate, Thane 400604, India
| | - Deshanie Rai
- OmniActive Health Technologies Inc, Morristown, NJ 07960, USA
| | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| |
Collapse
|
127
|
MEHDIZADEHTAPEH L, OBAKAN YERLİKAYA P. Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. Turk J Biol 2021; 45:1-16. [PMID: 33597817 PMCID: PMC7877716 DOI: 10.3906/biy-2010-62] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/04/2021] [Indexed: 01/11/2023] Open
Abstract
Breast cancer, as a heterogenous malign disease among the top five leading causes of cancer death worldwide, is defined as by far the most common malignancy in women. It contributes to 25% of all cancer-associated deaths after menopause. Breast cancer is categorized based on the expression levels of cell surface and intracellular steroid receptors [estrogen, progesterone receptors, and human epidermal growth factor receptor (HER2)], and the treatment approaches frequently include antiestrogen, aromatase inhibitors, and Herceptin. However, the management and prevention strategies due to adverse side effects stress the patients. The unsuccessful treatments cause to raise the drug levels, leading to excessive toxic effects on healthy cells, and the development of multidrug-resistance (MDR) in the tumor cells against chemotherapeutic agents. MDR initially causes the tumor cells to gain a metastatic character, and subsequently, the patients do not respond adequately to treatment. Endoplasmic reticulum (ER) stress is one of the most important mechanisms supporting MDR development. ER stress-mediated chemotherapeutic resistance is very common in aggressive tumors. The in vitro and in vivo experiments on breast tumors indicate that ER stress-activated protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)- activating transcription factor (ATF4) signal axis plays an important role in the survival of tumors and metastasis. Besides, ER stress-associated oncogenic microRNAs (miRNAs) induce chemoresistance in breast tumors. We aimed to have a look at the development of resistance mechanisms due to ER stress as well as the involvement of ER stress-associated miRNA regulation following the chemotherapeutic regimen in the human breast tumors. We also aimed to draw attention to potential molecular markers and therapeutic targets.
Collapse
Affiliation(s)
- Leila MEHDIZADEHTAPEH
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Kültür University, İstanbulTurkey
| | - Pınar OBAKAN YERLİKAYA
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Kültür University, İstanbulTurkey
| |
Collapse
|
128
|
Féral K, Jaud M, Philippe C, Di Bella D, Pyronnet S, Rouault-Pierre K, Mazzolini L, Touriol C. ER Stress and Unfolded Protein Response in Leukemia: Friend, Foe, or Both? Biomolecules 2021; 11:biom11020199. [PMID: 33573353 PMCID: PMC7911881 DOI: 10.3390/biom11020199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive signaling pathway triggered by a stress of the endoplasmic reticulum (ER) lumen compartment, which is initiated by the accumulation of unfolded proteins. This response, mediated by three sensors-Inositol Requiring Enzyme 1 (IRE1), Activating Transcription Factor 6 (ATF6), and Protein Kinase RNA-Like Endoplasmic Reticulum Kinase (PERK)—allows restoring protein homeostasis and maintaining cell survival. UPR represents a major cytoprotective signaling network for cancer cells, which frequently experience disturbed proteostasis owing to their rapid proliferation in an usually unfavorable microenvironment. Increased basal UPR also participates in the resistance of tumor cells against chemotherapy. UPR activation also occurs during hematopoiesis, and growing evidence supports the critical cytoprotective role played by ER stress in the emergence and proliferation of leukemic cells. In case of severe or prolonged stress, pro-survival UPR may however evolve into a cell death program called terminal UPR. Interestingly, a large number of studies have revealed that the induction of proapoptotic UPR can also strongly contribute to the sensitization of leukemic cells to chemotherapy. Here, we review the current knowledge on the consequences of the deregulation of UPR signaling in leukemias and their implications for the treatment of these diseases.
Collapse
Affiliation(s)
- Kelly Féral
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Manon Jaud
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Doriana Di Bella
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Stéphane Pyronnet
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Kevin Rouault-Pierre
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Laurent Mazzolini
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- CNRS ERL5294, CRCT, F-31037 Toulouse, France
- Correspondence: (L.M.); (C.T.)
| | - Christian Touriol
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
- Correspondence: (L.M.); (C.T.)
| |
Collapse
|
129
|
Xu J, Taubert S. Beyond Proteostasis: Lipid Metabolism as a New Player in ER Homeostasis. Metabolites 2021; 11:52. [PMID: 33466824 PMCID: PMC7830277 DOI: 10.3390/metabo11010052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Biological membranes are not only essential barriers that separate cellular and subcellular structures, but also perform other critical functions such as the initiation and propagation of intra- and intercellular signals. Each membrane-delineated organelle has a tightly regulated and custom-made membrane lipid composition that is critical for its normal function. The endoplasmic reticulum (ER) consists of a dynamic membrane network that is required for the synthesis and modification of proteins and lipids. The accumulation of unfolded proteins in the ER lumen activates an adaptive stress response known as the unfolded protein response (UPR-ER). Interestingly, recent findings show that lipid perturbation is also a direct activator of the UPR-ER, independent of protein misfolding. Here, we review proteostasis-independent UPR-ER activation in the genetically tractable model organism Caenorhabditis elegans. We review the current knowledge on the membrane lipid composition of the ER, its impact on organelle function and UPR-ER activation, and its potential role in human metabolic diseases. Further, we summarize the bi-directional interplay between lipid metabolism and the UPR-ER. We discuss recent progress identifying the different respective mechanisms by which disturbed proteostasis and lipid bilayer stress activate the UPR-ER. Finally, we consider how genetic and metabolic disturbances may disrupt ER homeostasis and activate the UPR and discuss how using -omics-type analyses will lead to more comprehensive insights into these processes.
Collapse
Affiliation(s)
- Jiaming Xu
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
130
|
Fu X, Cui J, Meng X, Jiang P, Zheng Q, Zhao W, Chen X. Endoplasmic reticulum stress, cell death and tumor: Association between endoplasmic reticulum stress and the apoptosis pathway in tumors (Review). Oncol Rep 2021; 45:801-808. [PMID: 33469681 PMCID: PMC7859917 DOI: 10.3892/or.2021.7933] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
External and internal stimuli are often involved in the pathogenesis of tumors, and the deterioration of endoplasmic reticulum (ER) function within cells is also an important etiological factor of tumorigenesis resulting in the impairment of the endoplasmic reticulum, which is termed ER stress. The ER is an organelle that serves a crucial role in the process of protein synthesis and maturation, and also acts as a reservoir of calcium to maintain intracellular Ca2+ homeostasis. ER stress has been revealed to serve a critical role in tumorigenesis. In the present review, the association between ER stress‑related pathways and tumor cell apoptosis is examined. Primarily, the role of ER stress in tumor cell apoptosis is discussed, and it is stipulated that ER stress, induced by drugs both directly and indirectly, promotes tumor cell apoptosis.
Collapse
Affiliation(s)
- Xiaojing Fu
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Juanjuan Cui
- Qingdao Municipal Hospital, Qingdao (Group), Qingdao, Shandong 266071, P.R. China
| | - Xiangjun Meng
- Qingdao Mental Health Center, Qingdao, Shandong 266071, P.R. China
| | - Piyu Jiang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Qiuling Zheng
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wenwen Zhao
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
131
|
Akman M, Belisario DC, Salaroglio IC, Kopecka J, Donadelli M, De Smaele E, Riganti C. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:28. [PMID: 33423689 PMCID: PMC7798239 DOI: 10.1186/s13046-020-01824-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Solid tumors often grow in a micro-environment characterized by < 2% O2 tension. This condition, together with the aberrant activation of specific oncogenic patwhays, increases the amount and activity of the hypoxia-inducible factor-1α (HIF-1α), a transcription factor that controls up to 200 genes involved in neoangiogenesis, metabolic rewiring, invasion and drug resistance. Hypoxia also induces endoplasmic reticulum (ER) stress, a condition that triggers cell death, if cells are irreversibly damaged, or cell survival, if the stress is mild.Hypoxia and chronic ER stress both induce chemoresistance. In this review we discuss the multiple and interconnected circuitries that link hypoxic environment, chronic ER stress and chemoresistance. We suggest that hypoxia and ER stress train and select the cells more adapted to survive in unfavorable conditions, by activating pleiotropic mechanisms including apoptosis inhibition, metabolic rewiring, anti-oxidant defences, drugs efflux. This adaptative process unequivocally expands clones that acquire resistance to chemotherapy.We believe that pharmacological inhibitors of HIF-1α and modulators of ER stress, although characterized by low specificty and anti-cancer efficacy when used as single agents, may be repurposed as chemosensitizers against hypoxic and chemorefractory tumors in the next future.
Collapse
Affiliation(s)
- Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | | | | | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| |
Collapse
|
132
|
Kim T, Croce CM. MicroRNA and ER stress in cancer. Semin Cancer Biol 2021; 75:3-14. [PMID: 33422566 DOI: 10.1016/j.semcancer.2020.12.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The development of biological technologies in genomics, proteomics, and bioinformatics has led to the identification and characterization of the complete set of coding genes and their roles in various cellular pathways in cancer. Nevertheless, the cellular pathways have not been fully figured out like a jigsaw puzzle with missing pieces. The discovery of noncoding RNAs including microRNAs (miRNAs) has provided the missing pieces of the cellular pathways. Likewise, miRNAs have settled many questions of inexplicable patches in the endoplasmic reticulum (ER) stress pathways. The ER stress-caused pathways typified by the unfolded protein response (UPR) are pivotal processes for cellular homeostasis and survival, rectifying uncontrolled proteostasis and determining the cell fate. Although various factors and pathways have been studied and characterized, the understanding of the ER stress requires more wedges to fill the cracks of knowledge about the ER stress pathways. Moreover, the roles of the ER stress and UPR are still controversial in cancer despite their strong potential to promote cancer. The noncoding RNAs, in particular, miRNAs aid in a better understanding of the ER stress and its role in cancer. In this review, miRNAs that are the more-investigated subtype of noncoding RNAs are focused on the interpretation of the ER stress in cancer, following the introduction of miRNA and ER stress.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
133
|
Pothion H, Jehan C, Tostivint H, Cartier D, Bucharles C, Falluel-Morel A, Boukhzar L, Anouar Y, Lihrmann I. Selenoprotein T: An Essential Oxidoreductase Serving as a Guardian of Endoplasmic Reticulum Homeostasis. Antioxid Redox Signal 2020; 33:1257-1275. [PMID: 32524825 DOI: 10.1089/ars.2019.7931] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Selenoproteins incorporate the essential nutrient selenium into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), the exact function of most of which is poorly understood. Especially, how ER-resident selenoproteins control the ER redox and ionic environment is largely unknown. Since alteration of ER function is observed in many diseases, the elucidation of the role of selenoproteins could enhance our understanding of the mechanisms involved in ER homeostasis. Recent Advances: Among selenoproteins, selenoprotein T (SELENOT) is remarkable as the most evolutionarily conserved and the only ER-resident selenoprotein whose gene knockout in mouse is lethal. Recent data indicate that SELENOT contributes to ER homeostasis: reduced expression of SELENOT in transgenic cell and animal models promotes accumulation of reactive oxygen and nitrogen species, depletion of calcium stores, activation of the unfolded protein response and impaired hormone secretion. Critical Issues: SELENOT is anchored to the ER membrane and associated with the oligosaccharyltransferase complex, suggesting that it regulates the early steps of N-glycosylation. Furthermore, it exerts a selenosulfide oxidoreductase activity carried by its thioredoxin-like domain. However, the physiological role of the redox activity of SELENOT is not fully understood. Likewise, the nature of its redox partners needs to be further characterized. Future Directions: Given the impact of ER stress in pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, understanding the role of SELENOT and developing derived therapeutic tools such as selenopeptides to improve ER proteostasis and prevent ER stress could contribute to a better management of these diseases.
Collapse
Affiliation(s)
- Hugo Pothion
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hervé Tostivint
- Physiologie moléculaire et Adaptation, UMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Anthony Falluel-Morel
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Loubna Boukhzar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
134
|
Zhao T, Du J, Zeng H. Interplay between endoplasmic reticulum stress and non-coding RNAs in cancer. J Hematol Oncol 2020; 13:163. [PMID: 33267910 PMCID: PMC7709275 DOI: 10.1186/s13045-020-01002-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
To survive, cancer cells are subjected to various internal and external adverse factors, including genetic mutations, hypoxia, nutritional deficiencies, and drug toxicity. All of these factors result in the accumulation of unfolded proteins in the endoplasmic reticulum, which leads to a condition termed endoplasmic reticulum stress (ER stress) and triggers the unfolded protein response (UPR). UPR downstream components strictly control transcription and translation reprogramming to ensure selective gene expression, including that of non-coding RNA (ncRNAs), to adapt to adverse environments. NcRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play important roles in regulating target gene expression and protein translation, and their aberrant expression is related to tumor development. Dysregulation of ncRNAs is involved in the regulation of various cellular characteristics of cancer cells, including growth, apoptosis, metastasis, angiogenesis, drug sensitivity, and tumor stem cell properties. Notably, ncRNAs and ER stress can regulate each other and collaborate to determine the fate of tumor cells. Therefore, investigating the interaction between ER stress and ncRNAs is crucial for developing effective cancer treatment and prevention strategies. In this review, we summarize the ER stress-triggered UPR signaling pathways involved in carcinogenesis followed by the mutual regulation of ER stress and ncRNAs in cancer, which provide further insights into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
135
|
Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol 2020; 66:116-128. [PMID: 31838023 PMCID: PMC7325862 DOI: 10.1016/j.semcancer.2019.11.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Cancer cells encounter numerous stresses that pose a threat to their survival. Tumor microenviroment stresses that perturb protein homeostasis can produce endoplasmic reticulum (ER) stress, which can be counterbalanced by triggering the unfolded protein response (UPR) which is considered the canonical ER stress response. The UPR is characterized by three major proteins that lead to specific changes in transcriptional and translational programs in stressed cells. Activation of the UPR can induce apoptosis, but also can induce cytoprotective programs such as autophagy. There is increasing appreciation for the role that UPR-induced autophagy plays in supporting tumorigenesis and cancer therapy resistance. More recently several new pathways that connect cell stresses, components of the UPR and autophagy have been reported, which together can be viewed as non-canonical ER stress responses. Here we review recent findings on the molecular mechanisms by which canonical and non-canonical ER stress responses can activate cytoprotective autophagy and contribute to tumor growth and therapy resistance. Autophagy has been identified as a druggable pathway, however the components of autophagy (ATG genes) have proven difficult to drug. It may be the case that targeting the UPR or non-canonical ER stress programs can more effectively block cytoprotective autophagy to enhance cancer therapy. A deeper understanding of these pathways could provide new therapeutic targets in cancer.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nektaria Maria Leli
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravi K Amaravadi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
136
|
Mukherjee D, Bercz LS, Torok MA, Mace TA. Regulation of cellular immunity by activating transcription factor 4. Immunol Lett 2020; 228:24-34. [PMID: 33002512 DOI: 10.1016/j.imlet.2020.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Activating transcription factor 4 (ATF4) is a DNA binding transcription factor belonging to the family of basic Leucine zipper proteins. ATF4 can be activated in response to multiple cellular stress signals including endoplasmic reticulum stress in the event of improper protein folding or oxidative stress because of mitochondrial dysfunction as well as hypoxia. There are multiple downstream targets of ATF4 that can coordinate the regulation between survival and apoptosis of a cell based on time and exposure to stress. ATF4, therefore, has a broad range of control that results in the modulation of immune cells of the innate and adaptive responses leading to regulation of the cellular immunity. Studies provide evidence that ATF4 can regulate immune cells such as macrophages, T cells, B cells, NK cells and dendritic cells contributing to progression of disease. Immune cells can be exposed to stressed environment in the event of a pathogen attack, infection, inflammation, or in the tumor microenvironment leading to increased ATF4 activity to regulate these responses. ATF4 can further control differentiation and maturation of different immune cell types becoming a determinant of effective immune regulation. Additionally, ATF4 has been heavily implicated in rendering effector immune cells dysfunctional that are used to target tumorigenesis. Therefore, there is a need to evaluate where the literature stands in understanding the overall role of ATF4 in regulating cellular immunity to identify therapeutic targets and generalized mechanisms for different disease progressions.
Collapse
Affiliation(s)
- Debasmita Mukherjee
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lena S Bercz
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Molly A Torok
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Thomas A Mace
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
137
|
Ghemrawi R, Khair M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E6127. [PMID: 32854418 PMCID: PMC7503386 DOI: 10.3390/ijms21176127] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important organelle involved in protein quality control and cellular homeostasis. The accumulation of unfolded proteins leads to an ER stress, followed by an adaptive response via the activation of the unfolded protein response (UPR), PKR-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) and activating transcription factor 6 (ATF6) pathways. However, prolonged cell stress activates apoptosis signaling leading to cell death. Neuronal cells are particularly sensitive to protein misfolding, consequently ER and UPR dysfunctions were found to be involved in many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prions diseases, among others characterized by the accumulation and aggregation of misfolded proteins. Pharmacological UPR modulation in affected tissues may contribute to the treatment and prevention of neurodegeneration. The association between ER stress, UPR and neuropathology is well established. In this review, we provide up-to-date evidence of UPR activation in neurodegenerative disorders followed by therapeutic strategies targeting the UPR and ameliorating the toxic effects of protein unfolding and aggregation.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, UAE
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi 129188, UAE;
| |
Collapse
|
138
|
Song Q, He Z, Li B, Liu J, Liu L, Liao W, Xiong Y, Song C, Yang S, Liu Y. Melatonin inhibits oxalate-induced endoplasmic reticulum stress and apoptosis in HK-2 cells by activating the AMPK pathway. Cell Cycle 2020; 19:2600-2610. [PMID: 32871086 DOI: 10.1080/15384101.2020.1810401] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Deposition of various crystal and organic substances in the kidney can lead to kidney stone formation. Melatonin is an effective endogenous antioxidant that can prevent crystalluria and kidney damage due to crystal formation and aggregation. In this study, we investigated the mechanism by which melatonin inhibits endoplasmic reticulum (ER) stress and apoptosis. Methods: We treated HK-2 cells with oxalate to establish an in vitro kidney stone model, and treated these cells with different concentrations of melatonin (0, 5, 10, 20 μmol/L) and the AMP-activated protein kinase (AMPK) inhibitor Compound C. We measured levels of stress response markers including reactive oxygen species (ROS), lactate dehydrogenase (LDH), glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), and factors in the stress response pathway, such as ATF6, GRP78, DDIT3, PERK, p-PERK, IRE1, p-IRE1, XBP1s, AMPK, and p-AMPK, using real time-PCR, western blot, and immunofluorescence analyzes. We measured mitochondrial membrane potential and caspases-3 activity using the CCK8, enzyme-linked immunosorbent, and flow cytometry assays to assess HK-2 cell viability and apoptosis. Results: Melatonin improved the total antioxidant capacity (T-AOC) of the HK-2 cells, as evidenced by the dose-dependent reduction in apoptosis, ROS levels, and protein expression of ATF6, GRP78, DDIT3, p-PERK, p-IRE1, XBP1s, caspase-12, cleaved caspase-3 and cleaved caspase-9. Addition of the AMPK inhibitor, Compound C, partially reversed the protective effect of melatonin. Conclusion: Our study revealed that the protective effects of melatonin on oxalate-induced ER stress and apoptosis is partly dependent on AMPK activation in HK-2 cells. These findings provide insight into the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Bin Li
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Junwei Liu
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Lang Liu
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Yunlong Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
139
|
Proteotoxic Stress and Cell Death in Cancer Cells. Cancers (Basel) 2020; 12:cancers12092385. [PMID: 32842524 PMCID: PMC7563887 DOI: 10.3390/cancers12092385] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
To maintain proteostasis, cells must integrate information and activities that supervise protein synthesis, protein folding, conformational stability, and also protein degradation. Extrinsic and intrinsic conditions can both impact normal proteostasis, causing the appearance of proteotoxic stress. Initially, proteotoxic stress elicits adaptive responses aimed at restoring proteostasis, allowing cells to survive the stress condition. However, if the proteostasis restoration fails, a permanent and sustained proteotoxic stress can be deleterious, and cell death ensues. Many cancer cells convive with high levels of proteotoxic stress, and this condition could be exploited from a therapeutic perspective. Understanding the cell death pathways engaged by proteotoxic stress is instrumental to better hijack the proliferative fate of cancer cells.
Collapse
|
140
|
Fu J, Tao T, Li Z, Chen Y, Li J, Peng L. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications. Biomed Pharmacother 2020; 131:110658. [PMID: 32841895 DOI: 10.1016/j.biopha.2020.110658] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are a diverse group of neurological disorders, which are characterized by spontaneous recurrent seizures. Although a wide range of pathogenic mechanisms such as alterations in ion channels, inflammation and neuronal loss have been reported to be implicated in the epileptogenesis, the underlying pathogenesis of epilepsy remains unclear currently. Endoplasmic reticulum (ER) stress is regarded as a condition that unfolded or misfolded proteins accumulate in the ER lumen. Excessive or prolonged ER stress causes the activation of the unfolded protein response (UPR) to buffer ER stress and restore ER homeostasis. Increasing evidence has indicated dysregulated ER stress during epileptogenesis, which may participate in various pathological processes associated with epilepsy. In this present review, we summarized recent advances in the involvement of ER stress in the pathogenesis of epilepsy. Additionally, the antiepileptic and neuroprotective effects of interventions targeting ER stress were also discussed.
Collapse
Affiliation(s)
- Jie Fu
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China; Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Tao Tao
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Zuoxiao Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Yangmei Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jinglun Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| | - Lilei Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| |
Collapse
|
141
|
Aryal YP, Lee ES, Kim TY, Sung S, Kim JY, An SY, Jung JK, Ha JH, Suh JY, Yamamoto H, Sohn WJ, Cho SW, Lee Y, An CH, Kim JY. Stage-specific expression patterns of ER stress-related molecules in mice molars: Implications for tooth development. Gene Expr Patterns 2020; 37:119130. [PMID: 32758541 DOI: 10.1016/j.gep.2020.119130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023]
Abstract
The endoplasmic reticulum (ER) is a site where protein folding and posttranslational modifications occur, but when unfolded or misfolded proteins accumulate in the ER lumen, an unfolded protein response (UPR) occurs. A UPR activates ER-stress signalling genes, including inositol-requiring enzyme-1 (Ire1), activating transcription factor 6 (Atf6), and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (Perk), to maintain homeostasis. The involvement of ER stress molecules in metabolic disease and hard tissue matrix formation has been established; however, an understanding of the role of ER-stress signalling molecules in tooth development is lacking. The aims of this study are to define the stage-specific expression patterns of ER stress-related molecules and to elucidate their putative functions in the organogenesis of teeth. This study leverages knowledge of the tissue morphology and expression patterns of a range of signalling molecules during tooth development. RT-qPCR, in situ hybridization, and immunohistochemistry analyses were performed to determine the stage-specific expression patterns of ER-stress-related signalling molecules at important stages of tooth development. RT-qPCR analyses showed that Atf6 and Perk have similar expression levels during all stages of tooth development; however, the expression levels of Ire1 and its downstream target X-box binding protein (Xbp1) increased significantly from the cap to the secretory stage of tooth development. In situ hybridization results revealed that Atf6 and Xbp1 were expressed in cells that form the enamel knot at cap stage and ameloblasts and odontoblasts at secretory stage in stage-specific patterns. In addition, Atf6, Ire1, and Xbp1 expression exhibited distinct localization patterns in secretory odontoblasts and ameloblasts of PN0 molars. Overall, our results strongly suggest that ER-stress molecules are involved in tooth development in response to protein overload that occurs during signaling modulations from enamel knots at cap stage and extracellular matrix secretion at secretory stage.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Shijin Sung
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Incheon, South Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Sung-Won Cho
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea.
| |
Collapse
|
142
|
Huang WG, Wang J, Liu YJ, Wang HX, Zhou SZ, Chen H, Yang FW, Li Y, Yi Y, He YH. Endoplasmic Reticulum Stress Increases Multidrug-resistance Protein 2 Expression and Mitigates Acute Liver Injury. Curr Mol Med 2020; 20:548-557. [PMID: 31976833 DOI: 10.2174/1566524020666200124102411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/30/2019] [Accepted: 01/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multidrug-resistance protein (MRP) 2 is a key membrane transporter that is expressed on hepatocytes and regulated by nuclear factor kappa B (NF-κB). Interestingly, endoplasmic reticulum (ER) stress is closely associated with liver injury and the activation of NF-κB signaling. OBJECTIVE Here, we investigated the impact of ER stress on MRP2 expression and the functional involvement of MRP2 in acute liver injury. METHODS ER stress, MRP2 expression, and hepatocyte injury were analyzed in a carbon tetrachloride (CCl4)-induced mouse model of acute liver injury and in a thapsigargin (TG)-induced model of ER stress. RESULTS CCl4 and TG induced significant ER stress, MRP2 protein expression and NF- κB activation in mice and LO2 cells (P < 0.05). Pretreatment with ER stress inhibitor 4- phenyl butyric acid (PBA) significantly mitigated CCl4 and TG-induced ER stress and MRP2 protein expression (P < 0.05). Moreover, pretreatment with pyrrolidine dithiocarbamic acid (PDTC; NF-κB inhibitor) significantly inhibited CCl4-induced NF-κB activation and reduced MRP2 protein expression (1±0.097 vs. 0.623±0.054; P < 0.05). Furthermore, hepatic downregulation of MRP2 expression significantly increased CCl4- induced ER stress, apoptosis, and liver injury. CONCLUSION ER stress enhances intrahepatic MRP2 protein expression by activating NF-κB. This increase in MRP2 expression mitigates ER stress and acute liver injury.
Collapse
Affiliation(s)
- Wen-Ge Huang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Jun Wang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Yu-Juan Liu
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Hong-Xia Wang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Si-Zhen Zhou
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Huan Chen
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Fang-Wan Yang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Ying Li
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Yu Yi
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Yi-Huai He
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| |
Collapse
|
143
|
Wen Y, Luo F, Zhao Y, Su S, Shu M, Li Z. Chlamydia trachomatis plasmid-encoded protein pORF5 activates unfolded protein response to induce autophagy via MAPK/ERK signaling pathway. Biochem Biophys Res Commun 2020; 527:805-810. [PMID: 32446560 DOI: 10.1016/j.bbrc.2020.04.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Chlamydia trachomatis (C. trachomatis) is an obligate intracellular organism that depends on nutrients from the host cell for their replication and proliferation. Therefore, the interaction between this pathogen and host induces sustained endoplasmic reticulum (ER) stress in the infected cells. Unfolded protein response (UPR) has been demonstrated to be activated by chlamydial secreted effectors, allowing host cells to recover from the stressful state. In this study, we attempted to explore the role of the only secreted plasmid-encoded protein pORF5 of C. trachomatis between UPR and autophagy induction. The results showed that three branches of UPR (PERK, IRE1, and ATF6) were activated by pORF5. pORF5-induced autophagy was repressed by UPR inhibitors GSK2606414 and 4μ8C, while the autophagy inhibition was failed to influence pORF5-induced UPR significantly. MAPK/ERK inhibitor PD98059 partially suppressed the pORF5-induced autophagy, but had little effect on UPR, indicating that pORF5 actives UPR to induce autophagy via the MAPK/ERK signaling pathway. These observations provide clues on how the host maintains the cellular homeostasis during C. trachomatis infection.
Collapse
Affiliation(s)
- Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, PR China
| | - Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, PR China
| | - Yuqi Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, PR China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, PR China
| | - Mingyi Shu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, PR China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
144
|
Abstract
Background A growing body of literature suggests the cell–intrinsic activity of Atf6α during ER stress responses has implications for tissue cell number during growth and development, as well as in adult biology and tumorigenesis [1]. This concept is important, linking the cellular processes of secretory protein synthesis and endoplasmic reticulum stress response with functional tissue capacity and organ size. However, the field contains conflicting observations, especially notable in secretory cell types like the pancreatic beta cell. Scope of review Here we summarize current knowledge of the basic biology of Atf6α, along with the pleiotropic roles Atf6α plays in cell life and death decisions and possible explanations for conflicting observations. We include studies investigating the roles of Atf6α in cell survival, death and proliferation using well-controlled methodology and specific validated outcome measures, with a focus on endocrine and metabolic tissues when information was available. Major conclusions The net outcome of Atf6α on cell survival and cell death depends on cell type and growth conditions, the presence and degree of ER stress, and the duration and intensity of Atf6α activation. It is unquestioned that Atf6α activity influences the cell fate decision between survival and death, although opposite directions of this outcome are reported in different contexts. Atf6α can also trigger cell cycle activity to expand tissue cell number through proliferation. Much work remains to be done to clarify the many gaps in understanding in this important emerging field.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jarin T Snyder
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
145
|
Dash S, Aydin Y, Wu T. Integrated stress response in hepatitis C promotes Nrf2-related chaperone-mediated autophagy: A novel mechanism for host-microbe survival and HCC development in liver cirrhosis. Semin Cell Dev Biol 2020; 101:20-35. [PMID: 31386899 PMCID: PMC7007355 DOI: 10.1016/j.semcdb.2019.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanism(s) how liver damage during the chronic hepatitis C virus (HCV) infection evolve into cirrhosis and hepatocellular carcinoma (HCC) is unclear. HCV infects hepatocyte, the major cell types in the liver. During infection, large amounts of viral proteins and RNA replication intermediates accumulate in the endoplasmic reticulum (ER) of the infected hepatocyte, which creates a substantial amount of stress response. Infected hepatocyte activates a different type of stress adaptive mechanisms such as unfolded protein response (UPR), antioxidant response (AR), and the integrated stress response (ISR) to promote virus-host cell survival. The hepatic stress is also amplified by another layer of innate and inflammatory response associated with cellular sensing of virus infection through the production of interferon (IFN) and inflammatory cytokines. The interplay between various types of cellular stress signal leads to different forms of cell death such as apoptosis, necrosis, and autophagy depending on the intensity of the stress and nature of the adaptive cellular response. How do the adaptive cellular responses decode such death programs that promote host-microbe survival leading to the establishment of chronic liver disease? In this review, we discuss how the adaptive cellular response through the Nrf2 pathway that promotes virus and cell survival. Furthermore, we provide a glimpse of novel stress-induced Nrf2 mediated compensatory autophagy mechanisms in virus-cell survival that degrade tumor suppressor gene and activation of oncogenic signaling during HCV infection. Based on these facts, we hypothesize that the balance between hepatic stress, inflammation and different types of cell death determines liver disease progression outcomes. We propose that a more nuanced understanding of virus-host interactions under excessive cellular stress may provide an answer to the fundamental questions why some individuals with chronic HCV infection remain at risk of developing cirrhosis, cancer and some do not.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
146
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
147
|
Liu S, Wang W, Ge W, Lv X, Han Z, Li Y, Wang L, Song L. An activating transcription factor 6 beta (ATF6β) regulates apoptosis of hemocyte during immune response in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2020; 99:442-451. [PMID: 32084540 DOI: 10.1016/j.fsi.2020.02.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/31/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The homeostasis of immune cells during immune response is vital for hosts to defend against invaders. Activating transcription factor 6 (ATF6) is an important transcription factor in the unfolded protein response (UPR) to maintaining cellular homeostasis. In the present study, one ATF6 homologue was identified from Pacific oyster Crassostrea gigas (designated as CgATF6β). The full length cDNA of CgATF6β was of 2645 bp with a 1596 bp open reading frame (ORF) encoding a polypeptide of 531 amino acids. The deduced amino acid sequence of CgATF6β was predicted to contain a transmembrane region, a conserved basic leucine zipper (bZIP) domain, a site 1 protease cleavage site, a site 2 protease cleavage site, and a Golgi localization signal. CgATF6β mRNA was constitutively expressed in hemocytes, gill, mantle, gonad, hepatopancreas and labial palp, with a slightly higher expression level in muscle (2.45-fold of that in gill, p < 0.05). After oysters were challenged with Vibrio splendidus, the mRNA expression levels of CgATF6β in hemocytes were significantly up-regulated at 3 h (2.68-fold of that in seawater group, p < 0.01) and peaked at 12 h (3.14-fold of that in seawater group, p < 0.01). The endogenic CgATF6β protein was mainly located in the cytoplasm of oyster hemocytes, and it was significantly transported into the nuclei of hemocytes at 1.5 h after the challenge with V. splendidus. After an injection with CgATF6β dsRNA, the mRNA expression of CgATF6β was knocked down to 0.26-fold of that in dsGFP group (p < 0.01). In CgATF6β dsRNA-injected oysters, the mRNA expressions of glucose-regulated protein 78 (GRP78), calnexin (CNX) and anti-apoptotic B-cell lymphoma-2 (Bcl-2) in hemocytes were significantly decreased at 12 h after V. splendidus challenge, which were 0.65-fold (p < 0.01), 0.54-fold (p < 0.01) and 0.17-fold (p < 0.01) of that in dsGFP-injected oysters, while the apoptotic rate of hemocytes was significantly up-regulated (1.97-fold of that in dsGFP group, p < 0.05). Collectively, these results suggested that CgATF6β was involved in apoptosis inhibition of oyster hemocytes upon V. splendidus challenge by regulating the expression of CgGRP78, CgCNX and CgBcl-2.
Collapse
Affiliation(s)
- Shujing Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning of Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning of Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wenjing Ge
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning of Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning of Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zirong Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning of Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning of Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning of Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning of Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
148
|
Mohammed Thangameeran SI, Tsai ST, Hung HY, Hu WF, Pang CY, Chen SY, Liew HK. A Role for Endoplasmic Reticulum Stress in Intracerebral Hemorrhage. Cells 2020; 9:cells9030750. [PMID: 32204394 PMCID: PMC7140640 DOI: 10.3390/cells9030750] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that performs multiple functions, such as lipid biosynthesis, protein folding, and maintaining intracellular calcium homeostasis. Thus, conditions wherein the ER is unable to fold proteins is defined as ER stress, and an inbuilt quality control mechanism, called the unfolded protein response (UPR), is activated during ER stress, which serves as a recovery system that inhibits protein synthesis. Further, based on the severity of ER stress, the response could involve both proapoptotic and antiapoptotic phases. Intracerebral hemorrhage (ICH) is the second most common subtype of cerebral stroke and many lines of evidence have suggested a role for the ER in major neurological disorders. The injury mechanism during ICH includes hematoma formation, which in turn leads to inflammation, elevated intracranial pressure, and edema. A proper understanding of the injury mechanism(s) is required to effectively treat ICH and closing the gap between our current understanding of ER stress mechanisms and ICH injury can lead to valuable advances in the clinical management of ICH.
Collapse
Affiliation(s)
| | - Sheng-Tzung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hsiang-Yi Hung
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wei-Fen Hu
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan;
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Shin-Yuan Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hock-Kean Liew
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan;
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Correspondence: or ; Tel.: +886-3-856-1825 (ext. 15911); Fax: +886-3-8560-2019
| |
Collapse
|
149
|
Afrin T, Diwan D, Sahawneh K, Pajerowska-Mukhtar K. Multilevel regulation of endoplasmic reticulum stress responses in plants: where old roads and new paths meet. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1659-1667. [PMID: 31679034 DOI: 10.1093/jxb/erz487] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 05/20/2023]
Abstract
The sessile lifestyle of plants requires them to cope with a multitude of stresses in situ. In response to diverse environmental and intracellular cues, plant cells respond by massive reprogramming of transcription and translation of stress response regulators, many of which rely on endoplasmic reticulum (ER) processing. This increased protein synthesis could exceed the capacity of precise protein quality control, leading to the accumulation of unfolded and/or misfolded proteins that triggers the unfolded protein response (UPR). Such cellular stress responses are multilayered and executed in different cellular compartments. Here, we will discuss the three main branches of UPR signaling in diverse eukaryotic systems, and describe various levels of ER stress response regulation that encompass transcriptional gene regulation by master transcription factors, post-transcriptional activities including cytoplasmic splicing, translational control, and multiple post-translational events such as peptide modifications and cleavage. In addition, we will discuss the roles of plant ER stress sensors in abiotic and biotic stress responses and speculate on the future prospects of engineering these signaling events for heightened stress tolerance.
Collapse
Affiliation(s)
- Taiaba Afrin
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Danish Diwan
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Katrina Sahawneh
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | | |
Collapse
|
150
|
Zhang HM, Qiu Y, Zhao G, Wang H, Chen YT, Aghakeshmiri S, Hanson P, Yang D. Cleavage and degradation of EDEM1 promotes coxsackievirus B3 replication via ATF6a-mediated unfolded protein response signalling. Cell Microbiol 2020; 22:e13198. [PMID: 32083795 DOI: 10.1111/cmi.13198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
Our previous study of coxsackievirus B3 (CVB3)-induced unfolded protein responses (UPR) found that overexpression of ATF6a enhances CVB3 VP1 capsid protein production and increases viral particle formation. These findings implicate that ATF6a signalling benefits CVB3 replication. However, the mechanism by which ATF6a signalling is transduced to promote virus replication is unclear. In this study, using a Tet-On inducible ATF6a HeLa cell line, we found that ATF6a signalling downregulated the protein expression of the endoplasmic reticulum (ER) degradation-enhancing α-mannosidase-like protein 1 (EDEM1), resulting in accumulation of CVB3 VP1 protein; in contrast, expression of a dominant negative ATF6a had the opposite effect. Furthermore, we found that EDEM1 was cleaved by both CVB3 protease 3C and virus-activated caspase and subsequently degraded via the ubiquitin-proteasome pathway. However, overexpression of EDEM1 caused VP1 degradation, likely via a glycosylation-independent and ubiquitin-lysosome pathway. Finally, we demonstrated that CRISPR/Cas9-mediated knockout of EDEM1 increased VP1 accumulation and thus CVB3 replication. This is the first study to report the ER protein quality control of non-enveloped RNA virus and reveals a novel mechanism by which CVB3 evades host ER quality control pathways through cleavage and degradation of the UPR target gene EDEM1, to ultimately benefit its own replication.
Collapse
Affiliation(s)
- Huifang M Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Ye Qiu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,College of Biology, Hunan University, Changsha, China
| | - Guangze Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Hua Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,School of Medical Science and Laboratory Medicine, Jiangsu University, Jiangsu, People's Republic of China
| | - Yankuan T Chen
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Sana Aghakeshmiri
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Paul Hanson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| |
Collapse
|