101
|
Chatterjee P, Karn R, Isaac AE, Ray S. Unveiling the vulnerabilities of synthetic lethality in triple-negative breast cancer. Clin Transl Oncol 2023; 25:3057-3072. [PMID: 37079210 DOI: 10.1007/s12094-023-03191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most invasive molecular subtype of breast cancer (BC), accounting for about nearly 15% of all BC cases reported annually. The absence of the three major BC hormone receptors, Estrogen (ER), Progesterone (PR), and Human Epidermal Growth Factor 2 (HER2) receptor, accounts for the characteristic "Triple negative" phraseology. The absence of these marked receptors makes this cancer insensitive to classical endocrine therapeutic approaches. Hence, the available treatment options remain solemnly limited to only conventional realms of chemotherapy and radiation therapy. Moreover, these therapeutic regimes are often accompanied by numerous treatment side-effects that account for early distant metastasis, relapse, and shorter overall survival in TNBC patients. The rigorous ongoing research in the field of clinical oncology has identified certain gene-based selective tumor-targeting susceptibilities, which are known to account for the molecular fallacies and mutation-based genetic alterations that develop the progression of TNBC. One such promising approach is synthetic lethality, which identifies novel drug targets of cancer, from undruggable oncogenes or tumor-suppressor genes, which cannot be otherwise clasped by the conventional approaches of mutational analysis. Herein, a holistic scientific review is presented, to undermine the mechanisms of synthetic lethal (SL) interactions in TNBC, the epigenetic crosstalks encountered, the role of Poly (ADP-ribose) polymerase inhibitors (PARPi) in inducing SL interactions, and the limitations faced by the lethal interactors. Thus, the future predicament of synthetic lethal interactions in the advancement of modern translational TNBC research is assessed with specific emphasis on patient-specific personalized medicine.
Collapse
Affiliation(s)
| | - Rohit Karn
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Arnold Emerson Isaac
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Smita Ray
- Department of Botany, Bethune College, Kolkata, West Bengal, 700006, India.
| |
Collapse
|
102
|
Zhu Z, Zhou N, Yu S, Gao X, Cheng X, Wang Y, Bai C. Successful Treatment of Concurrent Follicular Lymphoma and Triple-Negative Breast Cancer Using Rituximab Plus Nab-Paclitaxel and Cisplatin: A Case Report and Literature Review. Onco Targets Ther 2023; 16:905-911. [PMID: 37933332 PMCID: PMC10625777 DOI: 10.2147/ott.s430273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
Background Co-occurrence of breast cancer and non-Hodgkin's lymphoma is a rare condition with diagnostic and therapeutic challenges. The coexistence of follicular lymphoma (FL) and triple-negative breast cancer (TNBC) has not been described previously. Case Presentation A 46-year-old woman, already suffering a history of untreated, advanced-stage, high tumor burden FL, was admitted for a rapidly progressing right breast mass. Ultrasonography showed an 8.3 × 3.6 × 4.1 cm fungating mass in the right breast with enlarged lymph nodes (LNs) in bilateral axillae. PET-CT demonstrated increased 18F- FDG activity in right breast mass, LNs on both sides of the diaphragm, enlarged spleen, and bone marrow. Biopsy of the right breast mass revealed TNBC. The patient underwent neoadjuvant therapy with R-CHOP and achieved partial response of breast tumor. However, TNBC progressed after three cycles of R-CHOP. According to the next-generation sequencing (NGS) assay on breast mass showing a homologous recombination repair (HRR) deficiency (HRD) score of 72, the neoadjuvant regimen was changed to rituximab plus nab-paclitaxel and cisplatin (R-TP) and resulted in significant tumor regression. The patient then underwent right mastectomy with an axillary LN dissection. After the surgery, she was regularly monitored and given adjuvant therapy with R-TP and radiotherapy. Conclusion The coexistence of FL and HRD-positive TNBC poses diagnostic and treatment challenges. Well-founded neoadjuvant strategy based on multidisciplinary team (MDT) discussion and NGS warranted a good outcome in this case.
Collapse
Affiliation(s)
- Zhou Zhu
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Na Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Shuangni Yu
- The Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xin Gao
- The Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xin Cheng
- The Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yingyi Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
103
|
Chen L, Meng Z, Zhou Z, Li X, Zhao L, Jia Z, Chen J, Tian Y, Meng Q, Liu Y. Immunotherapy Combined with Chemotherapy in Relapse Metaplastic Breast Cancer. Onco Targets Ther 2023; 16:885-890. [PMID: 37927329 PMCID: PMC10624194 DOI: 10.2147/ott.s435958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Metaplastic breast cancer (MBC) is a rare disease, and there was rarely reported the treatment after recurrence and metastasis. Here, we report the treatment of an adult patient who suffered from MBC with lung, lymph nodes and left pleura metastasis after radical surgery. The next-generation sequencing result demonstrated that it had tumor mutational burden (TMB) of 12.0 Muts/Mb and microsatellite stability. The patient received sintilimab, an immune checkpoint inhibitor, plus chemotherapy and achieved partial response (PR). This is a report of a good outcome of metastatic MBC achieving 24 months of progression-free survival (PFS) and 39 months of overall survival (OS) with a combination therapy of immune checkpoint inhibitor and chemotherapy. Immuno-chemotherapy may have antitumor activity for relapse MBC. TMB may serve as a potential predictor associated with PD-1 inhibitors in MBC and help clinicians make an optimum treatment strategy.
Collapse
Affiliation(s)
- Ling Chen
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050011, People’s Republic of China
| | - Zhe Meng
- The First Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Zhiguo Zhou
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050011, People’s Republic of China
| | - Xiaomin Li
- The First Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Liyan Zhao
- The First Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Zhaohui Jia
- The First Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Jingli Chen
- Hebei Medical University, Shijiangzhuang, Hebei Province, 050011, People’s Republic of China
| | - Ye Tian
- Hebei Medical University, Shijiangzhuang, Hebei Province, 050011, People’s Republic of China
| | - Qingju Meng
- The First Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Yibing Liu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050011, People’s Republic of China
| |
Collapse
|
104
|
Hanson H, Astiazaran-Symonds E, Amendola LM, Balmaña J, Foulkes WD, James P, Klugman S, Ngeow J, Schmutzler R, Voian N, Wick MJ, Pal T, Tischkowitz M, Stewart DR. Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100870. [PMID: 37490054 PMCID: PMC10623578 DOI: 10.1016/j.gim.2023.100870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Although the role of CHEK2 germline pathogenic variants in cancer predisposition is well known, resources for managing CHEK2 heterozygotes in clinical practice are limited. METHODS An international workgroup developed guidance on clinical management of CHEK2 heterozygotes informed by peer-reviewed publications from PubMed. RESULTS Although CHEK2 is considered a moderate penetrance gene, cancer risks may be considered as a continuous variable, which are influenced by family history and other modifiers. Consequently, early cancer detection and prevention for CHEK2 heterozygotes should be guided by personalized risk estimates. Such estimates may result in both downgrading lifetime breast cancer risks to those similar to the general population or upgrading lifetime risk to a level at which CHEK2 heterozygotes are offered high-risk breast surveillance according to country-specific guidelines. Risk-reducing mastectomy should be guided by personalized risk estimates and shared decision making. Colorectal and prostate cancer surveillance should be considered based on assessment of family history. For CHEK2 heterozygotes who develop cancer, no specific targeted medical treatment is recommended at this time. CONCLUSION Systematic prospective data collection is needed to establish the spectrum of CHEK2-associated cancer risks and to determine yet-unanswered questions, such as the outcomes of surveillance, response to cancer treatment, and survival after cancer diagnosis.
Collapse
Affiliation(s)
- Helen Hanson
- Southwest Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Esteban Astiazaran-Symonds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD; Department of Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | | | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Medical Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - William D Foulkes
- Departments of Human Genetics, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia; Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Susan Klugman
- Division of Reproductive & Medical Genetics, Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Joanne Ngeow
- Genomic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rita Schmutzler
- Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany; Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Nicoleta Voian
- Providence Genetic Risk Clinic, Providence Cancer Institute, Portland, OR
| | - Myra J Wick
- Departments of Obstetrics and Gynecology and Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Tuya Pal
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
105
|
Al-Hilli Z, Noss R, Dickard J, Wei W, Chichura A, Wu V, Renicker K, Pederson HJ, Eng C. A Randomized Trial Comparing the Effectiveness of Pre-test Genetic Counseling Using an Artificial Intelligence Automated Chatbot and Traditional In-person Genetic Counseling in Women Newly Diagnosed with Breast Cancer. Ann Surg Oncol 2023; 30:5990-5996. [PMID: 37567976 DOI: 10.1245/s10434-023-13888-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/04/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Alternative service delivery models are critically needed to address the increasing demand for genetics services and limited supply of genetics experts available to provide pre-test counseling. METHODS We conducted a prospective randomized controlled trial of women with stage 0-III breast cancer not meeting National Comprehensive Cancer Network (NCCN) criteria for genetic testing. Patients were randomized to pre-test counseling with a Chatbot or a certified genetic counselor (GC). Participants completed a questionnaire assessing their knowledge of breast cancer genetics and a survey assessing satisfaction with their decision regarding pre-test counseling. RESULTS A total of 39 patients were enrolled and 37 were randomized to genetic counseling with an automated Chatbot or a GC; 19 were randomized to Chatbot and 18 to traditional genetic counseling, and 13 (38.2%) had a family member with breast cancer but did not meet NCCN criteria. All patients opted to undergo genetic testing. Testing revealed six pathogenic variants in five patients (13.5%): CHEK2 (n = 2), MSH3 (n = 1), MUTYH (n = 1), and BRCA1 and HOXB13 (n = 1). No patients had a delay in time-to-treatment due to genetic testing turnaround time, nor did any patients undergo additional risk reducing surgery. There was no significant difference in median knowledge score between Chatbot and traditional counseling (11 vs. 12, p = 0.09) or in median patient satisfaction score (30 vs. 30, p = 0.19). CONCLUSION Satisfaction and comprehension in patients with breast cancer undergoing pre-test genetic counseling using an automated Chatbot is comparable to in-person genetic testing. Utilization of this technology can offer improved access to care and a much-needed alternative for pre-test counseling.
Collapse
Affiliation(s)
- Zahraa Al-Hilli
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Ryan Noss
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer Dickard
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wei Wei
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Chichura
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Benign Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vincent Wu
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kayla Renicker
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Holly J Pederson
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charis Eng
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
106
|
Medford AJ, Denault EN, Moy B, Parsons HA, Bardia A. Circulating Tumor DNA in Breast Cancer: Current and Future Applications. Clin Breast Cancer 2023; 23:687-692. [PMID: 37438196 DOI: 10.1016/j.clbc.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
The assessment of plasma for circulating tumor DNA (ctDNA) via liquid biopsy has revolutionized our understanding of breast cancer pathogenesis and evolution. Historically, genotyping evaluation of breast cancer required invasive tissue biopsy, limiting potential for serial evaluation over the treatment course of advanced breast cancer, and not allowing for assessment for residual disease in early breast cancer after resection. However, technological advances over the years have led to an increase in the clinical use of ctDNA as a liquid biopsy for genotype-matched therapy selection and monitoring for patients undergoing treatment for advanced breast cancer. Furthermore, increasingly sensitive assays are being developed to facilitate detection of molecular evidence of residual or recurrent disease in localized breast cancer after definitive therapy. In this review, we discuss the current and future applications of ctDNA in breast cancer. Rational applications of ctDNA offer the potential to further refine patient-centered care and personalize treatment based on molecularly defined risk assessments for patients with breast cancer.
Collapse
Affiliation(s)
- Arielle J Medford
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA; Broad Institute of MIT & Harvard, Cambridge, MA.
| | - Elyssa N Denault
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | | | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| |
Collapse
|
107
|
Tsantikidi A, Papadopoulou E, Metaxa-Mariatou V, Kapetsis G, Tsaousis G, Meintani A, Florou-Chatzigiannidou C, Gazouli M, Papadimitriou C, Timotheadou E, Kotsakis A, Boutis A, Boukovinas I, Kampletsas E, Kontovinis L, Fountzilas E, Andreadis C, Karanikiotis C, Filippou D, Theodoropoulos G, Özdoğan M, Nasioulas G. The Utility of NGS Analysis in Homologous Recombination Deficiency Tracking. Diagnostics (Basel) 2023; 13:2962. [PMID: 37761329 PMCID: PMC10529941 DOI: 10.3390/diagnostics13182962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Several tumor types have been efficiently treated with PARP inhibitors (PARPis), which are now approved for the treatment of ovarian, breast, prostate, and pancreatic cancers. The BRCA1/2 genes and mutations in many additional genes involved in the HR pathway may be responsible for the HRD phenomenon. The aim of the present study was to investigate the association between genomic loss of heterozygosity (gLOH) and alterations in 513 genes with targeted and immuno-oncology therapies in 406 samples using an NGS assay. In addition, the %gLOHs of 24 samples were calculated using the Affymetrix technology in order to compare the results obtained via the two methodologies. HR variations occurred in 20.93% of the malignancies, while BRCA1/2 gene alterations occurred in 5.17% of the malignancies. The %LOH was highly correlated with alterations in the BRCA1/2 genes, since 76.19% (16/21) of the BRCA1/2 positive tumors had a high %LOH value (p = 0.007). Moreover, the LOH status was highly correlated with the TP53 and KRAS statuses, but there was no association with the TMB value. Lin's concordance correlation coefficient for the 24 samples simultaneously examined via both assays was 0.87, indicating a nearly perfect agreement. In conclusion, the addition of gLOH analysis could assist in the detection of additional patients eligible for treatment with PARPis.
Collapse
Affiliation(s)
- Aikaterini Tsantikidi
- Genekor Medical S.A., 15344 Athens, Greece; (V.M.-M.); (G.K.); (G.T.); (A.M.); (C.F.-C.)
| | - Eirini Papadopoulou
- Genekor Medical S.A., 15344 Athens, Greece; (V.M.-M.); (G.K.); (G.T.); (A.M.); (C.F.-C.)
| | | | - George Kapetsis
- Genekor Medical S.A., 15344 Athens, Greece; (V.M.-M.); (G.K.); (G.T.); (A.M.); (C.F.-C.)
| | - Georgios Tsaousis
- Genekor Medical S.A., 15344 Athens, Greece; (V.M.-M.); (G.K.); (G.T.); (A.M.); (C.F.-C.)
| | - Angeliki Meintani
- Genekor Medical S.A., 15344 Athens, Greece; (V.M.-M.); (G.K.); (G.T.); (A.M.); (C.F.-C.)
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Eleni Timotheadou
- Department of Medical Oncology, Papageorgiou Hospital, School of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece;
| | - Athanasios Kotsakis
- Oncology Department, University General Hospital of Larissa, 41334 Larissa, Greece;
| | - Anastasios Boutis
- First Department of Clinical Oncology, Theagenio Hospital, 54639 Thessaloniki, Greece;
| | - Ioannis Boukovinas
- Oncology Department, Bioclinic of Thessaloniki, 54622 Thessaloniki, Greece;
| | - Eleftherios Kampletsas
- Department of Medical, Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Loukas Kontovinis
- Oncology Department, “Euromedica” General Clinic, 54645 Thessaloniki, Greece;
| | - Elena Fountzilas
- Second Department of Medical Oncology, Euromedica General Clinic, 54645 Thessaloniki, Greece; (E.F.); (G.N.)
| | - Charalampos Andreadis
- Second Department of Clinical Oncology, Theagenio Hospital, 54639 Thessaloniki, Greece;
| | | | - Dimitrios Filippou
- Department of Anatomy, Faculty of Health Sciences, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Georgios Theodoropoulos
- Department of Surgery, National and Kapodistrian University of Athens, Hippocration General Hospital, 15772 Athens, Greece;
| | - Mustafa Özdoğan
- Division of Medical Oncology, Memorial Hospital, Antalya 07025, Turkey;
| | - George Nasioulas
- Second Department of Medical Oncology, Euromedica General Clinic, 54645 Thessaloniki, Greece; (E.F.); (G.N.)
| |
Collapse
|
108
|
Golan T, Casolino R, Biankin AV, Hammel P, Whitaker KD, Hall MJ, Riegert-Johnson DL. Germline BRCA testing in pancreatic cancer: improving awareness, timing, turnaround, and uptake. Ther Adv Med Oncol 2023; 15:17588359231189127. [PMID: 37720496 PMCID: PMC10504836 DOI: 10.1177/17588359231189127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/04/2023] [Indexed: 09/19/2023] Open
Abstract
Prognosis is generally poor for patients with pancreatic ductal adenocarcinoma. However, patients with germline BRCA1 or BRCA2 mutations (gBRCAm) may benefit from first-line platinum-based chemotherapy and maintenance therapy with the poly(adenosine diphosphate-ribose) polymerase inhibitor olaparib following at least 16 weeks of first-line platinum-based chemotherapy without disease progression. Germline breast cancer gene (BRCA) testing is therefore important to ensure that patients receive the most effective treatment. In addition, testing for other DNA damage response gene mutations beyond gBRCAm may also guide treatment decisions. However, clinical pathways for genetic testing are often suboptimal, leading to delays in treatment initiation or missed opportunities for personalized therapy. Barriers to testing include low rates of referral and uptake, delays to referral and slow result turnaround times, cost, and biopsy and assay limitations if somatic testing is performed, leading to the requirement for subsequent dedicated germline testing. Low rates of referral may result from lack of awareness among physicians of the clinical value of testing, coupled with low confidence in interpreting test results and poor availability of genetic counseling services. Among patients, barriers to uptake may include similar lack of awareness of the clinical value of testing, anxiety regarding the implications of test results, lack of insurance coverage, fear of negative insurance implications, and socioeconomic factors. Potential solutions include innovative approaches to testing pathways, including 'mainstreaming' of testing in which BRCA tests are routinely arranged by the treating oncologist, with the involvement of genetic counselors if a patient is found to have a gBRCAm. More recently, the utility of multigene panel analyses has also been explored. Access to genetic counseling may also be improved through initiatives such as having a genetic counseling appointment for all new patient visits and telemedicine approaches, including the use of telephone consultations or DVD-assisted counseling. Educational programs will also be beneficial, and cost effectiveness is likely to improve as the number of targeted treatments increases and when the earlier detection of tumors in family members following cascade testing is considered.
Collapse
Affiliation(s)
- Talia Golan
- Institute of Oncology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raffaella Casolino
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Andrew V. Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, Australia
| | - Pascal Hammel
- Department of Digestive and Medical Oncology, University Paris-Saclay, Paul Brousse Hospital (AP-HP), Villejuif, France
| | - Kristen D. Whitaker
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michael J. Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | |
Collapse
|
109
|
Ma J, Chan JJ, Toh CH, Yap YS. Emerging systemic therapy options beyond CDK4/6 inhibitors for hormone receptor-positive HER2-negative advanced breast cancer. NPJ Breast Cancer 2023; 9:74. [PMID: 37684290 PMCID: PMC10491615 DOI: 10.1038/s41523-023-00578-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Endocrine therapy (ET) with cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) is currently the standard first-line treatment for most patients with hormone receptor (HR) positive, human epidermal growth factor receptor (HER2) negative advanced breast cancer. However, resistance to ET and CDK4/6i inevitably ensues. The optimal post-progression treatment regimens and their sequencing continue to evolve in the rapidly changing treatment landscape. In this review, we summarize the mechanisms of resistance to ET and CDK4/6i, which can be broadly classified as alterations affecting cell cycle mediators and activation of alternative signaling pathways. Recent clinical trials have been directed at the targets and pathways implicated, including estrogen and androgen receptors, PI3K/AKT/mTOR and MAPK pathways, tyrosine kinase receptors such as FGFR and HER2, homologous recombination repair pathway, other components of the cell cycle and cell death. We describe the findings from these clinical trials using small molecule inhibitors, antibody-drug conjugates and immunotherapy, providing insights into how these novel strategies may circumvent treatment resistance, and discuss how some have not translated into clinical benefit. The challenges posed by tumor heterogeneity, adaptive rewiring of signaling pathways and dose-limiting toxicities underscore the need to elucidate the latest tumor biology in each patient, and develop treatments with improved therapeutic index in the era of precision medicine.
Collapse
Affiliation(s)
- Jun Ma
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Jack Junjie Chan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ching Han Toh
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore.
- Oncology Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
110
|
Bono A, La Monica G, Alamia F, Mingoia F, Gentile C, Peri D, Lauria A, Martorana A. In Silico Mixed Ligand/Structure-Based Design of New CDK-1/PARP-1 Dual Inhibitors as Anti-Breast Cancer Agents. Int J Mol Sci 2023; 24:13769. [PMID: 37762072 PMCID: PMC10531453 DOI: 10.3390/ijms241813769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
CDK-1 and PARP-1 play crucial roles in breast cancer progression. Compounds acting as CDK-1 and/or PARP-1 inhibitors can induct cell death in breast cancer with a selective synthetic lethality mechanism. A mixed treatment by means of CDK-1 and PARP-1 inhibitors resulted in radical breast cancer cell growth reduction. Inhibitors with a dual target mechanism of action could arrest cancer progression by simultaneously blocking the DNA repair mechanism and cell cycle, resulting in advantageous monotherapy. To this aim, in the present work, we identified compound 645656 with a significant affinity for both CDK-1 and PARP-1 by a mixed ligand- and structure-based virtual screening protocol. The Biotarget Predictor Tool was used at first in a Multitarget mode to filter the large National Cancer Institute (NCI) database. Then, hierarchical docking studies were performed to further screen the compounds and evaluate the ligands binding mode, whose putative dual-target mechanism of action was investigated through the correlation between the antiproliferative activity data and the target proteins' (CDK-1 and PARP-1) expression pattern. Finally, a Molecular Dynamics Simulation confirmed the high stability of the most effective selected compound 645656 in complex with both PARP-1 and CDK-1.
Collapse
Affiliation(s)
- Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy;
| | - Carla Gentile
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Daniele Peri
- Dipartimento di Ingegneria dell’Innovazione Industriale e Digitale, Università degli Studi di Palermo, Viale 10 delle Scienze Ed. 6, 90128 Palermo, Italy;
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| |
Collapse
|
111
|
Yndestad S, Engebrethsen C, Herencia-Ropero A, Nikolaienko O, Vintermyr OK, Lillestøl RK, Minsaas L, Leirvaag B, Iversen GT, Gilje B, Blix ES, Espelid H, Lundgren S, Geisler J, Aase HS, Aas T, Gudlaugsson EG, Llop-Guevara A, Serra V, Janssen EA, Lønning PE, Knappskog S, Eikesdal HP. Homologous Recombination Deficiency Across Subtypes of Primary Breast Cancer. JCO Precis Oncol 2023; 7:e2300338. [PMID: 38039432 PMCID: PMC10703128 DOI: 10.1200/po.23.00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 12/03/2023] Open
Abstract
PURPOSE Homologous recombination deficiency (HRD) is highly prevalent in triple-negative breast cancer (TNBC) and associated with response to PARP inhibition (PARPi). Here, we studied the prevalence of HRD in non-TNBC to assess the potential for PARPi in a wider group of patients with breast cancer. METHODS HRD status was established using targeted gene panel sequencing (360 genes) and BRCA1 methylation analysis of pretreatment biopsies from 201 patients with primary breast cancer in the phase II PETREMAC trial (ClinicalTrials.gov identifier: NCT02624973). HRD was defined as mutations in BRCA1, BRCA2, BRIP1, BARD1, or PALB2 and/or promoter methylation of BRCA1 (strict definition; HRD-S). In secondary analyses, a wider definition (HRD-W) was used, examining mutations in 20 additional genes. Furthermore, tumor BRCAness (multiplex ligation-dependent probe amplification), PAM50 subtyping, RAD51 nuclear foci to test functional HRD, tumor-infiltrating lymphocyte (TIL), and PD-L1 analyses were performed. RESULTS HRD-S was present in 5% of non-TNBC cases (n = 9 of 169), contrasting 47% of the TNBC tumors (n = 15 of 32). HRD-W was observed in 23% of non-TNBC (n = 39 of 169) and 59% of TNBC cases (n = 19 of 32). Of 58 non-TNBC and 30 TNBC biopsies examined for RAD51 foci, 4 of 4 (100%) non-TNBC and 13 of 14 (93%) TNBC cases classified as HRD-S had RAD51 low scores. In contrast, 4 of 17 (24%) non-TNBC and 15 of 19 (79%) TNBC biopsies classified as HRD-W exhibited RAD51 low scores. Of nine non-TNBC tumors with HRD-S status, only one had a basal-like PAM50 signature. There was a high concordance between HRD-S and either BRCAness, high TIL density, or high PD-L1 expression (each P < .001). CONCLUSION The prevalence of HRD in non-TNBC suggests that therapy targeting HRD should be evaluated in a wider breast cancer patient population. Strict HRD criteria should be implemented to increase diagnostic precision with respect to functional HRD.
Collapse
Affiliation(s)
- Synnøve Yndestad
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christina Engebrethsen
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Oleksii Nikolaienko
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav K. Vintermyr
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Reidun K. Lillestøl
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Minsaas
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Beryl Leirvaag
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gjertrud T. Iversen
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Egil S. Blix
- Immunology Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Helge Espelid
- Department of Surgery, Haugesund Hospital, Haugesund, Norway
| | - Steinar Lundgren
- Cancer Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hildegunn S. Aase
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Turid Aas
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | | | | | - Violeta Serra
- Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Emiel A.M. Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, Stavanger University, Stavanger, Norway
| | - Per E. Lønning
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hans P. Eikesdal
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Deceased
| |
Collapse
|
112
|
Friedlander M, Mileshkin L, Lombard J, Frentzas S, Gao B, Wilson M, Meniawy T, Baron-Hay S, Briscoe K, McCarthy N, Fountzilas C, Cervantes A, Ge R, Wu J, Spira A. Pamiparib in combination with tislelizumab in patients with advanced solid tumours: results from the dose-expansion stage of a multicentre, open-label, phase I trial. Br J Cancer 2023; 129:797-810. [PMID: 37474720 PMCID: PMC10449784 DOI: 10.1038/s41416-023-02349-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the antitumour activity, safety, and tolerability of pamiparib plus tislelizumab in patients with previously treated advanced solid tumours. METHODS In this study, patients were enrolled into eight arms by tumour type. All received pamiparib 40 mg orally twice daily plus tislelizumab 200 mg intravenously every 3 weeks. The primary endpoint was objective response rate (ORR), assessed by the investigator per Response Evaluation Criteria in Solid Tumours v1.1. Secondary endpoints included duration of response (DoR), safety, and tolerability. RESULTS Overall, 180 patients were enrolled. In the overall population, the ORR was 20.0% (range: 0-47.4 across study arms), with median DoR of 17.1 months (95% confidence interval [CI]: 6.2, not estimable [NE]). The highest ORR was observed in the triple-negative breast cancer (TNBC) arm (patients with BRCA1/2 mutations and/or homologous recombination deficiency) (ORR: 47.4%; median DoR: 17.1 months [95% CI: 3.0, NE]). Treatment-emergent adverse events (TEAEs) of ≥Grade 3 occurred in 61.7% of patients. Serious TEAEs occurred in 50.0% of patients. CONCLUSIONS Pamiparib plus tislelizumab showed a variable level of antitumour activity in patients with advanced solid tumours, with the highest ORR in TNBC and was associated with a manageable safety profile. CLINICAL TRIAL REGISTRATION ClinicalTrial.gov: NCT02660034.
Collapse
Affiliation(s)
- Michael Friedlander
- University of New South Wales Clinical School and Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia.
| | - Linda Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Parkville, VIC, Australia
| | - Janine Lombard
- Medical Oncology, Calvary Mater Newcastle, NSW, Australia
| | - Sophia Frentzas
- Department of Medical Oncology, Monash Health and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Bo Gao
- Medical Oncology Department, Blacktown Hospital, Sydney, NSW, Australia
| | - Michelle Wilson
- Department of Cancer and Blood, Auckland City Hospital, Auckland, New Zealand
| | - Tarek Meniawy
- Department of Medical Oncology, Linear Clinical Research and University of Western Australia, Nedlands, WA, Australia
| | - Sally Baron-Hay
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
- GenesisCare, Melbourne, VIC, Australia
| | - Karen Briscoe
- Department of Medical Oncology, Mid North Coast Cancer Institute, Coffs Harbour, NSW, Australia
| | - Nicole McCarthy
- Department of Medical Oncology, Icon Cancer Centre Wesley, Auchenflower, QLD, Australia
| | - Christos Fountzilas
- Department of Medicine/Division of GI Medicine and Early Phase Clinical Trial Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andres Cervantes
- Department of Medical Oncology, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
- Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - Ruimin Ge
- Department of Clinical Development, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - John Wu
- Department of Biostatistics, BeiGene USA, Inc., San Mateo, CA, USA
| | - Alexander Spira
- Department of Medical Oncology, Virginia Cancer Specialists Research Institute, Fairfax, VA, USA
- NEXT Oncology-Virginia, Fairfax, VA, USA
- US Oncology Research, The Woodlands, TX, USA
| |
Collapse
|
113
|
Batalini F, Madison RW, Sokol ES, Jin DX, Chen KT, Decker B, Pavlick DC, Frampton GM, Wulf GM, Garber JE, Oxnard G, Schrock AB, Tung NM. Homologous Recombination Deficiency Landscape of Breast Cancers and Real-World Effectiveness of Poly ADP-Ribose Polymerase Inhibitors in Patients With Somatic BRCA1/ 2, Germline PALB2, or Homologous Recombination Deficiency Signature. JCO Precis Oncol 2023; 7:e2300091. [PMID: 37992259 PMCID: PMC10681426 DOI: 10.1200/po.23.00091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/05/2023] [Accepted: 10/13/2023] [Indexed: 11/24/2023] Open
Abstract
PURPOSE Poly ADP-ribose polymerase inhibitors (PARPi) are approved for patients with human epidermal growth factor receptor 2-negative metastatic breast cancer (mBC) and germline pathogenic/likely pathogenic variant (hereafter mutation) in the BRCA1/2 genes (gBRCA); however, clinical benefit has also been demonstrated in mBC with somatic BRCA1/2 mutations (sBRCA) or germline PALB2 mutations (gPALB2). This study aims to describe the genomic landscape of homologous recombination repair (HRR) gene alterations in mBC and assess PARPi treatment outcomes for patients with gBRCA compared with other HRR genes and by status of a novel homologous recombination deficiency signature (HRDsig). METHODS A real-world (RW) clinico-genomic database (CGDB) of comprehensive genomic profiling (CGP) linked to deidentified, electronic health record-derived clinical data was used. CGP was analyzed for HRR genes and HRDsig. The CGDB enabled cohort characterization and outcomes analyses of 177 patients exposed to PARPi. RW progression-free survival (rwPFS) and RW overall survival (rwOS) were compared. RESULTS Of 28,920 patients with mBC, gBRCA was detected in 3.4%, whereas the population with any BRCA alteration or gPALB2 increased to 9.5%. HRDsig+ represented 21% of patients with mBC. BRCA and gPALB2 had higher levels of biallelic loss and HRDsig+ than other HRR alterations. Outcomes on PARPi were assessed for 177 patients, and gBRCA and sBRCA/gPALB2 cohorts were similar: gBRCA versus sBRCA/gPALB2 rwPFS was 6.3 versus 5.4 months (hazard ratio [HR], 1.37 [0.77-2.43]); rwOS was 16.2 versus 21.2 months (HR, 1.45 [0.74-2.86]). Additionally, patients with HRDsig+ versus HRDsig- had longer rwPFS (6.3 v 2.8 months; HR, 0.62 [0.42-0.92]) and numerically longer rwOS (17.8 v 13.0 months; HR, 0.72 [0.46-1.14]). CONCLUSION Patients with sBRCA and gPALB2 derive similar benefit from PARPi as those with gBRCA alterations. In combination, HRDsig+, sBRCA, and gPALB2 represent an additional 19% of mBC that can potentially benefit from PARPi. Randomized trials exploring a more inclusive biomarker such as HRDsig are warranted.
Collapse
|
114
|
Untch M, Banys-Paluchowski M, Brucker SY, Budach W, Denkert C, Ditsch N, Fasching PA, Haidinger R, Heil J, Jackisch C, Janni W, Kolberg HC, Krug D, Loibl S, Lüftner D, van Mackelenbergh M, Radosa JC, Reimer T, Welslau M, Würstlein R, Harbeck N, Huober J. Treatment of Early Breast Cancer: The 18th St. Gallen International Breast Cancer Consensus Conference against the Background of Current German Treatment Recommendations. Geburtshilfe Frauenheilkd 2023; 83:1102-1116. [PMID: 37706057 PMCID: PMC10497346 DOI: 10.1055/a-2121-2495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/29/2023] [Indexed: 09/15/2023] Open
Abstract
This year's 18th St. Gallen (SG) consensus conference on the treatment of early breast cancer (SGBCC: St. Gallen International Breast Cancer Conference) focused on practice-oriented questions. The individual situation and risk-benefit assessment were discussed in great detail. As in previous years, a German working group of leading breast cancer experts presented the results of the international SGBCC 2023 against the background of German treatment recommendations - especially the updated treatment recommendations of the Arbeitsgemeinschaft Gynäkologische Onkologie e. V. (AGO) - for everyday clinical practice in Germany. The German treatment recommendations of AGO are based on the current evidence. The comparison with the clinical approach in Germany has proven useful, as the SGBCC panel consists of experts from different countries and disciplines. That is why country-specific characteristics can be incorporated into the SGBCC recommendations.
Collapse
Affiliation(s)
- Michael Untch
- Klinik für Gynäkologie und Geburtshilfe, interdisziplinäres Brustzentrum, HELIOS Klinikum Berlin Buch, Berlin, Germany
| | - Maggie Banys-Paluchowski
- Klinik für Frauenheilkunde und Geburtshilfe, Brustzentrum, Campus Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | | | - Wilfried Budach
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Carsten Denkert
- Institut für Pathologie, Philipps-Universität Marburg und Universitätsklinikum Marburg (UKGM), Marburg, Germany
| | - Nina Ditsch
- Klinik für Frauenheilkunde und Geburtshilfe, Brustzentrum, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Peter A. Fasching
- Frauenklinik des Universitätsklinikums Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jörg Heil
- Brustzentrum Heidelberg, Klinik St. Elisabeth, Heidelberg, Germany
- Medizinische Fakultät Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Christian Jackisch
- Klinik für Gynäkologie und Geburtshilfe, Sana-Klinikum Offenbach GmbH, Offenbach, Germany
| | | | | | - David Krug
- Klinik für Strahlentherapie (Radioonkologie), Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sibylle Loibl
- German Breast Group (GBG), Neu-Isenburg, Germany
- Centrum für Hämatologie und Onkologie Bethanien, Frankfurt am Main, Germany
| | - Diana Lüftner
- Immanuel Klinik Märkische Schweiz, Buckow, Germany
- Immanuel Klinik Rüdersdorf, Medizinische Hochschule Brandenburg, Rüdersdorf bei Berlin, Germany
| | - Marion van Mackelenbergh
- Gynäkologie und Geburtshilfe, Campus Kiel, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Julia C. Radosa
- Klinik für Gynäkologie, Geburtshilfe und Reproduktionsmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Toralf Reimer
- Universitätsfrauenklinik und Poliklinik am Klinikum Südstadt Rostock, Rostock, Germany
| | - Manfred Welslau
- Onkologie Aschaffenburg, Hämato-Onkologische Schwerpunktpraxis am Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Rachel Würstlein
- Brustzentrum, Frauenklinik, LMU Klinikum München, München, Germany
| | - Nadia Harbeck
- Brustzentrum, Frauenklinik, LMU Klinikum München, München, Germany
| | - Jens Huober
- Brustzentrum Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
115
|
Teo ZL, O'Connor MJ, Versaci S, Clarke KA, Brown ER, Percy LW, Kuykhoven K, Mintoff CP, Savas P, Virassamy B, Luen SJ, Byrne A, Sant S, Lindeman GJ, Darcy PK, Loi S. Combined PARP and WEE1 inhibition triggers anti-tumor immune response in BRCA1/2 wildtype triple-negative breast cancer. NPJ Breast Cancer 2023; 9:68. [PMID: 37582853 PMCID: PMC10427618 DOI: 10.1038/s41523-023-00568-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
Novel therapeutic strategies that can effectively combine with immunotherapies are needed in the treatment of triple-negative breast cancer (TNBC). We demonstrate that combined PARP and WEE1 inhibition are synergistic in controlling tumour growth in BRCA1/2 wild-type TNBC preclinical models. The PARP inhibitor (PARPi) olaparib combined with the WEE1 inhibitor (WEE1i) adavosertib triggered increases in anti-tumour immune responses, including STING pathway activation. Combinations with a STING agonist resulted in further improved durable tumour regression and significant improvements in survival outcomes in murine tumour models of BRCA1/2 wild-type TNBC. In addition, we have identified baseline tumour-infiltrating lymphocyte (TIL) levels as a potential predictive biomarker of response to PARPi, WEE1i and immunotherapies in BRCA1/2 wild-type TNBC.
Collapse
Affiliation(s)
- Zhi Ling Teo
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | - Stephanie Versaci
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Kylie A Clarke
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Emmaline R Brown
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Luke W Percy
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Keilly Kuykhoven
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | | | - Peter Savas
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Balaji Virassamy
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Stephen J Luen
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ann Byrne
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Sneha Sant
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Geoffrey J Lindeman
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Phillip K Darcy
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sherene Loi
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
116
|
Caputo R, Pagliuca M, Pensabene M, Parola S, De Laurentiis M. Long-term complete response with third-line PARP inhibitor after immunotherapy in a patient with triple-negative breast cancer: a case report. Front Oncol 2023; 13:1214660. [PMID: 37601649 PMCID: PMC10438988 DOI: 10.3389/fonc.2023.1214660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
While standard treatment has shown efficacy in patients with breast cancer gene (BRCA) mutations, recurrence rates are high and additional effective therapies are needed. Olaparib, a poly adenosine diphosphate-ribose polymerase (PARP) inhibitor, approved for the treatment of metastatic germline BRCA1/BRCA2 breast cancer (BC), has demonstrated evidence of a progression-free survival (PFS) benefit, good safety profile, and improved quality of life compared with standard chemotherapy. We here describe the case of a patient with BRCA1 mutated advanced BC and a long history of response to chemotherapy and immunotherapy who received systemic treatment with olaparib. First diagnosed in March 2011 at the age of 38 years with early-stage BC of the right breast, she underwent quadrantectomy plus ipsilateral axillary lymphadenectomy and adjuvant treatments with chemotherapy regimen containing 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) followed by radiotherapy. Five years later, following a contralateral nodule detection leading to left breast quadrantectomy, she received adjuvant systemic treatment with docetaxel plus cyclophosphamide and radiotherapy. Gene testing showed a germline BRCA1 deleterious variant, and she underwent bilateral prophylactic mastectomy and oophorectomy. One year later, skin metastasis and bone infiltrations were detected, and she was started on first-line systemic treatment. The patient was enrolled in the IMpassion131 trial (investigating atezolizumab addition to paclitaxel) but unblinding showed that she was randomized in the placebo arm. She received second-line systemic therapy with LAG525 plus carboplatin (CLAG525B2101 trial) resulting in a PFS of 14 months. At disease progression, she was eligible for systemic third-line therapy with olaparib (300 mg twice daily) and had a complete response after 6 months of therapy and a PFS of 40 months at the time of writing. To the best of our knowledge, this is the first report of a complete response following treatment with third-line systemic olaparib in a long-responding patient and relatively good tolerability and quality of life, pre-treated with both chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Roberta Caputo
- Division of Breast Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Martina Pagliuca
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy
- U981 Molecular Predictors and New Targets in Oncology, Gustave Roussy, Villejuif, France
| | - Matilde Pensabene
- Division of Breast Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Sara Parola
- Unità Operativa Oncologia del PO di San Felice a Cancello, Caserta, Italy
| | - Michelino De Laurentiis
- Division of Breast Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
117
|
Toss A, Ponzoni O, Riccò B, Piombino C, Moscetti L, Combi F, Palma E, Papi S, Tenedini E, Tazzioli G, Dominici M, Cortesi L. Management of PALB2-associated breast cancer: A literature review and case report. Clin Case Rep 2023; 11:e7747. [PMID: 37621724 PMCID: PMC10444947 DOI: 10.1002/ccr3.7747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023] Open
Abstract
Germline pathogenic variants (PV) of the PALB2 tumor suppressor gene are associated with an increased risk of breast, pancreatic, and ovarian cancer. In previous research, PALB2-associated breast cancer showed aggressive clinicopathological phenotypes, particularly triple-negative subtype, and higher mortality regardless of tumor stage, type of chemotherapy nor hormone receptor status. The identification of this germline alteration may have an impact on clinical management of breast cancer (BC) from the surgical approach to the systemic treatment choice. We herein report the case of a patient with a germline PV of PALB2, diagnosed with locally advanced PD-L1 positive triple-negative BC, who progressed after an immune checkpoint inhibitor (ICI)-containing regimen and then experienced a pathologic complete response after platinum-based chemotherapy. This case report hints a major role of the germline PALB2 alteration compared to the PD-L1 expression as cancer driver and gives us the opportunity to extensively review and discuss the available literature on the optimal management of PALB2-associated BC. Overall, our case report and review of the literature provide additional evidence that the germline analysis of PALB2 gene should be included in routine genetic testing for predictive purposes and to refine treatment algorithms.
Collapse
Affiliation(s)
- Angela Toss
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
- Department of Medical and Surgical SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Ornella Ponzoni
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Beatrice Riccò
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Claudia Piombino
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Luca Moscetti
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Francesca Combi
- Unit of Breast Surgical OncologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
- Department of Biomedical, Metabolic and Neural Sciences, International Doctorate School in Clinical and Experimental MedicineUniversity of Modena and Reggio EmiliaModenaItaly
| | - Enza Palma
- Unit of Breast Surgical OncologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Simona Papi
- Unit of Breast Surgical OncologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Elena Tenedini
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics UnitAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Giovanni Tazzioli
- Department of Medical and Surgical SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Unit of Breast Surgical OncologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Massimo Dominici
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
- Department of Medical and Surgical SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Laura Cortesi
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| |
Collapse
|
118
|
Thill M, Kolberg-Liedtke C, Albert US, Banys-Paluchowski M, Bauerfeind I, Blohmer JU, Budach W, Dall P, Ditsch N, Fallenberg EM, Fasching PA, Fehm T, Friedrich M, Gerber B, Gluz O, Harbeck N, Hartkopf AD, Heil J, Huober J, Jackisch C, Kreipe HH, Krug D, Kühn T, Kümmel S, Loibl S, Lüftner D, Lux MP, Maass N, Mundhenke C, Reimer T, Rhiem K, Rody A, Schmidt M, Schneeweiss A, Schütz F, Sinn HP, Solbach C, Solomayer EF, Stickeler E, Thomssen C, Untch M, Witzel I, Wöckel A, Müller V, Würstlein R, Janni W, Park-Simon TW. AGO Recommendations for the Diagnosis and Treatment of Patients with Locally Advanced and Metastatic Breast Cancer: Update 2023. Breast Care (Basel) 2023; 18:306-315. [PMID: 37900553 PMCID: PMC10601669 DOI: 10.1159/000531579] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 10/31/2023] Open
Abstract
The Breast Committee of the Arbeitsgemeinschaft Gynäkologische Onkologie (German Gynecological Oncology Group, AGO) presents the 2023 update of the evidence-based recommendations for the diagnosis and treatment of patients with locally advanced and metastatic breast cancer (mBC).
Collapse
Affiliation(s)
- Marc Thill
- Klinik für Gynäkologie und Gynäkologische Onkologie, Agaplesion Markus Krankenhaus, Frankfurt, Germany
| | | | - Ute-Susann Albert
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Maggie Banys-Paluchowski
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Ingo Bauerfeind
- Frauenklinik, Klinikum Landshut gemeinnützige GmbH, Landshut, Germany
| | - Jens-Uwe Blohmer
- Klinik für Gynäkologie mit Brustzentrum des Universitätsklinikums der Charite, Berlin, Germany
| | - Wilfried Budach
- Strahlentherapie, Radiologie Düsseldorf, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Peter Dall
- Frauenklinik, Städtisches Klinikum Lüneburg, Lüneburg, Germany
| | - Nina Ditsch
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Eva Maria Fallenberg
- Institut für Klinische Radiologie, Klinikum der Universität München Campus Großhadern, Munich, Germany
| | | | - Tanja Fehm
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Michael Friedrich
- Klinik für Frauenheilkunde und Geburtshilfe, Helios Klinikum Krefeld, Krefeld, Germany
| | - Bernd Gerber
- Universitätsfrauenklinik und Poliklinik am Klinikum Südstadt, Rostock, Germany
| | - Oleg Gluz
- Brustzentrum, Evang, Krankenhaus Bethesda, Mönchengladbach, Germany
| | - Nadia Harbeck
- Brustzentrum, Klinik für Gynäkologie und Geburtshilfe, Klinikum der Ludwig-Maximilians-Universität, München, Germany
| | - Andreas D. Hartkopf
- Department für Frauengesundheit, Forschungsinstitut für Frauengesundheit, Universitätsfrauenklinik, Tübingen, Germany
| | - Jörg Heil
- Brustzentrum Heidelberg, Klinik St. Elisabeth, Heidelberg, Germany
| | - Jens Huober
- Brustzentrum, Kantonspital St. Gallen, St. Gallen, Switzerland
| | - Christian Jackisch
- Klinik für Gynäkologie und Geburtshilfe, Sana Klinikum Offenbach, Offenbach, Germany
| | | | - David Krug
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Thorsten Kühn
- Klinik für Frauenheilkunde und Geburtshilfe, Klinikum Esslingen, Esslingen, Germany
| | - Sherko Kümmel
- Klinik für Senologie, Evangelische Kliniken Essen Mitte, Essen, Germany
| | - Sibylle Loibl
- German Breast Group Forschungs GmbH, Frankfurt, Germany
| | - Diana Lüftner
- Fachklinik für Onkologische Rehabilitation, Immanuel Hospital Märkische Schweiz, Buckow & Immanuel Hospital Rüdersdorf/Medical University of Brandenburg Theodor Fontane, Rüdersdorf, Germany
| | - Michael Patrick Lux
- Kooperatives Brustzentrum Paderborn, Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn und St. Josefs-Krankenhaus, Salzkotten, St. Vincenz-Krankenhaus GmbH, Paderborn, Germany
| | - Nicolai Maass
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christoph Mundhenke
- Klinik für Gynäkologie und Geburtshilfe, Klinikum Bayreuth, Bayreuth, Germany
| | - Toralf Reimer
- Universitätsfrauenklinik und Poliklinik am Klinikum Südstadt, Rostock, Germany
| | - Kerstin Rhiem
- Zentrum Familiärer Brust- und Eierstockkrebs, Universitätsklinikum Köln, Köln, Germany
| | - Achim Rody
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Marcus Schmidt
- Klinik und Poliklinik für Geburtshilfe und Frauengesundheit der Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Andreas Schneeweiss
- Nationales Centrum für Tumorerkrankungen, Universitätsklinikum und Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Florian Schütz
- Klinik für Gynäkologie und Geburtshilfe, Diakonissen Krankenhaus Speyer, Speyer, Germany
| | - Hans-Peter Sinn
- Sektion Gynäkopathologie, Pathologisches Institut, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Christine Solbach
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Erich-Franz Solomayer
- Klinik für Frauenheilkunde, Geburtshilfe und Reproduktionsmedizin, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Elmar Stickeler
- Klinik für Gynäkologie und Geburtsmedizin, Universitätsklinikum Aachen, Aachen, Germany
| | - Christoph Thomssen
- Universitätsfrauenklinik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Untch
- Klinik für Gynäkologie und Geburtshilfe, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Isabell Witzel
- Klinik für Gynäkologie, Universitäts Spital, Zürich, Switzerland
| | - Achim Wöckel
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Volkmar Müller
- Klinik und Poliklinik für Gynäkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Rachel Würstlein
- Brustzentrum, Klinik für Gynäkologie und Geburtshilfe, Klinikum der Ludwig-Maximilians-Universität, München, Germany
| | - Wolfgang Janni
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Ulm, Ulm, Germany
| | - Tjoung-Won Park-Simon
- Klinik für Frauenheilkunde und Geburtshilfe, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
119
|
Abstract
The steady, incremental improvements in outcomes for both early-stage and advanced breast cancer patients are, in large part, attributable to the success of novel systemic therapies. In this review, we discuss key conceptual paradigms that have underpinned this success including (1) targeting the driver: the identification and targeting of major oncoproteins in breast cancers; (2) targeting the lineage pathway: inhibition of those pathways that drive normal mammary epithelial cell proliferation that retain importance in cancer; (3) targeting precisely: the application of molecular classifiers to refine therapy selection for specific cancers, and of antibody-drug conjugates to pinpoint tumor and tumor promoting cells for eradication; and (4) exploiting synthetic lethality: leveraging unique vulnerabilities that cancer-specific molecular alterations induce. We describe promising examples of novel therapies that have been discovered within each of these paradigms and suggest how future drug development efforts might benefit from the continued application of these principles.
Collapse
Affiliation(s)
- Shom Goel
- Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Weill Cornell Medicine, New York, New York 10021, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
120
|
Huang Y, Guo Y, Xiao Q, Liang S, Yu Q, Qian L, Zhou J, Le J, Pei Y, Wang L, Chang C, Chen S, Zhou S. Unraveling the Pivotal Network of Ultrasound and Somatic Mutations in Triple-Negative and Non-Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:461-472. [PMID: 37456987 PMCID: PMC10349575 DOI: 10.2147/bctt.s408997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Purpose The emergence of genomic targeted therapy has improved the prospects of treatment for breast cancer (BC). However, genetic testing relies on invasive and sophisticated procedures. Patients and Methods Here, we performed ultrasound (US) and target sequencing to unravel the possible association between US radiomics features and somatic mutations in TNBC (n=83) and non-TNBC (n=83) patients. Least absolute shrinkage and selection operator (Lasso) were utilized to perform radiomic feature selection. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was utilized to identify the signaling pathways associated with radiomic features. Results Thirteen differently represented radiomic features were identified in TNBC and non-TNBC, including tumor shape, textual, and intensity features. The US radiomic-gene pairs were differently exhibited between TNBC and non-TNBC. Further investigation with KEGG verified radiomic-pathway (ie, JAK-STAT, MAPK, Ras, Wnt, microRNAs in cancer, PI3K-Akt) associations in TNBC and non-TNBC. Conclusion The pivotal network provided the connections of US radiogenomic signature and target sequencing for non-invasive genetic assessment of precise BC treatment.
Collapse
Affiliation(s)
- Yunxia Huang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yi Guo
- Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Qin Xiao
- Department of Electronic Engineering, Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, People’s Republic of China
| | - Shuyu Liang
- Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Qiang Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Lang Qian
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jin Zhou
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jian Le
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yuchen Pei
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Lei Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Cai Chang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Sheng Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Shichong Zhou
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
121
|
Huang Y, Zheng D, Yang Q, Wu J, Tian H, Ji Z, Chen L, Cai J, Li Z, Chen Y. Global trends in BRCA-related breast cancer research from 2013 to 2022: A scientometric analysis. Front Oncol 2023; 13:1197168. [PMID: 37476378 PMCID: PMC10354558 DOI: 10.3389/fonc.2023.1197168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Since the mid-2000s, breast cancer incidence among women has slowly increased at about 0.5% per year. In the last three decades, Breast Cancer Susceptibility Gene (BRCA) has been proven to be the crucial gene in encouraging the incidence and development of breast cancer. However, scientometric analysis on BRCA-related breast cancer is in shortage. Thus, to have a clear understanding of the current status and catch up with the hotspots, a scientometric analysis was conducted on specific academic publications collected from the Web of Science (WoS). Methods We searched the Web of Science Core Collection (WoSCC) to procure associated articles as our dataset. Bibliometric, CiteSpace, VOSviewer, and HistCite software were then applied to conduct visual analyses of countries, institutions, journals, authors, landmark articles, and keywords in this research field. Results A total of 7,266 articles and 1,310 review articles published between 2013 to 2022 were retrieved eventually. The annual output steadily rose year by year and peaked in 2021. The USA led the way in the number of published works, total citations, and collaboration. Breast Cancer Research and Treatment was the most favoured journal in this research field. Narod SA from the University of Toronto produced the most publications. At last, the most prominent keywords were "breast cancer" (n=1,778), "women" (n=1,369), "brca1" (n=1,276), "ovarian cancer" (n=1,259), "risk" (n=1,181), and "mutations" (n=929), which exposed the hotspots within the BRCA domain of breast cancer study. Conclusion The tendency in the BRCA research field over the past decade was presented by the scientometric analysis. The current research focus is the clinical trials of poly-adenosine diphosphate ribose polymerase inhibitors (PARPi) drugs and their resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiyang Li
- *Correspondence: Zhiyang Li, ; Yexi Chen,
| | - Yexi Chen
- *Correspondence: Zhiyang Li, ; Yexi Chen,
| |
Collapse
|
122
|
Yi J, Li H, Chu B, Kon N, Hu X, Hu J, Xiong Y, Kaniskan HU, Jin J, Gu W. Inhibition of USP7 induces p53-independent tumor growth suppression in triple-negative breast cancers by destabilizing FOXM1. Cell Death Differ 2023; 30:1799-1810. [PMID: 37291217 PMCID: PMC10307817 DOI: 10.1038/s41418-023-01180-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Although numerous studies indicate that inhibition of USP7 suppresses tumor growth by activating p53, the precise mechanism by which USP7 contributes to tumor growth through the p53-independent manner is not well understood. p53 is frequently mutated in most triple-negative breast cancers (TNBC), characterized as the very aggressive form of breast cancers with limited treatment options and poor patient outcomes. Here, we found that the oncoprotein Forkhead Box M1 (FOXM1) acts as a potential driver for tumor growth in TNBC and, surprisingly, through a proteomic screen, we identified USP7 as a major regulator of FOXM1 in TNBC cells. USP7 interacts with FOXM1 both in vitro and in vivo. USP7 stabilizes FOXM1 through deubiquitination. Conversely, RNAi-mediated USP7 knockdown in TNBC cells, dramatically reduced the levels of FOXM1. Moreover, based upon the proteolysis targeting chimera (PROTAC) technology, we generated PU7-1 (protein degrader for USP7-1), as a USP7 specific degrader. PU7-1 induces rapid USP7 degradation at low nanomolar concentrations in cells but shows no obvious effect on other USP family proteins. Strikingly, the treatment of TNBC cells with PU7-1 significantly abrogates FOXM1 functions and effectively suppresses cell growth in vitro. By using xenograft mouse models, we found that PU7-1 markedly represses tumor growth in vivo. Notably, ectopic overexpression of FOXM1 can reverse the tumor growth suppressive effects induced by PU7-1, underscored the specific effect on FOXM1 induced by USP7 inactivation. Together, our findings indicate that FOXM1 is a major target of USP7 in modulating tumor growth in a p53-independent manner and reveals the USP7 degrader as a potential therapeutic tool for the treatment of triple-negative breast cancers.
Collapse
Affiliation(s)
- Jingjie Yi
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Huan Li
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Bo Chu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ning Kon
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Xiaoping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jianping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Umit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
123
|
Wan A, Zhang G, Ma D, Zhang Y, Qi X. An overview of the research progress of BRCA gene mutations in breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188907. [PMID: 37172654 DOI: 10.1016/j.bbcan.2023.188907] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The breast cancer susceptibility gene (BRCA) is an important tumor suppressor gene, including BRCA1 and BRCA2, a biomarker that assesses the risk of breast cancer and influences a patient's individualized treatment options. BRCA1/2 mutation (BRCAm) increases the risk of breast cancer. However, breast-conserving surgery is still an option for BRCAm, and prophylactic mastectomy and nipple-sparing mastectomy may also reduce the risk of breast cancer. BRCAm is sensitive to Poly (ADP-ribose) polymerase inhibitor (PARPi) therapy due to specific types of DNA repair defects, and its combination with other DNA damage pathway inhibitors and endocrine therapy and immunotherapy are also used for the treatment of BRCAm breast cancer. The current treatment and research progress of BRCA1/2 mutant breast cancer in this review provides a basis for the individualized treatment of patients with this type of breast cancer.
Collapse
Affiliation(s)
- Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Guozhi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Dandan Ma
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
124
|
Vanderbeek AM, Redd RA, Ventz S, Trippa L. Looking ahead in early-phase trial design to improve the drug development process: examples in oncology. BMC Med Res Methodol 2023; 23:151. [PMID: 37386450 PMCID: PMC10308797 DOI: 10.1186/s12874-023-01979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Clinical trial design must consider the specific resource constraints and overall goals of the drug development process (DDP); for example, in designing a phase I trial to evaluate the safety of a drug and recommend a dose for a subsequent phase II trial. Here, we focus on design considerations that involve the sequence of clinical trials, from early phase I to late phase III, that constitute the DDP. METHODS We discuss how stylized simulation models of clinical trials in an oncology DDP can quantify important relationships between early-phase trial designs and their consequences for the remaining phases of development. Simulations for three illustrative settings are presented, using stylized models of the DDP that mimic trial designs and decisions, such as the potential discontinuation of the DDP. RESULTS We describe: (1) the relationship between a phase II single-arm trial sample size and the likelihood of a positive result in a subsequent phase III confirmatory trial; (2) the impact of a phase I dose-finding design on the likelihood that the DDP will produce evidence of a safe and effective therapy; and (3) the impact of a phase II enrichment trial design on the operating characteristics of a subsequent phase III confirmatory trial. CONCLUSIONS Stylized models of the DDP can support key decisions, such as the sample size, in the design of early-phase trials. Simulation models can be used to estimate performance metrics of the DDP under realistic scenarios; for example, the duration and the total number of patients enrolled. These estimates complement the evaluation of the operating characteristics of early-phase trial design, such as power or accuracy in selecting safe and effective dose levels.
Collapse
Affiliation(s)
- Alyssa M Vanderbeek
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02115, USA
- Unlearn.AI, San Francisco, CA, USA
| | - Robert A Redd
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02115, USA
| | - Steffen Ventz
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Lorenzo Trippa
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02115, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
125
|
Hernandez-Martinez JM, Rosell R, Arrieta O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit Rev Oncol Hematol 2023:104058. [PMID: 37343657 DOI: 10.1016/j.critrevonc.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
ATM is an apical kinase of the DNA damage response involved in the repair of DNA double-strand breaks. Germline ATM variants (gATM) have been associated with an increased risk of developing lung adenocarcinoma (LUAD), and approximately 9% of LUAD tumors harbor somatic ATM mutations (sATM). Biallelic carriers of pathogenic gATM exhibit a plethora of immunological abnormalities, but few studies have evaluated the contribution of immune dysfunction to lung cancer susceptibility. Indeed, little is known about the clinicopathological characteristics of lung cancer patients with sATM or gATM alterations. The introduction of targeted therapies and immunotherapies, and the increasing number of clinical trials evaluating treatment combinations, warrants a careful reexamination of the benefits and harms that different therapeutic approaches have had in lung cancer patients with sATM or gATM. This review will discuss the role of ATM in the pathogenesis of lung cancer, highlighting potential therapeutic approaches to manage ATM-deficient lung cancers.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan); CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; (4)Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan).
| |
Collapse
|
126
|
Tufail M. DNA repair pathways in breast cancer: from mechanisms to clinical applications. Breast Cancer Res Treat 2023:10.1007/s10549-023-06995-z. [PMID: 37289340 DOI: 10.1007/s10549-023-06995-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Breast cancer (BC) is a complex disease with various subtypes and genetic alterations that impact DNA repair pathways. Understanding these pathways is essential for developing effective treatments and improving patient outcomes. AREA COVERED This study investigates the significance of DNA repair pathways in breast cancer, specifically focusing on various pathways such as nucleotide excision repair, base excision repair, mismatch repair, homologous recombination repair, non-homologous end joining, fanconi anemia pathway, translesion synthesis, direct repair, and DNA damage tolerance. The study also examines the role of these pathways in breast cancer resistance and explores their potential as targets for cancer treatment. CONCLUSION Recent advances in targeted therapies have shown promise in exploiting DNA repair pathways for BC treatment. However, much research is needed to improve the efficacy of these therapies and identify new targets. Additionally, personalized treatments that target specific DNA repair pathways based on tumor subtype or genetic profile are being developed. Advances in genomics and imaging technologies can potentially improve patient stratification and identify biomarkers of treatment response. However, many challenges remain, including toxicity, resistance, and the need for more personalized treatments. Continued research and development in this field could significantly improve BC treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
127
|
Yang C, Brezden-Masley C, Joy AA, Sehdev S, Modi S, Simmons C, Henning JW. Targeting HER2-low in metastatic breast cancer: an evolving treatment paradigm. Ther Adv Med Oncol 2023; 15:17588359231175440. [PMID: 37323186 PMCID: PMC10262633 DOI: 10.1177/17588359231175440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
The results of the Phase III DESTINY-Breast04 trial of trastuzumab deruxtecan (T-DXd) are leading to a shift in both the classification and treatment of human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer. In this trial, T-DXd was associated with a substantial survival benefit among patients with hormone receptor-positive and hormone receptor-negative disease and low expression of HER2, a biomarker previously considered unactionable in this treatment setting. Herein, we discuss the evolving therapeutic pathway for HER2-low disease, ongoing clinical trials, and the potential challenges and evidence gaps arising with treatment of this patient population.
Collapse
Affiliation(s)
- Charlie Yang
- Tom Baker Cancer Centre, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada
| | | | - Anil Abraham Joy
- Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Shanu Modi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Simmons
- BC Cancer Agency – Vancouver Centre, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
128
|
Yap TA, Stadler ZK, Stout LA, Schneider BP. Aligning Germline Cancer Predisposition With Tumor-Based Next-Generation Sequencing for Modern Oncology Diagnosis, Interception, and Therapeutic Development. Am Soc Clin Oncol Educ Book 2023; 43:e390738. [PMID: 37390373 DOI: 10.1200/edbk_390738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
In the era of precision medicine, genomic interrogation for identification of both germline and somatic genetic alterations has become increasingly important. While such germline testing was usually undertaken via a phenotype-driven single-gene approach, with the advent of next-generation sequencing (NGS) technologies, the widespread utilization of multigene panels, often agnostic of cancer phenotype, has become a commonplace in many different cancer types. At the same time, somatic tumor testing in oncology performed for the purpose of guiding therapeutic decisions for targeted therapies has also rapidly expanded, recently starting to incorporate not just patients with recurrent or metastatic cancer but even patients with early-stage disease. An integrated approach may be the best approach for the optimal management of patients with different cancers. The lack of complete congruence between germline and somatic NGS tests does not minimize the power or importance of either, but highlights the need to understand their limitations so as not to overlook an important finding or omission. NGS tests built to more uniformly and comprehensively evaluate both the germline and tumor simultaneously are urgently required and are in development. In this article, we discuss approaches to somatic and germline analyses in patients with cancer and the knowledge gained from integration of tumor-normal sequencing. We also detail strategies for the incorporation of genomic analysis into oncology care delivery models and the important emergence of poly(ADP-ribose) polymerase and other DNA Damage Response inhibitors in the clinic for patients with cancer with germline and somatic BRCA1 and BRCA2 mutations.
Collapse
Affiliation(s)
- Timothy A Yap
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Leigh Anne Stout
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Bryan P Schneider
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
| |
Collapse
|
129
|
Jagannathan G, White MJ, Xian RR, Emens LA, Cimino-Mathews A. A New Landscape of Testing and Therapeutics in Metastatic Breast Cancer. Clin Lab Med 2023; 43:299-321. [PMID: 37169447 DOI: 10.1016/j.cll.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Predictive biomarker testing on metastatic breast cancer is essential for determining patient eligibility for targeted therapeutics. The National Comprehensive Cancer Network currently recommends assessment of specific biomarkers on metastatic tumor subtypes, including hormone receptors, HER2, and BRCA1/2 mutations, on all newly metastatic breast cancers subtypes; programmed death-ligand 1 on metastatic triple-negative carcinomas; and PIK3CA mutation status on estrogen receptor-positive carcinomas. In select circumstances mismatch repair protein deficiency and/or microsatellite insufficiency, tumor mutation burden, and NTRK translocation status are also testing options. Novel biomarker testing, such as detecting PIK3CA mutations in circulating tumor DNA, is expanding in this rapidly evolving arena.
Collapse
Affiliation(s)
- Geetha Jagannathan
- Department of Pathology, The Johns Hopkins University School of Medicine, 401 N Broadway, Weinberg 2242, Baltimore, MD 21287, USA
| | - Marissa J White
- Department of Pathology, The Johns Hopkins University School of Medicine, 401 N Broadway, Weinberg 2242, Baltimore, MD 21287, USA
| | - Rena R Xian
- Department of Pathology, The Johns Hopkins University School of Medicine, 401 N Broadway, Weinberg 2242, Baltimore, MD 21287, USA; Department of Oncology, The Johns Hopkins University School of Medicine, 401 N Broadway, Weinberg 2242, Baltimore, MD 21287, USA
| | - Leisha A Emens
- Department of Oncology, UPMC Hillman Cancer Center/Magee Women's Hospital, 5117 Centre Avenue, Room 1.46e, Pittsburgh, PA 15213, USA
| | - Ashley Cimino-Mathews
- Department of Pathology, The Johns Hopkins University School of Medicine, 401 N Broadway, Weinberg 2242, Baltimore, MD 21287, USA; Department of Oncology, The Johns Hopkins University School of Medicine, 401 N Broadway, Weinberg 2242, Baltimore, MD 21287, USA.
| |
Collapse
|
130
|
Hartkopf AD, Fehm TN, Welslau M, Müller V, Schütz F, Fasching PA, Janni W, Witzel I, Thomssen C, Beierlein M, Belleville E, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Kolberg-Liedtke C, Wöckel A, Kolberg HC, Harbeck N, Stickeler E, Bartsch R, Schneeweiss A, Ettl J, Würstlein R, Krug D, Taran FA, Lüftner D. Update Breast Cancer 2023 Part 1 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2023; 83:653-663. [PMID: 37916183 PMCID: PMC10617391 DOI: 10.1055/a-2074-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 11/03/2023] Open
Abstract
With abemaciclib (monarchE study) and olaparib (OlympiA study) gaining approval in the adjuvant treatment setting, a significant change in the standard of care for patients with early stage breast cancer has been established for some time now. Accordingly, some diverse developments are slowly being transferred from the metastatic to the adjuvant treatment setting. Recently, there have also been positive reports of the NATALEE study. Other clinical studies are currently investigating substances that are already established in the metastatic setting. These include, for example, the DESTINY Breast05 study with trastuzumab deruxtecan and the SASCIA study with sacituzumab govitecan. In this review paper, we summarize and place in context the latest developments over the past months.
Collapse
Affiliation(s)
- Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics; Comprehensive Cancer Center Erlangen EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Isabell Witzel
- Klinik für Gynäkologie, Universitätsspital Zürich, Zürich, Switzerland
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Milena Beierlein
- Erlangen University Hospital, Department of Gynecology and Obstetrics; Comprehensive Cancer Center Erlangen EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | | | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Department of Gynecology and Gynecological Oncology, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Paderborn, Germany
| | - Bahriye Aktas
- Department of Gynecology, University of Leipzig Medical Center, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Düsseldorf), University Hospital of RWTH Aachen, Aachen, Germany
| | - Rupert Bartsch
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Johannes Ettl
- Klinik für Frauenheilkunde und Gynäkologie, Klinikum Kempten, Klinikverbund Allgäu, Kempten, Germany
| | - Rachel Würstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - David Krug
- Klinik für Strahlentherapie, Universitätsklinkum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florin-Andrei Taran
- Department of Gynecology and Obstetrics, University Hospital Freiburg, Freiburg, Germany
| | - Diana Lüftner
- Medical University of Brandenburg Theodor-Fontane, Immanuel Hospital Märkische Schweiz, Buckow, Germany
| |
Collapse
|
131
|
Rădoi VE, Țurcan M, Maioru OV, Dan A, Bohîlțea LC, Dumitrescu EA, Gheorghe AS, Stănculeanu DL, Thodi G, Loukas YL, Săbău ID. Homologous Recombination Deficiency Score Determined by Genomic Instability in a Romanian Cohort. Diagnostics (Basel) 2023; 13:1896. [PMID: 37296748 PMCID: PMC10252278 DOI: 10.3390/diagnostics13111896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The Homologous Recombination Deficiency (HRD) Score, determined by evaluating genomic instability through the assessment of loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST), serves as a crucial biomarker for identifying patients who might benefit from targeted therapies, such as PARP inhibitors (PARPi). This study aimed to investigate the efficacy of HRD testing in high-grade serous ovarian carcinoma, tubal, and peritoneal cancer patients who are negative for somatic BRCA1 and BRCA2 mutations and to evaluate the impact of HRD status on Bevacizumab and PARPi therapy response. A cohort of 100 Romanian female patients, aged 42-77, was initially selected. Among them, 30 patients had unsuitable samples for HRD testing due to insufficient tumor content or DNA integrity. Using the OncoScan C.N.V. platform, HRD testing was successfully performed on the remaining 70 patients, with 20 testing negative and 50 testing positive for HRD. Among the HRD-positive patients, 35 were eligible for and benefited from PARPi maintenance therapy, resulting in a median progression-free survival (PFS) increase from 4 months to 8.2 months. Our findings support the importance of HRD testing in ovarian cancer patients, demonstrating the potential therapeutic advantage of PARPi therapy in HRD-positive patients without somatic BRCA1/2 mutations.
Collapse
Affiliation(s)
- Viorica-Elena Rădoi
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
- Independent Researcher, 010987 Bucharest, Romania
- Sanador, 011026 Bucharest, Romania
| | - Mihaela Țurcan
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- Independent Researcher, 010987 Bucharest, Romania
| | - Ovidiu Virgil Maioru
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
| | - Andra Dan
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
| | - Laurentiu Camil Bohîlțea
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Elena Adriana Dumitrescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
| | - Adelina Silvana Gheorghe
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
- Department of Medical Oncology I, Institute of Oncology “Prof. Dr. Al. Trestioreanu” Bucharest, 022328 Bucharest, Romania
| | - Dana Lucia Stănculeanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
- Department of Medical Oncology I, Institute of Oncology “Prof. Dr. Al. Trestioreanu” Bucharest, 022328 Bucharest, Romania
| | - Georgia Thodi
- Neoscreen Diagnostic Laboratory, Voreiou Ipeirou, 15235 Athens, Greece;
| | - Yannis L. Loukas
- School of Pharmacy, University of Athens, Panepistimiolopis, 15771 Zografou, Greece;
| | - Ileana-Delia Săbău
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- Independent Researcher, 010987 Bucharest, Romania
| |
Collapse
|
132
|
Morganti S, Bychkovsky BL, Poorvu PD, Garrido-Castro AC, Weiss A, Block CC, Partridge AH, Curigliano G, Tung NM, Lin NU, Garber JE, Tolaney SM, Lynce F. Adjuvant Olaparib for Germline BRCA Carriers With HER2-Negative Early Breast Cancer: Evidence and Controversies. Oncologist 2023:7175048. [PMID: 37210568 DOI: 10.1093/oncolo/oyad123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/06/2023] [Indexed: 05/22/2023] Open
Abstract
In the OlympiA study, 1 year of adjuvant olaparib significantly extended invasive disease-free survival and overall survival. The benefit was consistent across subgroups, and this regimen is now recommended after chemotherapy for germline BRCA1/2 mutation (gBRCA1/2m) carriers with high-risk, HER2-negative early breast cancer. However, the integration of olaparib in the landscape of agents currently available in the post(neo)adjuvant setting-ie, pembrolizumab, abemaciclib, and capecitabine-is challenging, as there are no data suggesting how to select, sequence, and/or combine these therapeutic approaches. Furthermore, it is unclear how to best identify additional patients who could benefit from adjuvant olaparib beyond the original OlympiA criteria. Since it is unlikely that new clinical trials will answer these questions, recommendations for clinical practice can be made through indirect evidence. In this article, we review available data that could help guide treatment decisions for gBRCA1/2m carriers with high-risk, early-stage breast cancer.
Collapse
Affiliation(s)
- Stefania Morganti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Brittany L Bychkovsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Genetics and Prevention Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip D Poorvu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ana C Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Anna Weiss
- Department of Surgery, Division of Surgical Oncology, University of Rochester, Rochester, NY, USA
| | - Caroline C Block
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ann H Partridge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nadine M Tung
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Genetics and Prevention Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
133
|
Smid M, Schmidt MK, Prager-van der Smissen WJC, Ruigrok-Ritstier K, Schreurs MAC, Cornelissen S, Garcia AM, Broeks A, Timmermans AM, Trapman-Jansen AMAC, Collée JM, Adank MA, Hooning MJ, Martens JWM, Hollestelle A. Breast cancer genomes from CHEK2 c.1100delC mutation carriers lack somatic TP53 mutations and display a unique structural variant size distribution profile. Breast Cancer Res 2023; 25:53. [PMID: 37161532 PMCID: PMC10169359 DOI: 10.1186/s13058-023-01653-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND CHEK2 c.1100delC was the first moderate-risk breast cancer (BC) susceptibility allele discovered. Despite several genomic, transcriptomic and functional studies, however, it is still unclear how exactly CHEK2 c.1100delC promotes tumorigenesis. Since the mutational landscape of a tumor reflects the processes that have operated on its development, the aim of this study was to uncover the somatic genomic landscape of CHEK2-associated BC. METHODS We sequenced primary BC (pBC) and normal genomes of 20 CHEK2 c.1100delC mutation carriers as well as their pBC transcriptomes. Including pre-existing cohorts, we exhaustively compared CHEK2 pBC genomes to those from BRCA1/2 mutation carriers, those that displayed homologous recombination deficiency (HRD) and ER- and ER+ pBCs, totaling to 574 pBC genomes. Findings were validated in 517 metastatic BC genomes subdivided into the same subgroups. Transcriptome data from 168 ER+ pBCs were used to derive a TP53-mutant gene expression signature and perform cluster analysis with CHEK2 BC transcriptomes. Finally, clinical outcome of CHEK2 c.1100delC carriers was compared with BC patients displaying somatic TP53 mutations in two well-described retrospective cohorts totaling to 942 independent pBC cases. RESULTS BC genomes from CHEK2 mutation carriers were most similar to ER+ BC genomes and least similar to those of BRCA1/2 mutation carriers in terms of tumor mutational burden as well as mutational signatures. Moreover, CHEK2 BC genomes did not show any evidence of HRD. Somatic TP53 mutation frequency and the size distribution of structural variants (SVs), however, were different compared to ER+ BC. Interestingly, BC genomes with bi-allelic CHEK2 inactivation lacked somatic TP53 mutations and transcriptomic analysis indicated a shared biology with TP53 mutant BC. Moreover, CHEK2 BC genomes had an increased frequency of > 1 Mb deletions, inversions and tandem duplications with peaks at specific sizes. The high chromothripsis frequency among CHEK2 BC genomes appeared, however, not associated with this unique SV size distribution profile. CONCLUSIONS CHEK2 BC genomes are most similar to ER+ BC genomes, but display unique features that may further unravel CHEK2-driven tumorigenesis. Increased insight into this mechanism could explain the shorter survival of CHEK2 mutation carriers that is likely driven by intrinsic tumor aggressiveness rather than endocrine resistance.
Collapse
Affiliation(s)
- Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Maartje A C Schreurs
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Sten Cornelissen
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Aida Marsal Garcia
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - A Mieke Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
134
|
Pandya K, Scher A, Omene C, Ganesan S, Kumar S, Ohri N, Potdevin L, Haffty B, Toppmeyer DL, George MA. Clinical efficacy of PARP inhibitors in breast cancer. Breast Cancer Res Treat 2023; 200:15-22. [PMID: 37129747 DOI: 10.1007/s10549-023-06940-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
BRCA1 and BRCA2 are key tumor suppressor genes that are essential for the homologous recombination DNA repair pathway. Loss of function mutations in these genes result in hereditary breast and ovarian cancer syndromes, which comprise approximately 5% of cases. BRCA1/2 mutations are associated with younger age of diagnosis and increased risk of recurrences. The concept of synthetic lethality led to the development of PARP inhibitors which cause cell cytotoxicity via the inhibition of PARP1, a key DNA repair protein, in cells with germline BRCA1/2 mutations. Although still poorly understood, the most well-acknowledged proposed mechanisms of action of PARP1 inhibition include the inhibition of single strand break repair, PARP trapping, and the upregulation of non-homologous end joining. Olaparib and talazoparib are PARP inhibitors that have been approved for the management of HER2-negative breast cancer in patients with germline BRCA1/2 mutations. This review article highlights the clinical efficacy of PARP inhibitors in patients with HER2-negative breast cancer in early and advanced settings.
Collapse
Affiliation(s)
- Karan Pandya
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Alyssa Scher
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Coral Omene
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Shicha Kumar
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nisha Ohri
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lindsay Potdevin
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Bruce Haffty
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Deborah L Toppmeyer
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Mridula A George
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
135
|
Imterat M, Harter P, Rhiem K, Heitz F, Schneider S, Concin N, Moubarak M, Welz J, Vrentas V, Traut A, Hahnen E, Schmutzler R, du Bois A, Ataseven B. Incidence and Prognostic Impact of Deleterious Germline Mutations in Primary Advanced Ovarian Carcinoma Patients. Cancers (Basel) 2023; 15:2534. [PMID: 37174000 PMCID: PMC10177155 DOI: 10.3390/cancers15092534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Data on deleterious variants in genes other than BRCA1/2 remain limited. A retrospective cohort study was performed, including primary OC cases with TruRisk® germline gene panel testing between 2011 and 2020. Patients with testing after relapse were excluded. The cohort was divided into three groups: (A) no mutations, (B) deleterious BRCA1/2 mutations, and (C) deleterious mutations in other genes. A total of 702 patients met the inclusion criteria. Of these 17.4% (n = 122) showed BRCA1/2 mutations and a further 6.0% (n = 42) in other genes. Three-year overall survival (OS) of the entire cohort was significantly longer in patients with germline mutations (85%/82.8% for cohort B/C vs. 70.2% for cohort A, p < 0.001) and 3-year progression-free survival (PFS) only for cohort B (58.1% vs. 36.9%/41.6% in cohort A/C, p = 0.002). In multivariate analysis for the subgroup of advanced-stages of high-grade serous OC, both cohorts B/C were found to be independent factors for significantly better outcome, cohort C for OS (HR 0.46; 95% CI 0.25-0.84), and cohort B for both OS and PFS (HR 0.40; 95% CI 0.27-0.61 and HR 0.49; 95% CI 0.37-0.66, respectively). Germline mutations were detected in a quarter of OC patients, and a quarter of those in genes other than BRCA1/2. Germline mutations demonstrate in our cohort a prognostic factor and predict better prognosis for OC patients.
Collapse
Affiliation(s)
- Majdi Imterat
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen Mitte (KEM), 45136 Essen, Germany; (P.H.); (F.H.); (S.S.); (N.C.); (M.M.); (J.W.); (V.V.); (A.T.); (A.d.B.); (B.A.)
- Department of Gynaecologic Oncology, Hadassah Medical Centers, Faculty of Medicine, Hebrew University of Jerusalem, Kalman Ya’Akov Man St., Jerusalem 91905, Israel
| | - Philipp Harter
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen Mitte (KEM), 45136 Essen, Germany; (P.H.); (F.H.); (S.S.); (N.C.); (M.M.); (J.W.); (V.V.); (A.T.); (A.d.B.); (B.A.)
| | - Kerstin Rhiem
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, 50931 Cologne, Germany; (K.R.); (E.H.); (R.S.)
| | - Florian Heitz
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen Mitte (KEM), 45136 Essen, Germany; (P.H.); (F.H.); (S.S.); (N.C.); (M.M.); (J.W.); (V.V.); (A.T.); (A.d.B.); (B.A.)
- Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Stephanie Schneider
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen Mitte (KEM), 45136 Essen, Germany; (P.H.); (F.H.); (S.S.); (N.C.); (M.M.); (J.W.); (V.V.); (A.T.); (A.d.B.); (B.A.)
| | - Nicole Concin
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen Mitte (KEM), 45136 Essen, Germany; (P.H.); (F.H.); (S.S.); (N.C.); (M.M.); (J.W.); (V.V.); (A.T.); (A.d.B.); (B.A.)
| | - Malak Moubarak
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen Mitte (KEM), 45136 Essen, Germany; (P.H.); (F.H.); (S.S.); (N.C.); (M.M.); (J.W.); (V.V.); (A.T.); (A.d.B.); (B.A.)
| | - Julia Welz
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen Mitte (KEM), 45136 Essen, Germany; (P.H.); (F.H.); (S.S.); (N.C.); (M.M.); (J.W.); (V.V.); (A.T.); (A.d.B.); (B.A.)
| | - Vasileios Vrentas
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen Mitte (KEM), 45136 Essen, Germany; (P.H.); (F.H.); (S.S.); (N.C.); (M.M.); (J.W.); (V.V.); (A.T.); (A.d.B.); (B.A.)
| | - Alexander Traut
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen Mitte (KEM), 45136 Essen, Germany; (P.H.); (F.H.); (S.S.); (N.C.); (M.M.); (J.W.); (V.V.); (A.T.); (A.d.B.); (B.A.)
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, 50931 Cologne, Germany; (K.R.); (E.H.); (R.S.)
| | - Rita Schmutzler
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, 50931 Cologne, Germany; (K.R.); (E.H.); (R.S.)
| | - Andreas du Bois
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen Mitte (KEM), 45136 Essen, Germany; (P.H.); (F.H.); (S.S.); (N.C.); (M.M.); (J.W.); (V.V.); (A.T.); (A.d.B.); (B.A.)
| | - Beyhan Ataseven
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen Mitte (KEM), 45136 Essen, Germany; (P.H.); (F.H.); (S.S.); (N.C.); (M.M.); (J.W.); (V.V.); (A.T.); (A.d.B.); (B.A.)
- Academic Department of Gynecology, Gynecologic Oncology and Obstetrics, Klinikum Lippe, Medical School, University Medical Center East Westphalia-Lippe, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
136
|
Bartow BB, Siegal GP, Yalniz C, Elkhanany AM, Huo L, Ding Q, Sahin AA, Guo H, Magi-Galluzzi C, Harada S, Huang X. Mutations in Homologous Recombination Genes and Loss of Heterozygosity Status in Advanced-Stage Breast Carcinoma. Cancers (Basel) 2023; 15:cancers15092524. [PMID: 37173992 PMCID: PMC10177458 DOI: 10.3390/cancers15092524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPis) have demonstrated antitumor activity in cancers with a homologous recombination deficiency (HRD) and have recently been approved by the FDA for the treatment of germline BRCA1/2-mutation-associated breast cancer. PARPis have also been found to be efficacious in BRCA wild-type (BRCAwt) lesions with high genomic loss of heterozygosity (LOH-high). The goal of this study was to retrospectively investigate the tumor mutations in homologous recombination (HRR) genes and the LOH score in advanced-stage breast carcinomas (BCs). Sixty-three patients were included in our study, 25% of whom had HRR gene mutations in their tumors, including 6% BRCA1/2 and 19% non-BRCA-containing gene mutations. An HRR gene mutation was associated with a triple-negative phenotype. Twenty-eight percent of the patients had an LOH-high score, which, in turn, was associated with a high histological grade, a triple-negative phenotype, and a high tumor mutational burden (TMB). Among the six patients who received PARPi therapy, one had a tumor with a PALB2 mutation other than BRCA and had a clinical partial response. Twenty-two percent of the LOH-low tumors had BRCAwt-HRR gene mutations, compared with 11% of the LOH-high tumors. Comprehensive genomic profiling revealed a subset of breast cancer patients with a BRCAwt-HRR gene mutation that would be missed by an LOH test. The necessity of next-generation sequencing coupled with HRR gene analysis for PARPi therapy requires further investigation in clinical trials.
Collapse
Affiliation(s)
- Brooke B Bartow
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gene P Siegal
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ceren Yalniz
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ahmed M Elkhanany
- Department of Breast Medical Oncology, Division of Hematology & Oncology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lei Huo
- Department of Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingqing Ding
- Department of Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Guo
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cristina Magi-Galluzzi
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shuko Harada
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao Huang
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
137
|
Rader RK, Anders CK, Lin NU, Sammons SL. Available Systemic Treatments and Emerging Therapies for Breast Cancer Brain Metastases. Curr Treat Options Oncol 2023; 24:611-627. [PMID: 37071254 DOI: 10.1007/s11864-023-01086-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 04/19/2023]
Abstract
OPINION STATEMENT In 2023, breast cancer brain metastases (BCBrM) remain a major clinical challenge gaining well-deserved attention. Historically managed with local therapies alone, systemic therapies including small molecule inhibitors and antibody-drug conjugates (ADCs) have shown unprecedented activity in recent trials including patients with brain metastases. These advancements stem from efforts to include patients with stable and active BCBrM in early- and late-phase trial design. Tucatinib added to trastuzumab and capecitabine improves intracranial and extracranial progression-free survival and overall survival in stable and active human epidermal growth factor receptor 2 (HER2+)-positive brain metastases. Trastuzumab deruxtecan (T-DXd) has both shown impressive intracranial activity in stable and active HER2+ BCBrMs challenging historical thinking of ADCs' inability to penetrate the central nervous system (CNS). T-DXd has shown potent activity in HER2-low (immunohistochemistry scores of 1+ or 2+, non-amplified by fluorescence in situ hybridization) metastatic breast cancer and will be studied in HER2-low BCBrM as well. Novel endocrine therapies including oral selective estrogen downregulators (SERDs) and complete estrogen receptor antagonists (CERANs) are being studied in hormone receptor-positive BCBrM clinical trials due to robust intracranial activity in preclinical models. Triple-negative breast cancer (TNBC) brain metastases continue to portend the worst prognosis of all subtypes. Clinical trials leading to the approval of immune checkpoint inhibitors have enrolled few BCBrM patients leading to a lack of understanding of immunotherapies contribution in this subgroup. Data surrounding the use of poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors in patients with germline BRCA mutation carriers with CNS disease is hopeful. ADCs including those targeting low-level HER2 expression and TROP2 are under active investigation in triple-negative BCBrMs.
Collapse
Affiliation(s)
- Ryan K Rader
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, 30 Duke Medicine Circle Drive, Box 3841, Durham, NC, 27710, USA
| | - Carey K Anders
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, 30 Duke Medicine Circle Drive, Box 3841, Durham, NC, 27710, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Yawkey 1250, Boston, MA, 02215, USA
| | - Sarah L Sammons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Yawkey 1250, Boston, MA, 02215, USA.
| |
Collapse
|
138
|
Brett JO, Mayer EL. New Developments in Systemic Management for High-Risk Early-Stage Hormone-Receptor-Positive, HER2-Negative Breast Cancer. Curr Treat Options Oncol 2023; 24:594-610. [PMID: 37060423 DOI: 10.1007/s11864-023-01082-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/16/2023]
Abstract
OPINION STATEMENT For high-risk early-stage hormone-receptor-positive, HER2-negative breast cancer (HR + /HER2 - EBC), short- and long-term recurrence risks remain substantial despite local control with surgery and radiation and systemic treatment with chemotherapy and endocrine therapy (ET). Recent trials have provided new strategies for reducing recurrence. The monarchE trial demonstrated that adding 2 years of adjuvant abemaciclib to ET improves invasive disease-free survival (iDFS) and distant recurrence-free survival (DRFS). In the OlympiA trial for high-risk disease in patients with germline BRCA1/BRCA2 mutations, adding 1 year of olaparib to ET improved iDFS, DRFS, and overall survival (OS). In addition, for premenopausal women with high-risk tumors, long-term follow-up of the SOFT, ASTRRA, TEXT, ABCSG-12, and HOBOE trials supports the role of ovarian function suppression (OFS), in combination with adjuvant tamoxifen or aromatase inhibition (AI). For postmenopausal women with high-risk tumors, extended-duration AI for at least 7 years should be used with zoledronic acid. Given the remaining recurrence risk even with these interventions and with the ongoing development of new strategies for HR + disease, patients with high-risk EBC should be encouraged to participate in clinical trials, such as trials of immunotherapy, novel oral estrogen receptor alpha (ERα)-targeting agents, antibody-drug conjugates (ADCs), and trials guided by measurements of minimal residual disease (MRD).
Collapse
Affiliation(s)
- Jamie O Brett
- Breast Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, MA, 02215, Boston, USA
| | - Erica L Mayer
- Breast Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, MA, 02215, Boston, USA.
| |
Collapse
|
139
|
Wong SM, Foulkes WD. Moving breast cancer susceptibility gene testing into the mainstream. Med J Aust 2023; 218:359-360. [PMID: 37015678 DOI: 10.5694/mja2.51916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Affiliation(s)
- Stephanie M Wong
- McGill University, Montreal, QC, Canada
- Stroll Cancer Prevention Centre, Sir Mortimer B Davis Jewish General Hospital, Montreal, QC, Canada
| | - William D Foulkes
- McGill University, Montreal, QC, Canada
- Stroll Cancer Prevention Centre, Sir Mortimer B Davis Jewish General Hospital, Montreal, QC, Canada
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
140
|
Cheng JM, Canzoniero J, Lee S, Soni S, Mangini N, Santa-Maria CA. Exceptional responses to PARP inhibitors in patients with metastatic breast cancer in oncologic crisis. Breast Cancer Res Treat 2023; 199:389-397. [PMID: 37002487 PMCID: PMC10065997 DOI: 10.1007/s10549-023-06910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
PURPOSE Cancers deficient in homologous recombination DNA repair, such as those with BRCA1 or BRCA2 (BRCA1/2) mutations rely on a pathway mediated by the enzyme poly(adenosine diphosphate-ribose) polymerase (PARP). PARP inhibitors (PARPi's) have demonstrated efficacy in treating patients with germline (g)BRCA1/2, somatic (s)BRCA1/2, and gPALB2 mutations in clinical trials. However, patients with a poor performance status (PS) and those with severe organ impairment are often excluded from clinical trials and cancer-directed treatment. METHODS We report the cases of two patients with metastatic breast cancer who had poor PS, significant visceral disease, and gPALB2 and sBRCA mutations, who derived significant clinical benefit from treatment with PARP inhibition. RESULTS Patient A had germline testing demonstrating a heterozygous PALB2 pathogenic mutation (c.3323delA) and a BRCA2 variant of unknown significance (c.9353T>C), and tumor sequencing revealed PALB2 (c.228_229del and c.3323del) and ESR1 (c.1610A>C) mutations. Patient B was negative for pathologic BRCA mutations upon germline testing, but tumor sequencing demonstrated somatic BRCA2 copy number loss and a PIK3CA mutation (c.1633G>A). Treatment with PARPi's in these two patients with an initial PS of 3-4 and significant visceral disease resulted in prolonged clinical benefit. CONCLUSION Patients with a poor PS, such as those described here, may still have meaningful clinical responses to cancer treatments targeting oncogenic drivers. More studies evaluating PARPi's beyond gBRCA1/2 mutations and in sub-optimal PS would help identify patients who may benefit from these therapies.
Collapse
Affiliation(s)
- Joyce M Cheng
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jenna Canzoniero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Seoho Lee
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sudeep Soni
- Community Radiology Division, Johns Hopkins University, Washington, DC, USA
| | - Neha Mangini
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Cesar A Santa-Maria
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
141
|
Ashai N, Swain SM. Post-CDK 4/6 Inhibitor Therapy: Current Agents and Novel Targets. Cancers (Basel) 2023; 15:1855. [PMID: 36980743 PMCID: PMC10046856 DOI: 10.3390/cancers15061855] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Front-line therapy for advanced and metastatic hormone receptor positive (HR+), HER2 negative (HER-) advanced or metastatic breast cancer (mBC) is endocrine therapy with a CDK4/6 inhibitor (CDK4/6i). The introduction of CDK4/6i has dramatically improved progression-free survival and, in some cases, overall survival. The optimal sequencing of post-front-line therapy must be personalized to patients' overall health and tumor biology. This paper reviews approved next lines of therapy for mBC and available data on efficacy post-progression on CDK4/6i. Given the success of endocrine front-line therapy, there has been an expansion in therapies under clinical investigation targeting the estrogen receptor in novel ways. There are also clinical trials ongoing attempting to overcome CDK4/6i resistance. This paper will review these drugs under investigation, review efficacy data when possible, and provide descriptions of the adverse events reported.
Collapse
Affiliation(s)
- Nadia Ashai
- Department of Medicine, Georgetown Lombardi Comprehensive Cancer Center and MedStar Health, Washington, DC 20007, USA
| | | |
Collapse
|
142
|
Jin J, Cao J, Li B, Li T, Zhang J, Cao J, Zhao M, Wang L, Wang B, Tao Z, Hu X. Landscape of DNA damage response gene alterations in breast cancer: A comprehensive investigation. Cancer 2023; 129:845-859. [PMID: 36655350 DOI: 10.1002/cncr.34618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND DNA damage response (DDR) gene alterations are prevalent in breast cancer (BC) and important for treatment decisions. Intensive studies on DDR alterations in BC are still needed. METHODS The authors included 438 patients with metastatic breast cancer from their next-generation sequencing database and 1091 patients with early-stage breast cancer from The Cancer Genome Atlas (TCGA) database in the analysis to characterize molecular alterations in the DDR pathway. RESULTS Germline DDR mutations were more prevalent in younger patients and those with HER2-negative cancers. Tumors with germline DDR mutations more commonly had somatic DDR mutations, especially those with germline Fanconi anemia (FA) pathway mutations. Notably, 66.67% (four of six) of patients with germline PALB2 mutations had tumors that harbored somatic PALB2 mutations. No differences in prognosis were observed in patients with germline or tumor somatic DDR mutations compared to patients and tumors that were wild-type. Compared to early BC, the frequency of somatic DDR mutations in metastatic cancers was significantly higher (24.89% vs. 16.02%, p < .001). Higher tumor mutation burdens were observed in cancers with somatic DDR mutations, but not in cancers with germline DDR mutations. Furthermore, tumors with somatic DDR mutations showed an abundance of anticancer immunological phenotypes. Somatic FA and mismatch repair pathway mutations were associated with increased expression of immune checkpoint molecules. Although most DDR genes were significantly positively associated with expression of proliferation-related genes, PARP3 expression was negatively correlated with MKI67 expression. Lower PARP3 expression was associated with a worse prognosis in TCGA database by multivariate Cox analysis. CONCLUSIONS Patients with germline FA mutations more frequently have tumors with somatic DDR mutations. Somatic DDR mutations lead to anticancer immunological phenotypes in BC. No differences in prognosis according to germline or somatic DDR mutations were found.
Collapse
Affiliation(s)
- Juan Jin
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianing Cao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Li
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Li
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Cao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingchun Zhao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leiping Wang
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biyun Wang
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhonghua Tao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichun Hu
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
143
|
Mastrodomenico L, Piombino C, Riccò B, Barbieri E, Venturelli M, Piacentini F, Dominici M, Cortesi L, Toss A. Personalized Systemic Therapies in Hereditary Cancer Syndromes. Genes (Basel) 2023; 14:684. [PMID: 36980956 PMCID: PMC10048191 DOI: 10.3390/genes14030684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Hereditary cancer syndromes are inherited disorders caused by germline pathogenic variants (PVs) that lead to an increased risk of developing certain types of cancer, frequently at an earlier age than in the rest of the population. The germline PVs promote cancer development, growth and survival, and may represent an ideal target for the personalized treatment of hereditary tumors. PARP inhibitors for the treatment of BRCA and PALB2-associated tumors, immune checkpoint inhibitors for tumors associated with the Lynch Syndrome, HIF-2α inhibitor in the VHL-related cancers and, finally, selective RET inhibitors for the treatment of MEN2-associated medullary thyroid cancer are the most successful examples of how a germline PVs can be exploited to develop effective personalized therapies and improve the outcome of these patients. The present review aims to describe and discuss the personalized systemic therapies for inherited cancer syndromes that have been developed and investigated in clinical trials in recent decades.
Collapse
Affiliation(s)
- Luciana Mastrodomenico
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Claudia Piombino
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Beatrice Riccò
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Elena Barbieri
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Marta Venturelli
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Federico Piacentini
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Laura Cortesi
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
144
|
Tomasik B, Bieńkowski M, Górska Z, Gutowska K, Kumięga P, Jassem J, Duchnowska R. Molecular aspects of brain metastases in breast cancer. Cancer Treat Rev 2023; 114:102521. [PMID: 36736124 DOI: 10.1016/j.ctrv.2023.102521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Brain metastases (BM) are a common and devastating manifestation of breast cancer (BC). BM are particularly frequent in the HER2-positive and triple-negative breast cancer phenotypes and usually occur following the metastatic spread to extracranial sites. Several genes mediating BM and biomarkers predicting their risk in BC have been reported in the past decade. These findings have advanced the understanding of BM pathobiology and paved the way for developing new therapeutic strategies but they still warrant a thorough clinical validation. Hence, a better understanding of the mechanistic aspects of BM and delineating the interactions of tumor cells with the brain microenvironment are of utmost importance. This review discusses the molecular basis of the metastatic cascade: the epithelial-mesenchymal transition, cancer, and tumor microenvironment interaction and intravasation, priming of the metastatic niche in the brain, and survival in the new site. We also outline the postulated mechanisms of BC cells' brain tropism. Finally, we discuss advances in the field of biomarkers (both tissue-based and liquid-based) that predict BM from BC.
Collapse
Affiliation(s)
- Bartłomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Michał Bieńkowski
- Department of Pathology, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdańsk, Poland.
| | - Zuzanna Górska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| | - Klaudia Gutowska
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland; Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Paulina Kumięga
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| |
Collapse
|
145
|
Blondeaux E, Arecco L, Punie K, Graffeo R, Toss A, De Angelis C, Trevisan L, Buzzatti G, Linn SC, Dubsky P, Cruellas M, Partridge AH, Balmaña J, Paluch-Shimon S, Lambertini M. Germline TP53 pathogenic variants and breast cancer: A narrative review. Cancer Treat Rev 2023; 114:102522. [PMID: 36739824 DOI: 10.1016/j.ctrv.2023.102522] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/02/2023]
Abstract
Approximately 10% of breast cancers are associated with the inheritance of a pathogenic variant (PV) in one of the breast cancer susceptibility genes. Multiple breast cancer predisposing genes, including TP53, are responsible for the increased breast cancer risk. Tumor protein-53 (TP53) germline PVs are associated with Li-Fraumeni syndrome, a rare autosomal dominant inherited cancer predisposition syndrome associated with early-onset pediatric and multiple primary cancers such as soft tissue and bone sarcomas, breast cancer, brain tumors, adrenocortical carcinomas and leukemias. Women harboring a TP53 PV carry a lifetime risk of developing breast cancer of 80-90%. The aim of the present narrative review is to provide a comprehensive overview of the criteria for offering TP53 testing, prevalence of TP53 carriers among patients with breast cancer, and what is known about its prognostic and therapeutic implications. A summary of the current indications of secondary cancer surveillance and survivorship issues are also provided. Finally, the spectrum of TP53 alteration and testing is discussed. The optimal strategies for the treatment of breast cancer in patients harboring TP53 PVs poses certain challenges. Current guidelines favor the option of performing mastectomy rather than lumpectomy to avoid adjuvant radiotherapy and subsequent risk of radiation-induced second primary malignancies, with careful consideration of radiation when indicated post-mastectomy. Some studies suggest that patients with breast cancer and germline TP53 PV might have worse survival outcomes compared to patients with breast cancer and wild type germline TP53 status. Annual breast magnetic resonance imaging (MRI) and whole-body MRI are recommended as secondary prevention.
Collapse
Affiliation(s)
- Eva Blondeaux
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Luca Arecco
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Kevin Punie
- Department of General Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Rossella Graffeo
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Angela Toss
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Lucia Trevisan
- Hereditary Cancer Unit, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Buzzatti
- Hereditary Cancer Unit, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sabine C Linn
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peter Dubsky
- Breast Centre, Hirslanden Klinik St Anna, Luzern, Switzerland
| | - Mara Cruellas
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ann H Partridge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Judith Balmaña
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Shani Paluch-Shimon
- Breast Cancer Unit, Sharett Institute of Oncology, Hadassah Medical Center & Faculty of Medicine, Hebrew University, 91120 Jerusalem, Israel
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
146
|
Liu J, Chen J, Sun J, Yao L, Zhang J, Xie Y, Xu Y. Low expression of PALB2 is associated with poor survival in Chinese women with primary breast cancer. Clin Breast Cancer 2023; 23:e259-e266. [PMID: 36997402 DOI: 10.1016/j.clbc.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND PALB2 plays a crucial role in genome stability and the DNA repair process, and its mutation is associated with a moderate to high risk of breast cancer. However, the status and prognostic role of PALB2 expression in breast cancer are still unclear. MATERIALS AND METHODS The expression level of PALB2 mRNA was evaluated by using quantitative real-time polymerase chain reaction in core biopsy samples from 563 primary breast cancer tissues. RESULTS In the entire cohort, low expression of PALB2 mRNA was significantly associated with poor survival (low vs. intermediate: DFS, adjusted HR = 1.79, 95% CI = 1.21-2.65, P = .003; DDFS, adjusted HR = 2.07, 95% CI = 1.34-3.20, P = .001; DSS, adjusted HR = 2.59, 95% CI = 1.45-4.64, P = .001; OS, adjusted HR = 2.77, 95% CI = 1.56-4.92, P = .001; low vs. high: DFS, adjusted HR = 1.57, 95% CI = 1.06-2.35, P = .026; DDFS, adjusted HR = 1.66, 95% CI = 1.08-2.55, P = .020; DSS, adjusted HR = 1.74, 95% CI = 1.00-3.03, P = .048; OS, adjusted HR = 1.59, 95% CI = 0.95-2.67, P = .08). Notably, among hormone receptor (HR)-positive/HER2-negative subtype, patients with low PALB2 expression also had significantly worse outcomes (low vs. intermediate: DFS, adjusted HR = 2.33, 95% CI = 1.32-4.13, P = .004; DDFS, adjusted HR = 2.78, 95% CI = 1.47-5.27, P < .001; DSS, adjusted HR = 3.08, 95% CI = 1.27-7.43, P = .013; OS, adjusted HR = 3.15, 95% CI = 1.32-7.50, P = .010; low vs. high: DFS, adjusted HR = 1.84, 95% CI = 1.04-3.28, P = .04; DDFS, adjusted HR = 1.82, 95% CI = 0.99-3.36, P = .05; DSS, adjusted HR = 2.06, 95% CI = 0.87-4.86, P = .10; OS, adjusted HR = 1.54, 95% CI = 0.71-3.33, P = .28). CONCLUSION Breast cancer patients with low expression of mRNA have a poor survival, suggesting that patients with PALB2 low expression may be the potential beneficiaries for PARP inhibitors therapy.
Collapse
Affiliation(s)
- Jingsi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiuan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jie Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lu Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Juan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuntao Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Ye Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
147
|
Jusino S, Fadul CE, Dillon P. Systematic review of the management of brain metastases from hormone receptor positive breast cancer. J Neurooncol 2023; 162:45-57. [PMID: 36884200 PMCID: PMC10049940 DOI: 10.1007/s11060-023-04276-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
INTRODUCTION Brain metastases are a common cause of morbidity and mortality in patients with breast cancer. Local central nervous system (CNS) directed therapies are usually the first line treatment for breast cancer brain metastases (BCBM), but those must be followed by systemic therapies to achieve long-term benefit. Systemic therapy for hormone receptor (HR+) breast cancer has evolved in the last 10 years, but their role when brain metastases occur is uncertain. METHODS We performed a systematic review of the literature focused on management of HR+ BCBM by searching Medline/PubMed, EBSCO, and Cochrane databases. The PRISMA guidelines were used for systematic review. RESULTS Out of 807 articles identified, 98 fulfilled the inclusion criteria in their relevance to the management of HR+ BCBM. CONCLUSIONS Similar to brain metastases from other neoplasms, local CNS directed therapies are the first line treatment for HR+ BCBM. Although the quality of evidence is low, after local therapies, our review supports the combination of targeted and endocrine therapies for both CNS and systemic management. Upon exhaustion of targeted/endocrine therapies, case series and retrospective reports suggest that certain chemotherapy agents are active against HR+ BCBM. Early phase clinical trials for HR+ BCBM are ongoing, but there is a need for prospective randomized trials to guide management and improve patients' outcome.
Collapse
Affiliation(s)
| | - Camilo E Fadul
- Division of Neuro-Oncology, Department of Neurology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Patrick Dillon
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
148
|
Clinical Utility of Genomic Tests Evaluating Homologous Recombination Repair Deficiency (HRD) for Treatment Decisions in Early and Metastatic Breast Cancer. Cancers (Basel) 2023; 15:cancers15041299. [PMID: 36831640 PMCID: PMC9954086 DOI: 10.3390/cancers15041299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most frequently occurring cancer worldwide. With its increasing incidence, it is a major public health problem, with many therapeutic challenges such as precision medicine for personalized treatment. Thanks to next-generation sequencing (NGS), progress in biomedical technologies, and the use of bioinformatics, it is now possible to identify specific molecular alterations in tumor cells-such as homologous recombination deficiencies (HRD)-enabling us to consider using DNA-damaging agents such as platinum salts or PARP inhibitors. Different approaches currently exist to analyze impairment of the homologous recombination pathway, e.g., the search for specific mutations in homologous recombination repair (HRR) genes, such as BRCA1/2; the use of genomic scars or mutational signatures; or the development of functional tests. Nevertheless, the role and value of these different tests in breast cancer treatment decisions remains to be clarified. In this review, we summarize current knowledge on the clinical utility of genomic tests, evaluating HRR deficiency for treatment decisions in early and metastatic breast cancer.
Collapse
|
149
|
Anaclerio F, Pilenzi L, Dell’Elice A, Ferrante R, Grossi S, Ferlito LM, Marinelli C, Gildetti S, Calabrese G, Stuppia L, Antonucci I. Clinical usefulness of NGS multi-gene panel testing in hereditary cancer analysis. Front Genet 2023; 14:1060504. [PMID: 37065479 PMCID: PMC10104445 DOI: 10.3389/fgene.2023.1060504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction: A considerable number of families with pedigrees suggestive of a Mendelian form of Breast Cancer (BC), Ovarian Cancer (OC), or Pancreatic Cancer (PC) do not show detectable BRCA1/2 mutations after genetic testing. The use of multi-gene hereditary cancer panels increases the possibility to identify individuals with cancer predisposing gene variants. Our study was aimed to evaluate the increase in the detection rate of pathogenic mutations in BC, OC, and PC patients when using a multi-gene panel.Methods: 546 patients affected by BC (423), PC (64), or OC (59) entered the study from January 2020 to December 2021. For BC patients, inclusion criteria were i) positive cancer family background, ii) early onset, and iii) triple negative BC. PC patients were enrolled when affected by metastatic cancer, while OC patients were all submitted to genetic testing without selection. The patients were tested using a Next-Generation Sequencing (NGS) panel containing 25 genes in addition to BRCA1/2.Results: Forty-four out of 546 patients (8%) carried germline pathogenic/likely pathogenic variants (PV/LPV) on BRCA1/2 genes, and 46 (8%) presented PV or LPV in other susceptibility genes.Discussion: Our findings demonstrate the utility of expanded panel testing in patients with suspected hereditary cancer syndromes, since this approach increased the mutation detection rate of 15% in PC, 8% in BC and 5% in OC cases. In absence of multi-gene panel analysis, a considerable percentage of mutations would have been lost.
Collapse
Affiliation(s)
- Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lucrezia Pilenzi
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Rossella Ferrante
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
- *Correspondence: Rossella Ferrante,
| | - Simona Grossi
- Eusoma Breast Centre, “G. Bernabeo” Hospital, Ortona, Italy
| | | | | | | | - Giuseppe Calabrese
- UOSD Genetica Oncoematologica, Dipartimento di Oncologico-Ematologico, Pescara, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
150
|
Wu HL, Luo ZY, He ZL, Gong Y, Mo M, Ming WK, Liu GY. All HER2-negative breast cancer patients need gBRCA testing: cost-effectiveness and clinical benefits. Br J Cancer 2023; 128:638-646. [PMID: 36564566 PMCID: PMC9938252 DOI: 10.1038/s41416-022-02111-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The OlympiA trial demonstrated the benefits of adjuvant usage of olaparib for high-risk patients with human epidermal growth factor receptor 2 (HER2)-negative breast cancer (BC) and germline BRCA (gBRCA) mutation. This provoked thoughts on the clinical criteria of gBRCA testing. This study aims to estimate the costs and benefits of gBRCA testing and adjuvant olaparib therapy for patients with triple-negative breast cancer (TNBC) and hormone-receptor (HR)-positive and HER2-negative BC in China and the United States of America (USA). METHODS We used a Markov chain decision tree analytic model to compare three gBRCA screening policies in China and the USA: (1) no gBRCA testing; (2) selected gBRCA testing and (3) universal gBRCA testing for nonmetastatic TNBC and HR-positive HER2-negative BC patients. We modelled the benefit of systemic therapy and risk-reducing surgeries among patients identified with pathogenic or likely pathogenic variants (PVs) in BRCA1 and BRCA2. RESULTS Changing from the selected gBRCA testing to the universal gBRCA testing in TNBC patients is cost-effective, with the incremental cost-effectiveness ratios (ICERs) being 10991.1 and 56518.2 USD/QALY in China and the USA, respectively. Expanding universal gBRCA testing to HR-positive HER2-negative BC and TNBC patients has ICERs of 2023.3 and 16611.1 USD/QALY in China and the USA, respectively. DISCUSSION By performing gBRCA testing on all HER2-negative BC patients, adjuvant olaparib can be offered to high-risk patients with a PV in BRCA1 or BRCA2. These patients are also candidates for risk-reducing surgeries, an important aspect of their survivorship care, and these interventions can improve survival outcomes. With the willingness-to-pay thresholds being 31,500.0 and 100,000.0 USD per QALY gained in China and the USA, respectively, universal gBRCA testing is likely cost-effective for all HER2-negative BC patients. This simplified criterion of gBRCA testing for BC is recommended for adoption by current guidelines in China and the USA.
Collapse
Affiliation(s)
- Huai-Liang Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zi-Yin Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, China
| | - Zong-Lin He
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yue Gong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Miao Mo
- Department of Cancer Prevention, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China
| | - Guang-Yu Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|