101
|
Webb ER, Lanati S, Wareham C, Easton A, Dunn SN, Inzhelevskaya T, Sadler FM, James S, Ashton-Key M, Cragg MS, Beers SA, Gray JC. Immune characterization of pre-clinical murine models of neuroblastoma. Sci Rep 2020; 10:16695. [PMID: 33028899 PMCID: PMC7541480 DOI: 10.1038/s41598-020-73695-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy offers a potentially less toxic, more tumor-specific treatment for neuroblastoma than conventional cytotoxic therapies. Accurate and reproducible immune competent preclinical models are key to understanding mechanisms of action, interactions with other therapies and mechanisms of resistance to immunotherapy. Here we characterized the tumor and splenic microenvironment of two syngeneic subcutaneous (NXS2 and 9464D), and a spontaneous transgenic (TH-MYCN) murine model of neuroblastoma, comparing histological features and immune infiltrates to previously published data on human neuroblastoma. Histological sections of frozen tissues were stained by immunohistochemistry and immunofluorescence for immune cell markers and tumor architecture. Tissues were dissociated by enzymatic digestion, stained with panels of antibodies to detect and quantify cancer cells, along with lymphocytic and myeloid infiltration by flow cytometry. Finally, we tested TH-MYCN mice as a feasible model for immunotherapy, using prior treatment with cyclophosphamide to create a therapeutic window of minimal residual disease to favor host immune development. Immune infiltration differed significantly between all the models. TH-MYCN tumors were found to resemble immune infiltration in human tumors more closely than the subcutaneous models, alongside similar GD2 and MHC class I expression. Finally, TH-MYCN transgenic mice were administered cyclophosphamide alone or in combination with an anti-GD2 or anti-4-1BB monoclonal antibody, which resulted in increase in survival in both combination therapies. The TH-MYCN transgenic mouse is a promising in vivo model for testing immunotherapy compounds and combination therapy in a preclinical setting.
Collapse
Affiliation(s)
- Emily R Webb
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK.,Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Silvia Lanati
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Carol Wareham
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Alistair Easton
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK.,Cellular Pathology, University Hospitals Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK.,Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Stuart N Dunn
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Freja M Sadler
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Margaret Ashton-Key
- Cellular Pathology, University Hospitals Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Juliet C Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK.
| |
Collapse
|
102
|
Tamura A, Inoue S, Mori T, Noguchi J, Nakamura S, Saito A, Kozaki A, Ishida T, Sadaoka K, Hasegawa D, Kosaka Y, Miyanishi M. Low Multiplication Value of Absolute Monocyte Count and Absolute Lymphocyte Count at Diagnosis May Predict Poor Prognosis in Neuroblastoma. Front Oncol 2020; 10:572413. [PMID: 33123478 PMCID: PMC7566172 DOI: 10.3389/fonc.2020.572413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Despite the growing evidences that immune dysfunction contributes to tumor progression, the prognostic value in patients with neuroblastoma regarding circulating immune blood cell counts has not been well characterized. To answer this, we conducted a retrospective study to evaluate the prognostic value of the circulating immune cell counts at diagnosis in a cohort of 55 patients with neuroblastoma. Based on a novel index by multiplying the absolute monocyte count (AMC)/μl and absolute lymphocyte count (ALC)/μl, we sub-grouped patients with AMC × ALC ≥ 1 × 106 (/μl)2 as high group and patients with AMC × ALC < 1 × 106 (/μl)2 as low group. In the entire cohort, the 4-year progression-free survival (PFS), and overall survival (OS) for high group (n = 38) vs low group (n = 17) was 81.7% (95%CI; 63.6-91.3%) and 90.7% (95%CI; 73.8-96.9%) vs 31.7% (11.6-54.1%) and 56.5% (29.7-76.4%; p < 0.001 for PFS and p = 0.015 for OS), respectively, suggesting that a low AMC × ALC is associated with poor prognosis. In the subgroup analysis for high-risk patients, the 4-year PFS and OS for high group (n = 17) vs low group (n = 13) was 59.8% (31.2-79.7%) and 79.8% (49.4-93.0%) vs 8.5% (0.5-31.7%) and 42.0% (15.4-66.8%; p < 0.001 for PFS and p = 0.089 for OS), respectively. Our data demonstrate that AMC × ALC at diagnosis is a cost-effective and easily measurable biomarker for predicting prognosis in neuroblastoma.
Collapse
Affiliation(s)
- Akihiro Tamura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shotaro Inoue
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Takeshi Mori
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Jun Noguchi
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Sayaka Nakamura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Atsuro Saito
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Aiko Kozaki
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Toshiaki Ishida
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kay Sadaoka
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Masanori Miyanishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
103
|
van den Bijgaart RJE, Kroesen M, Brok IC, Reijnen D, Wassink M, Boon L, Hoogerbrugge PM, Adema GJ. Anti-GD2 antibody and Vorinostat immunocombination therapy is highly effective in an aggressive orthotopic neuroblastoma model. Oncoimmunology 2020; 9:1817653. [PMID: 33457098 PMCID: PMC7781842 DOI: 10.1080/2162402x.2020.1817653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuroblastoma is a childhood malignancy and in the majority of patients, the primary tumor arises in one of the adrenal glands. Neuroblastoma cells highly express the disialoganglioside GD2, which is the primary target for the development of neuroblastoma immunotherapy. Anti-GD2 mAbs have shown clinical efficacy and are integrated into standard treatment for high-risk neuroblastoma patients. We previously reported synergy between the HDAC inhibitor Vorinostat and anti-GD2 mAbs in a heterotopic, subcutaneous growing neuroblastoma model. Additionally, we have previously developed an orthotopic intra-adrenal neuroblastoma model showing more aggressive tumor growth. Here, we report that anti-GD2 mAb and Vorinostat immunocombination therapy is even more effective in suppressing neuroblastoma growth in the aggressive orthotopic model, resulting in increased animal survival. Intra-adrenal tumors from mice treated with Vorinostat were highly infiltrated with myeloid cells, including macrophages, displaying increased MHCII and Fc-receptor expression. Collectively, these data provide a strong rationale for clinical testing of anti-GD2 mAbs with concomitant Vorinostat in neuroblastoma patients.
Collapse
Affiliation(s)
- Renske J E van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Ingrid C Brok
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daphne Reijnen
- Central Animal Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melissa Wassink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter M Hoogerbrugge
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
104
|
Rabold K, Aschenbrenner A, Thiele C, Boahen CK, Schiltmans A, Smit JWA, Schultze JL, Netea MG, Adema GJ, Netea-Maier RT. Enhanced lipid biosynthesis in human tumor-induced macrophages contributes to their protumoral characteristics. J Immunother Cancer 2020; 8:jitc-2020-000638. [PMID: 32943450 PMCID: PMC7500191 DOI: 10.1136/jitc-2020-000638] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment (TME) in non-medullary thyroid carcinoma (TC) and neuroblastoma (NB), being associated with a poor prognosis for patients. However, little is known about how tumors steer the specific metabolic phenotype and function of TAMs. Methods In a human coculture model, transcriptome, metabolome and lipidome analysis were performed on TC-induced and NB-induced macrophages. The metabolic shift was correlated to functional readouts, such as cytokine production and reactive oxygen species (ROS) production, including pharmacological inhibition of metabolic pathways. Results Based on transcriptome and metabolome analysis, we observed a strong upregulation of lipid biosynthesis pathways in TAMs. Subsequently, lipidome analysis revealed that tumor-induced macrophages have an increased total lipid content and enriched levels of intracellular lipids, especially phosphoglycerides and sphingomyelins. Strikingly, this metabolic shift in lipid synthesis contributes to their protumoral functional characteristics: blocking key enzymes of lipid biosynthesis in the tumor-induced macrophages reversed the increased inflammatory cytokines and the capacity to produce ROS, two well-known protumoral factors in the TME. Conclusions Taken together, our data show that tumor cells can stimulate lipid biosynthesis in macrophages to induce protumoral cytokine and ROS responses and advocate lipid biosynthesis as a potential therapeutic target to reprogram the TME.
Collapse
Affiliation(s)
- Katrin Rabold
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands .,Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Anna Aschenbrenner
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Christoph Thiele
- Biochemistry and Cell Biology of Lipids, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Collins K Boahen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Schiltmans
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes W A Smit
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joachim L Schultze
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
105
|
Biological evaluation of pyrazolyl-urea and dihydro-imidazo-pyrazolyl-urea derivatives as potential anti-angiogenetic agents in the treatment of neuroblastoma. Oncotarget 2020; 11:3459-3472. [PMID: 32973970 PMCID: PMC7500105 DOI: 10.18632/oncotarget.27733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/11/2020] [Indexed: 12/05/2022] Open
Abstract
Pyrazolyl-urea and dihydro-imidazo-pyrazolyl-urea compounds (STIRUR 13, STIRUR 41 and BUR 12) have been demonstrated to exert a strong inhibitory effect on interleukin 8 or N-formyl-methionyl-leucyl-phenylalanine-induced chemotaxis of human neutrophils. Since the migration of cancer cells is comparable to that of neutrophils, the purpose of this study is to evaluate the biological effect of STIRUR 13, STIRUR 41 and BUR 12 on ACN and HTLA-230, two neuroblastoma (NB) cell lines with different degree of malignancy. HTLA-230 cells, stage-IV NB cells, have high plasticity and can serve as progenitors of endothelial cells. The results herein reported show that the three tested compounds were not cytotoxic for both NB cells and did not alter their clonogenic potential. However, all compounds were able to inhibit the ability of HTLA-230 to form vascular-like structures. On the basis of these findings, pyrazolyl-urea and dihydro-imidazo-pyrazolyl-urea derivatives could be proposed as agents potentially effective in counteracting NB malignancy by inhibiting cell migration and tumor angiogenesis which represent important hallmarks responsible for cancer survival and progression.
Collapse
|
106
|
Liu KX, Joshi S. "Re-educating" Tumor Associated Macrophages as a Novel Immunotherapy Strategy for Neuroblastoma. Front Immunol 2020; 11:1947. [PMID: 32983125 PMCID: PMC7493646 DOI: 10.3389/fimmu.2020.01947] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is the most common extracranial pediatric tumor and often presents with metastatic disease, and patients with high-risk neuroblastoma have survival rates of ~50%. Neuroblastoma tumorigenesis is associated with the infiltration of various types of immune cells, including myeloid derived suppressor cells, tumor associated macrophages (TAMs), and regulatory T cells, which foster tumor growth and harbor immunosuppressive functions. In particular, TAMs predict poor clinical outcomes in neuroblastoma, and among these immune cells, TAMs with an M2 phenotype comprise an immune cell population that promotes tumor metastasis, contributes to immunosuppression, and leads to failure of radiation or checkpoint inhibitor therapy. This review article summarizes the role of macrophages in tumor angiogenesis, metastasis, and immunosuppression in neuroblastoma and discusses the recent advances in "macrophage-targeting strategies" in neuroblastoma with a focus on three aspects: (1) inhibition of macrophage recruitment, (2) targeting macrophage survival, and (3) reprogramming of macrophages into an immunostimulatory phenotype.
Collapse
Affiliation(s)
- Kevin X. Liu
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UCSD Rady's Children's Hospital, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
107
|
Joshi S. Targeting the Tumor Microenvironment in Neuroblastoma: Recent Advances and Future Directions. Cancers (Basel) 2020; 12:E2057. [PMID: 32722460 PMCID: PMC7465822 DOI: 10.3390/cancers12082057] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma (NB) is the most common pediatric tumor malignancy that originates from the neural crest and accounts for more than 15% of all the childhood deaths from cancer. The neuroblastoma cancer research has long been focused on the role of MYCN oncogene amplification and the contribution of other genetic alterations in the progression of this malignancy. However, it is now widely accepted that, not only tumor cells, but the components of tumor microenvironment (TME), including extracellular matrix, stromal cells and immune cells, also contribute to tumor progression in neuroblastoma. The complexity of different components of tumor stroma and their resemblance with surrounding normal tissues pose huge challenges for therapies targeting tumor microenvironment in NB. Hence, the detailed understanding of the composition of the TME of NB is crucial to improve existing and future potential immunotherapeutic approaches against this childhood cancer. In this review article, I will discuss different components of the TME of NB and the recent advances in the strategies, which are used to target the tumor microenvironment in neuroblastoma.
Collapse
Affiliation(s)
- Shweta Joshi
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0815, USA
| |
Collapse
|
108
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
109
|
Zheng C, Liu S, Feng J, Zhao X. Prognostic Value of Inflammation Biomarkers for Survival of Patients with Neuroblastoma. Cancer Manag Res 2020; 12:2415-2425. [PMID: 32280277 PMCID: PMC7132027 DOI: 10.2147/cmar.s245622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose The prognostic significance of inflammation-based biomarkers for neuroblastoma (NB) has not been investigated before. The aim of this study was to evaluate the prognostic value of pre-treatment inflammation biomarkers in children patients with NB. Patients and Methods Patients diagnosed with NB from 2008 to 2016 in our institution were enrolled in this study. The clinical data and survival outcomes were retrospectively reviewed. Inflammation biomarkers or scores including C-reactive protein (CRP), albumin (ALB), Glasgow Prognostic Score (GPS), modified Glasgow Prognostic Score (mGPS), high-sensitivity modified Glasgow Prognostic Score (Hs-mGPS), neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR) and system inflammation index (SII) were tested in this study. Univariate and multivariate survival analyses were performed to assess the prognostic value of these inflammation indicators for overall survival (OS) of children with NB. Kaplan–Meier survival curves were also conducted. Results A total of 70 children diagnosed with neuroblastoma were enrolled in this study. NLR, PLR, LMR and SII were found to be not predictive of OS for NB patients. However, CRP, ALB, GPS and CAR were significantly associated with OS of NB patients. Multivariate analysis adjusting for age, sex, histology, tumor size, tumor stage and metastasis revealed that ALB, CAR, GPS and Hs-mGPS were significantly associated with OS of NB patients. Receiver operating characteristic (ROC) curves and Akaike Information Criterion (AIC) analyses revealed that Hs-mGPS is superior to other inflammation biomarkers in predicting OS of NB patients. Subgroup survival analysis for immature NB patients revealed similar results. Conclusion Hs-mGPS is an effective prognostic factor for OS of patients with NB and is promising to be used as a factor for risk stratification and an indicator for more aggressive therapy.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Shuaibin Liu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xiang Zhao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
110
|
Abstract
Neuroblastoma (NB) is a malignant embryonal tumor of the sympathetic nervous system that is most commonly diagnosed in the abdomen, often presenting with signs and symptoms of metastatic spread. Three decades ago, high-risk NB metastatic to bone and bone marrow in children was not curable. Today, with multimodality treatment, 50% of these patients will survive, but most suffer from debilitating treatment-related complications. Novel targeted therapies to improve cure rates while minimizing toxicities are urgently needed. Recent molecular discoveries in oncology have spawned the development of an impressive array of targeted therapies for adult cancers, yet the paucity of recurrent somatic mutations or activated oncogenes in pediatric cancers poses a major challenge to the evolving paradigm of personalized medicine. Although low tumor mutational burden is a major hurdle for immune checkpoint inhibitors, an immature or impaired immune system and inhibitory tumor microenvironment can further complicate the prospects for successful immunotherapy. In this regard, despite the poor immunogenic properties of NB, the success of antibody-based immunotherapy and radioimmunotherapy directed at single targets (eg, GD2 and B7-H3) is both encouraging and surprising, given that most solid tumor antibodies that use Fc-dependent mechanisms or radioimmunotargeting have largely failed. Here, we summarize the current information on the immunologic properties of this tumor, its potential immunotherapeutic targets, and novel antibody-based strategies on the horizon.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
111
|
Pearson ADJ, Rossig C, Lesa G, Diede SJ, Weiner S, Anderson J, Gray J, Geoerger B, Minard-Colin V, Marshall LV, Smith M, Sondel P, Bajars M, Baldazzi C, Barry E, Blackman S, Blanc P, Capdeville R, Caron H, Cole PD, Jiménez JC, Demolis P, Donoghue M, Elgadi M, Gajewski T, Galluzzo S, Ilaria R, Jenkner A, Karres D, Kieran M, Ligas F, Lowy I, Meyers M, Oprea C, Peddareddigari VGR, Sterba J, Stockman PK, Suenaert P, Tabori U, van Tilburg C, Yancey T, Weigel B, Norga K, Reaman G, Vassal G. ACCELERATE and European Medicines Agency Paediatric Strategy Forum for medicinal product development of checkpoint inhibitors for use in combination therapy in paediatric patients. Eur J Cancer 2020; 127:52-66. [PMID: 31986450 DOI: 10.1016/j.ejca.2019.12.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
The third multistakeholder Paediatric Strategy Forum organised by ACCELERATE and the European Medicines Agency focused on immune checkpoint inhibitors for use in combination therapy in children and adolescents. As immune checkpoint inhibitors, both as monotherapy and in combinations have shown impressive success in some adult malignancies and early phase trials in children of single agent checkpoint inhibitors have now been completed, it seemed an appropriate time to consider opportunities for paediatric studies of checkpoint inhibitors used in combination. Among paediatric patients, early clinical studies of checkpoint inhibitors used as monotherapy have demonstrated a high rate of activity, including complete responses, in Hodgkin lymphoma and hypermutant paediatric tumours. Activity has been very limited, however, in more common malignancies of childhood and adolescence. Furthermore, apart from tumour mutational burden, no other predictive biomarker for monotherapy activity in paediatric tumours has been identified. Based on these observations, there is collective agreement that there is no scientific rationale for children to be enrolled in new monotherapy trials of additional checkpoint inhibitors with the same mechanism of action of agents already studied (e.g. anti-PD1, anti-PDL1 anti-CTLA-4) unless additional scientific knowledge supporting a different approach becomes available. This shared perspective, based on scientific evidence and supported by paediatric oncology cooperative groups, should inform companies on whether a paediatric development plan is justified. This could then be proposed to regulators through the available regulatory tools. Generally, an academic-industry consensus on the scientific merits of a proposal before submission of a paediatric investigational plan would be of great benefit to determine which studies have the highest probability of generating new insights. There is already a rationale for the evaluation of combinations of checkpoint inhibitors with other agents in paediatric Hodgkin lymphoma and hypermutated tumours in view of the activity shown as single agents. In paediatric tumours where no single agent activity has been observed in multiple clinical trials of anti-PD1, anti-PDL1 and anti-CTLA-4 agents as monotherapy, combinations of checkpoint inhibitors with other treatment modalities should be explored when a scientific rationale indicates that they could be efficacious in paediatric cancers and not because these combinations are being evaluated in adults. Immunotherapy in the form of engineered proteins (e.g. monoclonal antibodies and T cell engaging agents) and cellular products (e.g. CAR T cells) has great therapeutic potential for benefit in paediatric cancer. The major challenge for developing checkpoint inhibitors for paediatric cancers is the lack of neoantigens (based on mutations) and corresponding antigen-specific T cells. Progress critically depends on understanding the immune macroenvironment and microenvironment and the ability of the adaptive immune system to recognise paediatric cancers in the absence of high neoantigen burden. Future clinical studies of checkpoint inhibitors in children need to build upon strong biological hypotheses that take into account the distinctive immunobiology of childhood cancers in comparison to that of checkpoint inhibitor responsive adult cancers.
Collapse
Affiliation(s)
| | - Claudia Rossig
- University Children´s Hospital Muenster, Pediatric Hematology and Oncology, Germany
| | - Giovanni Lesa
- Paediatric Medicines Office, Product Development Scientific Support Department, European Medicines Agency, Amsterdam, the Netherlands
| | | | | | - John Anderson
- UCL Great Ormond Street Institute of Child Health, UK
| | | | | | | | | | | | - Paul Sondel
- The University of Wisconsin, Madison WI, USA
| | | | | | | | | | | | | | | | | | - Jorge Camarero Jiménez
- Agencia Espanola de Medicamentos y Productos Sanitarios and European Medicines Agency, Committee for Medicinal Products for Human Use, Amsterdam, the Netherlands
| | - Pierre Demolis
- Agence Nationale de Sécurité du Médicament et des Produits de Santé and European Medicines Agency, Scientific Advice Working Party and Oncology Working Party, Amsterdam, the Netherlands
| | | | | | | | - Sara Galluzzo
- Agenzia Italiana del Farmaco and European Medicines Agency, Paediatric Committee, Amsterdam, the Netherlands
| | | | - Alessandro Jenkner
- Ospedale Pediatrico Bambino Gesù and European Medicines Agency, Paediatric Committee, Amsterdam, the Netherlands
| | - Dominik Karres
- Paediatric Medicines Office, Product Development Scientific Support Department, European Medicines Agency, Amsterdam, the Netherlands
| | | | - Franca Ligas
- Paediatric Medicines Office, Product Development Scientific Support Department, European Medicines Agency, Amsterdam, the Netherlands
| | | | | | | | | | - Jaroslav Sterba
- University Hospital Brno and European Medicines Agency, Paediatric Committee, Amsterdam, the Netherlands
| | | | | | - Uri Tabori
- Hospital for Sick Children, Toronto, Canada
| | - Cornelis van Tilburg
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
112
|
Iacovazzo D, Chiloiro S, Carlsen E, Bianchi A, Giampietro A, Tartaglione T, Bima C, Bracaccia ME, Lugli F, Lauretti L, Anile C, Gessi M, Colosimo C, Rindi G, Pontecorvi A, Korbonits M, De Marinis L. Tumour-infiltrating cytotoxic T lymphocytes in somatotroph pituitary neuroendocrine tumours. Endocrine 2020; 67:651-658. [PMID: 31875303 PMCID: PMC7054228 DOI: 10.1007/s12020-019-02145-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Somatotroph pituitary tumours are often resistant to first-generation somatostatin analogues and can invade the surrounding structures, limiting the chances of curative surgery. Recent studies suggested that the immune microenvironment and pro-angiogenic factors can influence neuroendocrine tumour prognosis. In this study, we aimed to investigate the prognostic role of immune cell-specific markers and endocan, a proteoglycan involved in neoangiogenesis and cell adhesion, in a cohort of acromegaly patients who underwent pituitary surgery as first-line treatment. SUBJECTS AND METHODS Sixty four eligible subjects were identified. CD4+, CD8+ and CD68+ cells and endocan expression were evaluated by immunohistochemistry and results correlated with clinical and neuroradiological findings. Responsiveness to somatostatin analogues was assessed in patients with persistent disease following surgery. RESULTS The number of CD8+ lymphocytes was significantly lower in tumours with cavernous sinus invasion (median 0.2/HPF, IQR: 2.2) compared with those without cavernous sinus invasion (median 2.4/HPF, IQR: 2.3; P = 0.04). Tumours resistant to first-generation somatostatin analogues had lower CD8+ lymphocytes (median 1/HPF, IQR: 2.4) compared with responders (median 2.4/HPF, IQR: 2.9; P = 0.005). CD4+ lymphocytes were observed sporadically. The number of CD68+ macrophages and the endothelial or tumour cell endocan expression did not differ based on tumour size, cavernous sinus invasion or treatment responsiveness. CONCLUSIONS Our study suggests that a lower number of CD8+ lymphocytes is associated with cavernous sinus invasion and resistance to treatment with first-generation somatostatin analogues in acromegaly patients. These results highlight a potential role of the tumour immune microenvironment in determining the prognosis of somatotroph pituitary tumours.
Collapse
Affiliation(s)
- Donato Iacovazzo
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sabrina Chiloiro
- Divisione di Endocrinologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Antonio Bianchi
- Divisione di Endocrinologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonella Giampietro
- Divisione di Endocrinologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tommaso Tartaglione
- U.O.C. di Radiologia e Diagnostica per Immagini, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Chiara Bima
- Divisione di Endocrinologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Elena Bracaccia
- Divisione di Endocrinologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Lugli
- Divisione di Endocrinologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Liverana Lauretti
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmelo Anile
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Gessi
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cesare Colosimo
- U.O.C. Radiologia e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Guido Rindi
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Divisione di Endocrinologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Laura De Marinis
- Divisione di Endocrinologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
113
|
Wang P, Xu LL, Zheng XB, Hu YT, Zhang JF, Ren SS, Hao XY, Li L, Zhang M, Xu MQ. Correlation between the expressions of circular RNAs in peripheral venous blood and clinicopathological features in hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:338. [PMID: 32355782 PMCID: PMC7186655 DOI: 10.21037/atm.2020.02.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Recent studies have reported that circular RNAs (circRNAs) are involved in the development of hepatocellular carcinoma (HCC). This study evaluated the expression of preoperative peripheral venous blood circRNAs in HCC patients and their predictive ability for microvascular invasion (MVI). Methods Seven circRNAs (circMTO1, circ-10720, circZKSCAN1, cSMARCA5, circHIPK3, circSETD3 and ciRS-7) were screened from the literature as circRNAs with reported biological functions in HCC. The expression levels of seven circRNAs in preoperative blood samples and HCC tissues were detected by quantitative reverse transcription polymerase chain reaction. The correlations between the circRNA expressions in blood and the clinicopathological factors of HCC patients were analyzed. The risk factors of MVI were analyzed by univariate and multivariate logistic regression. The functional role of circSETD3 in cell migration and invasion was evaluated by wound healing and Transwell assays in vitro. Results The expressions of all seven circRNAs were measured in peripheral venous blood samples. The venous expression levels of circHIPK3 and circMTO1 were significantly associated with gender, while circ-10720 and circMTO1 levels were significantly correlated with gross vascular invasion. Furthermore, circMTO1 and cSMARCA5 levels were significantly associated with alpha-fetoprotein level and ciRS-7 was significantly associated with satellite nodules. Importantly, low venous circSETD3 expression was significantly associated with prothrombin induced by vitamin K absence or antagonist-II (PIVKA-II) level, MVI, gross vascular invasion, and liver capsule. Furthermore, venous circSETD3 expression had predictive ability for MVI. Knockdown of circSETD3 promoted cell invasion and metastasis in vitro. Conclusions CircRNAs were stably present in peripheral venous blood and associated with multiple clinicopathological characteristics of HCC patients. Venous circSETD3 was an independent risk factor of MVI and shows ability to predict MVI in HCC patients before surgery.
Collapse
Affiliation(s)
- Peng Wang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang-Liang Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao-Bo Zheng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi-Tao Hu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin-Fu Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sheng-Sheng Ren
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang-Yong Hao
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of General Surgery, Mianzhu Hospital of West China Hospital, Sichuan University, Mianzhu 618200, China
| | - Ming-Qing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
114
|
Wang-Bishop L, Wehbe M, Shae D, James J, Hacker BC, Garland K, Chistov PP, Rafat M, Balko JM, Wilson JT. Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma. J Immunother Cancer 2020; 8:e000282. [PMID: 32169869 PMCID: PMC7069313 DOI: 10.1136/jitc-2019-000282] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a childhood cancer for which new treatment options are needed. The success of immune checkpoint blockade in the treatment of adult solid tumors has prompted the exploration of immunotherapy in NB; however, clinical evidence indicates that the vast majority of NB patients do not respond to single-agent checkpoint inhibitors. This motivates a need for therapeutic strategies to increase NB tumor immunogenicity. The goal of this study was to evaluate a new immunotherapeutic strategy for NB based on potent activation of the stimulator of interferon genes (STING) pathway. METHODS To promote STING activation in NB cells and tumors, we utilized STING-activating nanoparticles (STING-NPs) that are designed to mediate efficient cytosolic delivery of the endogenous STING ligand, 2'3'-cGAMP. We investigated tumor-intrinsic responses to STING activation in both MYCN-amplified and non-amplified NB cell lines, evaluating effects on STING signaling, apoptosis, and the induction of immunogenic cell death. The effects of intratumoral administration of STING-NPs on CD8+ T cell infiltration, tumor growth, and response to response to PD-L1 checkpoint blockade were evaluated in syngeneic models of MYCN-amplified and non-amplified NB. RESULTS The efficient cytosolic delivery of 2'3'-cGAMP enabled by STING-NPs triggered tumor-intrinsic STING signaling effects in both MYCN-amplified and non-amplified NB cell lines, resulting in increased expression of interferon-stimulated genes and pro-inflammatory cytokines as well as NB cell death at concentrations 2000-fold to 10000-fold lower than free 2'3'-cGAMP. STING-mediated cell death in NB was associated with release or expression of several danger associated molecular patterns that are hallmarks of immunogenic cell death, which was further validated via cell-based vaccination and tumor challenge studies. Intratumoral administration of STING-NPs enhanced STING activation relative to free 2'3'-cGAMP in NB tumor models, converting poorly immunogenic tumors into tumoricidal and T cell-inflamed microenvironments and resulting in inhibition of tumor growth, increased survival, and induction of immunological memory that protected against tumor re-challenge. In a model of MYCN-amplified NB, STING-NPs generated an abscopal response that inhibited distal tumor growth and improved response to PD-L1 immune checkpoint blockade. CONCLUSIONS We have demonstrated that activation of the STING pathway, here enabled by a nanomedicine approach, stimulates immunogenic cell death and remodels the tumor immune microenvironment to inhibit NB tumor growth and improve responses to immune checkpoint blockade, providing a multifaceted immunotherapeutic approach with potential to enhance immunotherapy outcomes in NB.
Collapse
Affiliation(s)
- Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Mohamed Wehbe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Daniel Shae
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jamaal James
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Benjamin C Hacker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kyle Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Plamen P Chistov
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
115
|
Monitoring Immune Responses in Neuroblastoma Patients during Therapy. Cancers (Basel) 2020; 12:cancers12020519. [PMID: 32102342 PMCID: PMC7072382 DOI: 10.3390/cancers12020519] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NBL) is the most common extracranial solid tumor in childhood. Despite intense treatment, children with this high-risk disease have a poor prognosis. Immunotherapy showed a significant improvement in event-free survival in high-risk NBL patients receiving chimeric anti-GD2 in combination with cytokines and isotretinoin after myeloablative consolidation therapy. However, response to immunotherapy varies widely, and often therapy is stopped due to severe toxicities. Objective markers that help to predict which patients will respond or develop toxicity to a certain treatment are lacking. Immunotherapy guided via immune monitoring protocols will help to identify responders as early as possible, to decipher the immune response at play, and to adjust or develop new treatment strategies. In this review, we summarize recent studies investigating frequency and phenotype of immune cells in NBL patients prior and during current treatment protocols and highlight how these findings are related to clinical outcome. In addition, we discuss potential targets to improve immunogenicity and strategies that may help to improve therapy efficacy. We conclude that immune monitoring during therapy of NBL patients is essential to identify predictive biomarkers to guide patients towards effective treatment, with limited toxicities and optimal quality of life.
Collapse
|
116
|
Díaz-Bulnes P, Saiz ML, López-Larrea C, Rodríguez RM. Crosstalk Between Hypoxia and ER Stress Response: A Key Regulator of Macrophage Polarization. Front Immunol 2020; 10:2951. [PMID: 31998288 PMCID: PMC6961549 DOI: 10.3389/fimmu.2019.02951] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022] Open
Abstract
Macrophage activation and polarization are closely linked with metabolic rewiring, which is required to sustain their biological functions. These metabolic alterations allow the macrophages to adapt to the microenvironment changes associated with inflammation or tissue damage (hypoxia, nutrient imbalance, oxidative stress, etc.) and to fulfill their highly energy-demanding proinflammatory and anti-microbial functions. This response is integrated via metabolic sensors that coordinate these metabolic fluxes with their functional requirements. Here we review how the metabolic and phenotypic plasticity of macrophages are intrinsically connected with the hypoxia stress sensors and the unfolded protein response in the endoplasmic reticulum, and how these molecular pathways participate in the maladaptive polarization of macrophages in human pathology and chronic inflammation.
Collapse
Affiliation(s)
- Paula Díaz-Bulnes
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - María Laura Saiz
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain.,Immunology Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ramón M Rodríguez
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
117
|
Marayati R, Quinn CH, Beierle EA. Immunotherapy in Pediatric Solid Tumors-A Systematic Review. Cancers (Basel) 2019; 11:E2022. [PMID: 31847387 PMCID: PMC6966467 DOI: 10.3390/cancers11122022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Despite advances in the treatment of many pediatric solid tumors, children with aggressive and high-risk disease continue to have a dismal prognosis. For those presenting with metastatic or recurrent disease, multiple rounds of intensified chemotherapy and radiation are the typical course of action, but more often than not, this fails to control the progression of the disease. Thus, new therapeutics are desperately needed to improve the outcomes for these children. Recent advances in our understanding of both the immune system's biology and its interaction with tumors have led to the development of novel immunotherapeutics as alternative treatment options for these aggressive malignancies. Immunotherapeutic approaches have shown promising results for pediatric solid tumors in early clinical trials, but challenges remain concerning safety and anti-tumor efficacy. In this review, we aim to discuss and summarize the main classes of immunotherapeutics used to treat pediatric solid tumors.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.); (C.H.Q.)
| |
Collapse
|
118
|
Zhong X, Zhang Y, Wang L, Zhang H, Liu H, Liu Y. Cellular components in tumor microenvironment of neuroblastoma and the prognostic value. PeerJ 2019; 7:e8017. [PMID: 31844563 PMCID: PMC6910112 DOI: 10.7717/peerj.8017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/09/2019] [Indexed: 01/14/2023] Open
Abstract
Background Tumor microenvironment (TME) contributes to tumor development, progression, and treatment response. In this study, we detailed the cell composition of the TME in neuroblastoma (NB) and constructed a cell risk score model to predict the prognosis of NB. Methods xCell score was calculated through transcriptomic data from the datasets GSE49711 and GSE45480 based on the xCell algorithm. The random forest method was employed to select important features and the coefficient was obtained via multivariate cox regression analysis to construct a prognostic model, and the performance was validated in another two independent datasets, GSE16476 and TARGET-NBL. Results We found that both immune and non-immune cells varies significantly in different prognostic groups, and were correlated with survival time. The proposed prognostic cell risk score (pCRS) model we constructed can be an independent prognostic indicator for overall survival (OS) and event-free survival (EFS) (training: OS, HR 1.579, EFS, HR 1.563; validation: OS, HR 1.665, 3.848, EFS, HR 2.203, all p-values < 0.01) and only independent prognostic factor in International Neuroblastoma Risk Group high risk patients (HR 1.339, 3.631; p-value 1.76e–2, 3.71e–5), rather than MYCN amplification. Besides, pCRS model showed good performance in grouping, in discriminating MYCN status, the area under the curve (AUC) was 0.889, 0.933, and 0.861 in GSE49711, GSE45480, and GSE16476, respectively. In separating high risk groups, the AUC was 0.904 in GSE49711. Conclusion This study details the cellular components in the TME of NB through gene expression data, the proposed pCRS model might provide a basis for treatment selection of high risk patients or targeting cellular components of TME in NB.
Collapse
Affiliation(s)
- Xiaodan Zhong
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China.,Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yutong Zhang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Linyu Wang
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Haiming Liu
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yuanning Liu
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
119
|
Aravindan N, Jain D, Somasundaram DB, Herman TS, Aravindan S. Cancer stem cells in neuroblastoma therapy resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:948-967. [PMID: 31867574 PMCID: PMC6924637 DOI: 10.20517/cdr.2019.72] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is the most common cancer of infancy and accounts for nearly one tenth of pediatric cancer deaths. This mortality rate has been attributed to the > 50% frequency of relapse despite intensive, multimodal clinical therapy in patients with progressive NB. Given the disease’s heterogeneity and developed resistance, attaining a cure after relapse of progressive NB is highly challenging. A rapid decrease in the timeline between successive recurrences is likely due to the ongoing acquisition of genetic rearrangements in undifferentiated NB-cancer stem cells (CSCs). In this review, we present the current understanding of NB-CSCs, their intrinsic role in tumorigenesis, their function in disease progression, and their influence on acquired therapy resistance and tumor evolution. In particular, this review focus on the intrinsic involvement of stem cells and signaling in the genesis of NB, the function of pre-existing CSCs in NB progression and therapy response, the formation and influence of induced CSCs (iCSCs) in drug resistance and tumor evolution, and the development of a CSC-targeted therapeutic approach.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Anesthesiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Drishti Jain
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Terence S Herman
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
120
|
Shekarian T, Sivado E, Jallas AC, Depil S, Kielbassa J, Janoueix-Lerosey I, Hutter G, Goutagny N, Bergeron C, Viari A, Valsesia-Wittmann S, Caux C, Marabelle A. Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade. Sci Transl Med 2019; 11:eaat5025. [PMID: 31645452 DOI: 10.1126/scitranslmed.aat5025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/18/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Although immune checkpoint-targeted therapies are currently revolutionizing cancer care, only a minority of patients develop durable objective responses to anti-PD-1, PD-L1, and CTLA-4 therapy. Therefore, new therapeutic interventions are needed to increase the immunogenicity of tumors and overcome the resistance to these immunotherapies. Oncolytic properties of common viruses can be exploited for the priming of antitumor immunity, and such oncolytic viruses are currently in active clinical development in combination with immune checkpoint-targeted therapies. However, the routine implementation of these therapies is limited by their manufacturing constraints, the risk of exposure of clinical staff, and the ongoing regulations on genetically modified organisms. We sought to determine whether anti-infectious disease vaccines could be used as a commercially available source of immunostimulatory agents for cancer immunotherapy. We found that rotavirus vaccines have both immunostimulatory and oncolytic properties. In vitro, they can directly kill cancer cells with features of immunogenic cell death. In vivo, intratumoral rotavirus therapy has antitumor effects that are dependent on the immune system. In several immunocompetent murine tumor models, intratumoral rotavirus overcomes resistance to and synergizes with immune checkpoint-targeted therapy. Heat- and UV-inactivated rotavirus lost their oncolytic activity but kept their synergy with immune checkpoint-targeted antibodies through the up-regulation of the double-stranded RNA receptor retinoic acid-induced gene 1 (RIG-I). Rotavirus vaccines are clinical-grade products used in pediatric and adult populations. Therefore, in situ immunization strategies with intratumoral-attenuated rotavirus could be implemented quickly in the clinic.
Collapse
Affiliation(s)
- Tala Shekarian
- Centre de Recherche en Cancérologie de Lyon (CRCL), UMR INSERM U1052 CNRS 5286 Université de Lyon, 69008 Lyon, France
- Centre de Lutte contre le Cancer Léon Bérard, 69008 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne France
- University Hospital Basel, 4031 Basel, Switzerland
| | - Eva Sivado
- Centre de Lutte contre le Cancer Léon Bérard, 69008 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne France
- INSERM UA8, 69008 Lyon, France
| | - Anne-Catherine Jallas
- Centre de Lutte contre le Cancer Léon Bérard, 69008 Lyon, France
- INSERM UA8, 69008 Lyon, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon (CRCL), UMR INSERM U1052 CNRS 5286 Université de Lyon, 69008 Lyon, France
- Centre de Lutte contre le Cancer Léon Bérard, 69008 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne France
| | - Janice Kielbassa
- Synergie Lyon Cancer, Plateforme de bioinformatique 'Gilles Thomas', Centre Léon Bérard, 69008 Lyon, France
| | - Isabelle Janoueix-Lerosey
- Institut Curie, PSL Research University, Inserm U830, 75005 Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | | | - Nadège Goutagny
- Centre de Recherche en Cancérologie de Lyon (CRCL), UMR INSERM U1052 CNRS 5286 Université de Lyon, 69008 Lyon, France
- Centre de Lutte contre le Cancer Léon Bérard, 69008 Lyon, France
| | - Christophe Bergeron
- Centre de Lutte contre le Cancer Léon Bérard, 69008 Lyon, France
- Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France
| | - Alain Viari
- Synergie Lyon Cancer, Plateforme de bioinformatique 'Gilles Thomas', Centre Léon Bérard, 69008 Lyon, France
- Equipe Erable, INRIA Grenoble-Rhône-Alpes, 38330 Montbonnot-Saint Martin, France
| | | | - Christophe Caux
- Centre de Recherche en Cancérologie de Lyon (CRCL), UMR INSERM U1052 CNRS 5286 Université de Lyon, 69008 Lyon, France
- Centre de Lutte contre le Cancer Léon Bérard, 69008 Lyon, France
| | - Aurélien Marabelle
- Centre de Lutte contre le Cancer Léon Bérard, 69008 Lyon, France.
- Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France
- Gustave Roussy, Université Paris-Saclay, Drug Development Department (DITEP), 94805 Villejuif, France
- INSERM U1015, Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
121
|
Troschke-Meurer S, Siebert N, Marx M, Zumpe M, Ehlert K, Mutschlechner O, Loibner H, Ladenstein R, Lode HN. Low CD4⁺/CD25⁺/CD127⁻ regulatory T cell- and high INF-γ levels are associated with improved survival of neuroblastoma patients treated with long-term infusion of ch14.18/CHO combined with interleukin-2. Oncoimmunology 2019; 8:1661194. [PMID: 31741754 PMCID: PMC6844328 DOI: 10.1080/2162402x.2019.1661194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy with the anti-GD2 antibody (Ab) ch14.18/CHO in combination with interleukin 2 (IL-2) has improved survival of high-risk neuroblastoma (NB) patients. Here, we report immunotherapy-related effects on circulating NK cells, regulatory T cells (Tregs), granulocytes as well as on Ab-dependent cell-mediated cytotoxicity (ADCC) and cytokines IFN-γ, IL-6, IL-10, IL-18 and CCL2 and their association with progression-free survival (PFS). In a closed single-center program, 53 patients received five cycles of 6 × 106 IU/m2 subcutaneous IL-2 (d1-5; 8–12) combined with long-term infusion (LTI) of 100 mg/m2 ch14.18/CHO (d8-18). Immune cells and cytokines were analyzed by flow cytometry and ADCC by calcein-AM-based cytotoxicity assay. IL-2 administration increased cytotoxic NK cell-, eosinophil- and Treg counts in cycle 1 (2.9-, 3.1- and 20.7-fold, respectively) followed by further increase in subsequent cycles, whereas neutrophil levels were elevated only after the ch14.18/CHO infusion (2.4-fold change). Serum concentrations of IFN-γ, IL-6, IL-10, IL-18 and CCL2 in cycle 1 were increased during the combinatorial therapy (peak levels of 3,656 ± 655 pg/ml, 162 ± 38 pg/ml, 20.91 ± 4.74 pg/ml, 1,584 ± 196 pg/ml and 2,159 ± 252 pg/ml, respectively). Surprisingly, we did not observe any correlation between NK-, eosinophil- or neutrophil levels and PFS. In contrast, patients with low Tregs showed significantly improved PFS compared to those who had high levels. Treg counts negatively correlated with INF-γ serum concentrations and patients with high INF-γ and IL-18 had significantly improved survival compared to those with low levels. In conclusion, LTI of ch14.18/CHO in combination with IL-2 resulted in Treg induction that inversely correlated with IFN-γ levels and PFS.
Collapse
Affiliation(s)
- Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Madlen Marx
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Maxi Zumpe
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Karoline Ehlert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Ruth Ladenstein
- St. Anna Children's Hospital and Children's Cancer Research Institute (CCRI), Department of Pediatrics, Medical University, Vienna, Austria
| | - Holger N Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
122
|
Ma J, Xu M, Yin M, Hong J, Chen H, Gao Y, Xie C, Shen N, Gu S, Mo X. Exosomal hsa-miR199a-3p Promotes Proliferation and Migration in Neuroblastoma. Front Oncol 2019; 9:459. [PMID: 31249805 PMCID: PMC6582313 DOI: 10.3389/fonc.2019.00459] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/14/2019] [Indexed: 01/20/2023] Open
Abstract
Neuroblastoma (NB) is the most common pediatric extra-cranial solid tumor with heterogeneous characteristics, and the prognosis of patients with high-risk NB is usually poor. Discovery of novel biomarkers for early detection and investigation of the underlying mechanisms governing invasion and metastasis of NB are urgently needed. Recently, exosomal microRNAs (miRNAs) have been shown to play vital regulatory or communication roles in the process of various types of cancers. However, the roles and mechanisms of exosomal miRNAs in NB remain unknown. Thus, the present study aims to investigate the detailed functions of tumor-derived exosomal miRNAs in progression and migration of NB in vivo and in vitro. By examining different exosomal miRNA expression profiles in the plasma of NB patients, we identified that the expression of hsa-miR199a-3p from exosomes was significantly upregulated, which was correlated with the severity of NB patients. Furthermore, we confirmed that exosomal hsa-miR199a-3p could facilitate proliferation and migration of NB via regulating NEDD4 expression. In summary, our data, for the first time, revealed that exosomal hsa-miR199a-3p could promote tumor proliferation and migration via decreasing NEDD4 expression in NB, suggesting that exosomal hsa-miR199a-3p may be applicated as a fast, easy, and non-invasive detection biomarker and contribute to the development of novel therapeutic strategies for NB in the future.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pathology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minzhi Yin
- Department of Pathology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijin Gao
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjie Xie
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Shen
- Shanghai Children's Medical Center, Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Rehabilitation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Gu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Mo
- Shanghai Children's Medical Center, Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
123
|
Higashino N, Koma YI, Hosono M, Takase N, Okamoto M, Kodaira H, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. J Transl Med 2019; 99:777-792. [PMID: 30683902 DOI: 10.1038/s41374-018-0185-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly aggressive tumor with frequent recurrence even after curative resection. The tumor microenvironment, which consists of non-cancer cells, such as cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), was recently reported to promote several cancers, including ESCC. However, the role of CAF as a coordinator for tumor progression in ESCC remains to be elucidated. In our immunohistochemical investigation of ESCC tissues, we observed that the intensity of expression of two CAF markers-alpha smooth muscle actin (αSMA) and fibroblast activation protein (FAP)-in the tumor stroma was significantly correlated with the depth of tumor invasion, lymph node metastasis, advanced pathological stage, and poor prognosis. We co-cultured human bone marrow-derived mesenchymal stem cells (MSCs) with ESCC cells and confirmed the induction of FAP expression in the co-cultured MSCs. These FAP-positive MSCs (which we defined as CAF-like cells) promoted the cell growth and migration of ESCC cells and peripheral blood mononuclear cell-derived macrophage-like cells. CAF-like cells induced the M2 polarization of macrophage-like cells. A cytokine array and ELISA revealed that CAF-like cells secreted significantly more CCL2, Interleukin-6, and CXCL8 than MSCs. These cytokines promoted the migration of tumor cells and macrophage-like cells. The silencing of FAP in CAF-like cells attenuated cytokine secretion. We compared cell signaling of MSCs, CAF-like cells, and FAP-silenced CAF-like cells; PTEN/Akt and MEK/Erk signaling were upregulated and their downstream targets, NF-κB and β-catenin, were also activated with FAP expression. Silencing of FAP attenuated these effects. Cytokine secretion from CAF-like cells were attenuated by inhibitors against these signaling pathways. These findings indicate that the collaboration of CAFs with tumor cells and macrophages plays a pivotal role in tumor progression, and that FAP expression is responsible for the tumor promotive and immunosuppressive phenotypes of CAFs.
Collapse
Affiliation(s)
- Nobuhide Higashino
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayoshi Hosono
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuhisa Takase
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Maiko Okamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Himiko Kodaira
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
124
|
Wu HW, Sheard MA, Malvar J, Fernandez GE, DeClerck YA, Blavier L, Shimada H, Theuer CP, Sposto R, Seeger RC. Anti-CD105 Antibody Eliminates Tumor Microenvironment Cells and Enhances Anti-GD2 Antibody Immunotherapy of Neuroblastoma with Activated Natural Killer Cells. Clin Cancer Res 2019; 25:4761-4774. [PMID: 31068371 DOI: 10.1158/1078-0432.ccr-18-3358] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/29/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE We determined whether elimination of CD105+ cells in the tumor microenvironment (TME) with anti-CD105 antibodies enhanced anti-disialoganglioside (GD2) antibody dinutuximab therapy of neuroblastoma when combined with activated natural killer (aNK) cells. EXPERIMENTAL DESIGN The effect of MSCs and monocytes on antibody-dependent cellular cytotoxicity (ADCC) mediated by dinutuximab with aNK cells against neuroblastoma cells was determined in vitro. ADCC with anti-CD105 mAb TRC105 and aNK cells against MSCs, monocytes, and endothelial cells, which express CD105, was evaluated. Anti-neuroblastoma activity in immunodeficient NSG mice of dinutuximab with aNK cells without or with anti-CD105 mAbs was determined using neuroblastoma cell lines and a patient-derived xenograft. RESULTS ADCC mediated by dinutuximab with aNK cells against neuroblastoma cells in vitro was suppressed by addition of MSCs and monocytes, and dinutuximab with aNK cells was less effective against neuroblastomas formed with coinjected MSCs and monocytes in NSG mice than against those formed by tumor cells alone. Anti-CD105 antibody TRC105 with aNK cells mediated ADCC against MSCs, monocytes, and endothelial cells. Neuroblastomas formed in NSG mice by two neuroblastoma cell lines or a patient-derived xenograft coinjected with MSCs and monocytes were most effectively treated with dinutuximab and aNK cells when anti-human (TRC105) and anti-mouse (M1043) CD105 antibodies were added, which depleted human MSCs and murine endothelial cells and macrophages from the TME. CONCLUSIONS Immunotherapy of neuroblastoma with anti-GD2 antibody dinutuximab and aNK cells is suppressed by CD105+ cells in the TME, but suppression is overcome by adding anti-CD105 antibodies to eliminate CD105+ cells.
Collapse
Affiliation(s)
- Hong-Wei Wu
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, California
| | - Michael A Sheard
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, California
| | - Jemily Malvar
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, California
| | - G Esteban Fernandez
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, California
| | - Yves A DeClerck
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Laurence Blavier
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, California
| | - Hiroyuki Shimada
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, California.,Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Richard Sposto
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert C Seeger
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, California. .,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
125
|
Morgenstern DA, Bagatell R, Cohn SL, Hogarty MD, Maris JM, Moreno L, Park JR, Pearson AD, Schleiermacher G, Valteau-Couanet D, London WB, Irwin MS. The challenge of defining "ultra-high-risk" neuroblastoma. Pediatr Blood Cancer 2019; 66:e27556. [PMID: 30479064 DOI: 10.1002/pbc.27556] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/08/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022]
Abstract
Given the biological and clinical heterogeneity of neuroblastoma, risk stratification is vital to determining appropriate treatment. Historically, most patients with high-risk neuroblastoma (HR-NBL) have been treated uniformly without further stratification. Attempts have been made to identify factors that can be used to risk stratify these patients and to characterize an "ultra-high-risk" (UHR) subpopulation with particularly poor outcome. However, among published data, there is a lack of consensus in the definition of the UHR population and heterogeneity in the endpoints and statistical methods used. This review summarizes our current understanding of stratification of HR-NBL and discusses the complex issues in defining UHR neuroblastoma.
Collapse
Affiliation(s)
| | - Rochelle Bagatell
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | - Michael D Hogarty
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John M Maris
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lucas Moreno
- Hospital Universitario Niño Jesus, Madrid, Spain
| | - Julie R Park
- Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington
| | - Andrew D Pearson
- Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey, UK
| | | | | | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Meredith S Irwin
- Hospital for Sick Children and University of Toronto, Toronto, Canada
| |
Collapse
|
126
|
Pasqualini C, Rialland F, Valteau-Couanet D, Michon J, Minard-Colin V. Nouvelles perspectives dans l’immunothérapie des cancers pédiatriques. Bull Cancer 2019; 105 Suppl 1:S68-S79. [PMID: 30595201 DOI: 10.1016/s0007-4551(18)30392-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NEW PERSPECTIVES IN IMMUNOTHERAPIES FOR PEDIATRIC MALIGNANCIES New therapeutic paradigms are needed to improve the survival of children and adolescents with high-risk malignancies, and to reduce the sequelae associated with treatment. Immunotherapies, targeting tumor cells and/or the immune system to enhance existing anti-tumor immunity or induce novel anti-tumor immune responses, are becoming increasingly successful in adult oncology. Based on the results obtained with anti-ganglioside2 antibodies in neuroblastoma, rituximab in mature B malignancies, immune checkpoint inhibitors in lymphoma and especially in Hodgkin lymphoma, blinatumomab and CAR-T CD19 cells for B-cell acute lymphoblastic leukemia, immunotherapy has demonstrated irrefutable benefits in pediatric patients. However, these results are currently limited to a minority of patients and histologies. Current and ongoing trials tend to focus on a single type of immunotherapy, but it is likely that combinations of immunotherapies with different mechanisms of action or combination with other classes of anti-cancer treatments will be additives or even synergistic. The development of this new class of drugs in the treatment of pediatric cancers has multiple challenges: to better evaluate the response to treatment, to define the optimal doses and schedules, to manage immuno-mediated toxicities, to identify its specific sequelae, and, finally, to better understand the strategies of immune evasion of pediatric cancers in order to develop efficient immunotherapies.
Collapse
Affiliation(s)
- Claudia Pasqualini
- Département de cancérologie de l'enfant et de l'adolescent, Gustave-Roussy.
| | | | | | - Jean Michon
- Service d'oncologie pédiatrique - Centre SIREDO, Institut Curie
| | | |
Collapse
|
127
|
Larsson K, Kock A, Kogner P, Jakobsson PJ. Targeting the COX/mPGES-1/PGE 2 Pathway in Neuroblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:89-100. [PMID: 31562624 DOI: 10.1007/978-3-030-21735-8_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The importance of prostaglandin E2 in cancer progression is well established, but research on its role in cancer has so far mostly been focused on epithelial cancer in adults while the knowledge about the contribution of prostaglandin E2 to childhood malignancies is limited. Neuroblastoma, an extracranial solid tumor of the sympathetic nervous system, mainly affects young children. Patients with tumors classified as high-risk have poor survival despite receiving intensive treatment, illustrating a need for new treatments complimenting existing ones. The basis of neuroblastoma treatment e.g. chemotherapy and radiation therapy, target the proliferating genetically unstable tumor cells leading to treatment resistance and relapses. The tumor microenvironment is an avenue, still to a great extent, unexplored and lacking effective targeted therapies. Cancer-associated fibroblasts is the main source of prostaglandin E2 in neuroblastoma contributing to angiogenesis, immunosuppression and tumor growth. Prostaglandin E2 is formed from its precursor arachidonic acid in a two-step enzymatic reaction. Arachidonic acid is first converted by cyclooxygenases into prostaglandin H2 and then further converted by microsomal prostaglandin E synthase-1 into prostaglandin E2. We believe targeting of microsomal prostaglandin E synthase-1 in cancer-associated fibroblasts will be an effective future therapeutic strategy in fighting neuroblastoma.
Collapse
Affiliation(s)
- Karin Larsson
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Anna Kock
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
128
|
Keyel ME, Reynolds CP. Spotlight on dinutuximab in the treatment of high-risk neuroblastoma: development and place in therapy. Biologics 2018; 13:1-12. [PMID: 30613134 PMCID: PMC6306059 DOI: 10.2147/btt.s114530] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system which accounts for 8% of childhood cancers. Most NBs express high levels of the disialoganglioside GD2. Several antibodies have been developed to target GD2 on NB, including the human/mouse chimeric antibody ch14.18, known as dinutuximab. Dinutuximab used in combination with granulocyte-macrophage colony-stimulating factor, interleukin-2, and isotretinoin (13-cis-retinoic acid) has a US Food and Drug Administration (FDA)-registered indication for treating high-risk NB patients who achieved at least a partial response to prior first-line multi-agent, multimodality therapy. The FDA registration resulted from a prospective randomized trial assessing the benefit of adding dinutuximab + cytokines to post-myeloablative maintenance therapy for high-risk NB. Dinutuximab has also shown promising antitumor activity when combined with temozolomide and irinotecan in treating NB progressive disease. Clinical activity of dinutuximab and other GD2-targeted therapies relies on the presence of the GD2 antigen on NB cells. Some NBs have been reported as GD2 low or negative, and such tumor cells could be nonresponsive to anti-GD2 therapy. As dinutuximab relies on complement and effector cells to mediate NB killing, factors affecting those components of patient response may also decrease dinutuximab effectiveness. This review summarizes the development of GD2 antibody-targeted therapy, the use of dinutuximab in both up-front and salvage therapy for high-risk NB, and the potential mechanisms of resistance to dinutuximab.
Collapse
Affiliation(s)
| | - C Patrick Reynolds
- Cancer Center,
- Department of Pediatrics,
- Department of Internal Medicine,
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA,
| |
Collapse
|
129
|
Neviani P, Wise PM, Murtadha M, Liu CW, Wu CH, Jong AY, Seeger RC, Fabbri M. Natural Killer-Derived Exosomal miR-186 Inhibits Neuroblastoma Growth and Immune Escape Mechanisms. Cancer Res 2018; 79:1151-1164. [PMID: 30541743 DOI: 10.1158/0008-5472.can-18-0779] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/24/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022]
Abstract
In neuroblastoma, the interplay between immune cells of the tumor microenvironment and cancer cells contributes to immune escape mechanisms and drug resistance. In this study, we show that natural killer (NK) cell-derived exosomes carrying the tumor suppressor microRNA (miR)-186 exhibit cytotoxicity against MYCN-amplified neuroblastoma cell lines. The cytotoxic potential of these exosomes was partly dependent upon expression of miR-186. miR-186 was downregulated in high-risk neuroblastoma patients, and its low expression represented a poor prognostic factor that directly correlated with NK activation markers (i.e., NKG2D and DNAM-1). Expression of MYCN, AURKA, TGFBR1, and TGFBR2 was directly inhibited by miR-186. Targeted delivery of miR-186 to MYCN-amplified neuroblastoma or NK cells resulted in inhibition of neuroblastoma tumorigenic potential and prevented the TGFβ1-dependent inhibition of NK cells. Altogether, these data support the investigation of a miR-186-containing nanoparticle formulation to prevent tumor growth and TGFβ1-dependent immune escape in high-risk neuroblastoma patients as well as the inclusion of ex vivo-derived NK exosomes as a potential therapeutic option alongside NK cell-based immunotherapy.Significance: These findings highlight the therapeutic potential of NK cell-derived exosomes containing the tumor suppressor miR-186 that inhibits growth, spreading, and TGFβ-dependent immune escape mechanisms in neuroblastoma.
Collapse
Affiliation(s)
- Paolo Neviani
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Petra M Wise
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mariam Murtadha
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Cathy W Liu
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chun-Hua Wu
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ambrose Y Jong
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert C Seeger
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Muller Fabbri
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
130
|
Shi G, Yang Q, Zhang Y, Jiang Q, Lin Y, Yang S, Wang H, Cheng L, Zhang X, Li Y, Wang Q, Liu Y, Wang Q, Zhang H, Su X, Dai L, Liu L, Zhang S, Li J, Li Z, Yang Y, Yu D, Wei Y, Deng H. Modulating the Tumor Microenvironment via Oncolytic Viruses and CSF-1R Inhibition Synergistically Enhances Anti-PD-1 Immunotherapy. Mol Ther 2018; 27:244-260. [PMID: 30527756 DOI: 10.1016/j.ymthe.2018.11.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy based on the immune checkpoint blockade has emerged as the most promising approach for cancer therapy. However, the proportion of colorectal cancer patients who benefit from immunotherapy is small due to the immunosuppressive tumor microenvironment. Hence, combination immunotherapy is an ideal strategy to overcome this limitation. In this study, we developed a novel combination of CSF-1R (colony-stimulating factor 1 receptor) inhibitor (PLX3397), oncolytic viruses, and anti-PD-1 antibody. Our results demonstrated that the triple treatment synergistically conferred significant tumor control and prolonged the survival of mouse models of colon cancer. Approximately 43% and 82% of mice bearing the CT26 and MC38 tumor, respectively, survived long term following the triple treatment. This combination therapy reprogrammed the immunosuppressive tumor microenvironment toward a CD8+ T cell-biased anti-tumor immunity by increasing T cell infiltration in the tumor and augmenting anti-tumor CD8+ T cell function. Our results provide a robust strategy for clinical combination therapy.
Collapse
Affiliation(s)
- Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qianmei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qingyuan Jiang
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Yi Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Shenshen Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Huiling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yimin Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Hantao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Lei Liu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jia Li
- Innovent Biologics, Inc., Suzhou, Jiangsu, China
| | - Zhi Li
- Innovent Biologics, Inc., Suzhou, Jiangsu, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China; Innovent Biologics, Inc., Suzhou, Jiangsu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China.
| |
Collapse
|
131
|
Wei JS, Kuznetsov IB, Zhang S, Song YK, Asgharzadeh S, Sindiri S, Wen X, Patidar R, Najaraj S, Walton A, Auvil JMG, Gerhard DS, Yuksel A, Catchpoole D, Hewitt SM, Sondel PM, Seeger R, Maris JM, Khan J. Clinically Relevant Cytotoxic Immune Cell Signatures and Clonal Expansion of T-Cell Receptors in High-Risk MYCN-Not-Amplified Human Neuroblastoma. Clin Cancer Res 2018; 24:5673-5684. [PMID: 29784674 PMCID: PMC6504934 DOI: 10.1158/1078-0432.ccr-18-0599] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
Abstract
Purpose: High-risk neuroblastoma is an aggressive disease. DNA sequencing studies have revealed a paucity of actionable genomic alterations and a low mutation burden, posing challenges to develop effective novel therapies. We used RNA sequencing (RNA-seq) to investigate the biology of this disease, including a focus on tumor-infiltrating lymphocytes (TIL).Experimental Design: We performed deep RNA-seq on pretreatment diagnostic tumors from 129 high-risk and 21 low- or intermediate-risk patients with neuroblastomas. We used single-sample gene set enrichment analysis to detect gene expression signatures of TILs in tumors and examined their association with clinical and molecular parameters, including patient outcome. The expression profiles of 190 additional pretreatment diagnostic neuroblastomas, a neuroblastoma tissue microarray, and T-cell receptor (TCR) sequencing were used to validate our findings.Results: We found that MYCN-not-amplified (MYCN-NA) tumors had significantly higher cytotoxic TIL signatures compared with MYCN-amplified (MYCN-A) tumors. A reported MYCN activation signature was significantly associated with poor outcome for high-risk patients with MYCN-NA tumors; however, a subgroup of these patients who had elevated activated natural killer (NK) cells, CD8+ T cells, and cytolytic signatures showed improved outcome and expansion of infiltrating TCR clones. Furthermore, we observed upregulation of immune exhaustion marker genes, indicating an immune-suppressive microenvironment in these neuroblastomas.Conclusions: This study provides evidence that RNA signatures of cytotoxic TIL are associated with the presence of activated NK/T cells and improved outcomes in high-risk neuroblastoma patients harboring MYCN-NA tumors. Our findings suggest that these high-risk patients with MYCN-NA neuroblastoma may benefit from additional immunotherapies incorporated into the current therapeutic strategies. Clin Cancer Res; 24(22); 5673-84. ©2018 AACR.
Collapse
Affiliation(s)
- Jun S Wei
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Igor B Kuznetsov
- Cancer Research Center and Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, New York
| | - Shile Zhang
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Young K Song
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shahab Asgharzadeh
- Division of Hematology/Oncology, the Children's Hospital Los Angeles, Los Angeles, California
| | - Sivasish Sindiri
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rajesh Patidar
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sushma Najaraj
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ashley Walton
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland
| | - Aysen Yuksel
- The Tumour Bank, Children's Cancer Research Unit, Kids Research Institute, the Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Daniel Catchpoole
- The Tumour Bank, Children's Cancer Research Unit, Kids Research Institute, the Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul M Sondel
- Departments of Pediatrics, Human Oncology and Genetics, the University of Wisconsin, Madison, Wisconsin
| | - Robert Seeger
- Division of Hematology/Oncology, the Children's Hospital Los Angeles, Los Angeles, California
| | - John M Maris
- Department of Pediatrics, University of Pennsylvania and Center for Childhood Cancer Research, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
132
|
Richards RM, Sotillo E, Majzner RG. CAR T Cell Therapy for Neuroblastoma. Front Immunol 2018; 9:2380. [PMID: 30459759 PMCID: PMC6232778 DOI: 10.3389/fimmu.2018.02380] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
Patients with high risk neuroblastoma have a poor prognosis and survivors are often left with debilitating long term sequelae from treatment. Even after integration of anti-GD2 monoclonal antibody therapy into standard, upftont protocols, 5-year overall survival rates are only about 50%. The success of anti-GD2 therapy has proven that immunotherapy can be effective in neuroblastoma. Adoptive transfer of chimeric antigen receptor (CAR) T cells has the potential to build on this success. In early phase clinical trials, CAR T cell therapy for neuroblastoma has proven safe and feasible, but significant barriers to efficacy remain. These include lack of T cell persistence and potency, difficulty in target identification, and an immunosuppressive tumor microenvironment. With recent advances in CAR T cell engineering, many of these issues are being addressed in the laboratory. In this review, we summarize the clinical trials that have been completed or are underway for CAR T cell therapy in neuroblastoma, discuss the conclusions and open questions derived from these trials, and consider potential strategies to improve CAR T cell therapy for patients with neuroblastoma.
Collapse
Affiliation(s)
- Rebecca M. Richards
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Robbie G. Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
133
|
Polewko-Klim A, Lesiński W, Mnich K, Piliszek R, Rudnicki WR. Integration of multiple types of genetic markers for neuroblastoma may contribute to improved prediction of the overall survival. Biol Direct 2018; 13:17. [PMID: 30236139 PMCID: PMC6148774 DOI: 10.1186/s13062-018-0222-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 08/22/2018] [Indexed: 12/14/2022] Open
Abstract
Background Modern experimental techniques deliver data sets containing profiles of tens of thousands of potential molecular and genetic markers that can be used to improve medical diagnostics. Previous studies performed with three different experimental methods for the same set of neuroblastoma patients create opportunity to examine whether augmenting gene expression profiles with information on copy number variation can lead to improved predictions of patients survival. We propose methodology based on comprehensive cross-validation protocol, that includes feature selection within cross-validation loop and classification using machine learning. We also test dependence of results on the feature selection process using four different feature selection methods. Results The models utilising features selected based on information entropy are slightly, but significantly, better than those using features obtained with t-test. The synergy between data on genetic variation and gene expression is possible, but not confirmed. A slight, but statistically significant, increase of the predictive power of machine learning models has been observed for models built on combined data sets. It was found while using both out of bag estimate and in cross-validation performed on a single set of variables. However, the improvement was smaller and non-significant when models were built within full cross-validation procedure that included feature selection within cross-validation loop. Good correlation between performance of the models in the internal and external cross-validation was observed, confirming the robustness of the proposed protocol and results. Conclusions We have developed a protocol for building predictive machine learning models. The protocol can provide robust estimates of the model performance on unseen data. It is particularly well-suited for small data sets. We have applied this protocol to develop prognostic models for neuroblastoma, using data on copy number variation and gene expression. We have shown that combining these two sources of information may increase the quality of the models. Nevertheless, the increase is small and larger samples are required to reduce noise and bias arising due to overfitting. Reviewers This article was reviewed by Lan Hu, Tim Beissbarth and Dimitar Vassilev.
Collapse
Affiliation(s)
- Aneta Polewko-Klim
- Institute of Informatics, University of Białystok, Konstantego Ciołkowskiego 1M, Białystok, 15-245, Poland.
| | - Wojciech Lesiński
- Institute of Informatics, University of Białystok, Konstantego Ciołkowskiego 1M, Białystok, 15-245, Poland
| | - Krzysztof Mnich
- Computational Centre, University of Białystok, Konstantego Ciołkowskiego 1M, Białystok, 15-245, Poland
| | - Radosław Piliszek
- Computational Centre, University of Białystok, Konstantego Ciołkowskiego 1M, Białystok, 15-245, Poland
| | - Witold R Rudnicki
- Institute of Informatics, University of Białystok, Konstantego Ciołkowskiego 1M, Białystok, 15-245, Poland.,Computational Centre, University of Białystok, Konstantego Ciołkowskiego 1M, Białystok, 15-245, Poland.,Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawlińskiego 5A, Warsaw, 02-106, Poland
| |
Collapse
|
134
|
Barry WE, Jackson JR, Asuelime GE, Wu HW, Sun J, Wan Z, Malvar J, Sheard MA, Wang L, Seeger RC, Kim ES. Activated Natural Killer Cells in Combination with Anti-GD2 Antibody Dinutuximab Improve Survival of Mice after Surgical Resection of Primary Neuroblastoma. Clin Cancer Res 2018; 25:325-333. [PMID: 30232225 DOI: 10.1158/1078-0432.ccr-18-1317] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/01/2018] [Accepted: 09/14/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Immunotherapy of neuroblastoma that remains after myeloablative chemotherapy with anti-GD2 antibody dinutuximab has increased the two-year event-free and overall survival of high-risk neuroblastoma patients; however, 40% of patients develop recurrent disease during or after this treatment. To determine the potential of such antibody-based immunotherapy earlier in treatment, a mouse model was developed in which surgical resection of the primary tumor was followed by therapy of residual disease with dinutuximab combined with ex vivo-activated human natural killer (aNK) cells. EXPERIMENTAL DESIGN The effect of combining dinutuximab with human aNK cells was determined in vitro with cellular cytotoxicity and Matrigel invasion assays. The in vivo efficacy of dinutuximab and aNK cells against neuroblastoma was assessed following resection of primary tumors formed by two cell lines or a patient-derived xenograft (PDX) in immunodeficient NOD-scid gamma mice. RESULTS In vitro, the combination of aNK cells and dinutuximab caused cytotoxicity and decreased invasiveness of three human neuroblastoma cell lines. Treatment of mice with dinutuximab combined with aNK cells after surgical resection of primary intrarenal tumors formed by two cell lines or a PDX decreased tumor cells in liver and bone marrow as evaluated by histopathology and bioluminescence imaging. Survival of mice after resection of these tumors was most significantly increased by treatment with dinutuximab combined with aNK cells compared with that of untreated mice. CONCLUSIONS The combination of dinutuximab and adoptively transferred human aNK cells following surgical resection of primary neuroblastomas significantly improves survival of immunodeficient mice.
Collapse
Affiliation(s)
- Wesley E Barry
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Jeremy R Jackson
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Grace E Asuelime
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Hong-Wei Wu
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jianping Sun
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zesheng Wan
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jemily Malvar
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Michael A Sheard
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Larry Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert C Seeger
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eugene S Kim
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California. .,Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
135
|
Giordano TJ. 65 YEARS OF THE DOUBLE HELIX: Classification of endocrine tumors in the age of integrated genomics. Endocr Relat Cancer 2018; 25:T171-T187. [PMID: 29980645 DOI: 10.1530/erc-18-0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022]
Abstract
The classification of human cancers represents one of the cornerstones of modern pathology. Over the last century, surgical pathologists established the current taxonomy of neoplasia using traditional histopathological parameters, which include tumor architecture, cytological features and cellular proliferation. This morphological classification is efficient and robust with high reproducibility and has served patients and health care providers well. The most recent decade has witnessed an explosion of genome-wide molecular genetic and epigenetic data for most cancers, including tumors of endocrine organs. The availability of this expansive multi-dimensional genomic data, collectively termed the cancer genome, has catalyzed a re-examination of the classification of endocrine tumors. Here, recent cancer genome studies of various endocrine tumors, including those of the thyroid, pituitary and adrenal glands, pancreas, small bowel, lung and skin, are presented with special emphasis on how genomic insights are impacting endocrine tumor classification.
Collapse
Affiliation(s)
- Thomas J Giordano
- Divisions of Anatomic Pathology and Molecular & Genomic PathologyDepartments of Pathology and Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
136
|
Sahu D, Ho SY, Juan HF, Huang HC. High-risk, Expression-Based Prognostic Long Noncoding RNA Signature in Neuroblastoma. JNCI Cancer Spectr 2018; 2:pky015. [PMID: 31360848 PMCID: PMC6649748 DOI: 10.1093/jncics/pky015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Background Current clinical risk factors stratify patients with neuroblastoma (NB) for appropriate treatments, yet patients with similar clinical behaviors evoke variable responses. MYCN amplification is one of the established drivers of NB and, when combined with high-risk displays, worsens outcomes. Growing high-throughput transcriptomics studies suggest long noncoding RNA (lncRNA) dysregulation in cancers, including NB. However, expression-based lncRNA signatures are altered by MYCN amplification, which is associated with high-risk, and patient prognosis remains limited. Methods We investigated RNA-seq-based expression profiles of lncRNAs in MYCN status and risk status in a discovery cohort (n = 493) and validated them in three independent cohorts. In the discovery cohort, a prognostic association of lncRNAs was determined by univariate Cox regression and integrated into a signature using the risk score method. A novel risk score threshold selection criterion was developed to stratify patients into risk groups. Outcomes by risk group and clinical subgroup were assessed using Kaplan-Meier survival curves and multivariable Cox regression. The performance of lncRNA signatures was evaluated by receiver operating characteristic curve. All statistical tests were two-sided. Results In the discovery cohort, 16 lncRNAs that were differentially expressed (fold change ≥ 2 and adjusted P ≤ 0.01) integrated into a prognostic signature. A high risk score group of lncRNA signature had poor event-free survival (EFS; P < 1E-16). Notably, lncRNA signature was independent of other clinical risk factors when predicting EFS (hazard ratio = 3.21, P = 5.95E-07). The findings were confirmed in independent cohorts (P = 2.86E-02, P = 6.18E-03, P = 9.39E-03, respectively). Finally, the lncRNA signature had higher accuracy for EFS prediction (area under the curve = 0.788, 95% confidence interval = 0.746 to 0.831). Conclusions Here, we report the first (to our knowledge) RNA-seq 16-lncRNA prognostic signature for NB that may contribute to precise clinical stratification and EFS prediction.
Collapse
Affiliation(s)
- Divya Sahu
- Institute of Bioinformatics and Systems Biology.,Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
137
|
Inhibition of Microsomal Prostaglandin E Synthase-1 in Cancer-Associated Fibroblasts Suppresses Neuroblastoma Tumor Growth. EBioMedicine 2018; 32:84-92. [PMID: 29804818 PMCID: PMC6021299 DOI: 10.1016/j.ebiom.2018.05.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022] Open
Abstract
Despite recent progress in diagnosis and treatment, survival for children with high-risk metastatic neuroblastoma is still poor. Prostaglandin E2 (PGE2)-driven inflammation promotes tumor growth, immune suppression, angiogenesis and resistance to established cancer therapies. In neuroblastoma, cancer-associated fibroblasts (CAFs) residing in the tumor microenvironment are the primary source of PGE2. However, clinical targeting of PGE2 with current non-steroidal anti-inflammatory drugs or cyclooxygenase inhibitors has been limited due to risk of adverse side effects. By specifically targeting microsomal prostaglandin E synthase-1 (mPGES-1) activity with a small molecule inhibitor we could block CAF-derived PGE2 production leading to reduced tumor growth, impaired angiogenesis, inhibited CAF migration and infiltration, reduced tumor cell proliferation and a favorable shift in the M1/M2 macrophage ratio. In this study, we provide proof-of-principle of the benefits of targeting mPGES-1 in neuroblastoma, applicable to a wide variety of tumors. This non-toxic single drug treatment targeting infiltrating stromal cells opens up for combination treatment options with established cancer therapies. Prostaglandin E2 nourishes neuroblastoma tumor growth via cancer-associated fibroblasts. mPGES-1 inhibitor limits tumor growth, angiogenesis, infiltration of cancer-associated fibroblasts and immune suppression. mPGES-1 constitutes a drug target for neuroblastoma treatment.
Cancer is the leading cause of death in children in high-income countries and the survival rate has almost been unchanged during the last decade. Further treatment intensification to improve survival rate may further increase the risk of side-effects. Therapies targeting the microenvironment have been suggested to improve survival and quality of life for these children. High-risk neuroblastomas present an immunosuppressive microenvironment and infiltrating cancer-associated fibroblasts are responsible for oncogenic prostaglandin E2 production. Here we show that selective inhibition of prostaglandin E2 biosynthesis and its role in the crosstalk between cells of the microenvironment provides a promising therapeutic strategy in neuroblastoma.
Collapse
|
138
|
Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018; 48:214-241. [PMID: 29378002 DOI: 10.1093/jjco/hyx176] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common solid tumors in children and has a diverse clinical behavior that largely depends on the tumor biology. Neuroblastoma exhibits unique features, such as early age of onset, high frequency of metastatic disease at diagnosis in patients over 1 year of age and the tendency for spontaneous regression of tumors in infants. The high-risk tumors frequently have amplification of the MYCN oncogene as well as segmental chromosome alterations with poor survival. Recent advanced genomic sequencing technology has revealed that mutation of ALK, which is present in ~10% of primary tumors, often causes familial neuroblastoma with germline mutation. However, the frequency of gene mutations is relatively small and other aberrations, such as epigenetic abnormalities, have also been proposed. The risk-stratified therapy was introduced by the Japan Neuroblastoma Study Group (JNBSG), which is now moving to the Neuroblastoma Committee of Japan Children's Cancer Group (JCCG). Several clinical studies have facilitated the reduction of therapy for children with low-risk neuroblastoma disease and the significant improvement of cure rates for patients with intermediate-risk as well as high-risk disease. Therapy for patients with high-risk disease includes intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy. The JCCG aims for better cures and long-term quality of life for children with cancer by facilitating new approaches targeting novel driver proteins, genetic pathways and the tumor microenvironment.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | - Hideki Izumi
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | | | - Hiroko Inada
- Department of Pediatrics, Saga Medical Center Koseikan
| | - Masanori Nishi
- Department of Pediatrics, Saga University, Saga 849-8501, Japan
| |
Collapse
|
139
|
Webb MW, Sun J, Sheard MA, Liu WY, Wu HW, Jackson JR, Malvar J, Sposto R, Daniel D, Seeger RC. Colony stimulating factor 1 receptor blockade improves the efficacy of chemotherapy against human neuroblastoma in the absence of T lymphocytes. Int J Cancer 2018; 143:1483-1493. [PMID: 29665011 DOI: 10.1002/ijc.31532] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages can promote growth of cancers. In neuroblastoma, tumor-associated macrophages have greater frequency in metastatic versus loco-regional tumors, and higher expression of genes associated with macrophages helps to predict poor prognosis in the 60% of high-risk patients who have MYCN-non-amplified disease. The contribution of cytotoxic T-lymphocytes to anti-neuroblastoma immune responses may be limited by low MHC class I expression and low exonic mutation frequency. Therefore, we modelled human neuroblastoma in T-cell deficient mice to examine whether depletion of monocytes/macrophages from the neuroblastoma microenvironment by blockade of CSF-1R can improve the response to chemotherapy. In vitro, CSF-1 was released by neuroblastoma cells, and topotecan increased this release. In vivo, neuroblastomas formed by subcutaneous co-injection of human neuroblastoma cells and human monocytes into immunodeficient NOD/SCID mice had fewer human CD14+ and CD163+ cells and mouse F4/80+ cells after CSF-1R blockade. In subcutaneous or intra-renal models in immunodeficient NSG or NOD/SCID mice, CSF-1R blockade alone did not affect tumor growth or mouse survival. However, when combined with cyclophosphamide plus topotecan, the CSF-1R inhibitor BLZ945, either without or with anti-human and anti-mouse CSF-1 mAbs, inhibited neuroblastoma growth and synergistically improved mouse survival. These findings indicate that depletion of tumor-associated macrophages from neuroblastomas can be associated with increased chemotherapeutic efficacy without requiring a contribution from T-lymphocytes, suggesting the possibility that combination of CSF-1R blockade with chemotherapy might be effective in patients who have limited anti-tumor T-cell responses.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Benzothiazoles/pharmacology
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Humans
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/pathology
- Neuroblastoma/drug therapy
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Picolinic Acids/pharmacology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Matthew W Webb
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Jianping Sun
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Michael A Sheard
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Wei-Yao Liu
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Hong-Wei Wu
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Jeremy R Jackson
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
| | - Jemily Malvar
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Richard Sposto
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Dylan Daniel
- Novartis Institutes of BioMedical Research, Emeryville, CA, 94608
| | - Robert C Seeger
- Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA 90027
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
140
|
Rajbhandari P, Lopez G, Capdevila C, Salvatori B, Yu J, Rodriguez-Barrueco R, Martinez D, Yarmarkovich M, Weichert-Leahey N, Abraham BJ, Alvarez MJ, Iyer A, Harenza JL, Oldridge D, De Preter K, Koster J, Asgharzadeh S, Seeger RC, Wei JS, Khan J, Vandesompele J, Mestdagh P, Versteeg R, Look AT, Young RA, Iavarone A, Lasorella A, Silva JM, Maris JM, Califano A. Cross-Cohort Analysis Identifies a TEAD4-MYCN Positive Feedback Loop as the Core Regulatory Element of High-Risk Neuroblastoma. Cancer Discov 2018; 8:582-599. [PMID: 29510988 PMCID: PMC5967627 DOI: 10.1158/2159-8290.cd-16-0861] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/06/2017] [Accepted: 02/23/2018] [Indexed: 01/21/2023]
Abstract
High-risk neuroblastomas show a paucity of recurrent somatic mutations at diagnosis. As a result, the molecular basis for this aggressive phenotype remains elusive. Recent progress in regulatory network analysis helped us elucidate disease-driving mechanisms downstream of genomic alterations, including recurrent chromosomal alterations. Our analysis identified three molecular subtypes of high-risk neuroblastomas, consistent with chromosomal alterations, and identified subtype-specific master regulator proteins that were conserved across independent cohorts. A 10-protein transcriptional module-centered around a TEAD4-MYCN positive feedback loop-emerged as the regulatory driver of the high-risk subtype associated with MYCN amplification. Silencing of either gene collapsed MYCN-amplified (MYCNAmp) neuroblastoma transcriptional hallmarks and abrogated viability in vitro and in vivo Consistently, TEAD4 emerged as a robust prognostic marker of poor survival, with activity independent of the canonical Hippo pathway transcriptional coactivators YAP and TAZ. These results suggest novel therapeutic strategies for the large subset of MYCN-deregulated neuroblastomas.Significance: Despite progress in understanding of neuroblastoma genetics, little progress has been made toward personalized treatment. Here, we present a framework to determine the downstream effectors of the genetic alterations sustaining neuroblastoma subtypes, which can be easily extended to other tumor types. We show the critical effect of disrupting a 10-protein module centered around a YAP/TAZ-independent TEAD4-MYCN positive feedback loop in MYCNAmp neuroblastomas, nominating TEAD4 as a novel candidate for therapeutic intervention. Cancer Discov; 8(5); 582-99. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Presha Rajbhandari
- Department of Systems Biology, Columbia University, New York, New York
- Department of Biological Sciences, Columbia University, New York, New York
| | - Gonzalo Lopez
- Department of Systems Biology, Columbia University, New York, New York
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Claudia Capdevila
- Department of Systems Biology, Columbia University, New York, New York
| | | | - Jiyang Yu
- Department of Systems Biology, Columbia University, New York, New York
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ruth Rodriguez-Barrueco
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Martinez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mark Yarmarkovich
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nina Weichert-Leahey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Mariano J Alvarez
- Department of Systems Biology, Columbia University, New York, New York
| | - Archana Iyer
- Department of Systems Biology, Columbia University, New York, New York
| | - Jo Lynne Harenza
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Derek Oldridge
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Katleen De Preter
- Center for Medical Genetics & Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Shahab Asgharzadeh
- Division of Hematology/Oncology, Saban Research Institute, The Children's Hospital Los Angeles, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert C Seeger
- Division of Hematology/Oncology, Saban Research Institute, The Children's Hospital Los Angeles, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jun S Wei
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Jo Vandesompele
- Center for Medical Genetics & Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics & Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Antonio Iavarone
- Department of Neurology and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, New York
| | - Anna Lasorella
- Department of Pediatrics and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, New York
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, New York.
- Department of Biomedical Informatics, Columbia University, New York, New York
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
- Herbert Irving Comprehensive Cancer Center and J.P. Sulzberger Columbia Genome Center, Columbia University, New York, New York
| |
Collapse
|
141
|
Abstract
Neuroblastomas are characterized by heterogeneous clinical behavior, from spontaneous regression or differentiation into a benign ganglioneuroma, to relentless progression despite aggressive, multimodality therapy. Indeed, neuroblastoma is unique among human cancers in terms of its propensity to undergo spontaneous regression. The strongest evidence for this comes from the mass screening studies conducted in Japan, North America and Europe and it is most evident in infants with stage 4S disease. This propensity is associated with a pattern of genomic change characterized by whole chromosome gains rather than segmental chromosome changes but the mechanism(s) underlying spontaneous regression are currently a matter of speculation. There is evidence to support several possible mechanisms of spontaneous regression in neuroblastomas: (1) neurotrophin deprivation, (2) loss of telomerase activity, (3) humoral or cellular immunity and (4) alterations in epigenetic regulation and possibly other mechanisms. It is likely that a better understanding of the mechanisms of spontaneous regression will help to identify targeted therapeutic approaches for these tumors. The most easily targeted mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A (TrkA) pathway. Pan-Trk inhibitors are currently in clinical trials and so Trk inhibition might be used as the first line of therapy in infants with biologically favorable tumors that require treatment. Alternative approaches consist of breaking immune tolerance to tumor antigens but approaches to telomere shortening or epigenetic regulation are not easily druggable. The different mechanisms of spontaneous neuroblastoma regression are reviewed here, along with possible therapeutic approaches.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, Department of Pediatrics, the Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Oncology Research, The Children's Hospital of Philadelphia, CTRB Rm. 3018, 3501 Civic Center Blvd., Philadelphia, PA, 19104-4302, USA.
| |
Collapse
|
142
|
Applebaum MA, Jha AR, Kao C, Hernandez KM, DeWane G, Salwen HR, Chlenski A, Dobratic M, Mariani CJ, Godley LA, Prabhakar N, White K, Stranger BE, Cohn SL. Integrative genomics reveals hypoxia inducible genes that are associated with a poor prognosis in neuroblastoma patients. Oncotarget 2018; 7:76816-76826. [PMID: 27765905 PMCID: PMC5340231 DOI: 10.18632/oncotarget.12713] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/12/2016] [Indexed: 11/30/2022] Open
Abstract
Neuroblastoma is notable for its broad spectrum of clinical behavior ranging from spontaneous regression to rapidly progressive disease. Hypoxia is well known to confer a more aggressive phenotype in neuroblastoma. We analyzed transcriptome data from diagnostic neuroblastoma tumors and hypoxic neuroblastoma cell lines to identify genes whose expression levels correlate with poor patient outcome and are involved in the hypoxia response. By integrating a diverse set of transcriptome datasets, including those from neuroblastoma patients and neuroblastoma derived cell lines, we identified nine genes (SLCO4A1, ENO1, HK2, PGK1, MTFP1, HILPDA, VKORC1, TPI1, and HIST1H1C) that are up-regulated in hypoxia and whose expression levels are correlated with poor patient outcome in three independent neuroblastoma cohorts. Analysis of 5-hydroxymethylcytosine and ENCODE data indicate that at least five of these nine genes have an increase in 5-hydroxymethylcytosine and a more open chromatin structure in hypoxia versus normoxia and are putative targets of hypoxia inducible factor (HIF) as they contain HIF binding sites in their regulatory regions. Four of these genes are key components of the glycolytic pathway and another three are directly involved in cellular metabolism. We experimentally validated our computational findings demonstrating that seven of the nine genes are significantly up-regulated in response to hypoxia in the four neuroblastoma cell lines tested. This compact and robustly validated group of genes, is associated with the hypoxia response in aggressive neuroblastoma and may represent a novel target for biomarker and therapeutic development.
Collapse
Affiliation(s)
- Mark A Applebaum
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America.,Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Aashish R Jha
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, 60637, United States of America.,Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Clara Kao
- Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Kyle M Hernandez
- Center for Research Informatics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Gillian DeWane
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Helen R Salwen
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Alexandre Chlenski
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Marija Dobratic
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Christopher J Mariani
- Department of Medicine, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Lucy A Godley
- Department of Medicine, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Nanduri Prabhakar
- Department of Medicine, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Kevin White
- Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Barbara E Stranger
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, 60637, United States of America.,Department of Medicine, University of Chicago, Chicago, Illinois, 60637, United States of America.,Center for Data Intensive Science, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Susan L Cohn
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America.,Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, 60637, United States of America
| |
Collapse
|
143
|
Immune Escape Mechanisms and Future Prospects for Immunotherapy in Neuroblastoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1812535. [PMID: 29682521 PMCID: PMC5845499 DOI: 10.1155/2018/1812535] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood with 5-year survival rate of 40% in high-risk patients despite intensive therapies. Recently, adoptive cell therapy, particularly chimeric antigen receptor (CAR) T cell therapy, represents a revolutionary treatment for hematological malignancies. However, there are challenges for this therapeutic strategy with solid tumors, as a result of the immunosuppressive nature of the tumor microenvironment (TME). Cancer cells have evolved multiple mechanisms to escape immune recognition or to modulate immune cell function. Several subtypes of immune cells that infiltrate tumors can foster tumor development, harbor immunosuppressive activity, and decrease an efficacy of adoptive cell therapies. Therefore, an understanding of the dual role of the immune system under the influences of the TME has been crucial for the development of effective therapeutic strategies against solid cancers. This review aims to depict key immune players and cellular pathways involved in the dynamic interplay between the TME and the immune system and also to address challenges and prospective development of adoptive T cell transfer for neuroblastoma.
Collapse
|
144
|
Chen Z, Yang L, Cui Y, Zhou Y, Yin X, Guo J, Zhang G, Wang T, He QY. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages. Oncotarget 2018; 7:67387-67402. [PMID: 27602764 PMCID: PMC5341883 DOI: 10.18632/oncotarget.11794] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022] Open
Abstract
The exosome is a key initiator of pre-metastatic niche in numerous cancers, where macrophages serve as primary inducers of tumor microenvironment. However, the proteome that can be exosomally transported from cancer cells to macrophages has not been sufficiently characterized so far. Here, we used colorectal cancer (CRC) exosomes to educate tumor-favorable macrophages. With a SILAC-based mass spectrometry strategy, we successfully traced the proteome transported from CRC exosomes to macrophages. Such a proteome primarily focused on promoting cytoskeleton rearrangement, which was biologically validated with multiple cell lines. We reproduced the exosomal transportation of functional vimentin as a proof-of-concept example. In addition, we found that some CRC exosomes could be recognized by macrophages via Fc receptors. Therefore, we revealed the active and necessary role of exosomes secreted from CRC cells to transform cancer-favorable macrophages, with the cytoskeleton-centric proteins serving as the top functional unit.
Collapse
Affiliation(s)
- Zhipeng Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lijuan Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yanlong Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xingfeng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiahui Guo
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
145
|
Johnsen JI, Dyberg C, Fransson S, Wickström M. Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol Res 2018; 131:164-176. [PMID: 29466695 DOI: 10.1016/j.phrs.2018.02.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common extracranical tumor of childhood and the most deadly tumor of infancy. It is characterized by early age onset and high frequencies of metastatic disease but also the capacity to spontaneously regress. Despite intensive therapy, the survival for patients with high-risk neuroblastoma and those with recurrent or relapsed disease is low. Hence, there is an urgent need to develop new therapies for these patient groups. The molecular pathogenesis based on high-throughput omics technologies of neuroblastoma is beginning to be resolved which have given the opportunity to develop personalized therapies for high-risk patients. Here we discuss the potential of developing targeted therapies against aberrantly expressed molecules detected in sub-populations of neuroblastoma patients and how these selected targets can be drugged in order to overcome treatment resistance, improve survival and quality of life for these patients and also the possibilities to transfer preclinical research into clinical testing.
Collapse
Affiliation(s)
- John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden.
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Susanne Fransson
- Department of Pathology and Genetics, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| |
Collapse
|
146
|
Allard B, Aspeslagh S, Garaud S, Dupont FA, Solinas C, Kok M, Routy B, Sotiriou C, Stagg J, Buisseret L. Immuno-oncology-101: overview of major concepts and translational perspectives. Semin Cancer Biol 2018; 52:1-11. [PMID: 29428479 DOI: 10.1016/j.semcancer.2018.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy is demonstrating impressive clinical benefit in different malignancies and clinical oncologists are increasingly turning their attention to immune-oncology. It is now well recognized that innate and adaptive immune cells infiltrating tumors are associated with clinical outcomes and responses to treatments, and can be harnessed to patients' benefit. Considerable advances have also been made in understanding how cancers escape from immune attack. Targeting of immunological escape processes regulated by the expression of immune checkpoint receptors and ligands and the down-modulation of tumor antigen presentation is the basis of immuno-oncology treatments. Despite recent achievements, there remain a number of unresolved issues in order to successfully implement cancer immunotherapy in many cancers. Importantly, clinical biomarkers are still needed for better optimization of emerging combination immunotherapies and better treatment tailoring. In this review, we summarize the function of innate and adaptive immune cells in anti-tumor immunity and the general mechanisms exploited by tumor cells to escape and inhibit immune responses as well as therapeutic strategies developed to overcome these mechanisms and discuss emerging biomarkers in immuno-oncology.
Collapse
Affiliation(s)
- B Allard
- University of Montreal Hospital Research Centre, Montréal, Québec, Canada; Montreal Cancer Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - S Aspeslagh
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - S Garaud
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - F A Dupont
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - C Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - M Kok
- Department of Medical Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B Routy
- University of Montreal Hospital Research Centre, Montréal, Québec, Canada; Montreal Cancer Institute, Montreal, Quebec, Canada
| | - C Sotiriou
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - J Stagg
- University of Montreal Hospital Research Centre, Montréal, Québec, Canada; Montreal Cancer Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - L Buisseret
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
147
|
Netea-Maier RT, Smit JW, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett 2018; 413:102-109. [DOI: 10.1016/j.canlet.2017.10.037] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022]
|
148
|
Reply to Mohlin et al.: High levels of EPAS1 are closely associated with key features of low-risk neuroblastoma. Proc Natl Acad Sci U S A 2017; 114:E10859-E10860. [PMID: 29233947 DOI: 10.1073/pnas.1718429115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
149
|
PD-L1, inflammation, non-coding RNAs, and neuroblastoma: Immuno-oncology perspective. Semin Cancer Biol 2017; 52:53-65. [PMID: 29196189 DOI: 10.1016/j.semcancer.2017.11.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022]
Abstract
Neuroblastoma is the most common pediatric solid tumor of neural crest origin. The current treatment options for neuroblastoma produce severe side effects. Programmed death-ligand 1 (PD-L1), chronic inflammation, and non-coding RNAs are known to play a significant role in the pathogenesis of neuroblastoma. Cancer cells and the surrounding cells in the tumor microenvironment express PD-L1. Programmed death-1 (PD-1) is a co-receptor expressed predominantly by T cells. The binding of PD-1 to its ligands, PD-L1 or PD-L2, is vital for the physiologic regulation of the immune system. Chronic inflammation is involved in the recruitment of leukocytes, production of cytokines and chemokines that in turn, lead to survival, metastasis, and angiogenesis in neuroblastoma tumors. The miRNAs and long non-coding (lnc) RNAs have emerged as a novel class of non-coding RNAs that can regulate neuroblastoma associated cell-signaling pathways. The dysregulation of PD-1/PD-L1, inflammatory pathways, lncRNAs, and miRNAs have been reported in clinical and experimental samples of neuroblastoma. These signaling molecules are currently being evaluated for their potential as the biomarker and therapeutic targets in the management of neuroblastoma. A monoclonal antibody called dinutuximab (Unituxin) that attaches to a carbohydrate molecule GD2, on the surface of many neuroblastoma cells, is being used as an immunotherapy drug for neuroblastoma treatment. Atezolizumab (Tecentriq), an engineered monoclonal antibody against PD-L1, are currently in clinical trial for neuroblastoma patients. The lncRNA/miRNA-based therapeutics is being developed to deliver tumor suppressor lncRNAs/miRNAs or silencing of oncogenic lncRNAs/miRNAs. The focus of this review is to discuss the current knowledge on the immune checkpoint molecules, PD-1/PD-L1 signaling, inflammation, and non-coding RNAs in neuroblastoma.
Collapse
|
150
|
Abstract
Neuroblastoma accounts for 15% of all pediatric cancer deaths. Intersectin 1 (ITSN1), a scaffold protein involved in phosphoinositide 3-kinase (PI3K) signaling, regulates neuroblastoma cells independent of MYCN status. We hypothesize that by silencing ITSN1 in neuroblastoma cells, tumor growth will be decreased in an orthotopic mouse tumor model. SK-N-AS neuroblastoma cells transfected with empty vector (pSR), vectors expressing scrambled shRNA (pSCR), or shRNAs targeting ITSN1 (sh#1 and sh#2) were used to create orthotopic neuroblastoma tumors in mice. Volume was monitored weekly with ultrasound. End-point was tumor volume >1000 mm. Tumor cell lysates were analyzed with anti-ITSN1 antibody by Western blot. Orthotopic tumors were created in all cell lines. Twenty-five days post injection, pSR tumor size was 917.6±247.7 mm, pSCR was 1180±159.9 mm, sh#1 was 526.3±212.8 mm, and sh#2 was 589.2±74.91 mm. sh#1-tumors and sh#2-tumors were smaller than pSCR (P=0.02), no difference between sh#1 and sh#2. Survival was superior in sh#2-tumors (P=0.02), trended towards improved survival in sh#1-tumors (P=0.09), compared with pSCR-tumors, no difference in pSR tumors. Western blot showed decreased ITSN1 expression in sh#1 and sh#2 compared with pSR and pSCR. Silencing ITSN1 in neuroblastoma cells led to decreased tumor growth in an orthotopic mouse model. Orthotopic animal models can provide insight into the role of ITSN1 pathways in neuroblastoma tumorigenesis.
Collapse
|