101
|
Heldman MR, Aagaard KM, Hill JA. Assessing and restoring adaptive immunity to HSV, VZV, and HHV-6 in solid organ and hematopoietic cell transplant recipients. Clin Microbiol Infect 2022; 28:1345-1350. [PMID: 35150885 PMCID: PMC9363517 DOI: 10.1016/j.cmi.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Herpes simplex virus (HSV) 1 and 2, varicella zoster virus (VZV), and human herpesvirus 6 (HHV-6) cause severe infections in immunocompromised hosts. Interventions to optimize virus-specific adaptive immunity may have advantages over antivirals in the prophylaxis and treatment of these infections. OBJECTIVES We sought to review adaptive immune responses and methods for assessing and replenishing cellular and humoral immunity to HSV, VZV, and HHV-6 in solid organ transplant and hematopoietic cell transplant recipients. SOURCES We searched PubMed for relevant studies on immune responses to HSV, VZV, and HHV-6 as well as studies describing methods for evaluating and restoring cell-mediated immunity to other double-stranded DNA viruses in transplant recipients. Recent studies, randomized controlled trials, and investigations highlighting key concepts in clinical virology were prioritized for inclusion. CONTENT We describe the mechanisms of adaptive immunity to HSV, VZV, and HHV-6 and limitations of antivirals as prophylaxis and treatment for these infections in solid organ transplant and hematopoietic cell transplant recipients. We review methods for measuring and restoring cellular immunity to double-stranded DNA viruses; their potential applications to management of HSV, VZV, and HHV-6 in immunocompromised hosts; and barriers to clinical use. Vaccination and virus-specific T cell therapies are discussed in detail. IMPLICATIONS The growing repertoire of diagnostic and therapeutic techniques focused on virus-specific adaptive immunity provides a novel approach to management of viral infections in transplant recipients. Investigations to optimize such interventions specifically in HSV, VZV, and HHV-6 are needed.
Collapse
Affiliation(s)
- Madeleine R. Heldman
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kaja M. Aagaard
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joshua A. Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
102
|
Cui J, Zhao K, Sun Y, Wen R, Zhang X, Li X, Long B. Diagnosis and treatment for the early stage of cytomegalovirus infection during hematopoietic stem cell transplantation. Front Immunol 2022; 13:971156. [PMID: 36211358 PMCID: PMC9537469 DOI: 10.3389/fimmu.2022.971156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Cytomegalovirus (CMV) infection remains a frequent complication after hematopoietic stem cell transplantation (HSCT) and causes significant morbidity and mortality in transplantation recipients. In this review, we highlight the role of major risk factors that are associated with the incidence of CMV infection. Advances in immunosurveillance may predict CMV infection, allowing early interventions to prevent severe infection. Furthermore, numerous therapeutic strategies against CMV infection after HSCT are summarized. A comprehensive understanding of the current situation of CMV treatment may provide a hint for clinical practice and even promote the development of novel strategies for precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Xudong Li
- *Correspondence: Bing Long, longb3@ mail.sysu.edu.cn; Xudong Li,
| | - Bing Long
- *Correspondence: Bing Long, longb3@ mail.sysu.edu.cn; Xudong Li,
| |
Collapse
|
103
|
Hill JA, Moon SH, Chandak A, Zhang Z, Boeckh M, Maziarz RT. Clinical and Economic Burden of Multiple Double-Stranded DNA Viral Infections after Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2022; 28:619.e1-619.e8. [DOI: 10.1016/j.jtct.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
|
104
|
Ma Y, Liu F, Li B, Peng K, Zhou H, Xu Y, Qiao D, Deng L, Tian G, Nielsen M, Wang M. Identification and assessment of TCR-T cells targeting an epitope conserved in SARS-CoV-2 variants for the treatment of COVID-19. Int Immunopharmacol 2022; 112:109283. [PMID: 36201943 PMCID: PMC9515335 DOI: 10.1016/j.intimp.2022.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
Abstract
Background Coronavirus disease 2019 (COVID-19) continues to be a major global public health challenge, with the emergence of variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current vaccines or monoclonal antibodies may not well be protect against infection with new SARS-CoV-2 variants. Unlike antibody-based treatment, T cell-based therapies such as TCR-T cells can target epitopes that are highly conserved across different SARS-CoV-2 variants. Reportedly, T cell-based immunity alone can restrict SARS-CoV-2 replication. Methods In this study, we identified two TCRs targeting the RNA-dependent RNA polymerase (RdRp) protein in CD8 + T cells. Functional evaluation by transducing these TCRs into CD8 + or CD4 + T cells confirmed their specificity. Results Combinations of inflammatory and anti-inflammatory cytokines secreted by CD8 + and CD4 + T cells can help control COVID-19 in patients. Moreover, the targeted epitope is highly conserved in all emerged SARS-CoV-2 variants, including the Omicron. It is also conserved in the seven coronaviruses that infect humans and more broadly in the subfamily Coronavirinae. Conclusions The pan-genera coverage of mutant epitopes from the Coronavirinae subfamily by the two TCRs highlights the unique strengths of TCR-T cell therapies in controlling the ongoing pandemic and in preparing for the next coronavirus outbreak.
Collapse
|
105
|
Adenovirus Infection in Pediatric Hematopoietic Cell Transplantation: A Challenge Still Open for Survival. J Clin Med 2022; 11:jcm11164827. [PMID: 36013066 PMCID: PMC9410345 DOI: 10.3390/jcm11164827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Human Adenovirus (HAdV) infection occurs in 14−16% of patients in the early months after pediatric hematopoietic cell transplantation (HCT) and this correlates with a higher risk of developing HAdV disease and overall 6-month mortality. The main risk factors for HAdV infection are T-cell depletion of the graft by ex vivo CD34+ selection or in vivo use of alemtuzumab or anti-thymocyte serum, the development of grade III-IV graft versus host disease (GVHD), the type of donor (unrelated donor, cord blood, haploidentical, or HLA mismatched parent), and severe lymphopenia (<0.2 × 109/L). The prevention of HAdV disease is based on early intervention with antivirals in the asymptomatic patient when the permitted viral load threshold in the blood (≥102−3 copies/mL) and/or in the stool (109 copies/g stool) is exceeded. Cidofovir, a monophosphate nucleotide analog of cytosine, is the primary drug for preemptive therapy, used at 5 mg/kg/week for 2 weeks followed by 3−5 mg/kg every 2 weeks. The alternative schedule is 1 mg/kg every other day (three times/week). Enhancing virus-specific T-cell immunity in the first months post-HCT by donor-derived or third-party-derived virus-specific T cells represents an innovative and promising way of intervention, applicable both in prevention and therapeutic settings.
Collapse
|
106
|
Immunocompromised host section: Adoptive T-cell therapy for dsDNA viruses in allogeneic hematopoietic cell transplant recipients. Curr Opin Infect Dis 2022; 35:302-311. [PMID: 35849520 DOI: 10.1097/qco.0000000000000838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Double-stranded DNA (dsDNA) viruses remain important causes of morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). As treatment options are limited, adoptive therapy with virus-specific T cells (VST) is promising in restoring immunity and thereby preventing and treating virus infections. Here we review current evidence and recent advances in the field of VST for dsDNA viruses in allogeneic HCT recipients. RECENT FINDINGS Four different protocols for VST generation are currently used in clinical trials, and various products including multivirus-specific and off-the-shelf products are under investigation for prophylaxis, preemptive therapy or treatment. Data from nearly 1400 dsDNA-VST applications in allogeneic HCT patients have been published and demonstrated its safety. Although Epstein-Barr virus, cytomegalovirus, and adenovirus-specific T-cell therapy studies have predominated over the past 25 years, additional human herpes viruses were added to multivirus-specific T cells over the last decade and clinical evidence for polyomavirus-specific VST has just recently emerged. Response rates of around 70-80% have been reported, but cautious interpretation is warranted as data are predominantly from phase 1/2 studies and clinical efficacy needs to be confirmed in phase 3 studies. SUMMARY Investigation on the 'ideal' composition of VST is ongoing. Several products recently entered phase 3 trials and may allow widespread clinical use in the near future.
Collapse
|
107
|
Neofytos D, Papanicolaou GA. Editorial: Friends and foes: "The quarrels of friends are the opportunities of foes". Curr Opin Infect Dis 2022; 35:269-270. [PMID: 35849515 DOI: 10.1097/qco.0000000000000850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dionysios Neofytos
- Infectious Disease Service, Geneva University Hospital, Geneva, Switzerland
| | - Genovefa A Papanicolaou
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
108
|
Third-party CMV- and EBV-specific T cells for first viral reactivation after allogeneic stem cell transplant. Blood Adv 2022; 6:4949-4966. [PMID: 35819448 PMCID: PMC9631614 DOI: 10.1182/bloodadvances.2022007103] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Early use of third-party virus-specific T-cells is safe and leads to high rates of viral control and excellent outcomes in HSCT. Virological clearance is associated with recovery of virus-specific immunity, in particular CD8+ effector memory T-cells.
Virus-specific T-cells (VSTs) from third-party donors mediate short- and long-term antiviral effects in allogeneic hematopoietic stem cell transplant (HSCT) recipients with relapsed or refractory viral infections. We investigated early administration of third-party VSTs, together with antiviral therapy in patients requiring treatment for first cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection. Thirty HSCT patients were treated with 1 to 4 VST infusions (2 × 107 cells/m2; CMV n=27, EBV n=3) at a median of 4 days after initiation of antiviral treatment. The overall viral response rate was 100%, with a complete response (CR) rate of 94%. Of the 28 patients who achieved a CR, 23 remained virus PCR negative (n=9) or below quantitation limit (n=14) for the duration of follow-up. Four patients had brief episodes of quantifiable reactivation not requiring additional therapy, and one required a second infusion after initial CR, remaining PCR negative thereafter. All 3 patients treated for EBV post-transplant lymphoproliferative disorder achieved sustained CR. Rates of aGVHD and cGVHD after infusion were 13% and 23%, respectively. There were no serious infusion-related adverse events. VST infusion was associated with rapid recovery of CD8+CD45RA−CD62L− and a slower recovery of CD4+CD45RA−CD62L− effector memory T-cells; CMV-specific T-cells comprised up to 13% of CD8+ cells. At 1 year post-transplant, non-relapse mortality was 10%, cumulative incidence of relapse was 7%, overall survival was 88% and 25 of 27 patients had ECOG status of 0 or 1. Early administration of third-party VSTs in conjunction with antiviral treatment appears safe and leads to excellent viral control and clinical outcomes. Registered on Australian New Zealand Clinical Trials Registry as #ACTRN12618000343202.
Collapse
|
109
|
Liu R, Wu N, Gao H, Liang S, Yue K, -Dong T, Dong X, Xu LP, Wang Y, Zhang XH, Liu J, Huang XJ. Distinct activities of Vδ1 + T cells upon different cytomegalovirus reactivation status after hematopoietic transplantation. Immunology 2022; 167:368-383. [PMID: 35795896 DOI: 10.1111/imm.13542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cytomegalovirus (CMV) reactivation is the most frequent viral infectious complication correlating to non-relapse mortality after allogeneic hematopoietic cell transplantation (alloHCT). The intrinsic anti-CMV immunity has not been completely elucidated. γδ T cells have drawn increasing attentions due to their distinct biological features and potential ability against viral infections. Previous studies reported a general association of γδ T cells or Vδ2-negative γδ T cells with CMV reactivation. Whereas researches for the direct responses and specific functions of γδ T subsets remain limited, especially in the scenario of alloHCT. Herein, we initially demonstrated that Vδ1+ T cells directly and independently recognized cell-free CMV and CMV-infected target cells, and inhibited CMV replication in vitro. The anti-CMV effect of Vδ1+ T cells was partially through TCRγδ, TLR2, and NKG2D receptor pathways. Further investigation about the anti-CMV characteristics of Vδ1+ T cells was performed in a clinical cohort with different CMV reactivation status after alloHCT. We found that occasional CMV reactivation remarkably increased the recovery levels and stimulated the functional activity of Vδ1+ T cells. Whereas disability of Vδ1+ T cells was observed upon refractory CMV reactivation, indicating the differential responses of Vδ1+ T cells under different CMV reactivation status. CXCL10 and IFN-β that were dramatically induced by occasional CMV reactivation could re-activate the deficient Vδ1+ T cells from recipients with refractory CMV reactivation. These findings unveiled the distinct activities of Vδ1+ T cells in anti-CMV immunity after alloHCT and may help develop novel strategies for the treatment of CMV infectious diseases.
Collapse
Affiliation(s)
- Ruoyang Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ning Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Shuang Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Keli Yue
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Tianhui -Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xinyu Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jiangying Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
110
|
Kager J, Schneider J, Rasch S, Herhaus P, Verbeek M, Mogler C, Heim A, Frösner G, Hoffmann D, Schmid RM, Lahmer T. Fulminant Adenoviral-Induced Hepatitis in Immunosuppressed Patients. Viruses 2022; 14:v14071459. [PMID: 35891439 PMCID: PMC9323657 DOI: 10.3390/v14071459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/16/2023] Open
Abstract
Human adenovirus (HAdV) can often lead to fulminant hepatitis in immunocompromised patients, mostly after reactivation of HAdV. Different risk factors, e.g., transplantation and chemotherapy, increase the risk of developing a HAdV hepatitis. We retrospectively analyzed three patients who showed the characteristics of a HAdV hepatitis observed in disseminated disease. In addition to PCR, diagnosis could be proven by pathology, CT scan, and markedly elevated transaminases. All patients had a hemato-oncologic underlying disease. Two had received a stem-cell transplant, and one was under chemotherapy including rituximab. Despite therapy with cidofovir, all patients died. As the incidence of HAdV hepatitis is low, diagnosis may be easily overlooked. No treatment approaches have yet been established. HAdV hepatitis should be considered as a differential diagnosis, especially when risk factors are present. To avoid dissemination, treatment should be initiated as soon as possible.
Collapse
Affiliation(s)
- Juliane Kager
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.K.); (J.S.); (S.R.); (R.M.S.)
| | - Jochen Schneider
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.K.); (J.S.); (S.R.); (R.M.S.)
| | - Sebastian Rasch
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.K.); (J.S.); (S.R.); (R.M.S.)
| | - Peter Herhaus
- Department of Internal Medicine III, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (P.H.); (M.V.)
| | - Mareike Verbeek
- Department of Internal Medicine III, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (P.H.); (M.V.)
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), 80333 Munich, Germany;
| | - Albert Heim
- German National Reference Laboratory for Adenoviruses, Institute for Virology, Hannover Medical School, 30625 Hannover, Germany;
| | - Gert Frösner
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 80333 Munich, Germany; (G.F.); (D.H.)
| | - Dieter Hoffmann
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 80333 Munich, Germany; (G.F.); (D.H.)
| | - Roland M. Schmid
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.K.); (J.S.); (S.R.); (R.M.S.)
| | - Tobias Lahmer
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.K.); (J.S.); (S.R.); (R.M.S.)
- Correspondence:
| |
Collapse
|
111
|
Papadopoulou A, Stavridou F, Giannaki M, Paschoudi K, Chatzopoulou F, Gavriilaki E, Georgolopoulos G, Anagnostopoulos A, Yannaki E. Robust SARS-COV-2-specific T-cell immune memory persists long-term in immunocompetent individuals post BNT162b2 double shot. Heliyon 2022; 8:e09863. [PMID: 35815135 PMCID: PMC9250414 DOI: 10.1016/j.heliyon.2022.e09863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/23/2022] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
Background A robust efficiency of mRNA vaccines against coronavirus disease-2019 has been demonstrated, however, the intended long-term protection against SARS-CoV-2 has been challenged by the waning humoral and cellular immunity over time, leading to a third vaccination dose recommendation for immunocompetent individuals, six months after completion of primary mRNA vaccination. Methods We here measured humoral responses via an immunoassay measuring SARS-CoV-2 neutralizing antibodies and T-cell responses using Elispot for interferon-γ 1- and 8- months post full BNT162b2 vaccination, in 10 health-care professionals. To explore whether the declining abundance of coronavirus-specific T-cells (CoV-2-STs) truly reflects decreased capacity for viral control, rather than the attenuating viral stimulus over time, we modeled ex vivo the T-cellular response upon viral challenge in fully vaccinated immunocompetent individuals, 1- and 8-months post BNT162b2. Findings. Notwithstanding the declining CoV-2-neutralizing antibodies and CoV-2-STs, re-challenged CoV-2-STs, 1- and 8-months post vaccination, presented similar functional characteristics including high cytotoxicity against both the unmutated virus and the delta variant. Interpretation. These findings suggest robust and sustained cellular immune response upon SARS-CοV-2 antigen exposure, 8 months post mRNA vaccination, despite declining CοV-2-STs over time in the presence of an attenuating viral stimulus.
Collapse
|
112
|
Viral infection in hematopoietic stem cell transplantation: an International Society for Cell & Gene Therapy Stem Cell Engineering Committee review on the role of cellular therapy in prevention and treatment. Cytotherapy 2022; 24:884-891. [PMID: 35705447 DOI: 10.1016/j.jcyt.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/13/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
Despite recent advances in the field of HSCT, viral infections remain a frequent causeof morbidity and mortality among HSCT recipients. Adoptive transfer of viral specific T cells has been successfully used both as prophylaxis and treatment of viral infections in immunocompromised HSCT recipients. Increasingly, precise risk stratification of HSCT recipients with infectious complications should incorporate not only pretransplant clinical criteria, but milestones of immune reconstitution as well. These factors can better identify those at highest risk of morbidity and mortality and identify a population of HSCT recipients in whom adoptive therapy with viral specific T cells should be considered for either prophylaxis or second line treatment early after inadequate response to first line antiviral therapy. Broadening these approaches to improve outcomes for transplant recipients in countries with limited resources is a major challenge. While the principles of risk stratification can be applied, early detection of viral reactivation as well as treatment is challenging in regions where commercial PCR assays and antiviral agents are not readily available.
Collapse
|
113
|
The generation and application of antigen-specific T cell therapies for cancer and viral-associated disease. Mol Ther 2022; 30:2130-2152. [PMID: 35149193 PMCID: PMC9171249 DOI: 10.1016/j.ymthe.2022.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy with antigen-specific T cells is a promising, targeted therapeutic option for patients with cancer as well as for immunocompromised patients with virus infections. In this review, we characterize and compare current manufacturing protocols for the generation of T cells specific to viral and non-viral tumor-associated antigens. Specifically, we discuss: (1) the different methodologies to expand virus-specific T cell and non-viral tumor-associated antigen-specific T cell products, (2) an overview of the immunological principles involved when developing such manufacturing protocols, and (3) proposed standardized methodologies for the generation of polyclonal, polyfunctional antigen-specific T cells irrespective of donor source. Ex vivo expanded cells have been safely administered to treat numerous patients with virus-associated malignancies, hematologic malignancies, and solid tumors. Hence, we have performed a comprehensive review of the clinical trial results evaluating the safety, feasibility, and efficacy of these products in the clinic. In summary, this review seeks to provide new insights regarding antigen-specific T cell technology to benefit a rapidly expanding T cell therapy field.
Collapse
|
114
|
Zheng N, Wang Y, Rong H, Wang K, Huang X. Human Adenovirus Associated Hepatic Injury. Front Public Health 2022; 10:878161. [PMID: 35570934 PMCID: PMC9095934 DOI: 10.3389/fpubh.2022.878161] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Human adenovirus (HAdV) is a common virus, but the infections it causes are relatively uncommon. At the same time, the methods for the detection of HAdV are varied, among which viral culture is still the gold standard. HAdV infection is usually self-limited but can also cause clinically symptomatic in lots of organs and tissues, of which human adenovirus pneumonia is the most common. In contrast, human adenovirus hepatitis is rarely reported. However, HAdV hepatitis has a high fatality rate once it occurs, especially in immunocompromised patients. Although human adenovirus hepatitis has some pathological and imaging features, its clinical symptoms are not typical. Therefore, HAdV hepatitis is not easy to be found in the clinic. There are kinds of treatments to treat this disease, but few are absolutely effective. In view of the above reasons, HAdV hepatitis is a disease that is difficult to be found in time. We reviewed and summarized the previously reported cases, hoping to bring some relatively common characteristics to clinicians, so as to facilitate early detection, early diagnosis, and early treatment of patients.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Wang
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hechen Rong
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Huang
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
115
|
Incidence, risk factors and outcome of BK virus hemorrhagic cystitis following allogenic hematopoietic cell transplantation: a retrospective cohort study. Bone Marrow Transplant 2022; 57:1287-1294. [PMID: 35596063 DOI: 10.1038/s41409-022-01665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
BK polyomavirus (BKPyV) can cause hemorrhagic cystitis (HC) after allogeneic hematopoietic cell transplantation (allo-HCT). Recent evaluation of BKPyV HC (BKHC) incidence and risk factors are scarce. We conducted a retrospective single-center study on a recent allo-HCT cohort over 3 years in a referral academic hospital for hematological malignancies. Primary objective was to determine BKHC incidence using competitive risk analysis. Secondary objectives were the identification of HC risk factors using Fine and Gray models and the evaluation of mortality. Among 409 allo-HCT recipients (median age 47 years), 41 developed BKHC after a median delay of 41 [32-55] days. Incidence density of BKHC was 2.4 [1.8-3.1] events per 100 days post-allo-HCT. The proportion of BKHC after adjustment for time-dependent competing risk was 9.5 [9.5-9.6]% at 100 days. BK viremia was detected in 63 versus 20% in tested patients with and without BKHC, respectively. After adjustment for confounders, myeloablative conditioning regimen with and without cyclophosphamide and CMV seropositivity were independently associated with BKHC. Post-transplantation cyclophosphamide was not associated with BKHC. BKHC resolved in 90% of the patients. No difference in mortality was found between patients with or without BKHC. In parallel to the recent evolution of allo-HCT protocols, BKHC remains a frequent complication following allo-HCT.
Collapse
|
116
|
Molvi Z, O'Reilly RJ. Allogeneic Tumor Antigen-Specific T Cells for Broadly Applicable Adoptive Cell Therapy of Cancer. Cancer Treat Res 2022; 183:131-159. [PMID: 35551658 DOI: 10.1007/978-3-030-96376-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
T cells specific for major histocompatibility complex (MHC)-presented tumor antigens are capable of inducing durable remissions when adoptively transferred to patients with refractory cancers presenting such antigens. When such T cells are derived from healthy donors, they can be banked for off-the-shelf administration in appropriately tissue matched patients. Therefore, tumor antigen-specific, donor-derived T cells are expected to be a mainstay in the cancer immunotherapy armamentarium. In this chapter, we analyze clinical evidence that tumor antigen-specific donor-derived T cells can induce tumor regressions when administered to appropriately matched patients whose tumors are refractory to standard therapy. We also delineate the landscape of MHC-presented and unconventional tumor antigens recognized by T cells in healthy individuals that have been targeted for adoptive T cell therapy, as well as emerging antigens for which mounting evidence suggests their utility as targets for adoptive T cell therapy. We discuss the growing technological advancements that have facilitated sequence identification of such antigens and their cognate T cells, and applicability of such technologies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Richard J O'Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
117
|
Rubinstein JD, Lutzko C, Leemhuis T, Zhu X, Pham G, Ray L, Thomas S, Dourson C, Wilhelm J, Lane A, Cancelas JA, Lipps D, Ferrell J, Hanley PJ, Keller MD, Bollard CM, Wang YM, Davies SM, Nelson AS, Grimley MS. Scheduled administration of virus-specific T cells for viral prophylaxis after pediatric allogeneic stem cell transplant. Blood Adv 2022; 6:2897-2907. [PMID: 35108727 PMCID: PMC9092421 DOI: 10.1182/bloodadvances.2021006309] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/22/2022] [Indexed: 11/20/2022] Open
Abstract
Infections with double-stranded DNA viruses are a significant cause of morbidity and mortality in pediatric patients following allogeneic hematopoietic stem cell transplantation (HSCT). Virus-specific T-cell therapies (VSTs) have been shown to be an effective treatment for infections with adenovirus, BK virus, cytomegalovirus (CMV), and Epstein-Barr virus (EBV). To date, prophylactic regimens to prevent or mitigate these infections using conventional antiviral medications provide suboptimal response rates. Here we report on a clinical trial (NCT03883906) performed to assess the feasibility of rapid manufacturing and early infusion of quadrivalent VSTs generated from stem cell donors ("donor-derived VSTs") into allogeneic HSCT recipients with minimal or absent viremia. Patients were eligible to receive scheduled VSTs as early as 21 days after stem cell infusion. Twenty-three patients received scheduled VSTs. Twenty of 23 patients had no viremia at the time of infusion, while 3 patients had very low-level BK viremia. Two developed clinically significant graft-versus-host disease (GVHD), although this incidence was not outside of expected incidence early after HSCT, and both were successfully treated with systemic corticosteroids (n = 2). Five patients were deemed treatment failures. Three developed subsequent significant viremia/viral disease (n = 3). Eighteen patients did not fail treatment, 7 of whom did not develop any viremia, while 11 developed low-level, self-limited viremia that resolved without further intervention. No infusion reactions occurred. In conclusion, scheduled VSTs appear to be safe and potentially effective at limiting serious complications from viral infections after allogeneic transplantation. A randomized study comparing this scheduled approach to the use of VSTs to treat active viremia is ongoing.
Collapse
Affiliation(s)
- Jeremy D. Rubinstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Oncology, and
| | - Carolyn Lutzko
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Thomas Leemhuis
- Hoxworth Blood Center, University of Cincinnati, Cincinnati, OH
| | - Xiang Zhu
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Giang Pham
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lorraine Ray
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Shawn Thomas
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; and
| | - Celeste Dourson
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; and
| | - Jamie Wilhelm
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; and
| | - Adam Lane
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; and
| | - Jose A. Cancelas
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Hoxworth Blood Center, University of Cincinnati, Cincinnati, OH
| | - Dakota Lipps
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; and
| | - Justin Ferrell
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; and
| | - Patrick J. Hanley
- Center for Cancer and Immunology Research, Children’s National Health System and Department of Pediatrics, The George Washington University, Washington, DC
| | - Michael D. Keller
- Center for Cancer and Immunology Research, Children’s National Health System and Department of Pediatrics, The George Washington University, Washington, DC
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Health System and Department of Pediatrics, The George Washington University, Washington, DC
| | - YunZu M. Wang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; and
| | - Stella M. Davies
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; and
| | - Adam S. Nelson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; and
| | - Michael S. Grimley
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; and
| |
Collapse
|
118
|
Martits-Chalangari K, Spak CW, Askar M, Killian A, Fisher TL, Atillasoy E, Marshall WL, McNeel D, Miller MD, Mathai SK, Gottlieb RL. ALVR109, an off-the-shelf partially HLA matched SARS-CoV-2-specific T cell therapy, to treat refractory severe COVID-19 pneumonia in a heart transplant patient: Case report. Am J Transplant 2022; 22:1261-1265. [PMID: 34910857 PMCID: PMC9303326 DOI: 10.1111/ajt.16927] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 01/25/2023]
Abstract
An unvaccinated adult male heart transplant recipient patient with recalcitrant COVID-19 due to SARS-CoV-2 delta variant with rising nasopharyngeal quantitative viral load was successfully treated with ALVR109, an off-the-shelf SARS-CoV-2-specific T cell therapy. Background immunosuppression included 0.1 mg/kg prednisone, tacrolimus, and mycophenolate mofetil 1 gm twice daily for historical antibody-mediated rejection. Prior therapies included remdesivir, corticosteroids, and tocilizumab, with requirement for high-flow nasal oxygen. Lack of clinical improvement and acutely rising nasopharyngeal viral RNA more than 3 weeks into illness prompted the request of ALVR109 through an emergency IND. The day following the first ALVR109 infusion, the patient's nasopharyngeal SARS-CoV-2 RNA declined from 7.43 to 5.02 log10 RNA copies/ml. On post-infusion day 4, the patient transitioned to low-flow oxygen. Two subsequent infusions of ALVR109 were administered 10 and 26 days after the first; nasopharyngeal SARS-CoV-2 RNA became undetectable on Day 11, and he was discharged the following day on low-flow oxygen 5 weeks after the initial diagnosis of COVID-19. The clinical and virologic improvements observed in this patient following administration of ALVR109 suggest a potential benefit that warrants further exploration in clinical trials.
Collapse
Affiliation(s)
- Katalin Martits-Chalangari
- Baylor University Medical Center, Dallas, Texas, USA,Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Cedric W. Spak
- Baylor University Medical Center, Dallas, Texas, USA,Texas A&M Health Science Center, Dallas, Texas, USA
| | - Medhat Askar
- Baylor University Medical Center, Dallas, Texas, USA,Baylor Scott & White Research Institute, Dallas, Texas, USA,Texas A&M Health Science Center, Dallas, Texas, USA
| | - Aaron Killian
- Baylor University Medical Center, Dallas, Texas, USA,Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Tammy L. Fisher
- Baylor University Medical Center, Dallas, Texas, USA,Baylor Scott & White Research Institute, Dallas, Texas, USA
| | | | | | | | | | - Susan K. Mathai
- Baylor University Medical Center, Dallas, Texas, USA,Baylor Scott & White Research Institute, Dallas, Texas, USA,Texas A&M Health Science Center, Dallas, Texas, USA
| | - Robert L. Gottlieb
- Baylor University Medical Center, Dallas, Texas, USA,Baylor Scott & White Research Institute, Dallas, Texas, USA,Texas A&M Health Science Center, Dallas, Texas, USA,TCU and University of North Texas Health Science Center, Fort Worth, Texas, USA,Correspondence Robert L. Gottlieb, Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, TX, USA.
| |
Collapse
|
119
|
Shafer P, Kelly LM, Hoyos V. Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects. Front Immunol 2022; 13:835762. [PMID: 35309357 PMCID: PMC8928448 DOI: 10.3389/fimmu.2022.835762] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
To redirect T cells against tumor cells, T cells can be engineered ex vivo to express cancer-antigen specific T cell receptors (TCRs), generating products known as TCR-engineered T cells (TCR T). Unlike chimeric antigen receptors (CARs), TCRs recognize HLA-presented peptides derived from proteins of all cellular compartments. The use of TCR T cells for adoptive cellular therapies (ACT) has gained increased attention, especially as efforts to treat solid cancers with ACTs have intensified. In this review, we describe the differing mechanisms of T cell antigen recognition and signal transduction mediated through CARs and TCRs. We describe the classes of cancer antigens recognized by current TCR T therapies and discuss both classical and emerging pre-clinical strategies for antigen-specific TCR discovery, enhancement, and validation. Finally, we review the current landscape of clinical trials for TCR T therapy and discuss what these current results indicate for the development of future engineered TCR approaches.
Collapse
Affiliation(s)
- Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Lauren M. Kelly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Cancer & Cell Biology, Baylor College of Medicine, Houston, TX, United States
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
120
|
Cellular therapies for the treatment and prevention of SARS-CoV-2 infection. Blood 2022; 140:208-221. [PMID: 35240679 PMCID: PMC8896869 DOI: 10.1182/blood.2021012249] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Patients with blood disorders who are immune suppressed are at increased risk for infection with severe acute respiratory syndrome coronavirus 2. Sequelae of infection can include severe respiratory disease and/or prolonged duration of viral shedding. Cellular therapies may protect these vulnerable patients by providing antiviral cellular immunity and/or immune modulation. In this recent review of the field, phase 1/2 trials evaluating adoptive cellular therapies with virus-specific T cells or natural killer cells are described along with trials evaluating the safety, feasibility, and preliminary efficacy of immune modulating cellular therapies including regulatory T cells and mesenchymal stromal cells. In addition, the immunologic basis for these therapies is discussed.
Collapse
|
121
|
Abudayyeh A, Wanchoo R. Kidney Disease Following Hematopoietic Stem Cell Transplantation. Adv Chronic Kidney Dis 2022; 29:103-115.e1. [PMID: 35817518 DOI: 10.1053/j.ackd.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Hematopoietic stem cell transplantation (SCT) provides a curative option for the treatment of several malignancies. Its growing use is associated with an increased burden of kidney disease. Acute kidney injury is usually seen within the first 100 days of transplantation and has an incidence ranging between 12 and 73%, with the highest rate in myeloablative allogeneic SCT. A large subset of patients after SCT develop chronic kidney disease. They can be broadly classified into thrombotic microangiopathy, nephrotic syndrome, and calcineurin toxicity. Dialysis requirement after SCT is associated with mortality exceeding 80%. Given the higher morbidity and mortality related to development kidney disease, nephrologists need to be aware of the various causes and best treatment options.
Collapse
Affiliation(s)
- Ala Abudayyeh
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rimda Wanchoo
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY.
| |
Collapse
|
122
|
Toner K, Bollard CM. EBV+ lymphoproliferative diseases: opportunities for leveraging EBV as a therapeutic target. Blood 2022; 139:983-994. [PMID: 34437680 PMCID: PMC8854679 DOI: 10.1182/blood.2020005466] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/24/2021] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human tumor virus, which contributes to the development of lymphoproliferative disease, most notably in patients with impaired immunity. EBV-associated lymphoproliferation is characterized by expression of latent EBV proteins and ranges in severity from a relatively benign proliferative response to aggressive malignant lymphomas. The presence of EBV can also serve as a unique target for directed therapies for the treatment of EBV lymphoproliferative diseases, including T cell-based immune therapies. In this review, we describe the EBV-associated lymphoproliferative diseases and particularly focus on the therapies that target EBV.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research
- Division of Oncology, and
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC; and
- GW Cancer Center, George Washington University, Washington, DC
| | - Catherine M Bollard
- Center for Cancer and Immunology Research
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC; and
- GW Cancer Center, George Washington University, Washington, DC
| |
Collapse
|
123
|
Panikkar A, Lineburg KE, Raju J, Chew KY, Ambalathingal GR, Rehan S, Swaminathan S, Crooks P, Le Texier L, Beagley L, Best S, Solomon M, Matthews KK, Srihari S, Neller MA, Short KR, Khanna R, Smith C. SARS-CoV-2-specific T cells generated for adoptive immunotherapy are capable of recognizing multiple SARS-CoV-2 variants. PLoS Pathog 2022; 18:e1010339. [PMID: 35157735 PMCID: PMC8880869 DOI: 10.1371/journal.ppat.1010339] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/25/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Adoptive T-cell immunotherapy has provided promising results in the treatment of viral complications in humans, particularly in the context of immunocompromised patients who have exhausted all other clinical options. The capacity to expand T cells from healthy immune individuals is providing a new approach to anti-viral immunotherapy, offering rapid off-the-shelf treatment with tailor-made human leukocyte antigen (HLA)-matched T cells. While most of this research has focused on the treatment of latent viral infections, emerging evidence that SARS-CoV-2-specific T cells play an important role in protection against COVID-19 suggests that the transfer of HLA-matched allogeneic off-the-shelf virus-specific T cells could provide a treatment option for patients with active COVID-19 or at risk of developing COVID-19. We initially screened 60 convalescent individuals and based on HLA typing and T-cell response profile, 12 individuals were selected for the development of a SARS-CoV-2-specific T-cell bank. We demonstrate that these T cells are specific for up to four SARS-CoV-2 antigens presented by a broad range of both HLA class I and class II alleles. These T cells show consistent functional and phenotypic properties, display cytotoxic potential against HLA-matched targets and can recognize HLA-matched cells infected with different SARS-CoV-2 variants. These observations demonstrate a robust approach for the production of SARS-CoV-2-specific T cells and provide the impetus for the development of a T-cell repository for clinical assessment. Since the emergence of SARS-CoV-2 variants that reduce the effectiveness of vaccines, it is evident that other interventional strategies will be needed to treat COVID-19, particularly in patients with a compromised immune system who are at an increased risk of developing severe COVID-19. Off-the-shelf T-cell immunotherapy is proving to be a powerful tool to treat viral disease in patients with a compromised immune system. Here, we report here that a small number of SARS-CoV-2 exposed individuals can be used generate a bank of specific T cells that provide broad population coverage. Importantly, we demonstrate that most of the epitopes recognized by these T cells remain unchanged in different variants and that the T cells can recognize cells infected with three different variants of SARS-CoV-2. We believe these observations provide critical proof-of-concept that T-cell based immunotherapy may offer an option for the future treatment of immunocompromised patients who remain susceptible to the severe complications associated with COVID-19.
Collapse
Affiliation(s)
- Archana Panikkar
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Katie E. Lineburg
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jyothy Raju
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
| | - George R. Ambalathingal
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sweera Rehan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Srividhya Swaminathan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Laetitia Le Texier
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Leone Beagley
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shannon Best
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Matthew Solomon
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Katherine K. Matthews
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sriganesh Srihari
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michelle A. Neller
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
124
|
Cytomegalovirus and other herpesviruses after hematopoietic cell and solid organ transplantation: From antiviral drugs to virus-specific T cells. Transpl Immunol 2022; 71:101539. [PMID: 35051589 DOI: 10.1016/j.trim.2022.101539] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Herpesviruses can either cause primary infection or may get reactivated after both hematopoietic cell and solid organ transplantations. In general, viral infections increase post-transplant morbidity and mortality. Prophylactic, preemptive, or therapeutically administered antiviral drugs may be associated with serious side effects and may induce viral resistance. Virus-specific T cells represent a valuable addition to antiviral treatment, with high rates of response and minimal side effects. Even low numbers of virus-specific T cells manufactured by direct selection methods can reconstitute virus-specific immunity after transplantation and control viral replication. Virus-specific T cells belong to the advanced therapy medicinal products, and their production is regulated by appropriate legislation; also, strict safety regulations are required to minimize their side effects.
Collapse
|
125
|
Advances in Allogeneic Cancer Cell Therapy and Future Perspectives on “Off-the-Shelf” T Cell Therapy Using iPSC Technology and Gene Editing. Cells 2022; 11:cells11020269. [PMID: 35053386 PMCID: PMC8773622 DOI: 10.3390/cells11020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
The concept of allogeneic cell therapy was first presented over 60 years ago with hematopoietic stem cell transplantation. However, complications such as graft versus host disease (GVHD) and regimen-related toxicities remained as major obstacles. To maximize the effect of graft versus leukemia, while minimizing the effect of GVHD, donor lymphocyte infusion was utilized. This idea, which was used against viral infections, postulated that adoptive transfer of virus-specific cytotoxic T lymphocytes could reconstitute specific immunity and eliminate virus infected cells and led to the idea of banking third party cytotoxic T cells (CTLs). T cell exhaustion sometimes became a problem and difficulty arose in creating robust CTLs. However, the introduction of induced pluripotent stem cells (iPSCs) lessens such problems, and by using iPSC technology, unlimited numbers of allogeneic rejuvenated CTLs with robust and proliferative cytotoxic activity can be created. Despite this revolutionary concept, several concerns still exist, such as immunorejection by recipient cells and safety issues of gene editing. In this review, we describe approaches to a feasible “off-the-shelf” therapy that can be distributed rapidly worldwide. We also offer perspectives on the future of allogeneic cell cancer immunotherapy.
Collapse
|
126
|
Lionel S, Abraham A, Mathews V, Lakshmi K, Abraham A, George B. BK polyomavirus hemorrhagic cystitis in hematopoietic cell transplant recipients. J Glob Infect Dis 2022; 14:17-23. [PMID: 35418731 PMCID: PMC8996450 DOI: 10.4103/jgid.jgid_139_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction: BK polyomavirus-associated hemorrhagic cystitis (BKPyV-HC) is a well-recognized infective complication of hematopoietic cell transplant (HCT) with increased organ dysfunction and mortality. This study was performed to describe the local incidence, risk factors, and outcomes of BKPyV infection. Methods: This retrospective case–control study was conducted between 2007 and 2016 from a tertiary hospital in South India. We identified HCT recipients diagnosed with BKPyV-HC and compared them with recipients over the same period who did not develop BK virus infection matched for age, sex, diagnosis, and donor type. We collected data from central electronic medical records and databases maintained in the departments of hematology and virology. Results: Over the study period, 1276 transplants were performed, of which 262 patients (20.5%) developed HC and 105 (8.2%) were BKPyV-positive. Grade 3 HC was most commonly (57.1%) seen, and the median time to develop BKPyV-HC was 35 (range 0–858) days. Survival was significantly lower in the cases (42.9% vs. 61%, P < 0.05). On univariate analysis, the protective effect of nonmyeloablative conditioning (P = 0.04), residual disease at the time of transplant in malignant conditions (P = 0.001), lower CD34 dose (P = 0.006), presence of acute graft versus host disease (GVHD, P < 0.001), reactivation of cytomegalovirus infection (P < 0.001), and presence of bacterial urinary tract infection (UTI) (P < 0.001) were significant factors. Multivariate logistic regression confirmed the presence of acute GVHD (P = 0.041), bacterial UTI (P < 0.001), and residual disease (P = 0.009) at HCT as significant risk factors for BKPyV-HC. Conclusions: Our study affirms the homogeneity of BKPyV-HC disease in low- and middle-income HCT settings with prior reports and the need for therapeutic strategies to reduce its resultant mortality.
Collapse
|
127
|
Mariotti J, Legrand F, Furst S, Giordano L, Magri F, Richiardi L, Granata A, De Philippis C, Maisano V, Faraci D, Sarina B, Giaccone L, Harbi S, Mannina D, Valli V, Tordato F, Mineri R, Bramanti S, Santoro A, Bruno B, Devillier R, Blaise D, Castagna L. Risk Factors for early CMV reactivation and Impact of early CMV reactivation on Clinical Outcomes after T Cell-replete Haploidentical Transplantation with Post-transplant Cyclophosphamide. Transplant Cell Ther 2021; 28:169.e1-169.e9. [PMID: 34954296 DOI: 10.1016/j.jtct.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Risk factors for cytomegalovirus (CMV) reactivation and the impact of CMV reactivation on patients' outcomes have been extensively investigated after matched related or unrelated donor transplants, but little is known in the setting of haploidentical stem cell transplant (Haplo-SCT) with post-transplant cyclophosphamide (PT-Cy), where recipients are supposed to be more severely immune-compromised. METHODS We retrospectively analyzed a cohort of 554 consecutive patients undergoing Haplo-SCT with PT-Cy at 3 different centers. RESULTS Early CMV reactivation, taking place within the first 120 days after transplant, occurred in 242 patients for an estimated cumulative incidence of 44%. Out of those patients, 74 (30%) had recurrent CMV and 20 (8%) CMV disease. By multivariable analysis, positive recipient CMV serostatus (Hazard ratio [HR] > 2.5, p<0.001), disease histology (lymphoid vs myeloid: HR 0.66, p=0.003) and increasing recipient age (HR 1.01, p=0.015) were independent predictors of CMV reactivation. At four months landmark analysis, CMV reactivation was associated with higher 1-year and 5-year cumulative incidence of non-relapse mortality (NRM) relative to patients without reactivation: 13% vs 5% and 22% vs 9%, respectively (p<0.001). By multivariable analysis, CMV reactivation was an independent negative predictor of non-relapse mortality (NRM) (HR 2.69, p<0.001) and was close to statistical significance for overall survival (OS) (HR: 1.38, p=0.062). CONCLUSIONS Our results suggest that CMV reactivation plays an important role at determining NRM. Because patient CMV serostatus is the main predictor of CMV reactivation, it should be considered when evaluating strategies for preventing CMV reactivation.
Collapse
Affiliation(s)
- Jacopo Mariotti
- Bone Marrow Transplantation Unit, Humanitas Clinical and Research Center, Rozzano, Italy.
| | - Faezeh Legrand
- Department of Hematology, Transplantation Program, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sabine Furst
- Department of Hematology, Transplantation Program, Institut Paoli-Calmettes, Marseille, France
| | - Laura Giordano
- Biostatistic Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Filippo Magri
- Bone Marrow Transplantation Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Angela Granata
- Department of Hematology, Transplantation Program, Institut Paoli-Calmettes, Marseille, France
| | - Chiara De Philippis
- Bone Marrow Transplantation Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Valerio Maisano
- Department of Hematology, Transplantation Program, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Danilo Faraci
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy
| | - Barbara Sarina
- Bone Marrow Transplantation Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Luisa Giaccone
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Samia Harbi
- Department of Hematology, Transplantation Program, Institut Paoli-Calmettes, Marseille, France
| | - Daniele Mannina
- Bone Marrow Transplantation Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Viviana Valli
- Bone Marrow Transplantation Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Federica Tordato
- Infectious Disease Unit, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano 20089, Italy
| | - Rossana Mineri
- Molecular Biology Section, Clinical Investigation Laboratory, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano 20089, Italy
| | - Stefania Bramanti
- Bone Marrow Transplantation Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Armando Santoro
- Department of Oncology/Hematology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Raynier Devillier
- Department of Hematology, Transplantation Program, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Didier Blaise
- Department of Hematology, Transplantation Program, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Luca Castagna
- Bone Marrow Transplantation Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
128
|
Do Epstein–Barr Virus Mutations and Natural Genome Sequence Variations Contribute to Disease? Biomolecules 2021; 12:biom12010017. [PMID: 35053165 PMCID: PMC8774192 DOI: 10.3390/biom12010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Most of the world’s population is infected by the Epstein–Barr virus (EBV), but the incidence of the diseases associated with EBV infection differs greatly in different parts of the world. Many factors may determine those differences, but variation in the virus genome is likely to be a contributing factor for some of the diseases. Here, we describe the main forms of EBV genome sequence variation, and the mechanisms by which variations in the virus genome are likely to contribute to disease. EBV genome deletions or polymorphisms can also provide useful markers for monitoring disease. If some EBV strains prove to be more pathogenic than others, this suggests the possible value of immunising people against infection by those pathogenic strains.
Collapse
|
129
|
Lynch JP, Kajon AE. Adenovirus: Epidemiology, Global Spread of Novel Types, and Approach to Treatment. Semin Respir Crit Care Med 2021; 42:800-821. [PMID: 34918322 DOI: 10.1055/s-0041-1733802] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adenoviruses (AdVs) are DNA viruses that typically cause mild infections involving the upper or lower respiratory tract, gastrointestinal tract, or conjunctiva. Rare manifestations of AdV infections include hemorrhagic cystitis, hepatitis, hemorrhagic colitis, pancreatitis, nephritis, or meningoencephalitis. AdV infections are more common in young children, due to lack of humoral immunity. Epidemics of AdV infection may occur in healthy children or adults in closed or crowded settings (particularly military recruits). The vast majority of cases are self-limited. However, the clinical spectrum is broad and fatalities may occur. Dissemination is more likely in patients with impaired immunity (e.g., organ transplant recipients, human immunodeficiency virus infection). Fatality rates for untreated severe AdV pneumonia or disseminated disease may exceed 50%. More than 100 genotypes and 52 serotypes of AdV have been identified and classified into seven species designated HAdV-A through -G. Different types display different tissue tropisms that correlate with clinical manifestations of infection. The predominant types circulating at a given time differ among countries or regions, and change over time. Transmission of novel strains between countries or across continents and replacement of dominant viruses by new strains may occur. Treatment of AdV infections is controversial, as prospective, randomized therapeutic trials have not been done. Cidofovir has been the drug of choice for severe AdV infections, but not all patients require treatment. Live oral vaccines are highly efficacious in reducing the risk of respiratory AdV infection and are in routine use in the military in the United States but currently are not available to civilians.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Adriana E Kajon
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico
| |
Collapse
|
130
|
Singh N. Modified T cells as therapeutic agents. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:296-302. [PMID: 34889384 PMCID: PMC8791139 DOI: 10.1182/hematology.2021000262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Immunotherapy is now a well-established modality in the treatment of cancer. Although several platforms to redirect the immune response exist, the use of genetically modified T cells has garnered particular attention in recent years. This is due, in large part, to their success in the treatment of B-cell malignancies. Adoptively transferred T cells have also demonstrated efficacy in the treatment of systemic viral infections that occur following hematopoietic cell transplantation prior to immune reconstitution. Here we discuss the techniques that enable redirection of T lymphocytes to treat cancer or infection and the current indications for these therapies.
Collapse
Affiliation(s)
- Nathan Singh
- Correspondence Nathan Singh, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri 63110; e-mail:
| |
Collapse
|
131
|
Beyond antivirals: virus-specific T-cell immunotherapy for BK virus haemorrhagic cystitis and JC virus progressive multifocal leukoencephalopathy. Curr Opin Infect Dis 2021; 34:627-634. [PMID: 34751182 DOI: 10.1097/qco.0000000000000794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The clinical manifestations of the polyomaviruses BK and JC in immunocompromised patients include BK virus (BKV) induced haemorrhagic cystitis and nephropathy, and JC virus (JCV) associated progressive multifocal leukoencephalopathy (PML) and are typically a consequence of impaired adaptive immunity in the host. To date, little clinical success has been achieved with antiviral agents or other drug therapies to treat these conditions. Here we review the methods and outcomes of the most recent clinical studies utilising adoptive immunotherapy with BK and/or JC virus-specific T-cells (VST) as either prophylaxis or treatment alternatives. RECENT FINDINGS In the last 12-18 months, several clinical trials have been published in the post-haemopoietic stem cell transplant (HSCT) setting showing good clinical success with the use of VST for treatment of BK viremia ± haemorrhagic cystitis. Between 82 and 100% clinical response has been observed in haemorrhagic cystitis using either third-party or donor-derived VST. The therapy was well tolerated with few cases of graft versus host disease in HSCT recipients, but immune mediated renal allograft loss was observed in one renal transplant recipient. Studies using BKV/JCV VST to treat PML are hindered by few patients who are sufficiently stable to receive VST. In a condition that otherwise carries such poor prognosis, VST were associated with clearance of JC virus, clinical and radiological improvement in some patients. Immune reconstitution inflammatory syndrome was a noted adverse event. SUMMARY Restoration of BK and JC virus immunity using VST immunotherapy has shown good clinical outcomes in BKV associated infections. Further evaluation with the administration of VST earlier in the course of disease is warranted for the treatment of BKV associated nephropathy in renal allograft and in JCV PML. In both indications, larger cohorts and standardisation of dosing and outcome measures would be of benefit.
Collapse
|
132
|
Off the Shelf Third Party Virus Specific T-Cell Therapy to Treat JC Polyomavirus Infection in Hematopoietic Stem Cell Transplant Recipients. Transplant Cell Ther 2021; 28:116.e1-116.e7. [PMID: 34785398 DOI: 10.1016/j.jtct.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML) is a progressive and generally fatal demyelinating neurological disease that occurs in profoundly immunocompromised patients due to infection with the human polyomavirus JC virus (JCPyV). Treatment options are limited and are largely focused on restoring T-cell immunity and outcomes are historically poor. Control of JCPyV in the setting of an immunocompromised patient by adoptive transfer of third-party virus specific T-cells (VSTs) has been described in a small number of cases. OBJECTIVE To investigate treatment response and outcomes in recipients of hematopoietic stem cell transplant (HSCT) with PML treated with third-party VSTs directed against BK virus, a highly homologous polyoma virus that shares immunogenic epitopes with JCPyV. STUDY DESIGN Retrospective chart review was performed on four patients who received VSTs for the treatment of PML at Cincinnati Children's Hospital Medical Center since 2019 RESULTS: VSTs were safely administered with no cases of graft-vs-host disease and no infusion reactions. One patient, who was treated almost immediately after diagnosis, was able to clear JCPyV from blood and CSF with resultant stabilization of neurologic decline. Interferon-gamma ELISpot demonstrated virus specific T-cells in the peripheral blood following infusion. Response was maintained through repeat infusions. Three other patients, all of whom had a longer delay between diagnosis and infusion, had progressive neurologic decline despite varying degree of improvement in viral load. CONCLUSION PML is a rare but often fatal complication following HSCT for which few treatment options are available. BK directed, JCPyV cross-reactive VSTs are a safe and viable therapeutic option and prompt administration should be considered after a diagnosis of PML is made. Key points • Virus specific T cells targeting JCPyV virus are safe with no infusional toxicity or de-novo graft versus host disease. • Virus specific T-cells have evidence of efficacy in some cases of PML, but further studies are needed to determine factors that will optimize response.
Collapse
|
133
|
Biederstädt A, Rezvani K. Engineering the next generation of CAR-NK immunotherapies. Int J Hematol 2021; 114:554-571. [PMID: 34453686 PMCID: PMC8397867 DOI: 10.1007/s12185-021-03209-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Over the past few years, cellular immunotherapy has emerged as a novel treatment option for certain forms of hematologic malignancies with multiple CAR-T therapies now routinely administered in the clinic. The limitations of generating an autologous cell product and the challenges of toxicity with CAR-T cells underscore the need to develop novel cell therapy products that are universal, safe, and potent. Natural killer (NK) cells are part of the innate immune system with unique advantages, including the potential for off-the-shelf therapy. A recent first-in-human trial of CD19-CAR-NK infusion in patients with relapsed/refractory lymphoid malignancies proved safe with promising clinical activity. Building on these encouraging clinical responses, research is now actively exploring ways to further enhance CAR-NK cell potency by prolonging in vivo persistence and overcoming mechanisms of functional exhaustion. Besides these strategies to modulate CAR-NK cell intrinsic properties, there are increasing efforts to translate the successes seen in hematologic malignancies to the solid tumor space. This review will provide an overview on current trends and evolving concepts to genetically engineer the next generation of CAR-NK therapies. Emphasis will be placed on innovative multiplexed engineering approaches including CRISPR/Cas9 to overcome CAR-NK functional exhaustion and reprogram immune cell metabolism for enhanced potency.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 423, Houston, TX, USA
- Department of Medicine III, Hematology/Oncology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 423, Houston, TX, USA.
| |
Collapse
|
134
|
Pretransplant BK Virus-Specific T-Cell-Mediated Immunity and Serotype Specific Antibodies May Have Utility in Identifying Patients at Risk of BK Virus-Associated Haemorrhagic Cystitis after Allogeneic HSCT. Vaccines (Basel) 2021; 9:vaccines9111226. [PMID: 34835157 PMCID: PMC8625163 DOI: 10.3390/vaccines9111226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
BK polyomavirus (BKPyV) persists lifelong in renal and urothelial cells with asymptomatic urinary shedding in healthy individuals. In some immunocompromised persons after transplantation of hematopoietic stem cells (HSCT), the BKPyV high-rate replication is associated with haemorrhagic cystitis (HC). We tested whether the status of BKPyV immunity prior to HSCT could provide evidence for the BKPyV tendency to reactivate. We have shown that measurement of pretransplant anti-BKPyV 1 and 4 IgG levels can be used to evaluate the HC risk. Patients with anti-BKPyV IgG in the range of the 1st-2nd quartile of positive values and with positive clinical risk markers have a significantly increased HC risk, in comparison to the reference group of patients with "non-reactive" anti-BKPyV IgG levels and with low clinical risk (LCR) (p = 0.0009). The predictive value of pretransplant BKPyV-specific IgG was confirmed by determination of genotypes of the shed virus. A positive predictive value was also found for pretransplant T-cell immunity to the BKPyV antigen VP1 because the magnitude of IFN-γ T-cell response inversely correlated with posttransplant DNAuria and with HC. Our novel data suggest that specific T-cells control BKPyV latency before HSCT, and in this way may influence BKPyV reactivation after HSCT. Our study has shown that prediction using a combination of clinical and immunological pretransplant risk factors can help early identification of HSCT recipients at high risk of BKPyV disease.
Collapse
|
135
|
Jung JM, Ching W, Baumdick ME, Hofmann-Sieber H, Bosse JB, Koyro T, Möller KJ, Wegner L, Niehrs A, Russu K, Ohms M, Zhang W, Ehrhardt A, Duisters K, Spierings E, Hölzemer A, Körner C, Jansen SA, Peine S, Königs I, Lütgehetmann M, Perez D, Reinshagen K, Lindemans CA, Altfeld M, Belderbos M, Dobner T, Bunders MJ. KIR3DS1 directs NK cell-mediated protection against human adenovirus infections. Sci Immunol 2021; 6:eabe2942. [PMID: 34533978 DOI: 10.1126/sciimmunol.abe2942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Johannes M Jung
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wilhelm Ching
- Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Martin E Baumdick
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Helga Hofmann-Sieber
- Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jens B Bosse
- Leibniz Institute for Experimental Virology, Hamburg, Germany.,Centre for Structural Systems Biology, Hamburg, Germany.,Hannover Medical School, Institute of Virology, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Tobias Koyro
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kimberly J Möller
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Lucy Wegner
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Annika Niehrs
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Kristina Russu
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Mareike Ohms
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wenli Zhang
- Faculty of Health, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Faculty of Health, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany
| | - Kevin Duisters
- Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Angelique Hölzemer
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,I. Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Christian Körner
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Suze A Jansen
- Wilhelmina Children's Hospital/Department of Pediatrics, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands.,Pediatric Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Regenerative Medicine Center, University Utrecht, Utrecht, Netherlands
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Königs
- Department of Pediatric Surgery, Altona Children's Hospital, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Caroline A Lindemans
- Wilhelmina Children's Hospital/Department of Pediatrics, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands.,Pediatric Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Regenerative Medicine Center, University Utrecht, Utrecht, Netherlands
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Mirjam Belderbos
- Pediatric Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Thomas Dobner
- Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Madeleine J Bunders
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
136
|
Virus-specific T cells for adenovirus infection after stem cell transplantation are highly effective and class II HLA restricted. Blood Adv 2021; 5:3309-3321. [PMID: 34473237 DOI: 10.1182/bloodadvances.2021004456] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/25/2021] [Indexed: 11/20/2022] Open
Abstract
Infection with adenoviruses is a common and significant complication in pediatric patients after allogeneic hematopoietic stem cell transplantation. Treatment options with traditional antivirals are limited by poor efficacy and significant toxicities. T-cell reconstitution is critical for the management of adenoviral infections, but it generally takes place months after transplantation. Ex vivo-generated virus-specific T cells (VSTs) are an alternative approach for viral control and can be rapidly generated from either a stem cell donor or a healthy third-party donor. In the context of a single-center phase 1/2 clinical trial, we treated 30 patients with a total of 43 infusions of VSTs for adenoviremia and/or adenoviral disease. Seven patients received donor-derived VSTs, 21 patients received third-party VSTs, and 2 received VSTs from both donor sources. Clinical responses were observed in 81% of patients, with a complete response in 58%. Epitope prediction and potential epitope identification for common HLA molecules helped elucidate HLA restriction in a subset of patients receiving third-party products. Intracellular interferon-γ expression in T cells in response to single peptides and response to cell lines stably transfected with a single HLA molecule demonstrated HLA-restricted CD4+ T-cell response, and these results correlated with clinical outcomes. Taken together, these data suggest that VSTs are a highly safe and effective therapy for the management of adenoviral infection in immunocompromised hosts. The trials were registered at www.clinicaltrials.gov as #NCT02048332 and #NCT02532452.
Collapse
|
137
|
Chandorkar A, Anderson AD, Morris MI, Natori Y, Jimenez A, Komanduri KV, Camargo JF. Viral kinetics and outcomes of adenovirus viremia following allogeneic hematopoietic cell transplantation. Clin Transplant 2021; 35:e14481. [PMID: 34516017 DOI: 10.1111/ctr.14481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Adenovirus (AdV) is a serious infection following hematopoietic cell transplantation (HCT). Little is known about AdV viral kinetics and optimal threshold for initiation of pre-emptive therapy. METHODS Single-center retrospective study of 16 consecutive adult HCT recipients with detectable AdV identified over a 5-year period. RESULTS Median time to AdV reactivation after HCT was 176 days (IQR 86-408). Nine patients received cidofovir, although 14/16 had no tissue-invasive disease. Among treated patients, median duration of viremia was shorter when initiating treatment at viral loads < 10,000 copies/ml (28 vs. 52 days). All-cause mortality in this cohort was 44%. All six patients (five of which were untreated) with peak viral loads < 10,000 copies/ml survived; whereas only 30% (3/10) of patients with peak viral loads greater than this threshold survived, despite most (n = 8; 80%) of them receiving cidofovir (P = .01). Three-month survival following diagnosis of AdV viremia was significantly lower with peak viremia > 10,000 copies/ml (100 vs. 17%; P = .005). CONCLUSION AdV is associated with high all-cause mortality, especially for viremia > 10,000 copies/ml. Delaying therapy until viremia reaches AdV levels ≥10,000 copies/ml was associated with more protracted infection and poor outcomes. Larger studies are needed.
Collapse
Affiliation(s)
- Aditya Chandorkar
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anthony D Anderson
- Department of Pharmacy, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Michele I Morris
- Immunocompromised Host Service, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yoichiro Natori
- Department of Pharmacy, Sylvester Comprehensive Cancer Center, Miami, Florida, USA.,Division of Infectious Diseases, Miami Transplant Institute, Jackson Health System, Miami, Florida, USA
| | - Antonio Jimenez
- Division of Transplantation and Cellular Therapy, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Krishna V Komanduri
- Division of Transplantation and Cellular Therapy, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Jose F Camargo
- Department of Pharmacy, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| |
Collapse
|
138
|
Olson A, Lin R, Marin D, Rafei H, Bdaiwi MH, Thall PF, Basar R, Abudayyeh A, Banerjee P, Aung FM, Kaur I, Abueg G, Rao S, Chemaly R, Mulanovich V, Al-Atrash G, Alousi AM, Andersson BS, Anderlini P, Bashir Q, Castro KM, Daher M, Galvan IM, Hosing C, Im JS, Jones RB, Kebriaei P, Khouri I, Mehta R, Molldrem J, Nieto Y, Oran B, Popat U, Qazilbash M, Rondon G, Saini N, Spencer B, Srour S, Washington D, Barnett M, Champlin RE, Shpall EJ, Rezvani K. Third-Party BK Virus-Specific Cytotoxic T Lymphocyte Therapy for Hemorrhagic Cystitis Following Allotransplantation. J Clin Oncol 2021; 39:2710-2719. [PMID: 33929874 PMCID: PMC10166368 DOI: 10.1200/jco.20.02608] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/06/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE BK virus-associated hemorrhagic cystitis (BKV-HC) is a common complication of allogenic hematopoietic stem cell transplantation (AHSCT), particularly in recipients of alternative donor transplants, which are being performed in increasing numbers. BKV-HC typically results in painful hematuria, urinary obstruction, and renal dysfunction, without a definitive therapeutic option. METHODS We performed a clinical trial (ClinicalTrials.gov identifier: NCT02479698) to assess the feasibility, safety, and efficacy of administering most closely HLA-matched third-party BKV-specific cytotoxic T lymphocytes (CTLs), generated from 26 healthy donors and banked for off-the-shelf use. The cells were infused into 59 patients who developed BKV-HC following AHSCT. Comprehensive clinical assessments and correlative studies were performed. RESULTS Response to BKV-CTL infusion was rapid; the day 14 overall response rate was 67.7% (40 of 59 evaluable patients), which increased to 81.6% among evaluable patients at day 45 (40 of 49 evaluable patients). No patient lost a previously achieved response. There were no cases of de novo grade 3 or 4 graft-versus-host disease, graft failure, or infusion-related toxicities. BKV-CTLs were identified in patient blood samples up to 3 months postinfusion and their in vivo expansion predicted for clinical response. A matched-pair analysis revealed that, compared with standard of care, after accounting for prognostic covariate effects, treatment with BKV-CTLs resulted in higher probabilities of response at all follow-up timepoints as well as significantly lower transfusion requirement. CONCLUSION Off-the-shelf BKV-CTLs are a safe and effective therapy for the management of patients with BKV-HC after AHSCT.
Collapse
Affiliation(s)
- Amanda Olson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ruitao Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mustafa H. Bdaiwi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Peter F. Thall
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ala Abudayyeh
- Division of Internal Medicine, Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pinaki Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Fleur M. Aung
- Department of Laboratory Medicine, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Indresh Kaur
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Glorette Abueg
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sheetal Rao
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Roy Chemaly
- Department of Infectious Disease, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Victor Mulanovich
- Department of Infectious Disease, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amin M. Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paolo Anderlini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qaiser Bashir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Karla M. Castro
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Isabel M. Galvan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jin S. Im
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Roy B. Jones
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Issa Khouri
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rohtesh Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Muzaffar Qazilbash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Neeraj Saini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bryan Spencer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samer Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dominique Washington
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Melissa Barnett
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
139
|
BK virus-specific T cells for immunotherapy of progressive multifocal leukoencephalopathy: an open-label, single-cohort pilot study. Lancet Neurol 2021; 20:639-652. [PMID: 34302788 DOI: 10.1016/s1474-4422(21)00174-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy, a rare disease of the CNS caused by JC virus and occurring in immunosuppressed people, is typically fatal unless adaptive immunity is restored. JC virus is a member of the human polyomavirus family and is closely related to the BK virus. We hypothesised that use of partly HLA-matched donor-derived BK virus-specific T cells for immunotherapy in progressive multifocal leukoencephalopathy would be feasible and safe. METHODS We did an open-label, single-cohort pilot study in patients (aged 18 years or older) with clinically definite progressive multifocal leukoencephalopathy and disease progression in the previous month at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Overlapping peptide libraries derived from large T antigen and major capsid protein VP1 of BK virus with high sequence homology to JC virus counterparts were used to generate polyomavirus-specific T cells cross-recognising JC virus antigens. Polyomavirus-specific T cells were manufactured from peripheral blood mononuclear cells of first-degree relative donors aged 18 years or older. These cells were administered to patients by intravenous infusion at 1 × 106 polyomavirus-specific T cells per kg, followed by up to two additional infusions at 2 × 106 polyomavirus-specific T cells per kg. The primary endpoints were feasibility (no manufacturing failure based on meeting release criteria, achieving adequate numbers of cell product for clinical use, and showing measurable antiviral activity) and safety in all patients. The safety monitoring period was 28 days after each infusion. Patients were followed up with serial MRI for up to 12 months after the final infusion. This trial is registered at ClinicalTrials.gov, NCT02694783. FINDINGS Between April 7, 2016, and Oct 19, 2018, 26 patients were screened, of whom 12 were confirmed eligible and received treatment derived from 14 matched donors. All administered polyomavirus-specific T cells met the release criteria and recognised cognate antigens in vitro. 12 patients received at least one infusion, ten received at least two, and seven received a total of three infusions. The median on-study follow-up was 109·5 days (range 23-699). All infusions were tolerated well, and no serious treatment-related adverse events were observed. Seven patients survived progressive multifocal leukoencephalopathy for longer than 1 year after the first infusion, whereas five died of progressive multifocal leukoencephalopathy within 3 months. INTERPRETATION We showed that generation of polyomavirus-specific T cells from healthy related donors is feasible, and these cells can be safely used as an infusion for adoptive immunotherapy of progressive multifocal leukoencephalopathy. Although not powered to assess efficacy, our data provide additional support for this strategy as a potential life-saving therapy for some patients. FUNDING Intramural Research Program of the National Institute of Neurological Disorders and Stroke of the NIH.
Collapse
|
140
|
Olbrich H, Theobald SJ, Slabik C, Gerasch L, Schneider A, Mach M, Shum T, Mamonkin M, Stripecke R. Adult and Cord Blood-Derived High-Affinity gB-CAR-T Cells Effectively React Against Human Cytomegalovirus Infections. Hum Gene Ther 2021; 31:423-439. [PMID: 32159399 PMCID: PMC7194322 DOI: 10.1089/hum.2019.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human cytomegalovirus (HCMV) reactivations are associated with lower overall survival after transplantations. Adoptive transfer of HCMV-reactive expanded or selected T cells can be applied as a compassionate use, but requires that the human leukocyte antigen-matched donor provides memory cells against HCMV. To overcome this, we developed engineered T cells expressing chimeric antigen receptors (CARs) targeted against the HCMV glycoprotein B (gB) expressed upon viral reactivation. Single-chain variable fragments (scFvs) derived from a human high-affinity gB-specific neutralizing monoclonal antibody (SM5-1) were fused to CARs with 4-1BB (BBL) or CD28 (28S) costimulatory domains and subcloned into retroviral vectors. CD4+ and CD8+ T cells obtained from HCMV-seronegative adult blood or cord blood (CB) transduced with the vectors efficiently expressed the gB-CARs. The specificity and potency of gB-CAR-T cells were demonstrated and compared in vitro using the following: 293T cells expressing gB, and with mesenchymal stem cells infected with a HCMV TB40 strain expressing Gaussia luciferase (HCMV/GLuc). BBL-gB-CAR-T cells generated with adult or CB demonstrated significantly higher in vitro activation and cytotoxicity performance than 28-gB-CAR-T cells. Nod.Rag.Gamma (NRG) mice transplanted with human CB CD34+ cells with long-term human immune reconstitution were used to model HCMV/GLuc infection in vivo by optical imaging analyses. One week after administration, response to BBL-gB-CAR-T cell therapy was observed for 5/8 mice, defined by significant reduction of the bioluminescent signal in relation to untreated controls. Response to therapy was sporadically associated with CAR detection in spleen. Thus, exploring scFv derived from the high-affinity gB-antibody SM5-1 and the 4-1BB signaling domain for CAR design enabled an in vitro high on-target effect and cytotoxicity and encouraging results in vivo. Therefore, gB-CAR-T cells can be a future clinical option for treatment of HCMV reactivations, particularly when memory T cells from the donors are not available.
Collapse
Affiliation(s)
- Henning Olbrich
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sebastian J Theobald
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Constanze Slabik
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Laura Gerasch
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Andreas Schneider
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Michael Mach
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Shum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Renata Stripecke
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
141
|
Lee YJ, Su Y, Cho C, Tamari R, Perales MA, Jakubowski AA, Papanicolaou G. Human herpes virus 6 DNAemia is associated with worse survival after ex vivo T-cell depleted hematopoietic cell transplant. J Infect Dis 2021; 225:453-464. [PMID: 34390240 DOI: 10.1093/infdis/jiab412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/12/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We examined the correlation between persistent HHV-6 DNAemia (p-HHV-6) and absolute lymphocyte counts (ALC), platelet counts (PLT) and all-cause mortality the 1-year after ex vivo T-cell depleted (TCD) hematopoietic cell transplant (HCT). METHODS We analyzed a cohort of adult TCD HCT recipients 2012-2016 prospectively monitored for plasma HHV-6 by qPCR from day +14 post-HCT (D+14) through D+100. P-HHV-6 was defined as ≥2 consecutive values of ≥500 copies/mL by D+100. PLT and ALC were compared between patients with and without p-HHV-6 using mixed model analysis of variance. Multivariable Cox proportional hazard models were used to identify the impact of p-HHV-6 on 1-year mortality. RESULTS Of 312 patients, 83 (27%) had p-HHV-6 by D+100. P-HHV-6 was associated with lower ALC and PLT in the first year post-HCT. In multivariable models, p-HHV-6 was associated with higher mortality by 1-year post-HCT (adjusted hazard ratio 2.97, 95% confidence intervals: 1.62-5.47, P=0.0005), after adjusting for age, antiviral treatment, and ALC at D+100. CONCLUSIONS P-HHV-6 was associated with lower ALC and PLT in the first year post-HCT. P-HHV-6 was an independent predictor of mortality in the first year after TCD HCT.
Collapse
Affiliation(s)
- Yeon Joo Lee
- Infectious Disease Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Yiqi Su
- Infectious Disease Service, Department of Medicine, New York, NY, USA
| | - Christina Cho
- Adult Bone Marrow Transplantation Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Roni Tamari
- Adult Bone Marrow Transplantation Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Ann A Jakubowski
- Adult Bone Marrow Transplantation Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Genovefa Papanicolaou
- Infectious Disease Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
142
|
Stanojevic M, Hont AB, Geiger A, O'Brien S, Ulrey R, Grant M, Datar A, Lee PH, Lang H, Cruz CRY, Hanley PJ, Barrett AJ, Keller MD, Bollard CM. Identification of novel HLA-restricted preferentially expressed antigen in melanoma peptides to facilitate off-the-shelf tumor-associated antigen-specific T-cell therapies. Cytotherapy 2021; 23:694-703. [PMID: 33832817 PMCID: PMC8316284 DOI: 10.1016/j.jcyt.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AIMS Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen that is overexpressed in many human malignancies and poorly expressed or absent in healthy tissues, making it a good target for anti-cancer immunotherapy. Development of an effective off-the-shelf adoptive T-cell therapy for patients with relapsed or refractory solid tumors and hematological malignancies expressing PRAME antigen requires the identification of major histocompatibility complex (MHC) class I and II PRAME antigens recognized by the tumor-associated antigen (TAA) T-cell product. The authors therefore set out to extend the repertoire of HLA-restricted PRAME peptide epitopes beyond the few already characterized. METHODS Peptide libraries of 125 overlapping 15-mer peptides spanning the entire PRAME protein sequence were used to identify HLA class I- and II-restricted epitopes. The authors also determined the HLA restriction of the identified epitopes. RESULTS PRAME-specific T-cell products were successfully generated from peripheral blood mononuclear cells of 12 healthy donors. Ex vivo-expanded T cells were polyclonal, consisting of both CD4+ and CD8+ T cells, which elicited anti-tumor activity in vitro. Nine MHC class I-restricted PRAME epitopes were identified (seven novel and two previously described). The authors also characterized 16 individual 15-mer peptide sequences confirmed as CD4-restricted epitopes. CONCLUSIONS TAA T cells derived from healthy donors recognize a broad range of CD4+ and CD8+ HLA-restricted PRAME epitopes, which could be used to select suitable donors for generating off-the-shelf TAA-specific T cells.
Collapse
Affiliation(s)
- Maja Stanojevic
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Amy B Hont
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Ashley Geiger
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Samuel O'Brien
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Robert Ulrey
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Melanie Grant
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Anushree Datar
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Ping-Hsien Lee
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Haili Lang
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Conrad R Y Cruz
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; GW Cancer Center, George Washington University, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; GW Cancer Center, George Washington University, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - A John Barrett
- GW Cancer Center, George Washington University, Washington, DC, USA
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; GW Cancer Center, George Washington University, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
143
|
Papadopoulou A, Koukoulias K, Alvanou M, Papadopoulos VK, Bousiou Z, Kalaitzidou V, Kika FS, Papalexandri A, Mallouri D, Batsis I, Sakellari I, Anagnostopoulos A, Yannaki E. Patient risk stratification and tailored clinical management of post-transplant CMV-, EBV-, and BKV-infections by monitoring virus-specific T-cell immunity. EJHAEM 2021; 2:428-439. [PMID: 35844677 PMCID: PMC9175754 DOI: 10.1002/jha2.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Background Despite routine post-transplant viral monitoring and pre-emptive therapy, viral infections remain a major cause of allogeneic hematopoietic cell transplantation-related morbidity and mortality. Objective We here aimed to prospectively assess the kinetics and the magnitude of cytomegalovirus-(CMV), Epstein Barr virus-(EBV), and BK virus-(BKV)-specific T cell responses post-transplant and evaluate their role in guiding therapeutic decisions by patient risk-stratification. Study design The tri-virus-specific immune recovery was assessed by Elispot, in 50 consecutively transplanted patients, on days +20, +30, +60, +100, +150, +200 post-transplant and in case of reactivation, weekly for 1 month. Results The great majority of the patients experienced at least one reactivation, while over 40% of them developed multiple reactivations from more than one of the tested viruses, especially those transplanted from matched or mismatched unrelated donors. The early reconstitution of virus-specific immunity (day +20), favorably correlated with transplant outcomes. Εxpanding levels of CMV-, EBV-, and BKV-specific T cells (VSTs) post-reactivation coincided with decreasing viral load and control of infection. Certain cut-offs of absolute VST numbers or net VST cell expansion post-reactivation were determined, above which, patients with CMV or BKV reactivation had >90% probability of complete response (CR). Conclusion Immune monitoring of virus-specific T-cell reconstitution post-transplant may allow risk-stratification of virus reactivating patients and enable patient-tailored treatment. The identification of individuals with high probability of CR will minimize unnecessary overtreatment and drug-associated toxicity while allowing candidates for pre-emptive intervention with adoptive transfer of VSTs to be appropriately selected.
Collapse
Affiliation(s)
- Anastasia Papadopoulou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Kiriakos Koukoulias
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
- Department of Genetics, Development and Molecular Biology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Alvanou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | | | - Zoe Bousiou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Vasiliki Kalaitzidou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Fotini S. Kika
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Apostolia Papalexandri
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Despina Mallouri
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Ioannis Batsis
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Ioanna Sakellari
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Achilles Anagnostopoulos
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Evangelia Yannaki
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
144
|
Jakharia N, Howard D, Riedel DJ. CMV Infection in Hematopoietic Stem Cell Transplantation: Prevention and Treatment Strategies. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2021; 13:123-140. [PMID: 34305463 PMCID: PMC8294301 DOI: 10.1007/s40506-021-00253-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Purpose of Review Cytomegalovirus (CMV) remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (Allo-HSCT). New strategies and methods for prevention and management of CMV infection are urgently needed. We aim to review the new developments in diagnostics, prevention, and management strategies of CMV infection in Allo-HSCT recipients. Recent Findings The approval of the novel anti-CMV drug letermovir in 2017 has led to an increase in the use of antiviral prophylaxis as a preferred approach for prevention in many centers. Real-world studies have shown efficacy similar to the clinical trial. CMV-specific T cell-mediated immunity assays identify patients with immune reconstitution and predict disease progression. Phase 2 trials of maribavir have shown its efficacy as preemptive therapy and treatment of resistant and refractory CMV infections. Adoptive T cell therapy is an emerging option for treatment of refractory and resistant CMV. Of the different CMV vaccine trials, PepVax has shown promising results in a phase 1 trial. Summary CMV cell-mediated immunity assays have potential to be used as an adjunctive test to develop individualized management plan by identifying the patients who develop immune reconstitution; however, further prospective interventional studies are needed. Maribavir and adoptive T cell therapy are promising new therapies for treatment of CMV infections. CMV vaccine trials for prevention are also under way.
Collapse
Affiliation(s)
- Niyati Jakharia
- Department of Internal Medicine, Section of Infectious Diseases, Stanford University Hospital, 300 Pasteur Dr., Lane L 134, Stanford, CA 94305 USA
| | - Dianna Howard
- Department of Internal Medicine, Section of Hematology-Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC USA
| | - David J Riedel
- Department of Internal Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
145
|
John TD, Friend B, Yassine K, Sasa G, Bhar S, Salem B, Omer B, Craddock J, Doherty E, Martinez C, Heslop HE, Krance RA, Leung K. Matched related hematopoietic cell transplant for sickle cell disease with alemtuzumab: the Texas Children's Hospital experience. Bone Marrow Transplant 2021; 56:2797-2803. [PMID: 34274957 DOI: 10.1038/s41409-021-01415-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022]
Abstract
Serotherapeutic agents facilitate engraftment and prevent graft-versus-host disease (GVHD) following hematopoietic stem cell transplant. Anti-thymocyte globulin is generally added to conditioning chemotherapy for matched related donor transplant (MRD-HCT) for sickle cell disease (SCD). Alemtuzumab, however, is appealing due to its broad lymphocyte killing that may achieve very low rejection and GVHD rates. To assess the impact of alemtuzumab in MRD-HCT for SCD, we retrospectively reviewed transplant-related outcomes and markers of immunity in 38 consecutive patients at Texas Children's Hospital having received myeloablative conditioning with alemtuzumab. Median follow-up was 4.8 years (range: 0.2-17). All patients engrafted. Donor chimerism was mixed in 47.1% of patients at ≥2-years. Donor chimerism <50% was uncommon (n = 2). One patient with low myeloid chimerism (19%) had sickle-related hemolysis at 10-years. Incidence of acute GVHD grade II-IV (5.3%) and extensive chronic GVHD (2.8%) was very low. Five-year event-free survival (EFS) and composite chronic GVHD-EFS were excellent at 94.7% (95% CI: 80.3, 98.6) and 89.2% (95% CI: 73.7, 95.8), respectively. Infections did not contribute to mortality although cytomegalovirus reactivation occurred commonly in the first 3 months after transplant. Our data suggest potential for alemtuzumab in myeloablative transplant for children with SCD although further evaluation in older patients and with unrelated donors is warranted.
Collapse
Affiliation(s)
- Tami D John
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Brian Friend
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Khaled Yassine
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Ghadir Sasa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Saleh Bhar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Baheyeldin Salem
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Bilal Omer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - John Craddock
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Erin Doherty
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Caridad Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Robert A Krance
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Kathryn Leung
- Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
146
|
Long X, Qiu Y, Zhang Z, Wu M. Insight for Immunotherapy of HCMV Infection. Int J Biol Sci 2021; 17:2899-2911. [PMID: 34345215 PMCID: PMC8326118 DOI: 10.7150/ijbs.58127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous in humans, has a high prevalence rate. Young people are susceptible to HCMV infection in developing countries, while older individuals are more susceptible in developed countries. Most patients have no obvious symptoms from the primary infection. Studies have indicated that the virus has gradually adapted to the host immune system. Therefore, the control of HCMV infection requires strong immune modulation. With the recent advances in immunotherapy, its application to HCMV infections is receiving increasing attention. Here, we discuss the immune response to HCMV infection, the immune escape mechanism, and the different roles that HCMV plays in various types of immunotherapy, including vaccines, adoptive cell therapy, checkpoint blockade therapy, and targeted antibodies.
Collapse
Affiliation(s)
- Xinmiao Long
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Yi Qiu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Zuping Zhang
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
| |
Collapse
|
147
|
Basar R, Uprety N, Ensley E, Daher M, Klein K, Martinez F, Aung F, Shanley M, Hu B, Gokdemir E, Nunez Cortes AK, Mendt M, Reyes Silva F, Acharya S, Laskowski T, Muniz-Feliciano L, Banerjee PP, Li Y, Li S, Melo Garcia L, Lin P, Shaim H, Yates SG, Marin D, Kaur I, Rao S, Mak D, Lin A, Miao Q, Dou J, Chen K, Champlin RE, Shpall EJ, Rezvani K. Generation of glucocorticoid-resistant SARS-CoV-2 T cells for adoptive cell therapy. Cell Rep 2021; 36:109432. [PMID: 34270918 PMCID: PMC8260499 DOI: 10.1016/j.celrep.2021.109432] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Adoptive cell therapy with virus-specific T cells has been used successfully to treat life-threatening viral infections, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observe that the choice of cytokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells. Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recognition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T cells cannot be expanded efficiently from the peripheral blood of non-exposed controls. Because corticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimberly Klein
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fernando Martinez
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fleur Aung
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingqian Hu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elif Gokdemir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francia Reyes Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamara Laskowski
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinaki P Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sufang Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hila Shaim
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sean G Yates
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Indreshpal Kaur
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheetal Rao
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Duncan Mak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angelique Lin
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
148
|
Olson AL, Politikos I, Brunstein C, Milano F, Barker J, Hill JA. Guidelines for Infection Prophylaxis, Monitoring and Therapy in Cord Blood Transplantation. Transplant Cell Ther 2021; 27:359-362. [PMID: 33965172 DOI: 10.1016/j.jtct.2021.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
As an alternative stem cell source, cord blood (CB) has many advantages. However, delayed engraftment, lack of transferred immunity, and a significant incidence of acute graft-versus-host disease renders CB transplant (CBT) recipients at high risk of infectious complications. This guidance written by CBT and infectious disease experts outlines evidence-based recommendations for the prevention and treatment of opportunistic infections in adult patients undergoing CBT. Topics addressed include bacterial, fungal, viral, pneumocystis jirovcii and toxoplasmosis prophylaxis, suggested PCR monitoring for viruses, therapy for the most commonly encountered infections after CBT. We review key concepts including the recent important role of letermovir in the prevention of CMV reactivation. In instances where there is a paucity of data, practice recommendations are provided, including the duration of antimicrobial prophylaxis.
Collapse
Affiliation(s)
- Amanda L Olson
- The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | | | | | - Fillipo Milano
- The Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Juliet Barker
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua A Hill
- The Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | |
Collapse
|
149
|
Immune control of cytomegalovirus reactivation in stem cell transplantation. Blood 2021; 139:1277-1288. [PMID: 34166512 DOI: 10.1182/blood.2020010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
The reactivation of viruses from latency after allogeneic stem cell transplantation (SCT) continues to represent a major clinical challenge requiring sophisticated monitoring strategies in the context of prophylactic and/or pre-emptive antiviral drugs that are associated with significant expense, toxicity, and rates of failure. Accumulating evidence has demonstrated the association of polyfunctional virus-specific T-cells with protection from viral reactivation, affirmed by the ability of adoptively transferred virus-specific T-cells to prevent and treat reactivation and disease. The roles of innate cells (NK cells) in early viral surveillance, and dendritic cells in priming of T-cells have also been delineated. Most recently, a role for strain-specific humoral responses in preventing early cytomegalovirus (CMV) reactivation has been demonstrated in preclinical models. Despite these advances, many unknowns remain: what are the critical innate and adaptive responses over time, is the origin (e.g. recipient versus donor) and localization (e.g. in parenchymal tissue versus lymphoid organs) of these responses important, how does GVHD and the prevention/treatment thereof (e.g. high dose steroids) impact the functionality and relevance of a particular immune axis, do the immune parameters that control latency, reactivation and dissemination differ, and what is the impact of new antiviral drugs on the development of enduring antiviral immunity. Thus, whilst antiviral drugs have provided major improvements over the last two decades, understanding the immunological paradigms underpinning protective antiviral immunity after SCT offers the potential to generate non-toxic immune-based therapeutic approaches for lasting protection from viral reactivation.
Collapse
|
150
|
Cooper RS, Kowalczuk A, Wilkie G, Vickers MA, Turner ML, Campbell JDM, Fraser AR. Cytometric analysis of T cell phenotype using cytokine profiling for improved manufacturing of an EBV-specific T cell therapy. Clin Exp Immunol 2021; 206:68-81. [PMID: 34146397 PMCID: PMC8446406 DOI: 10.1111/cei.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 11/27/2022] Open
Abstract
Adoptive immunotherapy using Epstein–Barr Virus (EBV)‐specific T cells is a potentially curative treatment for patients with EBV‐related malignancies where other clinical options have proved ineffective. We describe improved good manufacturing practice (GMP)‐compliant culture and analysis processes for conventional lymphoblastoid cell line (LCL)‐driven EBV‐specific T cell manufacture, and describe an improved phenotyping approach for analysing T cell products. We optimized the current LCL‐mediated clinical manufacture of EBV‐specific T cells to establish an improved process using xenoprotein‐free GMP‐compliant reagents throughout, and compared resulting products with our previous banked T cell clinical therapy. We assessed effects of changes to LCL:T cell ratio in T cell expansion, and developed a robust flow cytometric marker panel covering T cell memory, activation, differentiation and intracellular cytokine release to characterize T cells more effectively. These data were analysed using a t‐stochastic neighbour embedding (t‐SNE) algorithm. The optimized GMP‐compliant process resulted in reduced cell processing time and improved retention and expansion of central memory T cells. Multi‐parameter flow cytometry determined the optimal protocol for LCL stimulation and expansion of T cells and demonstrated that cytokine profiling using interleukin (IL)‐2, tumour necrosis factor (TNF)‐α and interferon (IFN)‐γ was able to determine the differentiation status of T cells throughout culture and in the final product. We show that fully GMP‐compliant closed‐process culture of LCL‐mediated EBV‐specific T cells is feasible, and profiling of T cells through cytokine expression gives improved characterization of start material, in‐process culture conditions and final product. Visualization of the complex multi‐parameter flow cytometric data can be simplified using t‐SNE analysis.
Collapse
Affiliation(s)
- Rachel S Cooper
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Edinburgh, UK
| | - Aleksandra Kowalczuk
- Blood Transfusion Centre, Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Gwen Wilkie
- Blood Transfusion Centre, Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Mark A Vickers
- Blood Transfusion Centre, Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Marc L Turner
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Edinburgh, UK
| | - John D M Campbell
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Edinburgh, UK
| | - Alasdair R Fraser
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Edinburgh, UK
| |
Collapse
|