101
|
Smarr BL, Gile JJ, de la Iglesia HO. Oestrogen-independent circadian clock gene expression in the anteroventral periventricular nucleus in female rats: possible role as an integrator for circadian and ovarian signals timing the luteinising hormone surge. J Neuroendocrinol 2013; 25:1273-1279. [PMID: 24028332 PMCID: PMC3954464 DOI: 10.1111/jne.12104] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/23/2013] [Accepted: 09/05/2013] [Indexed: 12/11/2022]
Abstract
Periodic ovulation in rats, mice and hamsters is the result of a surge in luteinising hormone (LH) that depends on circadian gating signals emerging from the master circadian clock within the suprachiasmatic nucleus (SCN) and rising ovarian oestrogen levels. These two signals converge into the anteroventral periventricular nucleus (AVPV) and lead to the release of kisspeptin, which is responsible for surges of gonadotrophin-releasing hormone and, in turn, of LH release. How the AVPV integrates circadian and reproductive signals remains unclear. In the present study, we show that the female rat AVPV itself shows circadian oscillations in the expression of the clock genes PER1 and BMAL1, which lie at the core circadian clockwork of mammals. In ovariectomised females treated with oestradiol (E₂), these oscillations are in synchrony with the AVPV rhythmic expression of the KISS1 gene and the gene that codes for the arginine-vasopressin (AVP) receptor AVPr1a. Although clock gene oscillations are independent of oestrogen levels, circadian expression of Kiss1 and Avpr1a (also referred to as V1a) mRNA is blunted and absent, respectively, in ovariectomised animals without E₂ replacement. Because AVP is considered to be a critical SCN transmitter to gate the LH surge, our data suggest that there is a circadian oscillator located in the AVPV, and that such a putative oscillator could, in an oestrogen-dependent manner, time the sensitivity to circadian signals emerging from the SCN and the release of kisspeptin.
Collapse
Affiliation(s)
- B L Smarr
- Department of Biology, University of Washington, Seattle, WA, USA
- Program of Neurobiology and Behavior, University of Washington, Seattle, WA, USA
| | - J J Gile
- Department of Biology, University of Washington, Seattle, WA, USA
| | - H O de la Iglesia
- Department of Biology, University of Washington, Seattle, WA, USA
- Program of Neurobiology and Behavior, University of Washington, Seattle, WA, USA
| |
Collapse
|
102
|
Kim J, Tolson KP, Dhamija S, Kauffman AS. Developmental GnRH signaling is not required for sexual differentiation of kisspeptin neurons but is needed for maximal Kiss1 gene expression in adult females. Endocrinology 2013; 154:3273-83. [PMID: 23825121 PMCID: PMC3749477 DOI: 10.1210/en.2013-1271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptin, encoded by Kiss1, stimulates reproduction. In rodents, one Kiss1 population resides in the hypothalamic anterior ventral periventricular nucleus and neighboring rostral periventricular nucleus (AVPV/PeN). AVPV/PeN Kiss1 neurons are sexually dimorphic (greater in females), yet the mechanisms regulating their development and sexual differentiation remain poorly understood. Neonatal estradiol (E₂) normally defeminizes AVPV/PeN kisspeptin neurons, but emerging evidence suggests that developmental E₂ may also influence feminization of kisspeptin, although exactly when in development this process occurs is unknown. In addition, the obligatory role of GnRH signaling in governing sexual differentiation of Kiss1 or other sexually dimorphic traits remains untested. Here, we assessed whether AVPV/PeN Kiss1 expression is permanently impaired in adult hpg (no GnRH or E₂) or C57BL6 mice under different E₂ removal or replacement paradigms. We determined that 1) despite lacking GnRH signaling in development, marked sexual differentiation of Kiss1 still occurs in hpg mice; 2) adult hpg females, who lack lifetime GnRH and E₂ exposure, have reduced AVPV/PeN Kiss1 expression compared to wild-type females, even after chronic adulthood E₂ treatment; 3) E₂ exposure to hpg females during the pubertal period does not rescue their submaximal adult Kiss1 levels; and 4) in C57BL6 females, removal of ovarian E2 before the pubertal or juvenile periods does not impair feminization and maximal adult AVPV/PeN Kiss1 expression nor the ability to generate LH surges, indicating that puberty is not a critical period for Kiss1 development. Thus, sexual differentiation still occurs without GnRH, but GnRH or downstream E₂ signaling is needed sometime before juvenile development for complete feminization and maximal Kiss1 expression in adult females.
Collapse
Affiliation(s)
- Joshua Kim
- Department of Reproductive Medicine, University of California, San Diego, Leichtag Building 3A-15, 9500 Gilman Drive, No. 0674, LA Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
103
|
Chu A, Zhu L, Blum ID, Mai O, Leliavski A, Fahrenkrug J, Oster H, Boehm U, Storch KF. Global but not gonadotrope-specific disruption of Bmal1 abolishes the luteinizing hormone surge without affecting ovulation. Endocrinology 2013; 154:2924-35. [PMID: 23736292 DOI: 10.1210/en.2013-1080] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although there is evidence for a circadian regulation of the preovulatory LH surge, the contributions of individual tissue clocks to this process remain unclear. We studied female mice deficient in the Bmal1 gene (Bmal1(-/-)), which is essential for circadian clock function, and found that they lack the proestrous LH surge. However, spontaneous ovulation on the day of estrus was unaffected in these animals. Bmal1(-/-) females were also deficient in the proestrous FSH surge, which, like the LH surge, is GnRH-dependent. In the absence of circadian or external timing cues, Bmal1(-/-) females continued to cycle in constant darkness albeit with increased cycle length and time spent in estrus. Because pituitary gonadotropes are the source of circulating LH and FSH, we assessed hypophyseal circadian clock function and found that female pituitaries rhythmically express clock components throughout all cycle stages. To determine the role of the gonadotrope clock in the preovulatory LH and FSH surge process, we generated mice that specifically lack BMAL1 in gonadotropes (GBmal1KO). GBmal1KO females exhibited a modest elevation in both proestrous and baseline LH levels across all estrous stages. BMAL1 elimination from gonadotropes also led to increased variability in estrous cycle length, yet GBmal1KO animals were otherwise reproductively normal. Together our data suggest that the intrinsic clock in gonadotropes is dispensable for LH surge regulation but contributes to estrous cycle robustness. Thus, clocks in the suprachiasmatic nucleus or elsewhere must be involved in the generation of the LH surge, which, surprisingly, is not required for spontaneous ovulation.
Collapse
Affiliation(s)
- Adrienne Chu
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Quebec H4H 1R3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Piekarski DJ, Zhao S, Jennings KJ, Iwasa T, Legan SJ, Mikkelsen JD, Tsutsui K, Kriegsfeld LJ. Gonadotropin-inhibitory hormone reduces sexual motivation but not lordosis behavior in female Syrian hamsters (Mesocricetus auratus). Horm Behav 2013; 64:501-10. [PMID: 23827890 PMCID: PMC3955721 DOI: 10.1016/j.yhbeh.2013.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022]
Abstract
Reproductive success is maximized when female sexual motivation and behavior coincide with the time of optimal fertility. Both processes depend upon coordinated hormonal events, beginning with signaling by the gonadotropin-releasing hormone (GnRH) neuronal system. Two neuropeptidergic systems that lie upstream of GnRH, gonadotropin-inhibitory hormone (GnIH; also known as RFamide related peptide-3) and kisspeptin, are potent inhibitory and excitatory modulators of GnRH, respectively, that participate in the timing of the preovulatory luteinizing hormone (LH) surge and ovulation. Whether these neuropeptides serve as neuromodulators to coordinate female sexual behavior with the limited window of fertility has not been thoroughly explored. In the present study, either intact or ovariectomized, hormone-treated female hamsters were implanted for fifteen days with chronic release osmotic pumps filled with GnIH or saline. The effect of GnIH on sexual motivation, vaginal scent marking, and lordosis was examined. Following mating, FOS activation was quantified in brain regions implicated in the regulation of female sexual behavior. Intracerebroventricular administration of GnIH reduced sexual motivation and vaginal scent marking, but not lordosis behavior. GnIH administration altered FOS expression in key neural loci implicated in female reproductive behavior, including the medial preoptic area, medial amygdala and bed nucleus of the stria terminalis, independent of changes in circulating gonadal steroids and kisspeptin cell activation. Together, these data point to GnIH as an important modulator of female proceptive sexual behavior and motivation, independent of downstream alterations in sex steroid production.
Collapse
Affiliation(s)
| | - Sheng Zhao
- Department of Psychology, University of California, Berkeley, CA, USA
| | | | - Takeshi Iwasa
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Sandra J. Legan
- Department of Physiology, University of Kentucky, Lexington, KY USA
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA, USA
- Department of Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Please Address Correspondence to: Lance J. Kriegsfeld, PhD, Neurobiology Laboratory, Department of Psychology and Helen Wills Neuroscience Institute, 3210 Tolman Hall, #1650, University of California, Berkeley, CA 94720-1650, Phone: (510) 642-5148, Fax: (510) 642-5293,
| |
Collapse
|
105
|
Overgaard A, Tena-Sempere M, Franceschini I, Desroziers E, Simonneaux V, Mikkelsen JD. Comparative analysis of kisspeptin-immunoreactivity reveals genuine differences in the hypothalamic Kiss1 systems between rats and mice. Peptides 2013; 45:85-90. [PMID: 23651990 DOI: 10.1016/j.peptides.2013.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/23/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
Abstract
Kiss1 mRNA and its corresponding peptide products, kisspeptins, are expressed in two restricted brain areas of rodents, the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC). The concentration of mature kisspeptins may not directly correlate with Kiss1 mRNA levels, because mRNA translation and/or posttranslational modification, degradation, transportation and release of kisspeptins could be regulated independently of gene expression, and there may thus be differences in kisspeptin expression even in species with similar Kiss1 mRNA profiles. We measured and compared kisspeptin-immunoreactivity in both nuclei and both sexes of rats and mice and quantified kisspeptin-immunoreactive nerve fibers. We also determined Kiss1 mRNA levels and measured kisspeptin-immunoreactivity in colchicine pretreated rats. Overall, we find higher levels of kisspeptin-immunoreactivity in the mouse compared to the rat, independently of brain region and gender. In the female mouse AVPV high numbers of kisspeptin-immunoreactive neurons were present, while in the rat, the female AVPV displays a similar number of kisspeptin-immunoreactive neurons compared to the level of Kiss1 mRNA expressing cells, only after axonal transport inhibition. Interestingly, the density of kisspeptin innervation in the anterior periventricular area was higher in female compared to male in both species. Species differences in the ARC were evident, with the mouse ARC containing dense fibers, while the rat ARC contains clearly discernable cells. In addition, we show a marked sex difference in the ARC, with higher kisspeptin levels in females. These findings show that the translation of Kiss1 mRNA and/or the degradation/transportation/release of kisspeptins are different in mice and rats.
Collapse
Affiliation(s)
- Agnete Overgaard
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Building 9201, Juliane Maries Vej 24, 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
106
|
Boden MJ, Varcoe TJ, Kennaway DJ. Circadian regulation of reproduction: from gamete to offspring. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:387-97. [PMID: 23380455 DOI: 10.1016/j.pbiomolbio.2013.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/10/2012] [Accepted: 01/22/2013] [Indexed: 01/19/2023]
Abstract
Few challenges are more critical to the survival of a species than reproduction. To ensure reproductive success, myriad aspects of physiology and behaviour need to be tightly orchestrated within the animal, as well as timed appropriately with the external environment. This is accomplished through an endogenous circadian timing system generated at the cellular level through a series of interlocked transcription/translation feedback loops, leading to the overt expression of circadian rhythms. These expression patterns are found throughout the body, and are intimately interwoven with both the timing and function of the reproductive process. In this review we highlight the many aspects of reproductive physiology in which circadian rhythms are known to play a role, including regulation of the estrus cycle, the LH surge and ovulation, the production and maturation of sperm and the timing of insemination and fertilisation. We will also describe roles for circadian rhythms in support of the preimplantation embryo in the oviduct, implantation/placentation, as well as the control of parturition and early postnatal life. There are several key differences in physiology between humans and the model systems used for the study of circadian disruption, and these challenges to interpretation will be discussed as part of this review.
Collapse
Affiliation(s)
- M J Boden
- Robinson Institute, Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, University of Adelaide, Medical School, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
107
|
Kriegsfeld LJ. Circadian regulation of kisspeptin in female reproductive functioning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:385-410. [PMID: 23550016 DOI: 10.1007/978-1-4614-6199-9_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Female reproductive functioning requires the precise temporal -organization of numerous neuroendocrine events by a master circadian brain clock located in the suprachiasmatic nucleus. Across species, including humans, disruptions to circadian timing result in pronounced deficits in ovulation and fecundity. The present chapter provides an overview of the circadian control of female reproduction, underscoring the significance of kisspeptin as a key locus of integration for circadian and steroidal signaling necessary for the initiation of ovulation.
Collapse
Affiliation(s)
- Lance J Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA 94720-1650, USA.
| |
Collapse
|
108
|
Ogawa S, Ng KW, Xue X, Ramadasan PN, Sivalingam M, Li S, Levavi-Sivan B, Lin H, Liu X, Parhar IS. Thyroid Hormone Upregulates Hypothalamic kiss2 Gene in the Male Nile Tilapia, Oreochromis niloticus. Front Endocrinol (Lausanne) 2013; 4:184. [PMID: 24324459 PMCID: PMC3839095 DOI: 10.3389/fendo.2013.00184] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/10/2013] [Indexed: 02/05/2023] Open
Abstract
Kisspeptin has recently been recognized as a critical regulator of reproductive function in vertebrates. During the sexual development, kisspeptin neurons receive sex steroids feedback to trigger gonadotropin-releasing hormone (GnRH) neurons. In teleosts, a positive correlation has been found between the thyroid status and the reproductive status. However, the role of thyroid hormone in the regulation of kisspeptin system remains unknown. We cloned and characterized a gene encoding kisspeptin (kiss2) in a cichlid fish, the Nile tilapia (Oreochromis niloticus). Expression of kiss2 mRNA in the brain was analyzed by in situ hybridization. The effect of thyroid hormone (triiodothyronine, T3) and hypothyroidism with methimazole (MMI) on kiss2 and the three GnRH types (gnrh1, gnrh2, and gnrh3) mRNA expression was analyzed by real-time PCR. Expression of thyroid hormone receptor mRNAs were analyzed in laser-captured kisspeptin and GnRH neurons by RT-PCR. The kiss2 mRNA expressing cells were seen in the nucleus of the lateral recess in the hypothalamus. Intraperitoneal administration of T3 (5 μg/g body weight) to sexually mature male tilapia significantly increased kiss2 and gnrh1 mRNA levels at 24 h post injection (P < 0.001), while the treatment with an anti-thyroid, MMI (100 ppm for 6 days) significantly reduced kiss2 and gnrh1 mRNA levels (P < 0.05). gnrh2, gnrh3, and thyrotropin-releasing hormone mRNA levels were insensitive to the thyroid hormone manipulations. Furthermore, RT-PCR showed expression of thyroid hormone receptor mRNAs in laser-captured GnRH neurons but not in kiss2 neurons. This study shows that GnRH1 may be directly regulated through thyroid hormone, while the regulation of Kiss2 by T3 is more likely to be indirect.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Kai We Ng
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Xiaoyu Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Priveena Nair Ramadasan
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Mageswary Sivalingam
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Berta Levavi-Sivan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haoran Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar, Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor 46150, Malaysia e-mail:
| |
Collapse
|
109
|
Smith JT. Sex steroid regulation of kisspeptin circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:275-95. [PMID: 23550011 DOI: 10.1007/978-1-4614-6199-9_13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Kisspeptin cells appear to be the "missing link," bridging the divide between levels of gonadal steroids and feedback control of gonadotropin-releasing hormone (GnRH) secretion. Kisspeptin neurons are important in the generation of both sex steroid negative and estrogen positive feedback signals to GnRH neurons, the former being involved in the tonic regulation of GnRH secretion in males and females and the latter governing the preovulatory GnRH/luteinizing hormone (LH) surge in females. In rodents, kisspeptin-producing cells populate the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC), and estrogen regulation of kisspeptin has been extensively studied in these regions. Kisspeptin cells in the ARC appear to receive and forward signals applicable to negative feedback regulation of GnRH. In the female rodent AVPV, kisspeptin cells are important for positive feedback regulation of GnRH and the preovulatory LH surge. In sheep and primates, a rostral population of kisspeptin cells is located in the dorsolateral preoptic area (POA) as well as the ARC. Initial studies showed kisspeptin cells in the latter were involved in both the positive and negative feedback regulation of GnRH. Interestingly, further studies now suggest that kisspeptin cells in the ovine POA may also play an important role in generating estrogen positive feedback. This chapter discusses the current consensus knowledge regarding the interaction between sex steroids and kisspeptin neurons in mammals.
Collapse
Affiliation(s)
- Jeremy T Smith
- Department of Anatomy, Physiology and Human Biology, The University of Western Australia, Nedlands, Perth, WA 6009, Australia.
| |
Collapse
|
110
|
Poling MC, Kauffman AS. Organizational and activational effects of sex steroids on kisspeptin neuron development. Front Neuroendocrinol 2013; 34:3-17. [PMID: 22728025 PMCID: PMC3725275 DOI: 10.1016/j.yfrne.2012.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/17/2012] [Accepted: 06/07/2012] [Indexed: 11/29/2022]
Abstract
Kisspeptin, encoded by the Kiss1 gene, is a neuropeptide required for puberty and adult reproductive function. Understanding the regulation and development of the kisspeptin system provides valuable knowledge about the physiology of puberty and adult fertility, and may provide insights into human pubertal or reproductive disorders. Recent studies, particularly in rodent models, have assessed how kisspeptin neurons develop and how hormonal and non-hormonal factors regulate this developmental process. Exposure to sex steroids (testosterone and estradiol) during critical periods of development can induce organizational (permanent) effects on kisspeptin neuron development, with respect to both sexually dimorphic and non-sexually dimorphic aspects of kisspeptin biology. In addition, sex steroids can also impart activational (temporary) effects on kisspeptin neurons and Kiss1 gene expression at various times during neonatal and peripubertal development, as they do in adulthood. Here, we discuss the current knowledge--and in some cases, lack thereof--of the influence of hormones and other factors on kisspeptin neuronal development.
Collapse
Affiliation(s)
- Matthew C Poling
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
111
|
Abstract
The highly coordinated output of the hypothalamic biological clock does not only govern the daily rhythm in sleep/wake (or feeding/fasting) behaviour but also has direct control over many aspects of hormone release. In fact, a significant proportion of our current understanding of the circadian clock has its roots in the study of the intimate connections between the hypothalamic clock and multiple endocrine axes. This chapter will focus on the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, using a number of different hormone systems as a representative example. Experimental studies have revealed a highly specialised organisation of the connections between the mammalian circadian clock neurons and neuroendocrine as well as pre-autonomic neurons in the hypothalamus. These complex connections ensure a logical coordination between behavioural, endocrine and metabolic functions that will help the organism adjust to the time of day most efficiently. For example, activation of the orexin system by the hypothalamic biological clock at the start of the active phase not only ensures that we wake up on time but also that our glucose metabolism and cardiovascular system are prepared for this increased activity. Nevertheless, it is very likely that the circadian clock present within the endocrine glands plays a significant role as well, for instance, by altering these glands' sensitivity to specific stimuli throughout the day. In this way the net result of the activity of the hypothalamic and peripheral clocks ensures an optimal endocrine adaptation of the metabolism of the organism to its time-structured environment.
Collapse
Affiliation(s)
- Andries Kalsbeek
- Department of Endocrinology and Metabolism, G2-133, Academic Medical Center of the University of Amsterdam, The Netherlands.
| | | |
Collapse
|
112
|
Abstract
The discovery that kisspeptin was critical for normal fertility in humans ushered in a new chapter in our understanding of the control of GnRH secretion. In this paper, we will review recent data on the similarities and differences across several mammalian species in the role of kisspeptin in reproductive neuroendocrinology. In all mammals examined to date, there is strong evidence that kisspeptin plays a key role in the onset of puberty and is necessary for both tonic and surge secretion of GnRH in adults, although kisspeptin-independent systems are also apparent in these studies. Similarly, two groups of kisspeptin neurons, one in the arcuate nucleus (ARC) and the other more rostrally, have been identified in all mammals, although the latter is concentrated in a limited area in rodents and more scattered in other species. Estrogen has divergent actions on kisspeptin expression in these two regions across these species, stimulating it the latter and inhibiting expression in the former. There is also strong evidence that the rostral population participates in the GnRH surge, whereas the ARC population contributes to steroid-negative feedback. There may be species differences in the role of these two populations in puberty, with the ARC cells important in rats, sheep, and monkeys, whereas both have been implicated in mice. ARC kisspeptin neurons also appear to participate in the GnRH surge in sheep and guinea pigs, whereas the data on this possibility in rodents are contradictory. Similarly, both populations are sexually dimorphic in sheep and humans, whereas most data in rodents indicate that this occurs only in the rostral population. The functional consequences of these species differences remain to be fully elucidated but are likely to have significance for understanding normal neuroendocrine control of reproduction as well as for use of kisspeptin agonists/antagonists as a therapeutic tool.
Collapse
Affiliation(s)
- Robert L Goodman
- Department of Physiology, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
113
|
Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 2012; 243:4-20. [PMID: 22766204 DOI: 10.1016/j.expneurol.2012.06.026] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/19/2012] [Accepted: 06/24/2012] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN), site of the primary clock in the circadian rhythm system, has three major afferent connections. The most important consists of a retinohypothalamic projection through which photic information, received by classical rod/cone photoreceptors and intrinsically photoreceptive retinal ganglion cells, gains access to the clock. This information influences phase and period of circadian rhythms. The two other robust afferent projections are the median raphe serotonergic pathway and the geniculohypothalamic (GHT), NPY-containing pathway from the thalamic intergeniculate leaflet (IGL). Beyond this simple framework, the number of anatomical routes that could theoretically be involved in rhythm regulation is enormous, with the SCN projecting to 15 regions and being directly innervated by about 35. If multisynaptic afferents to the SCN are included, the number expands to approximately brain 85 areas providing input to the SCN. The IGL, a known contributor to circadian rhythm regulation, has a still greater level of complexity. This nucleus connects abundantly throughout the brain (to approximately 100 regions) by pathways that are largely bilateral and reciprocal. Few of these sites have been evaluated for their contributions to circadian rhythm regulation, although most have a theoretical possibility of doing so via the GHT. The anatomy of IGL connections suggests that one of its functions may be regulation of eye movements during sleep. Together, neural circuits of the SCN and IGL are complex and interconnected. As yet, few have been tested with respect to their involvement in rhythm regulation.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, NY 11794-8101, USA.
| |
Collapse
|
114
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
115
|
Smarr BL, Morris E, de la Iglesia HO. The dorsomedial suprachiasmatic nucleus times circadian expression of Kiss1 and the luteinizing hormone surge. Endocrinology 2012; 153:2839-50. [PMID: 22454148 PMCID: PMC3359594 DOI: 10.1210/en.2011-1857] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ovulation in mammals is gated by a master circadian clock in the suprachiasmatic nucleus (SCN). GnRH neurons represent the converging pathway through which the brain triggers ovulation, but precisely how the SCN times GnRH neurons is unknown. We tested the hypothesis that neurons expressing kisspeptin, a neuropeptide coded by the Kiss1 gene and necessary for the activation of GnRH cells during ovulation, represent a relay station for circadian information that times ovulation. We first show that the circadian increase of Kiss1 expression, as well as the activation of GnRH cells, relies on intact ipsilateral neural input from the SCN. Second, by desynchronizing the dorsomedial (dm) and ventrolateral (vl) subregions of the SCN, we show that a clock residing in the dmSCN acts independently of the light-dark cycle, and the vlSCN, to time Kiss1 expression in the anteroventral periventricular nucleus of the hypothalamus and that this rhythm is always in phase with the LH surge. In addition, we show that although the timing of the LH surge is governed by the dmSCN, its amplitude likely depends on the phase coherence between the vlSCN and dmSCN. Our results suggest that whereas dmSCN neuronal oscillators are sufficient to time the LH surge through input to kisspeptin cells in the anteroventral periventricular nucleus of the hypothalamus, the phase coherence among dmSCN, vlSCN, and extra-SCN oscillators is critical for shaping it. They also suggest that female reproductive disorders associated with nocturnal shift work could emerge from the desynchronization between subregional oscillators within the master circadian clock.
Collapse
Affiliation(s)
- Benjamin L Smarr
- Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA
| | | | | |
Collapse
|
116
|
Kalló I, Vida B, Deli L, Molnár CS, Hrabovszky E, Caraty A, Ciofi P, Coen CW, Liposits Z. Co-localisation of kisspeptin with galanin or neurokinin B in afferents to mouse GnRH neurones. J Neuroendocrinol 2012; 24:464-76. [PMID: 22129075 DOI: 10.1111/j.1365-2826.2011.02262.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The gonadotrophin-releasing hormone (GnRH) secreting neurones, which form the final common pathway for the central regulation of reproduction, are directly targeted by kisspeptin (KP) via the G protein-coupled receptor, GPR54. In these multiple labelling studies, we used ovariectomised mice treated with 17β-oestradiol (OVX + E(2)) or vehicle (OVX + oil) to determine: (i) the ultrastructural characteristics of KP-immunoreactive (IR) afferents to GnRH neurones; (ii) their galanin or neurokinin B (NKB) content; and (iii) the co-expression of galanin or NKB with KP in the two major subpopulations of KP neurones located in the rostral periventricular area of the third ventricle (RP3V) and the arcuate nucleus (Arc). Electron microscopic investigation of the neuronal juxtapositions revealed axosomatic and axodendritic synapses; these showed symmetrical or asymmetrical characteristics, suggesting a phenotypic diversity of KP afferents. Heterogeneity of afferents was also demonstrated by differential co-expression of neuropeptides; in OVX + E(2) mice, KP afferents to GnRH neurones showed galanin-immunoreactivity with an incidence of 22.50 ± 2.41% and NKB-immunoreactivity with an incidence of 5.61 ± 2.57%. In OVX + oil animals, galanin-immunoreactivity in the KP afferents showed a major reduction, appearing in only 5.78 ± 1.57%. Analysis for co-localisation of galanin or NKB with KP was extended to the perikaryal level in animal models, which showed the highest KP incidence; these were OVX + E(2) females for the RP3V and OVX + oil females for the ARC. In the RP3V of colchicine-treated OVX + E(2) animals, 87.84 ± 2.65% of KP-IR neurones were galanin positive. In the Arc of the colchicine-treated OVX + oil animals, galanin immunoreactivity was detected in only 12.50 ± 1.92% of the KP expressing neurones. By contrast, the incidence of co-localisation with NKB in the Arc of those animals was 98.09 ± 1.30%. In situ hybridisation histochemistry of sections from OVX + E(2) animals identified galanin message in more than a third of the KP neurones in the RP3V (38.67 ± 11.57%) and in the Arc (42.50 ± 12.52%). These data suggest that GnRH neurones are innervated by chemically heterogeneous KP cell populations, with a small proportion deriving from the Arc group. The presence of galanin within KP axons innervating GnRH neurones and the oestrogen-dependent regulation of that presence add a new dimension to the roles played by galanin in the central regulation of reproduction.
Collapse
Affiliation(s)
- I Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Tonsfeldt KJ, Chappell PE. Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol Cell Endocrinol 2012; 349:3-12. [PMID: 21787834 PMCID: PMC3242828 DOI: 10.1016/j.mce.2011.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 07/01/2011] [Accepted: 07/01/2011] [Indexed: 01/24/2023]
Abstract
Recent strides in circadian biology over the last several decades have allowed researchers new insight into how molecular circadian clocks influence the broader physiology of mammals. Elucidation of transcriptional feedback loops at the heart of endogenous circadian clocks has allowed for a deeper analysis of how timed cellular programs exert effects on multiple endocrine axes. While the full understanding of endogenous clocks is currently incomplete, recent work has re-evaluated prior findings with a new understanding of the involvement of these cellular oscillators, and how they may play a role in constructing rhythmic hormone synthesis, secretion, reception, and metabolism. This review addresses current research into how multiple circadian clocks in the hypothalamus and pituitary receive photic information from oscillators within the hypothalamic suprachiasmatic nucleus (SCN), and how resultant hypophysiotropic and pituitary hormone release is then temporally gated to produce an optimal result at the cognate target tissue. Special emphasis is placed not only on neural communication among the SCN and other hypothalamic nuclei, but also how endogenous clocks within the endocrine hypothalamus and pituitary may modulate local hormone synthesis and secretion in response to SCN cues. Through evaluation of a larger body of research into the impact of circadian biology on endocrinology, we can develop a greater appreciation into the importance of timing in endocrine systems, and how understanding of these endogenous rhythms can aid in constructing appropriate therapeutic treatments for a variety of endocrinopathies.
Collapse
Affiliation(s)
- Karen J Tonsfeldt
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | | |
Collapse
|
118
|
Williams WP, Kriegsfeld LJ. Circadian control of neuroendocrine circuits regulating female reproductive function. Front Endocrinol (Lausanne) 2012; 3:60. [PMID: 22661968 PMCID: PMC3356853 DOI: 10.3389/fendo.2012.00060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 04/13/2012] [Indexed: 01/14/2023] Open
Abstract
Female reproduction requires the precise temporal organization of interacting, estradiol-sensitive neural circuits that converge to optimally drive hypothalamo-pituitary-gonadal (HPG) axis functioning. In mammals, the master circadian pacemaker in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus coordinates reproductively relevant neuroendocrine events necessary to maximize reproductive success. Likewise, in species where periods of fertility are brief, circadian oversight of reproductive function ensures that estradiol-dependent increases in sexual motivation coincide with ovulation. Across species, including humans, disruptions to circadian timing (e.g., through rotating shift work, night shift work, poor sleep hygiene) lead to pronounced deficits in ovulation and fecundity. Despite the well-established roles for the circadian system in female reproductive functioning, the specific neural circuits and neurochemical mediators underlying these interactions are not fully understood. Most work to date has focused on the direct and indirect communication from the SCN to the gonadotropin-releasing hormone (GnRH) system in control of the preovulatory luteinizing hormone (LH) surge. However, the same clock genes underlying circadian rhythms at the cellular level in SCN cells are also common to target cell populations of the SCN, including the GnRH neuronal network. Exploring the means by which the master clock synergizes with subordinate clocks in GnRH cells and its upstream modulatory systems represents an exciting opportunity to further understand the role of endogenous timing systems in female reproduction. Herein we provide an overview of the state of knowledge regarding interactions between the circadian timing system and estradiol-sensitive neural circuits driving GnRH secretion and the preovulatory LH surge.
Collapse
Affiliation(s)
- Wilbur P. Williams
- Department of Psychology, Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA
| | - Lance J. Kriegsfeld
- Department of Psychology, Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA
- *Correspondence: Lance J. Kriegsfeld, Neurobiology Laboratory, Department of Psychology, Helen Wills Neuroscience Institute, University of California, 3210 Tolman Hall, #1650, Berkeley, CA 94720-1650, USA. e-mail:
| |
Collapse
|
119
|
Simonneaux V, Bur I, Ancel C, Ansel L, Klosen P. A kiss for daily and seasonal reproduction. PROGRESS IN BRAIN RESEARCH 2012; 199:423-437. [DOI: 10.1016/b978-0-444-59427-3.00024-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
120
|
Abstract
17β-Oestradiol (E(2)) is essential for cyclical gonadotrophin-releasing hormone (GnRH) neuronal activity and secretion. In particular, E(2) increases the excitability of GnRH neurones during the afternoon of pro-oestrus in the rodent, which is associated with increased synthesis and secretion of GnRH. It is well established that E(2) regulates the activity of GnRH neurones through both presynaptic and postsynaptic mechanisms. E(2) significantly modulates the mRNA expression of numerous ion channels in GnRH neurones and alters the associated endogenous conductances, including potassium (K(ATP) , A-type) currents and low-voltage T-type and high-voltage L-type calcium currents. Notably, K(ATP) channels are critical for maintaining GnRH neurones in a hyperpolarised state for recruiting the T-type calcium channels, which are important for burst firing in GnRH neurones. In addition, there are other critical channels contributing to burst firing pattern, including the small conductance Ca(2+) -activated K(+) channels that may be modulated by E(2) . Despite these advances, the cellular mechanisms underlying the cyclical GnRH neuronal activity and GnRH release are largely unknown. Ultimately, the ensemble of both pre- and postsynaptic targets of the actions of E(2) will dictate the excitability and activity pattern of GnRH neurones.
Collapse
Affiliation(s)
- O K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
121
|
Khan AR, Kauffman AS. The role of kisspeptin and RFamide-related peptide-3 neurones in the circadian-timed preovulatory luteinising hormone surge. J Neuroendocrinol 2012; 24:131-43. [PMID: 21592236 PMCID: PMC3384704 DOI: 10.1111/j.1365-2826.2011.02162.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many aspects of female reproduction often require intricate timing, ranging from the temporal regulation of reproductive hormone secretion to the precise timing of sexual behaviour. In particular, in rodents and other species, ovulation is triggered by a surge in pituitary luteinising hormone (LH) secretion that is governed by a complex interaction between circadian signals arising in the hypothalamus and ovarian-derived oestradiol signals acting on multiple brain circuitries. These circadian and hormonal pathways converge to stimulate a precisely-timed surge in gonadotropin-releasing hormone (GnRH) release (i.e. positive-feedback), thereby triggering the preovulatory LH surge. Reflecting its control by afferent circadian signals, the preovulatory LH surge occurs at a specific time of day, typically late afternoon in nocturnal rodents. Although the specific mechanisms mediating the hormonal and circadian regulation of GnRH/LH release have remained poorly understood, recent findings now suggest that oestradiol and circadian signals govern specific reproductive neuropeptide circuits in the hypothalamus, including the newly-identified kisspeptin and RFamide-related peptide (RFRP)-3 neuronal populations. Neurones producing kisspeptin, the protein product of the Kiss1 gene, and RFRP-3 have been shown to provide excitatory and inhibitory input to GnRH neurones, respectively, and are also influenced by sex steroid and circadian signals. In the present review, we integrate classic and recent findings to form a new working model for the neuroendocrine regulation of the circadian-timed preovulatory LH surge in rodents. This model proposes kisspeptin and RFRP-3 neuronal populations as key nodal points for integrating and transducing circadian and hormonal signals to the reproductive axis, thereby governing the precisely-timed LH surge.
Collapse
Affiliation(s)
- Azim R. Khan
- Department of Psychology, University of California, San Diego, La Jolla, CA, 92093
- Center for Chronobiology, University of California, San Diego, La Jolla, CA, 92093
| | - Alexander S. Kauffman
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, 92093
- Center for Chronobiology, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
122
|
Tonsfeldt KJ, Goodall CP, Latham KL, Chappell PE. Oestrogen induces rhythmic expression of the Kisspeptin-1 receptor GPR54 in hypothalamic gonadotrophin-releasing hormone-secreting GT1-7 cells. J Neuroendocrinol 2011; 23:823-30. [PMID: 21756268 PMCID: PMC3243730 DOI: 10.1111/j.1365-2826.2011.02188.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oestrogen-stimulated preovulatory gonadotrophin surges are temporally regulated in a way that remains not fully understood. Mammalian ovulation requires surges of gonadotrophin-releasing hormone (GnRH), released from specialised neurones in the hypothalamus. Surge regulation is mediated by ovarian oestrogen (17 β-oestradiol; E(2) ) feedback-acting as a negative signal until the early afternoon of the pro-oestrous phase, at which point it stimulates robust increases in GnRH release. Multiple lines of evidence suggest a role for the circadian clock in surge generation, although the presence of endogenous oscillators in several neuronal populations throughout the mediobasal hypothalamus complicates an elucidation of the underlying mechanisms of circadian regulation. In the present study, we propose that endogenous oscillators within GnRH neurones are modulated by oestrogen to elicit GnRH surge secretion. One mechanism by which this may occur is through the up-regulation of receptors of known stimulators of GnRH, such as kisspeptin's cognate receptor, GPR54. Through analysis of mRNA and protein abundance patterns, we found that high levels of E(2) elicit circadian expression profiles of GPR54 in vitro, and that disruption of endogenous GnRH oscillators of the clock dampens this effect. Additionally, although kisspeptin administration to GT1-7 cells does not result in surge-level secretion, we observed increased GnRH secretion from GT1-7 cells treated with positive feedback levels of E(2) . These results in this in vitro neuronal model system suggest a possible mechanism whereby receptor expression levels, and thus GnRH sensitivity to kisspeptin, may change dramatically over the pro-oestrous day. In this way, elevated ovarian E(2) may increase kisspeptidergic tone at the same time as increasing GnRH neuronal sensitivity to this neuropeptide for maximal surge release.
Collapse
Affiliation(s)
- K J Tonsfeldt
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
123
|
Ryu BJ, Kim HR, Jeong JK, Lee BJ. Regulation of the female rat estrous cycle by a neural cell-specific epidermal growth factor-like repeat domain containing protein, NELL2. Mol Cells 2011; 32:203-7. [PMID: 21643849 PMCID: PMC3887675 DOI: 10.1007/s10059-011-0086-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022] Open
Abstract
NELL2, a protein containing epidermal growth factor-like repeat domains, is predominantly expressed in the nervous system. In the mammalian brain, NELL2 expression is mostly neuronal. Previously we found that NELL2 is involved in the onset of female puberty by regulating the release of gonadotropin-releasing hormone (GnRH), and in normal male sexual behavior by controlling the development of the sexually dimorphic nucleus of the preoptic area (POA). In this study we investigated the effect of NELL2 on the female rat estrous cycle. NELL2 expression in the POA was highest during the proestrous phase. NELL2 mRNA levels in the POA were increased by estrogen treatment in ovariectomized female rats. Blocking NELL2 synthesis in the female rat hypothalamus decreased the expression of kisspeptin 1, an important regulator of the GnRH neuronal apparatus, and resulted in disruption of the estrous cycle at the diestrous phase. These results indicate that NELL2 is involved in the maintenance of the normal female reproductive cycle in mammals.
Collapse
Affiliation(s)
| | | | | | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| |
Collapse
|
124
|
Xu Z, Kaga S, Tsubomizu J, Fujisaki J, Mochiduki A, Sakai T, Tsukamura H, Maeda KI, Inoue K, Adachi AA. Circadian transcriptional factor DBP regulates expression of Kiss1 in the anteroventral periventricular nucleus. Mol Cell Endocrinol 2011; 339:90-7. [PMID: 21458520 DOI: 10.1016/j.mce.2011.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/09/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
The expression of Kiss1 in the anteroventral periventricular nucleus (AVPV) and its product, metastin/kisspeptin, show a circadian pattern with a peak in the evening, which shows a strong phase relationship with the time of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) surge in rodents. Here we report that a circadian transcriptional factor, albumin D-site binding protein (Dbp), was able to trigger mKiss1 transcription via the D-box, and this effect was combined with those of estrogen receptor α (ERα) and its ligand, estrogen. A histological study demonstrated that some cells in the AVPV co-expressed Dbp with ERα in adult female rats. Expression of ERα was not rhythmic in the AVPV, however, mRNA of Dbp in the AVPV accumulated with a robust diurnal rhythm in proestrus, but not on the first day of diestrus. Thus, these results suggest that Dbp and estrogen regulate the expression of Kiss1 in the AVPV, thereby mediating the GnRH/LH surge.
Collapse
Affiliation(s)
- Zhifang Xu
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|