101
|
Goolam MA, Ward JH, Avlani VA, Leach K, Christopoulos A, Conigrave AD. Roles of intraloops-2 and -3 and the proximal C-terminus in signalling pathway selection from the human calcium-sensing receptor. FEBS Lett 2014; 588:3340-6. [PMID: 25080008 DOI: 10.1016/j.febslet.2014.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/03/2014] [Accepted: 07/16/2014] [Indexed: 12/24/2022]
Abstract
The calcium-sensing receptor (CaSR) couples to signalling pathways via intracellular loops 2 and 3, and the C-terminus. However, the requirements for signalling are largely undefined. We investigated the impacts of selected point mutations in iL-2 (F706A) and iL-3 (L797A and E803A), and a truncation of the C-terminus (R866X) on extracellular Ca(2+) (Ca(2+)o)-stimulated phosphatidylinositol-specific phospholipase-C (PI-PLC) and various other signalling responses. CaSR-mediated activation of PI-PLC was markedly attenuated in all four mutants and similar suppressions were observed for Ca(2+)o-stimulated ERK1/2 phosphorylation. Ca(2+)o-stimulated intracellular Ca(2+) (Ca(2+)i) mobilization, however, was relatively preserved for the iL-2 and iL-3 mutants and suppression of adenylyl cyclase was unaffected by either E803A or R866X. The CaSR selects for specific signalling pathways via the proximal C-terminus and key residues in iL-2, iL-3.
Collapse
Affiliation(s)
- Mahvash A Goolam
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - James H Ward
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - Vimesh A Avlani
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - Katie Leach
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur D Conigrave
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
102
|
Peng X, Li HX, Shao HJ, Li GW, Sun J, Xi YH, Li HZ, Wang XY, Wang LN, Bai SZ, Zhang WH, Zhang L, Yang GD, Wu LY, Wang R, Xu CQ. Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries. Mol Cell Biochem 2014; 396:87-98. [DOI: 10.1007/s11010-014-2145-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022]
|
103
|
Yamamura A, Yamamura H, Yuan JXJ. [Enhanced Ca2+-sensing receptor function in pulmonary hypertension]. YAKUGAKU ZASSHI 2014; 133:1351-9. [PMID: 24292183 DOI: 10.1248/yakushi.13-00228-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive, and fetal disease. The five-year survival rate after diagnosis is ~50%. In Japan, PAH is listed in the Specified Rare and Intractable Diseases. Pulmonary vascular remodeling and sustained pulmonary vasoconstriction are the major causes for the elevated pulmonary vascular resistance (PVR) in PAH. The pathogenic mechanisms involved in the pulmonary vascular abnormalities in PAH remain unclear. Sustained vasoconstriction and vascular remodeling owing to proliferation of pulmonary arterial smooth muscle cells (PASMCs) are key pathogenic events that lead to early morbidity and mortality. These events have been closely linked to Ca(2+) mobilization and signaling in PASMCs. An increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in PASMCs is an important stimulus for pulmonary vasoconstriction and cell proliferation which subsequently cause pulmonary vascular wall thickening followed by the increase in PVR. Increased resting [Ca(2+)]cyt and enhanced Ca(2+) influx have been implicated in PASMCs from PAH patients, but precise therapeutic targets to interrupt these signal pathways have not been identified. We recently found that the extracellular Ca(2+)-sensing receptor (CaSR), a G protein-coupled receptor (GPCR), is upregulated in PASMCs from patients with idiopathic pulmonary arterial hypertension (IPAH). In addition, blockage of the CaSR with an antagonist (NPS2143) prevents the development of pulmonary hypertension and right ventricular hypertrophy in animal models of pulmonary hypertension. The functionally upregulated CaSR in PASMCs is a novel pathogenic mechanism contributing to the augmented Ca(2+) signaling and excessive cell proliferation in IPAH. Targeting CaSR in PASMCs may help develop novel therapeutic approach for PAH.
Collapse
|
104
|
Droste M, Domberg J, Buchfelder M, Mann K, Schwanke A, Stalla G, Strasburger CJ. Therapy of acromegalic patients exacerbated by concomitant type 2 diabetes requires higher pegvisomant doses to normalise IGF1 levels. Eur J Endocrinol 2014; 171:59-68. [PMID: 24913198 DOI: 10.1530/eje-13-0438] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Acromegaly is associated with an increased prevalence of glucose metabolism disorders. Clinically confirmed diabetes mellitus is observed in approximately one quarter of all patients with acromegaly and is known to have a worse prognosis in these patients. DESIGN Of 514 acromegalic patients treated with pegvisomant and recorded in the German Cohort of ACROSTUDY, 147 had concomitant diabetes mellitus. We analysed these patients in an observational study and compared patients with and without concomitant diabetes. RESULTS Under treatment with pegvisomant, patients with diabetes mellitus rarely achieved normalisation (64% in the diabetic cohort vs 75% in the non-diabetic cohort, P=0.04) for IGF1. Diabetic patients normalised for IGF1 required higher pegvisomant doses (18.9 vs 15.5 mg pegvisomant/day, P<0.01). Furthermore, those diabetic patients requiring insulin therapy showed a tendency towards requiring even higher pegvisomant doses to normalise IGF1 values than diabetic patients receiving only oral treatment (22.8 vs 17.2 mg pegvisomant/day, P=0.11). CONCLUSIONS Hence, notable interdependences between the acromegaly, the glucose metabolism of predisposed patients and their treatment with pegvisomant were observed. Our data support recent findings suggesting that intra-portal insulin levels determine the GH receptor expression in the liver underlined by the fact that patients with concomitant diabetes mellitus, in particular those receiving insulin therapy, require higher pegvisomant doses to normalise IGF1. It is therefore important to analyse various therapy modalities to find out whether they influence the associated diabetes mellitus and/or whether the presence of diabetes mellitus influences the treatment results of an acromegaly therapy.
Collapse
Affiliation(s)
- Michael Droste
- Practice for Endocrinology and DiabetesElisenstraße 12, 26122 Oldenburg, GermanyDepartment of NeurosurgeryUniversity of Erlangen-Nürnberg, Erlangen, GermanyDepartment of EndocrinologyUniversity of Duisburg-Essen, Essen, GermanyEndocrine CarePfizer Pharma GmbH, Berlin, GermanyDepartment of EndocrinologyMax-Planck Institute of Psychiatry, Munich, GermanyDepartment of Medicine for EndocrinologyDiabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Domberg
- Practice for Endocrinology and DiabetesElisenstraße 12, 26122 Oldenburg, GermanyDepartment of NeurosurgeryUniversity of Erlangen-Nürnberg, Erlangen, GermanyDepartment of EndocrinologyUniversity of Duisburg-Essen, Essen, GermanyEndocrine CarePfizer Pharma GmbH, Berlin, GermanyDepartment of EndocrinologyMax-Planck Institute of Psychiatry, Munich, GermanyDepartment of Medicine for EndocrinologyDiabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Buchfelder
- Practice for Endocrinology and DiabetesElisenstraße 12, 26122 Oldenburg, GermanyDepartment of NeurosurgeryUniversity of Erlangen-Nürnberg, Erlangen, GermanyDepartment of EndocrinologyUniversity of Duisburg-Essen, Essen, GermanyEndocrine CarePfizer Pharma GmbH, Berlin, GermanyDepartment of EndocrinologyMax-Planck Institute of Psychiatry, Munich, GermanyDepartment of Medicine for EndocrinologyDiabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Mann
- Practice for Endocrinology and DiabetesElisenstraße 12, 26122 Oldenburg, GermanyDepartment of NeurosurgeryUniversity of Erlangen-Nürnberg, Erlangen, GermanyDepartment of EndocrinologyUniversity of Duisburg-Essen, Essen, GermanyEndocrine CarePfizer Pharma GmbH, Berlin, GermanyDepartment of EndocrinologyMax-Planck Institute of Psychiatry, Munich, GermanyDepartment of Medicine for EndocrinologyDiabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Schwanke
- Practice for Endocrinology and DiabetesElisenstraße 12, 26122 Oldenburg, GermanyDepartment of NeurosurgeryUniversity of Erlangen-Nürnberg, Erlangen, GermanyDepartment of EndocrinologyUniversity of Duisburg-Essen, Essen, GermanyEndocrine CarePfizer Pharma GmbH, Berlin, GermanyDepartment of EndocrinologyMax-Planck Institute of Psychiatry, Munich, GermanyDepartment of Medicine for EndocrinologyDiabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Günter Stalla
- Practice for Endocrinology and DiabetesElisenstraße 12, 26122 Oldenburg, GermanyDepartment of NeurosurgeryUniversity of Erlangen-Nürnberg, Erlangen, GermanyDepartment of EndocrinologyUniversity of Duisburg-Essen, Essen, GermanyEndocrine CarePfizer Pharma GmbH, Berlin, GermanyDepartment of EndocrinologyMax-Planck Institute of Psychiatry, Munich, GermanyDepartment of Medicine for EndocrinologyDiabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian J Strasburger
- Practice for Endocrinology and DiabetesElisenstraße 12, 26122 Oldenburg, GermanyDepartment of NeurosurgeryUniversity of Erlangen-Nürnberg, Erlangen, GermanyDepartment of EndocrinologyUniversity of Duisburg-Essen, Essen, GermanyEndocrine CarePfizer Pharma GmbH, Berlin, GermanyDepartment of EndocrinologyMax-Planck Institute of Psychiatry, Munich, GermanyDepartment of Medicine for EndocrinologyDiabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
105
|
Szczawinska D, Schnabel D, Letz S, Schöfl C. A homozygous CaSR mutation causing a FHH phenotype completely masked by vitamin D deficiency presenting as rickets. J Clin Endocrinol Metab 2014; 99:E1146-53. [PMID: 24517148 DOI: 10.1210/jc.2013-3593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Heterozygous inactivating calcium-sensing receptor (CaSR) mutations lead to familial hypocalciuric hypercalcemia (FHH), whereas homozygous mutations usually cause neonatal severe hyperparathyroidism. OBJECTIVE The objective of the study was to investigate the pathophysiological mechanisms of a homozygous inactivating CaSR mutation identified in a 16-year-old female. DESIGN Clinical, biochemical, and genetic analyses of the index patient and her family were performed. Functional capacity of CaSRQ459R and CaSR mutants causing FHH (Q27R, P39A, S417C) or neonatal severe hyperparathyroidism (W718X) was assessed. Activation of the cytosolic calcium pathway and inhibition of PTH-induced cAMP signaling were measured. RESULTS A 16-year-old girl presented with adolescent rickets, vitamin D deficiency, and secondary hyperparathyroidism. Vitamin D treatment unmasked features resembling FHH, and genetic testing revealed a homozygous CaSRQ459R mutation. Two apparently healthy siblings were homozygous for CaSRQ459R and had asymptomatic hypercalcemia and hypocalciuria. The CaSRQ459R mutation leads to mild functional inactivation in vitro, which explains the FHH-like phenotype in homozygous family members and the grossly exaggerated PTH response to vitamin D deficiency in the index case. The patient's parents and two other siblings were heterozygous, had normal serum calcium and PTH, but had marked hypocalciuria, which appeared to be associated with impaired in vitro activation of the calcium signaling pathway by CaSRQ459R. The Q459R mutation responded well to calcimimetic treatment in vitro. CONCLUSION CaSR mutations causing mild functional impairment can lead to FHH, even in homozygous patients. The skeletal deformities in the index case were mainly due to severe vitamin D deficiency, and the CaSR mutation did not appear to have played a major independent role in the skeletal phenotype.
Collapse
Affiliation(s)
- Dorothea Szczawinska
- Division of Endocrinology and Diabetes (D.Sz., S.L., C.S.), Department of Medicine I, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; and Department of Pediatric Endocrinology and Diabetes (D.Sc.), Children's Hospital, Charité-Univerity Medicine Berlin, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
106
|
Jonnalagadda VG, Ram Raju AVS, Pittala S, Shaik A, Selkar NA. The prelude on novel receptor and ligand targets involved in the treatment of diabetes mellitus. Adv Pharm Bull 2014; 4:209-17. [PMID: 24754003 DOI: 10.5681/apb.2014.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/09/2013] [Accepted: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.
Collapse
Affiliation(s)
- Venu Gopal Jonnalagadda
- Shree Dhootapapeshwar Ayurvedic Research Foundation (SDARF), Panvel, Navi Mumbai-410206, Maharastra, India
| | - Allam Venkata Sita Ram Raju
- National Institute of Pharmaceutical Education and Research, Bala Nagar, Hyderabad, Andhra Pradhesh-500037, India
| | - Srinivas Pittala
- CSIR-Institute of Genomics and Integrative Biology, Near Jubilee Hall, Mall Road, Delhi-110 007, India
| | - Afsar Shaik
- Gokula Krishna college of Pharmacy, Sullurpet - 524121, Nellore dist, A.P, India
| | - Nilakash Annaji Selkar
- National Institute for Research in Reproductive Health, Parel, Mumbai-400012, Maharastra, India
| |
Collapse
|
107
|
Martin YN, Pabelick CM. Sex differences in the pulmonary circulation: implications for pulmonary hypertension. Am J Physiol Heart Circ Physiol 2014; 306:H1253-64. [PMID: 24610923 DOI: 10.1152/ajpheart.00857.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pulmonary arterial hypertension (PAH), a form of pulmonary hypertension, is a complex disease of multifactorial origin. While new developments regarding pathophysiological features and therapeutic options in PAH are being reported, one important fact has emerged over the years: there is a sex difference in the incidence of this disease such that while there is a higher incidence in females, disease outcomes are much worse in males. Accordingly, recent attention has been focused on understanding the features of sex differences in the pulmonary circulation and the contributory mechanisms, particularly sex hormones and their role in the pathological and pathophysiological features of PAH. However, to date, there is no clear consensus whether sex hormones (particularly female sex steroids) are beneficial or detrimental in PAH. In this review, we highlight some of the most recent evidence regarding the influence of sex hormones (estrogen, testosterone, progesterone, dehydroepiandrosterone) and estrogen metabolites on key pathophysiological features of PAH such as proliferation, vascular remodeling, vasodilation/constriction, and inflammation, thus setting the stage for research avenues to identify novel therapeutic target for PAH as well as potentially other forms of pulmonary hypertension.
Collapse
Affiliation(s)
- Yvette N Martin
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and
| | | |
Collapse
|
108
|
Thompson DS, Boyne MS, Osmond C, Ferguson TS, Tulloch-Reid MK, Wilks RJ, Barnett AT, Forrester TE. Limitations of fasting indices in the measurement of insulin sensitivity in Afro-Caribbean adults. BMC Res Notes 2014; 7:98. [PMID: 24555815 PMCID: PMC3936907 DOI: 10.1186/1756-0500-7-98] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 02/04/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Insulin sensitivity can be estimated using glucose disposal rate (M) measured during a hyperinsulinemic euglycemic clamp (HEC) or insulin sensitivity index (SI) derived from a frequently sampled intravenous glucose tolerance test (FSIVGTT). The commonly used homeostatic model assessment of insulin resistance (HOMA-IR) which utilizes fasting glucose and insulin has been validated against M across several populations (r = 0.5-0.8). This study sought to validate HOMA-IR against SI and M in an Afro-Caribbean population. FINDINGS Sixty participants completed a 180-minute FSIVGTT and another 50 completed a 150-minute hyperinsulinemic euglycemic clamp. In both groups, HOMA-IR was calculated and anthropometry and body composition using dual energy x-ray absorptiometry (DEXA) were measured.FSIVGTT: The participants were 55% male, age 23.1 ± 0.05 years, BMI 24.8 ± 6.3 kg/m2 and % body fat 25.0 ± 15.2 (mean ± SD). HEC: The participants were 44% male, age 27.3 ± 8.1 years, BMI 23.6 ± 5.0 kg/m2 and % body fat 24.7 ± 14.2 (mean ± SD). While HOMA-IR, SI and M correlated with waist, BMI and % body fat (P-values < 0.01) there were no significant correlations between HOMA-IR with either SI or M-value (P-values > 0.2). CONCLUSIONS In young Afro-Caribbean adults, HOMA-IR compared poorly with other measures of insulin sensitivity. It remains important to determine whether similar findings occur in a more insulin resistant population. However, HOMA-IR correlated with clinical measures of insulin sensitivity (i.e. adiposity), so it may still be useful in epidemiological studies.
Collapse
Affiliation(s)
- Debbie S Thompson
- Tropical Medicine Research Institute, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Michael S Boyne
- Tropical Medicine Research Institute, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Clive Osmond
- Tropical Medicine Research Institute, The University of the West Indies, Mona, Kingston 7, Jamaica
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, UK
| | - Trevor S Ferguson
- Tropical Medicine Research Institute, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Marshall K Tulloch-Reid
- Tropical Medicine Research Institute, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Rainford J Wilks
- Tropical Medicine Research Institute, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Alan T Barnett
- Tropical Medicine Research Institute, The University of the West Indies, Mona, Kingston 7, Jamaica
- Department of Surgery, Radiology, Anesthesia and Intensive Care, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Terrence E Forrester
- Tropical Medicine Research Institute, The University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
109
|
Squires PE, Jones PM, Younis MYG, Hills CE. The calcium-sensing receptor and β-cell function. VITAMINS AND HORMONES 2014; 95:249-67. [PMID: 24559921 DOI: 10.1016/b978-0-12-800174-5.00010-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
In addition to its central role controlling systemic calcium homeostasis, the extracellular calcium-sensing receptor (CaSR) can be found on multiple cell types not associated with controlling plasma calcium. The endocrine pancreas is one such tissue, and it is apparent that the receptor plays an important role in regulating β-cell function. During exocytosis, divalent cations are coreleased with insulin and their concentration within the restricted intercellular compartments of the pancreatic islet increases sufficiently to activate the CaSR on neighboring cells. Acute and chronic activation of the receptor has multiple effects on the β-cell, from increasing cadherin-based cell-cell adhesion to directly altering the expression and function of various potassium and voltage-dependent calcium channels. The promiscuous activation of multiple binding partners improves cell adhesion, cell coupling, and cell-to-cell communication within the islet and is the basis for the effect of the CaSR on β-cell function and improved glucose responsiveness.
Collapse
Affiliation(s)
- Paul E Squires
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| | - Peter M Jones
- Diabetes & Nutritional Sciences Division, School of Medicine, King's College London, London, United Kingdom
| | - Mustafa Y G Younis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Claire E Hills
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
110
|
Bernareggi A, Grata E, Pinorini MT, Conti A. Oral liquid formulation of levothyroxine is stable in breakfast beverages and may improve thyroid patient compliance. Pharmaceutics 2013; 5:621-33. [PMID: 24351573 PMCID: PMC3873683 DOI: 10.3390/pharmaceutics5040621] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022] Open
Abstract
Patients on treatment with levothyroxine (T4) are informed to take this drug in the morning, at least 30 min before having breakfast. A significant decrease of T4 absorption was reported, in fact, when T4 solid formulations are taken with food or coffee. According to preliminary clinical study reports, administration of T4 oral solution appears to be less sensitive to the effect of breakfast beverages on oral bioavailability. In the present study, stability of T4 oral solution added to breakfast beverages was investigated. A 1 mL ampoule of single-dose Tirosint® oral solution (IBSA Farmaceutici Italia, Lodi, Italy) was poured into defined volumes of milk, tea, coffee, and coffee with milk warmed at 50 °C, as well as in orange juice at room temperature. Samples were sequentially collected up to 20 min and analyzed by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The results of the study demonstrated that T4 is stable in all beverages after 20 min incubation. Demonstration of T4 stability is a prerequisite for a thorough evaluation of the effect of breakfast beverages on the bioavailability of T4 given as oral solution and for a better understanding of the reasons underlying a decreased T4 bioavailability administered as solid formulations.
Collapse
Affiliation(s)
- Alberto Bernareggi
- Institut Biochimique SA (IBSA), Centro Insema, Via Cantonale, Manno CH-6928, Switzerland
| | - Elia Grata
- Alpine Foundation for Life Sciences (AFLS), Alpine Institute for Chemistry and Toxicology, Olivone CH-6718, Switzerland; E-Mails: (E.G.); (M.T.P.); (A.C.)
| | - Maria Teresa Pinorini
- Alpine Foundation for Life Sciences (AFLS), Alpine Institute for Chemistry and Toxicology, Olivone CH-6718, Switzerland; E-Mails: (E.G.); (M.T.P.); (A.C.)
| | - Ario Conti
- Alpine Foundation for Life Sciences (AFLS), Alpine Institute for Chemistry and Toxicology, Olivone CH-6718, Switzerland; E-Mails: (E.G.); (M.T.P.); (A.C.)
| |
Collapse
|
111
|
Effect of urinary bisphenolA on androgenic hormones and insulin resistance in preadolescent girls: a pilot study from the Ewha Birth & Growth Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:5737-49. [PMID: 24189184 PMCID: PMC3863869 DOI: 10.3390/ijerph10115737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 11/24/2022]
Abstract
To assess the effect of urinary bisphenol A (BPA) on repeated measurements of androgenic hormones and metabolic indices, we used multivariate analysis of variance (MANOVA) adjusted for potential confounders at baseline. During July to August 2011, 80 preadolescent girls enrolled in the Ewha Birth & Growth Cohort study participated in a follow-up study and then forty-eight of them (60.0%) came back one year later. Baseline levels of estradiol and androstenedione were higher in the BPA group than in the non-BPA group. One year later, girls in the high BPA exposure group showed higher levels of androstenedione, testosterone, estradiol, and insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) index, than those in the other groups (p < 0.05). In MANOVA, estradiol and androstenedione showed significant differences among groups, while dehydroepiandrosterone, insulin, and HOMA-IR showed marginally significant differences. Exposure to BPA may affect endocrine metabolism in preadolescents. However, further investigation is required to elucidate the mechanisms linking BPA with regulation of androgenic hormones.
Collapse
|
112
|
Márquez L, Fuentes J. In vitro characterization of acid secretion in the gilthead sea bream (Sparus aurata) stomach. Comp Biochem Physiol A Mol Integr Physiol 2013; 167:52-8. [PMID: 24126049 DOI: 10.1016/j.cbpa.2013.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 01/19/2023]
Abstract
The gastric acid secretion of juvenile Sparus aurata was characterized in Ussing chambers; secretion rates were determined by a pH-stat method at pH5.50 and bioelectrical parameters were measured in current-clamped tissues. The basal secretion equaled to 535±87nmol·cm(-2)·h(-1). Serosal carbachol 100μM produced an increase (ΔJH(+)) of 725±133nmol·cm(-2)·h(-1) from basal secretion, this effect being inhibited by mucosal omeprazole 100μM. Basal secretion was also sensitive to the combination of serosal forskolin (FK) 10μM+serosal isobutylmethylxanthine (IBMX) 100μM (ΔJH(+)=793±239nmol·cm(-2)·h(-1)); this effect was insensitive to mucosal omeprazole 100mM but inhibited by mucosal bafilomycin A1 100nM. The effect of carbachol proceeded within a few minutes (<10min), whereas the effect of FK+IBMX was gradual, taking 40min to reach the maximum. The addition of mucosal gadolinium (Gd(3+)) 100μM, a potent calcium-sensing receptor (CaR) agonist, stimulated the basal secretion (ΔJH(+)=340±81nmol·cm(-2)·h(-1)). The present results indicate that the acid secretion mechanism in the sea bream stomach is regulated by muscarinic and CaR-like receptors, cAMP is implicated in the signal transduction, and at least two proton pumps, a HK-ATPase and a V-ATPase contribute to acid secretion.
Collapse
Affiliation(s)
- Lorenzo Márquez
- Núcleo de Investigación en Producción Alimentaria/Escuela de Acuicultura, Facultad de Recursos Naturales, Universidad Católica de Temuco, Avda. Rudecindo Ortega 02950, PO Box 15-D, Temuco, Chile.
| | | |
Collapse
|
113
|
Guo Q, Huang JA, Yamamura A, Yamamura H, Zimnicka AM, Fernandez R, Yuan JXJ. Inhibition of the Ca(2+)-sensing receptor rescues pulmonary hypertension in rats and mice. Hypertens Res 2013; 37:116-24. [PMID: 24089267 DOI: 10.1038/hr.2013.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 07/01/2013] [Accepted: 07/31/2013] [Indexed: 11/09/2022]
Abstract
A recent study from our group demonstrated that the Ca(2+)-sensing receptor (CaSR) was upregulated, and the extracellular Ca(2+)-induced increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was enhanced in pulmonary arterial smooth muscle cells from patients with idiopathic pulmonary arterial hypertension and animals with experimental pulmonary hypertension (PH). However, it is unclear whether CaSR antagonists (for example, NPS2143) rescue the development of experimental PH. We tested the rescue effects of NPS2143 in rats with monocrotaline (MCT)-induced PH and mice with chronic hypoxia-induced PH. For the NPS2143 treatment group, rats and mice were i.p. injected with NPS2143 once per day from days 14 to 24. Four weeks after MCT injection or exposure to normobaric hypoxia, the right ventricular (RV) systolic pressure, right heart hypertrophy (RV/LV+S ratio) and RV myocardial fibrosis were rescued or nearly restored to normal levels by NPS2143 treatment. The rescue effects of NPS2143 on experimental PH further support a critical role for the CaSR in the PH mechanism. Therefore, NPS2143 may be a promising potential treatment for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Medicine, Respiratory, Infectious, Emergency and Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-An Huang
- Department of Medicine, Respiratory, Infectious, Emergency and Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Aya Yamamura
- 1] Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Medicine, Institute for Personalized Respiratory Medicine, Chicago, IL, USA [2] Department of Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Hisao Yamamura
- 1] Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Medicine, Institute for Personalized Respiratory Medicine, Chicago, IL, USA [2] Department of Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Adriana M Zimnicka
- 1] Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Medicine, Institute for Personalized Respiratory Medicine, Chicago, IL, USA [2] Department of Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Ruby Fernandez
- 1] Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Medicine, Institute for Personalized Respiratory Medicine, Chicago, IL, USA [2] Department of Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Jason X-J Yuan
- 1] Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Medicine, Institute for Personalized Respiratory Medicine, Chicago, IL, USA [2] Department of Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
114
|
Abstract
Prolonged overproduction of growth hormone, like insulin-like growth factor-1 hypersecretion leads to acromegaly in adults. This is associated with several co-morbidities and increased mortality. Despite typical clinical features and modern diagnostic tools, it often takes years to diagnose from the onset of the disease. The aims of the treatment are to reduce or control tumour growth, inhibit growth hormone hypersecretion, normalize insulin-like growth factor-1 levels, treat co-morbidities and, therefore, reduce mortality. There are three approaches for therapy: surgery, medical management (dopamine agonists, somatostatin analogues and growth hormone receptor antagonist), and radiotherapy. Efficient therapy of the disease is based on the appropriate multidisciplinary team management. The review provides a summary of medical treatment for acromegaly.
Collapse
Affiliation(s)
- Miklós Góth
- Magyar Honvédség Egészségügyi Központ II. Belgyógyászati Osztály, Endokrinológiai Szakprofil Budapest Podmaniczky u. 111. 1062
| |
Collapse
|
115
|
Willard SS, Koochekpour S. Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci 2013; 9:948-59. [PMID: 24155668 PMCID: PMC3805900 DOI: 10.7150/ijbs.6426] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/11/2013] [Indexed: 12/23/2022] Open
Abstract
Glutamate is a nonessential amino acid, a major bioenergetic substrate for proliferating normal and neoplastic cells, and an excitatory neurotransmitter that is actively involved in biosynthetic, bioenergetic, metabolic, and oncogenic signaling pathways. Glutamate signaling activates a family of receptors consisting of metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs), both of which have been implicated in chronic disabling brain disorders such as Schizophrenia and neurodegenerative diseases like Alzheimer's, Parkinson's, and multiple sclerosis. In this review, we discuss the structural and functional relationship of mGluRs and iGluRs and their downstream signaling pathways. The three groups of mGluRs, the associated second messenger systems, and subsequent activation of PI3K/Akt, MAPK, NFkB, PLC, and Ca/CaM signaling systems will be discussed in detail. The current state of human mGluR1a as one of the most important isoforms of Group I-mGluRs will be highlighted. The lack of studies on the human orthologues of mGluRs family will be outlined. We conclude that upon further study, human glutamate-initiated signaling pathways may provide novel therapeutic opportunities for a variety of non-malignant and malignant human diseases.
Collapse
Affiliation(s)
- Stacey S Willard
- Departments of Cancer Genetics and Urology, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, USA
| | | |
Collapse
|
116
|
Jouret F, Wu J, Hull M, Rajendran V, Mayr B, Schöfl C, Geibel J, Caplan MJ. Activation of the Ca²+-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane. J Cell Sci 2013; 126:5132-42. [PMID: 24013548 DOI: 10.1242/jcs.127555] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Ca(2+)-sensing receptor (CaSR) belongs to the G-protein-coupled receptor superfamily and plays essential roles in divalent ion homeostasis and cell differentiation. Because extracellular Ca(2+) is essential for the development of stable epithelial tight junctions (TJs), we hypothesized that the CaSR participates in regulating TJ assembly. We first assessed the expression of the CaSR in Madin-Darby canine kidney (MDCK) cells at steady state and following manipulations that modulate TJ assembly. Next, we examined the effects of CaSR agonists and antagonists on TJ assembly. Immunofluorescence studies indicate that endogenous CaSR is located at the basolateral pole of MDCK cells. Stable transfection of human CaSR in MDCK cells further reveals that this protein co-distributes with β-catenin on the basolateral membrane. Switching MDCK cells from low-Ca(2+) medium to medium containing a normal Ca(2+) concentration significantly increases CaSR expression at both the mRNA and protein levels. Exposure of MDCK cells maintained in low-Ca(2+) conditions to the CaSR agonists neomycin, Gd(3+) or R-568 causes the transient relocation of the tight junction components ZO-1 and occludin to sites of cell-cell contact, while inducing no significant changes in the expression of mRNAs encoding junction-associated proteins. Stimulation of CaSR also increases the interaction between ZO-1 and the F-actin-binding protein I-afadin. This effect does not involve activation of the AMP-activated protein kinase. By contrast, CaSR inhibition by NPS-2143 significantly decreases interaction of ZO-1 with I-afadin and reduces deposition of ZO-1 at the cell surface following a Ca(2+) switch from 5 µM to 200 µM [Ca(2+)]e. Pre-exposure of MDCK cells to the cell-permeant Ca(2+) chelator BAPTA-AM, similarly prevents TJ assembly caused by CaSR activation. Finally, stable transfection of MDCK cells with a cDNA encoding a human disease-associated gain-of-function mutant form of the CaSR increases the transepithelial electrical resistance of these cells in comparison to expression of the wild-type human CaSR. These observations suggest that the CaSR participates in regulating TJ assembly.
Collapse
Affiliation(s)
- François Jouret
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Caltabiano S, Dollery CT, Hossain M, Kurtinecz MT, Desjardins JP, Favus MJ, Kumar R, Fitzpatrick LA. Characterization of the effect of chronic administration of a calcium-sensing receptor antagonist, ronacaleret, on renal calcium excretion and serum calcium in postmenopausal women. Bone 2013; 56:154-62. [PMID: 23756230 DOI: 10.1016/j.bone.2013.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/25/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Ronacaleret is an orally-active calcium-sensing receptor (CaSR) antagonist that has the potential for therapeutic utility in the stimulation of PTH release, notably as a bone anabolic agent comparable to recombinant human PTH(1-34) (rhPTH(1-34)). A recent study has shown that, despite the ability to increase circulating PTH levels in postmenopausal women in a dose-dependent manner, minimal effects of ronacaleret on bone mineral density have been observed. Therefore, the purpose of this study was to characterize the PTH profile as well as calcium metabolism parameters as a marker of PTH biological activity following the administration of ronacaleret or rhPTH(1-34). Administration of ronacaleret led to lower peak levels of PTH than were observed with rhPTH(1-34), however, greater total PTH exposure was observed. Further, chronic administration of either agent was associated with increases in urinary calcium excretion and serum calcium levels, with the magnitude of the changes following ronacaleret significantly greater than that for rhPTH(1-34). The greater magnitude of effects observed with ronacaleret is likely due to the greater total PTH exposure, and is potentially reflective of a state comparable to mild hyperparathyroidism. It is not clear whether the administration of all calcilytics would lead to a similar result, or is due to characteristics specific to ronacaleret.
Collapse
|
118
|
Gu Q, Vysotskaya ZV, Moss CR, Kagira MK, Gilbert CA. Calcium-sensing receptor in rat vagal bronchopulmonary sensory neurons regulates the function of the capsaicin receptor TRPV1. Exp Physiol 2013; 98:1631-42. [PMID: 23913765 DOI: 10.1113/expphysiol.2013.074633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Extracellular calcium-sensing receptor (CaSR) has been known to play a critical role in the maintainance of systemic Ca(2+) homeostasis. Recent studies have shown that CaSR is also expressed in many tissues that are not directly related to plasma Ca(2+) regulation, such as the central and peripheral nervous system, where the function of this receptor remains to be defined. In this study, we aimed to investigate the expression of CaSR and its potential interaction with transient receptor potential vanilloid receptor type 1 (TRPV1) in rat vagal bronchopulmonary sensory neurons. Our immunohistochemical experiments demonstrated the expression of CaSR in these sensory neurons as well as in trachea and lung parenchyma. Results from our whole-cell patch-clamp recordings in isolated neurons showed that strong activation of CaSR with high concentrations of its agonists, including spermine, NPS R-568 and Ca(2+), inhibited the capsaicin-evoked whole-cell inward current. Blockade of CaSR with its antagonists NPS 2390 and NPS 2143 significantly enhanced the capsaicin-evoked TRPV1 current. These data suggest that CaSR is likely to be involved in the integration of primary bronchopulmonary sensory inputs in physiological and/or pathophysiological conditions.
Collapse
Affiliation(s)
- Qihai Gu
- Q. Gu: Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA 31207, USA.
| | | | | | | | | |
Collapse
|
119
|
Fleseriu M, Petersenn S. New avenues in the medical treatment of Cushing's disease: corticotroph tumor targeted therapy. J Neurooncol 2013; 114:1-11. [PMID: 23673515 PMCID: PMC3724972 DOI: 10.1007/s11060-013-1151-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/06/2013] [Indexed: 01/23/2023]
Abstract
Cushing's disease (CD) is a condition of chronic hypercortisolism caused by an adrenocorticotropic hormone-secreting pituitary adenoma. First-line transsphenoidal surgery is not always curative and disease sometimes recurs. Radiotherapy often requires months or years to be effective, and is also not curative in many cases. Consequently, effective medical therapies for patients with CD are needed. Corticotroph adenomas frequently express both dopamine (D2) and somatostatin receptors (predominantly sstr5). Pasireotide, a somatostatin analog with high sstr5 binding affinity, has shown urinary free cortisol (UFC) reductions in most patients with CD in a large phase 3 trial, with UFC normalization and tumor shrinkage in a subset of patients. Adverse events were similar to other somatostatin analogs, with the exception of the degree and severity of hyperglycemia. Two small trials (one prospective and one retrospective) have suggested that cabergoline, a D2 receptor agonist, could be effective in normalizing UFC, but current long-term data results are conflicting. Combination treatment with pasireotide plus cabergoline and the adrenal steroidogenesis inhibitor ketoconazole has been successful, but further investigation in larger trials is necessary. Retinoic acid also showed interesting results in a recent very small prospective study. Glucocorticoid receptor blockade with mifepristone has recently demonstrated improvement in signs and symptoms of Cushing's and glycemic control; however, this modality does not address the etiology of the disease and has inherent adverse events related to its mechanism of action. Pituitary-targeted medical therapies will soon play a more prominent role in treating CD, and may potentially become first-line medical therapy when surgery fails or is contraindicated.
Collapse
Affiliation(s)
- Maria Fleseriu
- Departments of Medicine and Neurological Surgery, and Northwest Pituitary Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
120
|
Wauson EM, Lorente-Rodríguez A, Cobb MH. Minireview: Nutrient sensing by G protein-coupled receptors. Mol Endocrinol 2013; 27:1188-97. [PMID: 23820899 DOI: 10.1210/me.2013-1100] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that recognize molecules in the extracellular milieu and transmit signals inside cells to regulate their behaviors. Ligands for many GPCRs are hormones or neurotransmitters that direct coordinated, stereotyped adaptive responses. Ligands for other GPCRs provide information to cells about the extracellular environment. Such information facilitates context-specific decision making that may be cell autonomous. Among ligands that are important for cellular decisions are amino acids, required for continued protein synthesis, as metabolic starting materials and energy sources. Amino acids are detected by a number of class C GPCRs. One cluster of amino acid-sensing class C GPCRs includes umami and sweet taste receptors, GPRC6A, and the calcium-sensing receptor. We have recently found that the umami taste receptor heterodimer T1R1/T1R3 is a sensor of amino acid availability that regulates the activity of the mammalian target of rapamycin. This review focuses on an array of findings on sensing amino acids and sweet molecules outside of neurons by this cluster of class C GPCRs and some of the physiologic processes regulated by them.
Collapse
Affiliation(s)
- Eric M Wauson
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9041, USA
| | | | | |
Collapse
|
121
|
Conigrave AD, Ward DT. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 2013; 27:315-31. [PMID: 23856262 DOI: 10.1016/j.beem.2013.05.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism.
Collapse
Affiliation(s)
- Arthur D Conigrave
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
122
|
Breitwieser GE. The calcium sensing receptor life cycle: trafficking, cell surface expression, and degradation. Best Pract Res Clin Endocrinol Metab 2013; 27:303-13. [PMID: 23856261 DOI: 10.1016/j.beem.2013.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The calcium-sensing receptor (CaSR) must function in the chronic presence of agonist, and recent studies suggest that its ability to signal under such conditions depends upon the unique mechanism(s) regulating its cellular trafficking. This chapter will highlight the evidence supporting an intracellular endoplasmic reticulum-localized pool of CaSR that can be mobilized to the plasma membrane by CaSR signaling, leading to agonist-driven insertional signaling (ADIS). I summarize evidence for the role of small GTP binding proteins (Rabs, Sar1 and ARFs), cargo receptors or chaperones (p24A, RAMPs) and interacting proteins (14-3-3 proteins, calmodulin) in anterograde trafficking of CaSR, and discuss the potential signaling specializations arising from CaSR interactions with caveolins or Filamin A/Rho. Finally, I summarize current knowledge about CaSR endocytosis and degradation by both the proteasome and lysosome, and highlight recent studies indicating that defective trafficking of CaSR or interacting protein mutants contributes to pathology in disorders of calcium homeostasis.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Weis Center for Research, Geisinger Clinic, 100 N. Academy Avenue, Danville, PA 17822-2604, USA.
| |
Collapse
|
123
|
Abstract
Maintaining a constant level of blood Ca(2+) is essential because of calcium's myriad intracellular and extracellular roles. The CaSR plays key roles in maintaining [Formula: see text] homeostasis by detecting small changes in blood Ca(2+) and modulating the production/secretion of the Ca(2+)-regulating hormones, PTH, CT, FGF23 and 1,25(OH)2D3, so as to appropriately regulate Ca(2+) transport into or out of blood via kidney, intestine, and/or bone. When Ca(2+) is high, the CaSR suppresses PTH synthesis and secretion, promotes its degradation, and inhibits parathyroid cellular proliferation. It has just the opposite effects on the C-cell, stimulating CT when [Formula: see text] is high. In bone, Ca(2+), acting via the CaSR, stimulates recruitment and proliferation of preosteoblasts, their differentiation to mature osteoblasts, and synthesis and mineralization of bone proteins. Conversely, [Formula: see text] inhibits the formation and activity and promotes apoptosis of osteoclasts, likely via the CaSR. These actions tend to mobilize skeletal Ca(2+) during [Formula: see text] deficiency and retain it when Ca(2+) is plentiful.
Collapse
Affiliation(s)
- Edward M Brown
- Division of Endocrinology, Diabetes and Hypertension, EBRC 223A, Brigham and Women's Hospital, 221 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
124
|
Avlani VA, Ma W, Mun HC, Leach K, Delbridge L, Christopoulos A, Conigrave AD. Calcium-sensing receptor-dependent activation of CREB phosphorylation in HEK293 cells and human parathyroid cells. Am J Physiol Endocrinol Metab 2013; 304:E1097-104. [PMID: 23531616 DOI: 10.1152/ajpendo.00054.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to its acute effects on hormone secretion, epithelial transport, and shape change, the calcium-sensing receptor (CaSR) modulates the expression of genes that control cell survival, proliferation, and differentiation as well as the synthesis of peptide hormones and enzymes. In the present study, we investigated the impacts of a CaSR agonist and several CaSR modulators on phosphorylation of transcription factor CREB residue Ser(133) in CaSR-expressing HEK293 (HEK-CaSR) cells and human adenomatous parathyroid cells. Elevated Ca(2+)o concentration had no effect on CREB phosphorylation (p-CREB) in control HEK293 cells but stimulated p-CREB in both HEK-CaSR cells and human parathyroid cells. In addition, p-CREB was stimulated by the positive modulator cinacalcet and inhibited by the negative modulator NPS 2143 in both CaSR-expressing cell types. Two positive modulators that bind in the receptor's Venus Fly Trap domain, l-phenylalanine and S-methylglutathione, had no effect on p-CREB in HEK-CaSR cells, demonstrating the existence of pronounced signaling bias. Analysis of the signaling pathways using specific inhibitors demonstrated that phosphoinositide-specific phospholipase C and conventional protein kinase C isoforms make major contributions to Ca(2+)o-induced p-CREB in both cell-types, suggesting key roles for Gq/11. In addition, in parathyroid cells but not HEK-CaSR cells, activation of p-CREB was dependent on Gi/o, demonstrating the existence of cell type-specific signaling.
Collapse
Affiliation(s)
- Vimesh A Avlani
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
125
|
Cohen G, Raupachova J, Borchhardt K, Hörl WH. Cinacalcet effect on polymorphonuclear leucocytes of kidney transplant patients. Eur J Clin Invest 2013; 43:476-82. [PMID: 23521420 DOI: 10.1111/eci.12075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/26/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Polymorphonuclear leucocytes (PMNLs) play a key role in the nonspecific immune defence. Cinacalcet reduces serum calcium levels in kidney transplant recipients with mineral bone disorder associated with chronic kidney disease. We investigated essential functions of PMNLs of kidney transplant recipients with and without hypercalcaemia and with and without cinacalcet therapy. SUBJECTS AND METHODS Oxidative burst, phagocytosis, apoptosis and intracellular calcium concentrations of PMNLs from normocalcaemic kidney transplant patients without (KT-NC) or with cinacalcet intake (KT-NC/CI), hypercalcaemic kidney transplant patients (KT-HC) and healthy subjects (HS) were investigated. RESULTS Stimulation of oxidative burst of PMNLs from KT-HC patients by phorbol-12-myristate-13-acetate or Escherichia coli was significantly attenuated compared with PMNLs from KT-NC, KT-NC/CI and HS. Apoptosis of PMNLs from KT-HC patients was significantly decreased compared with cells from KT-NC, KT-NC/CI and HS. Apoptosis correlated significantly with serum calcium concentrations. Intracellular calcium concentrations and phagocytosis of PMNLs did not differ between groups. CONCLUSIONS Our data indicate that stimulation of PMNL oxidative burst and apoptosis is significantly diminished in kidney transplant patients with hypercalcaemia, while kidney transplant patients with serum calcium levels normalized by cinacalcet have normal PMNL functions despite immunosuppressive therapy.
Collapse
Affiliation(s)
- Gerald Cohen
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
126
|
Park SY, Mun HC, Eom YS, Baek HL, Jung TS, Kim CH, Hong S, Lee S. Identification and characterization of D410E, a novel mutation in the loop 3 domain of CASR, in autosomal dominant hypocalcemia and a therapeutic approach using a novel calcilytic, AXT914. Clin Endocrinol (Oxf) 2013; 78:687-93. [PMID: 23009664 DOI: 10.1111/cen.12056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/06/2012] [Accepted: 09/19/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Activating mutations of the calcium-sensing receptor (CASR) gene are associated with autosomal dominant hypocalcemia (ADH) characterized by benign hypocalcemia, inappropriately low (PTH) levels and mostly hypercalciuria. Herein, we report a novel activating mutation in the CASR gene in a Korean family with ADH. METHOD The CASR gene was sequenced in the patient with ADH. The identified mutations were also evaluated in the patient's family members by PCR-based sequencing. For functional studies, we examined phosphorylation of ERK1/2. In addition, intracellular Ca(2+) mobilization and the effects of the calcilytic, AXT914 were measured using fluorophore Fura-2 dye. RESULT Direct sequencing analysis of the CASR gene showed that the proband and her daughter possess a novel mutation c.1230T>A, resulting in a D410E missense mutation on exon 4 of the CASR gene. Escalation of the extracellular Ca(2+) concentration resulted in stronger phosphorylation of ERK1/2 and higher levels of intracellular Ca(2+) in HEK293 cells expressing mutant CASR, compared with wild-type CASR. The increase in intracellular Ca(2+) signalling via CASR was successively blunted by treatment with AXT914. CONCLUSIONS Over 60 activating mutations in the CASR gene have been identified to cause ADH so far. Here, we add one more activating mutation that causes ADH. The novel activating mutation (D410E) occurred in the loop 3 region of CASR, where its function was believed to be of little importance; therefore, this mutation may be of interest. Further clinical study will be needed to validate the effectiveness of calcilytics in treatment of ADH in vivo.
Collapse
Affiliation(s)
- So Young Park
- Department of Internal Medicine, Cheil General Hospital, Kwandong University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
127
|
LPS induces cardiomyocyte injury through calcium-sensing receptor. Mol Cell Biochem 2013; 379:153-9. [PMID: 23564188 PMCID: PMC3666124 DOI: 10.1007/s11010-013-1637-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/28/2013] [Indexed: 12/18/2022]
Abstract
Calcium-sensing receptor (CaSR) belongs to the family C of G-protein coupled receptors. We have previously demonstrated that CaSR could induce apoptosis of cultured neonatal rat ventricular cardiomyocytes in simulated ischemia/reperfusion. It remains unknown whether the CaSR has function in lipopolysaccharide (LPS)-induced myocardial injure. The aim of this study was to investigate whether the CaSR plays a role in LPS-induced myocardial injury. Cultured neonatal rat cardiomyocytes were treated with LPS, with or without pretreatment with the CaSR-specific agonist gadolinium chloride (GdCl3) or the CaSR-specific antagonist NPS2390. Release of TNF-α and IL-6 from cardiomyocytes was observed. Levels of malonaldehyde (MDA), lactate dehydrogenase (LDH), and activity of superoxide dismutase (SOD) were measured. In addition, apoptosis of the cardiomyocytes, [Ca(2+)]i and level of CaSR expression were determined. The results showed that LPS increased cardiomyocytes apoptosis, [Ca(2+)]i, MDA, LDH, TNF-α, IL-6 release, and CaSR protein expression. Compared with LPS treatment alone, pretreatment with GdCl3 further increased apoptosis of cardiomyocytes, MDA, LDH, TNF-α, IL-6 release, [Ca(2+)]i, and the expression of the CaSR protein. Conversely, pretreatment with NPS2390 decreased apoptosis of cardiomyocytes, MDA, LDH, TNF-α, IL-6 release, [Ca(2+)]i and the expression of the CaSR protein. These results demonstrate that LPS could induce cardiomyocyte injury. Moreover, LPS-induced cardiomyocyte injury was related to CaSR-mediated cardiomyocytes apoptosis, TNF-α, IL-6 release, and increase of intracellular calcium.
Collapse
|
128
|
Lu'o'ng KVQ, Nguyen LTH. The role of vitamin D in Alzheimer's disease: possible genetic and cell signaling mechanisms. Am J Alzheimers Dis Other Demen 2013; 28:126-36. [PMID: 23322908 PMCID: PMC10852937 DOI: 10.1177/1533317512473196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly individuals and is associated with progressive memory loss and cognitive dysfunction. A significant association between AD and low levels of vitamin D has been demonstrated. Furthermore, vitamin D supplements appear to have a beneficial clinical effect on AD by regulating micro-RNA, enhancing toll-like receptors, modulating vascular endothelial factor expression, modulating angiogenin, and advanced glycation end products. Vitamin D also exerts its effects on AD by regulating calcium-sensing receptor expression, enhancing amyloid-β peptides clearance, interleukin 10, downregulating matrix metalloproteinases, upregulating heme oxygenase 1, and suppressing the reduced form of nicotinamide adenine dinucleotide phosphate expression. In conclusion, vitamin D may play a beneficial role in AD. Calcitriol is the best vitamin D supplement for AD, because it is the active form of the vitamin D3 metabolite and modulates inflammatory cytokine expression. Therefore, further investigation of the role of calcitriol in AD is needed.
Collapse
Affiliation(s)
- Khanh Vinh Quoc Lu'o'ng
- Vietnamese American Medical Research Foundation, 14971 Brookhurst St. Westminster, CA 92683, USA.
| | | |
Collapse
|
129
|
Vita R, Saraceno G, Trimarchi F, Benvenga S. A novel formulation of L-thyroxine (L-T4) reduces the problem of L-T4 malabsorption by coffee observed with traditional tablet formulations. Endocrine 2013; 43:154-60. [PMID: 22932947 DOI: 10.1007/s12020-012-9772-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023]
Abstract
The purpose of this work is to evaluate if the coffee-associated malabsorption of tablet levothyroxine (L-T4) is reduced by soft gel capsule. We recruited 8 patients with coffee-associated L-T4 malabsorption including one hypothyroid patient. For 6 months, the patients were switched to the capsule maintaining the L-T4 daily dose. Patients took the capsule with water, having coffee 1 h later (proper habit, PH) on days 1-90, or with coffee ≤ 5 min later (improper habit, IH) on days 91-180. After 6 months, 2 patients volunteered for an acute loading test of 600 μg L-T4 (capsule) ingested with water (PH) or with coffee (IH). In the single hypothyroid patient, the post-switch TSH ranged 0.06-0.16 mU/L (PH) versus 5.8-22.4 mU/L pre-switch (PH) and 0.025-0.29 mU/L (IH) versus 26-34 mU/L pre-switch (IH). In the other 7 patients, post-switch TSH was 0.41 ± 0.46 (PH) versus 0.28 ± 0.20 pre-switch (PH) (P = 0.61) and 0.34 ± 0.30 (IH) versus 1.23 ± 1.47 pre-switch (IH) (P < 0.001). Importantly, TSH levels in PH versus IH habit did not differ post-switch (P = 0.90), but they did pre-switch (P < 0.0001). The proportions of post-switch TSH levels <0.10 mU/L with PH (33.3 %) or with IH (33.3 %) were borderline significantly greater than the corresponding pre-switch levels with PH (10.3 %) (P = 0.088) or with IH (0 %) (P = 0.0096). In the two volunteers, the L-T4 loading test showed that coffee influenced L-T4 pharmacokinetics minimally. Soft gel capsules can be used in patients who are unable/unwilling to change their IH of taking L-T4.
Collapse
Affiliation(s)
- Roberto Vita
- Section of Endocrinology, Department of Clinical and Experimental Medicine & Pharmacology, University of Messina, A.O.U. Policlinico G. Martino, Viale Gazzi Padiglione H, 4 piano, 98125, Messina, Italy.
| | | | | | | |
Collapse
|
130
|
Peterlik M, Kállay E, Cross HS. Calcium nutrition and extracellular calcium sensing: relevance for the pathogenesis of osteoporosis, cancer and cardiovascular diseases. Nutrients 2013; 5:302-27. [PMID: 23340319 PMCID: PMC3571650 DOI: 10.3390/nu5010302] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 02/07/2023] Open
Abstract
Through a systematic search in Pubmed for literature, on links between calcium malnutrition and risk of chronic diseases, we found the highest degree of evidence for osteoporosis, colorectal and breast cancer, as well as for hypertension, as the only major cardiovascular risk factor. Low calcium intake apparently has some impact also on cardiovascular events and disease outcome. Calcium malnutrition can causally be related to low activity of the extracellular calcium-sensing receptor (CaSR). This member of the family of 7-TM G-protein coupled receptors allows extracellular Ca2+ to function as a "first messenger" for various intracellular signaling cascades. Evidence demonstrates that Ca2+/CaSR signaling in functional linkage with vitamin D receptor (VDR)-activated pathways (i) promotes osteoblast differentiation and formation of mineralized bone; (ii) targets downstream effectors of the canonical and non-canonical Wnt pathway to inhibit proliferation and induce differentiation of colorectal cancer cells; (iii) evokes Ca2+ influx into breast cancer cells, thereby activating pro-apoptotic intracellular signaling. Furthermore, Ca2+/CaSR signaling opens Ca2+-sensitive K+ conductance channels in vascular endothelial cells, and also participates in IP(3)-dependent regulation of cytoplasmic Ca2+, the key intermediate of cardiomyocyte functions. Consequently, impairment of Ca2+/CaSR signaling may contribute to inadequate bone formation, tumor progression, hypertension, vascular calcification and, probably, cardiovascular disease.
Collapse
Affiliation(s)
- Meinrad Peterlik
- Department of Pathophysiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | | | | |
Collapse
|
131
|
Kohl S, Behrens M, Dunkel A, Hofmann T, Meyerhof W. Amino acids and peptides activate at least five members of the human bitter taste receptor family. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:53-60. [PMID: 23214402 DOI: 10.1021/jf303146h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Amino acids and peptides represent important flavor molecules eliciting various taste sensations. Here, we present a comprehensive assessment of the interaction of various peptides and all proteinogenic amino acids with the 25 human TAS2Rs expressed in cell lines. L-Phenylalanine and L-tryptophan activate TAS2R1 and TAS2R4, respectively, whereas TAS2R4 and TAS2R39 responded to D-tryptophan. Structure-function analysis uncovered the basis for the lack of stereoselectivity of TAS2R4. The same three TAS2Rs or subsets thereof were also sensitive to various dipeptides containing L-tryptophan, L-phenylalanine, or L-leucine and to Trp-Trp-Trp, whereas Leu-Leu-Leu specifically activated TAS2R4. Trp-Trp-Trp also activated TAS2R46 and TAS2R14. Two key bitter peptides from Gouda cheese, namely, Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn-Ser and Leu-Val-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn, both activated TAS2R1 and TAS2R39. Thus, the data demonstrate that the bitterness of amino acids and peptides is not mediated by specifically tuned TAS2Rs but rather is brought about by an unexpectedly complex pattern of sensitive TAS2Rs.
Collapse
Affiliation(s)
- Susann Kohl
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | | | | | | | | |
Collapse
|
132
|
Yamamura A, Yamamura H, Guo Q, Zimnicka AM, Wan J, Ko EA, Smith KA, Pohl NM, Song S, Zeifman A, Makino A, Yuan JXJ. Dihydropyridine Ca(2+) channel blockers increase cytosolic [Ca(2+)] by activating Ca(2+)-sensing receptors in pulmonary arterial smooth muscle cells. Circ Res 2013; 112:640-50. [PMID: 23300272 DOI: 10.1161/circresaha.113.300897] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC proliferation and pulmonary vascular remodeling. The dihydropyridine Ca(2+) channel blockers, such as nifedipine, have been used for treatment of idiopathic pulmonary arterial hypertension (IPAH). OBJECTIVE Our previous study demonstrated that the Ca(2+)-sensing receptor (CaSR) was upregulated and the extracellular Ca(2+)-induced increase in [Ca(2+)](cyt) was enhanced in PASMC from patients with IPAH and animals with experimental pulmonary hypertension. Here, we report that the dihydropyridines (eg, nifedipine) increase [Ca(2+)](cyt) by activating CaSR in PASMC from IPAH patients (in which CaSR is upregulated), but not in normal PASMC. METHODS AND RESULTS The nifedipine-mediated increase in [Ca(2+)](cyt) in IPAH-PASMC was concentration dependent with a half maximal effective concentration of 0.20 µmol/L. Knockdown of CaSR with siRNA in IPAH-PASMC significantly inhibited the nifedipine-induced increase in [Ca(2+)](cyt), whereas overexpression of CaSR in normal PASMC conferred the nifedipine-induced rise in [Ca(2+)](cyt). Other dihydropyridines, nicardipine and Bay K8644, had similar augmenting effects on the CaSR-mediated increase in [Ca(2+)](cyt) in IPAH-PASMC; however, the nondihydropyridine blockers, such as diltiazem and verapamil, had no effect on the CaSR-mediated rise in [Ca(2+)](cyt). CONCLUSIONS The dihydropyridine derivatives increase [Ca(2+)](cyt) by potentiating the activity of CaSR in PASMC independently of their blocking (or activating) effect on Ca(2+) channels; therefore, it is possible that the use of dihydropyridine Ca(2+) channel blockers (eg, nifedipine) to treat IPAH patients with upregulated CaSR in PASMC may exacerbate pulmonary hypertension.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy Medicine and Department of Pharmacology, Institute for Personalized Respiratory Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Melcescu E, Gannon AW, Parent AD, Fratkin JF, Nicholas WC, Koch CA, Galhom A. Silent or Subclinical Corticotroph Pituitary Macroadenoma Transforming Into Cushing Disease. Neurosurgery 2013; 72:E144-6. [DOI: 10.1227/neu.0b013e3182750850] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
134
|
Carnevale V, Del Fiacco R, Romagnoli E, Fontana A, Cipriani C, Pepe J, Minisola S. Effects of strontium ranelate administration on calcium metabolism in female patients with postmenopausal osteoporosis and primary hyperparathyroidism. Calcif Tissue Int 2013; 92:15-22. [PMID: 23080188 DOI: 10.1007/s00223-012-9659-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/24/2012] [Indexed: 01/07/2023]
Abstract
We investigated possible changes of parameters of calcium metabolism induced by strontium ranelate (SR). Twenty-three patients with postmenopausal osteoporosis (PO) and 14 with primary hyperparathyroidism (PHPT) were studied while taking 2 g/day of SR. Women with PO and 10 healthy age-matched control women were also daily supplemented with 1,000 mg calcium and 800 IU vitamin D. All subjects were studied at baseline and after 7 and 30 days; PO women and controls were also investigated at 180 and 360 days of treatment. Serum ionized calcium (iCa), phosphate (sP), magnesium, creatinine, 25-hydroxycholecalciferol (25[OH]D), 1,25-dihydroxycholecalciferol (1,25[OH](2)D), serum parathyroid hormone (PTH) were measured. In spot urine, we assessed calcium and phosphate over creatinine ratios (uCa/Cr, uP/Cr), calcium excretion (Ca ex) and renal phosphate threshold (TmP/GFR); in 24-h urine, calcium and magnesium over creatinine clearance ratios (CaCl/CrCl and MgCl/CrCl). In PO, SR administration was associated with a significant decrease of PTH and 1,25(OH)(2)D levels but an increase of sP (p < 0.001). SR also significantly increased Ca/Cr, Ca ex, and TmP/GFR in spot urine and CaCl/CrCl in both spot and 24-h urine (p = 0.004 to <0.001). In PHPT, SR significantly decreased iCa and increased sP, slightly modifying PTH, 25(OH)D, and 1,25(OH)(2)D values. Also in PHPT, Ca ex and CaCl/CrCl of spot and 24-h urine, as TmP/GFR, significantly increased (all p < 0.02). SR influenced the main parameters of calcium homeostasis, probably through the calcium-sensing receptor.
Collapse
Affiliation(s)
- Vincenzo Carnevale
- Unit of Internal Medicine, Casa Sollievo della Sofferenza Hospital, IRCCS, Viale dei Cappuccini snc, 71013, San Giovanni Rotondo, FG, Italy.
| | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
PURPOSE Gentamicin is a widely employed antibiotic, but may reduce calcium uptake by eukaryotic cells. This study was conducted to determine whether gentamicin reduces calcification by porcine aortic valvular interstitial cells (pAVICs) grown in 2D culture, which is a common model for calcific aortic valve disease (CAVD). METHODS AND RESULTS The presence of gentamicin (up to 0.2 mM) in the medium of pAVICs cultured for 8 days significantly lowered calcification and alkaline phosphatase content in a dose-dependent manner compared to pAVICs cultured without gentamicin. Gentamicin also significantly increased cell proliferation and apoptosis at concentrations of 0.1-0.2 mM. Next, gentamicin was applied to previously calcified pAVIC cultures (grown for 8 days) to determine whether it could stop or reverse the calcification process. Daily application of gentamicin for 8 additional days significantly reduced calcification to below the pre-calcification levels. CONCLUSIONS These results confirm that gentamicin should be used cautiously with in vitro studies of calcification, and suggest that gentamicin may have the ability to reverse calcification by pAVICs. Given the nephrotoxicity and ototoxicity of this antibiotic, its clinical potential for the treatment of calcification in heart valves is limited. However, further investigation of the pathways through which gentamicin alters calcium uptake by valvular cells may provide insight into novel therapies for CAVD.
Collapse
|
136
|
van der Pas R, de Herder WW, Hofland LJ, Feelders RA. New developments in the medical treatment of Cushing's syndrome. Endocr Relat Cancer 2012; 19:R205-23. [PMID: 22936543 DOI: 10.1530/erc-12-0191] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cushing's syndrome (CS) is a severe endocrine disorder characterized by chronic cortisol excess due to an ACTH-secreting pituitary adenoma, ectopic ACTH production, or a cortisol-producing adrenal neoplasia. Regardless of the underlying cause, untreated CS is associated with considerable morbidity and mortality. Surgery is the primary therapy for all causes of CS, but surgical failure and ineligibility of the patient to undergo surgery necessitate alternative treatment modalities. The role of medical therapy in CS has been limited because of lack of efficacy or intolerability. In recent years, however, new targets for medical therapy have been identified, both at the level of the pituitary gland (e.g. somatostatin, dopamine, and epidermal growth factor receptors) and the adrenal gland (ectopically expressed receptors in ACTH-independent macronodular adrenal hyperplasia). In this review, results of preclinical and clinical studies with drugs that exert their action through these molecular targets, as well as already established medical treatment options, will be discussed.
Collapse
Affiliation(s)
- R van der Pas
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
137
|
ARMATO UBALDO, CHAKRAVARTHY BALU, PACCHIANA RAFFAELLA, WHITFIELD JAMESF. Alzheimer’s disease: An update of the roles of receptors, astrocytes and primary cilia (Review). Int J Mol Med 2012; 31:3-10. [DOI: 10.3892/ijmm.2012.1162] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/10/2012] [Indexed: 11/06/2022] Open
|
138
|
Grant MP, Stepanchick A, Breitwieser GE. Calcium signaling regulates trafficking of familial hypocalciuric hypercalcemia (FHH) mutants of the calcium sensing receptor. Mol Endocrinol 2012; 26:2081-91. [PMID: 23077345 DOI: 10.1210/me.2012-1232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Calcium-sensing receptors (CaSRs) regulate systemic Ca(2+) homeostasis. Loss-of-function mutations cause familial benign hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism (NSHPT). FHH/NSHPT mutations can reduce trafficking of CaSRs to the plasma membrane. CaSR signaling is potentiated by agonist-driven anterograde CaSR trafficking, leading to a new steady state level of plasma membrane CaSR, which is maintained, with minimal functional desensitization, as long as extracellular Ca(2+) is elevated. This requirement for CaSR signaling to drive CaSR trafficking to the plasma membrane led us to reconsider the mechanism(s) contributing to dysregulated trafficking of FHH/NSHPT mutants. We simultaneously monitored dynamic changes in plasma membrane levels of CaSR and intracellular Ca(2+), using a chimeric CaSR construct, which allowed explicit tracking of plasma membrane levels of mutant or wild-type CaSRs in the presence of nonchimeric partners. Expression of mutants alone revealed severe defects in plasma membrane targeting and Ca(2+) signaling, which were substantially rescued by coexpression with wild-type CaSR. Biasing toward heterodimerization of wild-type and FHH/NSHPT mutants revealed that intracellular Ca(2+) oscillations were insufficient to rescue plasma membrane targeting. Coexpression of the nonfunctional mutant E297K with the truncation CaSRΔ868 robustly rescued trafficking and Ca(2+) signaling, whereas coexpression of distinct FHH/NSHPT mutants rescued neither trafficking nor signaling. Our study suggests that rescue of FHH/NSHPT mutants requires a steady state intracellular Ca(2+) response when extracellular Ca(2+) is elevated and argues that Ca(2+) signaling by wild-type CaSRs rescues FHH mutant trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Michael P Grant
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2604, USA
| | | | | |
Collapse
|
139
|
Calcium-sensing receptor gene polymorphisms in patients with calcium nephrolithiasis. Curr Opin Nephrol Hypertens 2012; 21:355-61. [PMID: 22660550 DOI: 10.1097/mnh.0b013e3283542290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The calcium-sensing receptor gene (CaSR, chr. 3q13.3-21) is a candidate to explain nephrolithiasis. This review analyzes the potential role of CaSR in lithogenesis according to findings of functional and genetic studies. RECENT FINDINGS CaSR is a cation receptor located in the tubular cell plasma membrane. Its activation decreases calcium reabsorption in the ascending limb and distal convoluted tubule, but increases phosphate reabsorption in proximal tubules and decreases water and proton reabsorption in collecting ducts. Its effects in proximal tubules and collecting ducts can limit the calcium phosphate precipitation risk induced by the increase in calcium excretion. The nonconservative CaSR gene Arg990Gly polymorphism was associated with nephrolithiasis and hypercalciuria in different populations. Arg990Gly is located on exon 7 and produces a gain of the CaSR function. rs7652589 and rs1501899 were also associated with nephrolithiasis in patients with normal citrate excretion. These polymorphisms are located in the CaSR gene regulatory region and may modify CaSR gene promoter activity. SUMMARY The activating Arg990Gly polymorphism may predispose to nephrolithiasis by increasing calcium excretion. Polymorphisms at the regulatory region may predispose to nephrolithiasis by changing tubular expression of the CaSR. CaSR genotype may be a marker to identify patients prone to develop calcium nephrolithiasis.
Collapse
|
140
|
Abstract
Elevated extracellular Ca(2+) concentrations stimulate the G-protein coupled receptor calcium-sensing receptor. Here we show that this stimulation induces the expression of biologically active early growth response protein 1 (Egr-1), a zinc finger transcription factor. Expression of a dominant-negative mutant of the ternary complex factor Ets-like protein-1 (Elk-1), a key transcriptional regulator of serum response element-driven gene transcription, prevented Egr-1 expression, indicating that Elk-1 or related ternary complex factors connect the intracellular signaling cascade elicited by activation of calcium-sensing receptors with transcription of the Egr-1 gene. These data were corroborated by the fact that stimulation of calcium-sensing receptors increased the transcriptional activation potential of Elk-1. In addition, activator protein-1 (AP-1) transcriptional activity was significantly elevated after the stimulation of calcium-sensing receptors. The expression of a dominant-negative mutant of Elk-1 reduced c-Fos expression and prevented the up-regulation of AP-1 activity as a result of calcium-sensing receptor stimulation, indicating that ternary complex factors control both Egr-1- and AP-1-regulated transcription. In addition, AP-1 activity was reduced after the expression of a dominant-negative mutant of c-Jun in cells expressing an activated calcium-sensing receptor. Stimulus-transcription coupling leading to the up-regulation of Egr-1 and AP-1 controlled transcription in cells expressing calcium-sensing receptors required the protein kinases Raf and ERK, whereas the overexpression of MAPK phosphatase-1 interrupted the signaling cascade connecting calcium-sensing receptor stimulation with transcription of Egr-1 and AP-1 controlled genes. The fact that calcium-sensing receptor stimulation activates the transcription factors Egr-1, Elk-1, and AP-1 indicates that regulation of gene transcription is an integral part of calcium-sensing receptor induced signaling.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany.
| | | | | |
Collapse
|
141
|
Cifuentes M, Fuentes C, Tobar N, Acevedo I, Villalobos E, Hugo E, Ben-Jonathan N, Reyes M. Calcium sensing receptor activation elevates proinflammatory factor expression in human adipose cells and adipose tissue. Mol Cell Endocrinol 2012; 361:24-30. [PMID: 22449852 PMCID: PMC3761973 DOI: 10.1016/j.mce.2012.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/15/2012] [Accepted: 03/08/2012] [Indexed: 12/28/2022]
Abstract
The proinflammatory status of adipose tissue has been linked to the metabolic and cardiovascular consequences of obesity. Human adipose cells express the calcium sensing receptor (CaSR), and its expression is elevated in inflammatory states, such as that associated with obesity. Given the CaSR's association with inflammation in other tissues, we evaluated its role elevating the adipose expression of inflammatory factors. The CaSR activation by the calcimimatic cinacalcet (5μM) in adipose tissue and in vitro cultured LS14 adipose cells elicited an elevation in the expression of the proinflammatory cytokines IL6, IL1β, TNFα, and the chemoattractant CCL2. This was in part reverted by SN50, an inhibitor of the inflammatory mediator nuclear factor kappa B (NFκB). Our observations suggest that CaSR activation elevates cytokine and chemokine production, partially mediated by NFκB. These findings support the relevance of the CaSR in the pathophysiology of obesity-induced adipose tissue dysfunction, with an interesting potential for pharmacological manipulation.
Collapse
Affiliation(s)
- Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
142
|
|
143
|
Armato U, Bonafini C, Chakravarthy B, Pacchiana R, Chiarini A, Whitfield JF, Dal Prà I. The calcium-sensing receptor: a novel Alzheimer's disease crucial target? J Neurol Sci 2012; 322:137-40. [PMID: 22841885 DOI: 10.1016/j.jns.2012.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/28/2012] [Accepted: 07/11/2012] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is the most common human neurodegenerative ailment, the most prevalent (>95%) late-onset type of which has a still uncertain etiology. The progressive decline of cognitive functions, dementia, and physical disabilities of AD is caused by synaptic losses that progressively disconnect key neuronal networks in crucial brain areas, like the hippocampus and temporoparietal cortex, and critically impair language, sensory processing, memory, and conscious thought. AD's two main hallmarks are fibrillar amyloid-β (fAβ) plaques in extracellular spaces and intracellular accumulation of fAβ peptides and neurofibrillary tangles (NFTs). It is still undecided whether either or both these AD hallmarks cause or result from the disease. Recently, the dysregulation of calcium homeostasis has been advanced as a novel cause of AD. In this case, a suitable candidate of AD driver would be the Aβ peptides-binding/activated calcium-sensing receptor (CaSR), whose intracellular signalling is triggered by Aβ peptides. In this review, we briefly discuss CaSR's roles in normal adult human astrocytes (NAHAs) and their possible impacts on AD.
Collapse
Affiliation(s)
- Ubaldo Armato
- Histology and Embryology Unit, Department of Life and Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy.
| | | | | | | | | | | | | |
Collapse
|
144
|
Breitwieser GE. Minireview: the intimate link between calcium sensing receptor trafficking and signaling: implications for disorders of calcium homeostasis. Mol Endocrinol 2012; 26:1482-95. [PMID: 22745192 DOI: 10.1210/me.2011-1370] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The calcium-sensing receptor (CaSR) regulates organismal Ca(2+) homeostasis. Dysregulation of CaSR expression or mutations in the CASR gene cause disorders of Ca(2+) homeostasis and contribute to the progression or severity of cancers and cardiovascular disease. This brief review highlights recent findings that define the CaSR life cycle, which controls the cellular abundance of CaSR and CaSR signaling. A novel mechanism, termed agonist-driven insertional signaling (ADIS), contributes to the unique hallmarks of CaSR signaling, including the high degree of cooperativity and the lack of functional desensitization. Agonist-mediated activation of plasma membrane-localized CaSR increases the rate of insertion of CaSR at the plasma membrane without altering the constitutive endocytosis rate, thereby acutely increasing the maximum signaling response. Prolonged CaSR signaling requires a large intracellular ADIS-mobilizable pool of CaSR, which is maintained by signaling-mediated increases in biosynthesis. This model provides a rational framework for characterizing the defects caused by CaSR mutations and the altered functional expression of wild-type CaSR in disease states. Mechanistic dissection of ADIS of CaSR should lead to optimized pharmacological approaches to normalize CaSR signaling in disorders of Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2604, USA.
| |
Collapse
|
145
|
Yamamura A, Guo Q, Yamamura H, Zimnicka AM, Pohl NM, Smith KA, Fernandez RA, Zeifman A, Makino A, Dong H, Yuan JXJ. Enhanced Ca(2+)-sensing receptor function in idiopathic pulmonary arterial hypertension. Circ Res 2012; 111:469-81. [PMID: 22730443 DOI: 10.1161/circresaha.112.266361] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. Increased resting [Ca(2+)](cyt) and enhanced Ca(2+) influx have been implicated in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH). OBJECTIVE We examined whether the extracellular Ca(2+)-sensing receptor (CaSR) is involved in the enhanced Ca(2+) influx and proliferation in IPAH-PASMC and whether blockade of CaSR inhibits experimental pulmonary hypertension. METHODS AND RESULTS In normal PASMC superfused with Ca(2+)-free solution, addition of 2.2 mmol/L Ca(2+) to the perfusate had little effect on [Ca(2+)](cyt). In IPAH-PASMC, however, restoration of extracellular Ca(2+) induced a significant increase in [Ca(2+)](cyt). Extracellular application of spermine also markedly raised [Ca(2+)](cyt) in IPAH-PASMC but not in normal PASMC. The calcimimetic R568 enhanced, whereas the calcilytic NPS 2143 attenuated, the extracellular Ca(2+)-induced [Ca(2+)](cyt) rise in IPAH-PASMC. Furthermore, the protein expression level of CaSR in IPAH-PASMC was greater than in normal PASMC; knockdown of CaSR in IPAH-PASMC with siRNA attenuated the extracellular Ca(2+)-mediated [Ca(2+)](cyt) increase and inhibited IPAH-PASMC proliferation. Using animal models of pulmonary hypertension, our data showed that CaSR expression and function were both enhanced in PASMC, whereas intraperitoneal injection of the calcilytic NPS 2143 prevented the development of pulmonary hypertension and right ventricular hypertrophy in rats injected with monocrotaline and mice exposed to hypoxia. CONCLUSIONS The extracellular Ca(2+)-induced increase in [Ca(2+)](cyt) due to upregulated CaSR is a novel pathogenic mechanism contributing to the augmented Ca(2+) influx and excessive PASMC proliferation in patients and animals with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
The role of the calcium-sensing receptor in human disease. Clin Biochem 2012; 45:943-53. [PMID: 22503956 DOI: 10.1016/j.clinbiochem.2012.03.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/22/2012] [Accepted: 03/27/2012] [Indexed: 01/18/2023]
Abstract
Following the discovery of the calcium-sensing receptor (CaSR) in 1993, its pivotal role in disorders of calcium homeostasis such as Familial Hypocalciuric Hypercalcemia (FHH) was quickly demonstrated. Since then, it has become clear that the CaSR has immense functional versatility largely through its ability to activate many different signaling pathways in a ligand- and tissue-specific manner. This allows the receptor to play diverse and crucial roles in human physiology and pathophysiology, both in calcium homeostasis and in tissues and biological processes unrelated to calcium balance. This review covers current knowledge of the role of the CaSR in disorders of calcium homeostasis (FHH, neonatal severe hyperparathyroidism, autosomal dominant hypocalcemia, primary and secondary hyperparathyroidism, hypercalcemia of malignancy) as well as unrelated diseases such as breast and colorectal cancer (where the receptor appears to play a tumor suppressor role), Alzheimer's disease, pancreatitis, diabetes mellitus, hypertension and bone and gastrointestinal disorders. In addition, it examines the use or potential use of CaSR agonists or antagonists (calcimimetics and calcilytics) and other drugs mediated through the CaSR, in the management of disorders as diverse as hyperparathyroidism, osteoporosis and gastrointestinal disease.
Collapse
|
147
|
Anderson PH, Turner AG, Morris HA. Vitamin D actions to regulate calcium and skeletal homeostasis. Clin Biochem 2012; 45:880-6. [PMID: 22414785 DOI: 10.1016/j.clinbiochem.2012.02.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/22/2022]
Abstract
The endocrine action of plasma 1,25-dihydroxyvitamin D plays a key role in the regulation of plasma calcium and phosphate homeostasis with activities on the intestine, kidney and bone. A current, controversial question is whether vitamin D exerts direct actions on bone cells to regulate bone mineral homeostasis. Results from clinical, rodent model and in vitro studies on human bone cells provide an impressive body of data to support this proposal particularly at the level of serum 25-hydroxyvitamin D status. Each of the major bone cell types is capable of metabolising vitamin D to the active metabolite, 1,25-dihydroxyvitamin D. Thus under conditions when bone tissue synthesis of 1,25-dihydroxyvitamin D is optimal, vitamin D activity enhances bone mineral status. Dietary calcium and phosphate intakes are the critical environmental cues together with vitamin D status to determine whether 1,25-dihydroxyvitamin D exerts an anabolic or catabolic action on bone mineral status.
Collapse
Affiliation(s)
- Paul H Anderson
- School of Pharmacy and Medical Sciences, University of South Australia, and Chemical Pathology Directorate, SA Pathology, Frome Road, Adelaide 5000 SA, Australia
| | | | | |
Collapse
|
148
|
Lusche DF, Wessels D, Scherer A, Daniels K, Kuhl S, Soll DR. The IplA Ca2+ channel of Dictyostelium discoideum is necessary for chemotaxis mediated through Ca2+, but not through cAMP, and has a fundamental role in natural aggregation. J Cell Sci 2012; 125:1770-83. [PMID: 22375061 DOI: 10.1242/jcs.098301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During aggregation of Dictyostelium discoideum, nondissipating, symmetrical, outwardly moving waves of cAMP direct cells towards aggregation centers. It has been assumed that the spatial and temporal characteristics of the front and back of each cAMP wave regulate both chemokinesis and chemotaxis. However, during the period preceding aggregation, cells acquire not only the capacity to chemotax in a spatial gradient of cAMP, but also in a spatial gradient of Ca(2+). The null mutant of the putative IplA Ca(2+) channel gene, iplA(-), undergoes normal chemotaxis in spatial gradients of cAMP and normal chemokinetic responses to increasing temporal gradients of cAMP, both generated in vitro. However, iplA(-) cells lose the capacity to undergo chemotaxis in response to a spatial gradient of Ca(2+), suggesting that IplA is either the Ca(2+) chemotaxis receptor or an essential component of the Ca(2+) chemotaxis regulatory pathway. In response to natural chemotactic waves generated by wild-type cells, the chemokinetic response of iplA(-) cells to the temporal dynamics of the cAMP wave is intact, but the capacity to reorient in the direction of the aggregation center at the onset of each wave is lost. These results suggest that transient Ca(2+) gradients formed between cells at the onset of each natural cAMP wave augment reorientation towards the aggregation center. If this hypothesis proves correct, it will provide a more complex contextual framework for interpreting D. discoideum chemotaxis.
Collapse
Affiliation(s)
- Daniel F Lusche
- W M Keck Dynamic Image Analysis Facility, Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
149
|
The adaptor protein 14-3-3 binds to the calcium-sensing receptor and attenuates receptor-mediated Rho kinase signalling. Biochem J 2012; 441:995-1006. [DOI: 10.1042/bj20111277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A yeast two-hybrid screen performed to identify binding partners of the CaR (calcium-sensing receptor) intracellular tail identified the adaptor protein 14-3-3θ as a novel binding partner that bound to the proximal membrane region important for CaR expression and signalling. The 14-3-3θ protein directly interacted with the CaR tail in pull-down studies and FLAG-tagged CaR co-immunoprecipitated with EGFP (enhanced green fluorescent protein)-tagged 14-3-3θ when co-expressed in HEK (human embryonic kidney)-293 or COS-1 cells. The interaction between the CaR and 14-3-3θ did not require a putative binding site in the membrane-proximal region of the CaR tail and was independent of PKC (protein kinase C) phosphorylation. Confocal microscopy demonstrated co-localization of the CaR and EGFP–14-3-3θ in the ER (endoplasmic reticulum) of HEK-293 cells that stably expressed the CaR (HEK-293/CaR cells), but 14-3-3θ overexpression had no effect on membrane expression of the CaR. Overexpression of 14-3-3θ in HEK-293/CaR cells attenuated CaR-mediated Rho signalling, but had no effect on ERK (extracellular-signal-regulated kinase) 1/2 signalling. Another isoform identified from the library, 14-3-3ζ, exhibited similar behaviour to that of 14-3-3θ with respect to CaR tail binding, cellular co-localization and impact on receptor-mediated signalling. However, unlike 14-3-3θ, this isoform, when overexpressed, significantly reduced CaR plasma membrane expression. Results indicate that 14-3-3 proteins mediate CaR-dependent Rho signalling and may modulate the plasma membrane expression of the CaR.
Collapse
|
150
|
Abstract
The calcium-sensing receptor (CaR) is the key controller of extracellular calcium (Ca(2+)(o)) homeostasis via its regulation of parathyroid hormone (PTH) secretion and renal Ca(2+) reabsorption. The CaR-selective calcimimetic drug Cinacalcet stimulates the CaR to suppress PTH secretion in chronic kidney disease and represents the world's first clinically available receptor positive allosteric modulator (PAM). Negative CaR allosteric modulators (NAMs), known as calcilytics, can increase PTH secretion and are being investigated as possible bone anabolic treatments against age-related osteoporosis. Here we address the current state of development and clinical use of a series of positive and negative CaR modulators. In addition, clinical CaR mutations and transgenic mice carrying tissue-specific CaR deletions have provided a novel understanding of the relative functional importance of CaR in both calciotropic tissues and those elsewhere in the body. The development of CaR-selective modulators and signalling reagents have provided us with a more detailed appreciation of how the CaR signals in vivo. Thus, both of these areas of CaR research will be reviewed.
Collapse
Affiliation(s)
- Donald T Ward
- Faculty of Life Sciences, The University of ManchesterManchester, UK
| | | |
Collapse
|