101
|
Schwab N, Taskina D, Leung E, Innes BT, Bader GD, Hazrati LN. Neurons and glial cells acquire a senescent signature after repeated mild traumatic brain injury in a sex-dependent manner. Front Neurosci 2022; 16:1027116. [PMID: 36408415 PMCID: PMC9669743 DOI: 10.3389/fnins.2022.1027116] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 08/15/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is an important public health issue, as it can lead to long-term neurological symptoms and risk of neurodegenerative disease. The pathophysiological mechanisms driving this remain unclear, and currently there are no effective therapies for mTBI. In this study on repeated mTBI (rmTBI), we have induced three mild closed-skull injuries or sham procedures, separated by 24 h, in C57BL/6 mice. We show that rmTBI mice have prolonged righting reflexes and astrogliosis, with neurological impairment in the Morris water maze (MWM) and the light dark test. Cortical and hippocampal tissue analysis revealed DNA damage in the form of double-strand breaks, oxidative damage, and R-loops, markers of cellular senescence including p16 and p21, and signaling mediated by the cGAS-STING pathway. This study identified novel sex differences after rmTBI in mice. Although these markers were all increased by rmTBI in both sexes, females had higher levels of DNA damage, lower levels of the senescence protein p16, and lower levels of cGAS-STING signaling proteins compared to their male counterparts. Single-cell RNA sequencing of the male rmTBI mouse brain revealed activation of the DNA damage response, evidence of cellular senescence, and pro-inflammatory markers reminiscent of the senescence-associated secretory phenotype (SASP) in neurons and glial cells. Cell-type specific changes were also present with evidence of brain immune activation, neurotransmission alterations in both excitatory and inhibitory neurons, and vascular dysfunction. Treatment of injured mice with the senolytic drug ABT263 significantly reduced markers of senescence only in males, but was not therapeutic in females. The reduction of senescence by ABT263 in male mice was accompanied by significantly improved performance in the MWM. This study provides compelling evidence that senescence contributes to brain dysfunction after rmTBI, but may do so in a sex-dependent manner.
Collapse
Affiliation(s)
- Nicole Schwab
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daria Taskina
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Emily Leung
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brendan T. Innes
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gary D. Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
102
|
Martini AC, Gross TJ, Head E, Mapstone M. Beyond amyloid: Immune, cerebrovascular, and metabolic contributions to Alzheimer disease in people with Down syndrome. Neuron 2022; 110:2063-2079. [PMID: 35472307 PMCID: PMC9262826 DOI: 10.1016/j.neuron.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
People with Down syndrome (DS) have increased risk of Alzheimer disease (AD), presumably conferred through genetic predispositions arising from trisomy 21. These predispositions necessarily include triplication of the amyloid precursor protein (APP), but also other Ch21 genes that confer risk directly or through interactions with genes on other chromosomes. We discuss evidence that multiple genes on chromosome 21 are associated with metabolic dysfunction in DS. The resulting dysregulated pathways involve the immune system, leading to chronic inflammation; the cerebrovascular system, leading to disruption of the blood brain barrier (BBB); and cellular energy metabolism, promoting increased oxidative stress. In combination, these disruptions may produce a precarious biological milieu that, in the presence of accumulating amyloid, drives the pathophysiological cascade of AD in people with DS. Critically, mechanistic drivers of this dysfunction may be targetable in future clinical trials of pharmaceutical and/or lifestyle interventions.
Collapse
Affiliation(s)
- Alessandra C Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas J Gross
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
103
|
Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 2022; 12:257. [PMID: 35732622 PMCID: PMC9217953 DOI: 10.1038/s41398-022-02024-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to loss of cognitive abilities and ultimately, death. With no cure available, limited treatments mostly focus on symptom management. Identifying early changes in the disease course may provide new therapeutic targets to halt or reverse disease progression. Clinical studies have shown that cortical and hippocampal hyperactivity are a feature shared by patients in the early stages of disease, progressing to hypoactivity during later stages of neurodegeneration. The exact mechanisms causing neuronal excitability changes are not fully characterized; however, animal and cell models have provided insights into some of the factors involved in this phenotype. In this review, we summarize the evidence for neuronal excitability changes over the course of AD onset and progression and the molecular mechanisms underpinning these differences. Specifically, we discuss contributors to aberrant neuronal excitability, including abnormal levels of intracellular Ca2+ and glutamate, pathological amyloid β (Aβ) and tau, genetic risk factors, including APOE, and impaired inhibitory interneuron and glial function. In light of recent research indicating hyperexcitability could be a predictive marker of cognitive dysfunction, we further argue that the hyperexcitability phenotype could be leveraged to improve the diagnosis and treatment of AD, and present potential targets for future AD treatment development.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Natalie Matosin
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia. .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
104
|
Olah VJ, Goettemoeller AM, Rayaprolu S, Dammer EB, Seyfried NT, Rangaraju S, Dimidschstein J, Rowan MJM. Biophysical Kv3 channel alterations dampen excitability of cortical PV interneurons and contribute to network hyperexcitability in early Alzheimer's. eLife 2022; 11:75316. [PMID: 35727131 PMCID: PMC9278953 DOI: 10.7554/elife.75316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
In Alzheimer’s disease (AD), a multitude of genetic risk factors and early biomarkers are known. Nevertheless, the causal factors responsible for initiating cognitive decline in AD remain controversial. Toxic plaques and tangles correlate with progressive neuropathology, yet disruptions in circuit activity emerge before their deposition in AD models and patients. Parvalbumin (PV) interneurons are potential candidates for dysregulating cortical excitability as they display altered action potential (AP) firing before neighboring excitatory neurons in prodromal AD. Here, we report a novel mechanism responsible for PV hypoexcitability in young adult familial AD mice. We found that biophysical modulation of Kv3 channels, but not changes in their mRNA or protein expression, were responsible for dampened excitability in young 5xFAD mice. These K+ conductances could efficiently regulate near-threshold AP firing, resulting in gamma-frequency-specific network hyperexcitability. Thus, biophysical ion channel alterations alone may reshape cortical network activity prior to changes in their expression levels. Our findings demonstrate an opportunity to design a novel class of targeted therapies to ameliorate cortical circuit hyperexcitability in early AD.
Collapse
Affiliation(s)
- Viktor J Olah
- Department of Cell Biology, Emory University, Atlanta, United States
| | | | - Sruti Rayaprolu
- Department of Neurology, Emory University, Atlanta, United States
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, United States
| | | | | | | | - Matthew J M Rowan
- Department of Cell Biology, Emory University, Atlanta, United States
| |
Collapse
|
105
|
Wu S, Zhou J, Zhang H, Barger SW. Serine Racemase Expression Differentiates Aging from Alzheimer's Brain. Curr Alzheimer Res 2022; 19:494-502. [PMID: 35929621 DOI: 10.2174/1567205019666220805105106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023]
Abstract
Aging is an inevitable process characterized by progressive loss of physiological integrity and increased susceptibility to cancer, diabetes, cardiovascular, and neurodegenerative diseases; aging is the primary risk factor for Alzheimer's disease (AD), the most common cause of dementia. AD is characterized by brain pathology, including extracellular deposition of amyloid aggregation and intracellular accumulation of neurofibrillary tangles composed of hyperphosphorylated tau protein. In addition, losses of synapses and a wide range of neurons are pivotal pathologies in the AD brain. Accumulating evidence demonstrates hypoactivation of hippocampal neural networks in the aging brain, whereas AD-related mild cognitive impairment (AD-MCI) begins with hyperactivation, followed by a diminution of hippocampal activity as AD develops. The biphasic trends of the activity of the hippocampal neural network are consistent with the alteration of N-methyl-D-aspartate receptor (NMDA-R) activity from aging to prodromal (AD-MCI) to mid-/late stage AD. D-serine, a product of racemization catalyzed by serine racemase (SR), is an important co-agonist of the NMDA-R which is involved in synaptic events including neurotransmission, synaptogenesis, long-term potentiation (LTP), development, and excitotoxicity. SR and D-serine are decreased in the hippocampus of the aging brain, correlating with impairment of cognitive function. By contrast, SR is increased in AD brain, which is associated with a greater degree of cognitive dysfunction. Emerging studies suggest that D-serine levels in the brain or in cerebral spinal fluid from AD patients are higher than in age-matched controls, but the results are inconsistent. Very recently, serum D-serine levels in AD were reported to correlate with sex and clinical dementia rating (CDR) stage. This review will discuss alterations of NMDA-R and SR in aging and AD brain, and the mechanisms underlying the differential regulation of SR will be probed. Collectively, we propose that SR may be a molecular switch that distinguishes the effects of aging from those of AD on the brain.
Collapse
Affiliation(s)
- Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China
| | - Jing Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, P.R. China
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock AR, USA.,Geriatric Research, Education & Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock AR, USA
| |
Collapse
|
106
|
Tok S, Maurin H, Delay C, Crauwels D, Manyakov NV, Van Der Elst W, Moechars D, Drinkenburg WHIM. Neurophysiological effects of human-derived pathological tau conformers in the APPKM670/671NL.PS1/L166P amyloid mouse model of Alzheimer's disease. Sci Rep 2022; 12:7784. [PMID: 35546164 PMCID: PMC9094605 DOI: 10.1038/s41598-022-11582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer’s Disease (AD) is a neurodegenerative disease characterized by two main pathological hallmarks: amyloid plaques and intracellular tau neurofibrillary tangles. However, a majority of studies focus on the individual pathologies and seldom on the interaction between the two pathologies. Herein, we present the longitudinal neuropathological and neurophysiological effects of a combined amyloid-tau model by hippocampal seeding of human-derived tau pathology in the APP.PS1/L166P amyloid animal model. We statistically assessed both neurophysiological and pathological changes using linear mixed modelling to determine if factors such as the age at which animals were seeded, genotype, seeding or buffer, brain region where pathology was quantified, and time-post injection differentially affect these outcomes. We report that AT8-positive tau pathology progressively develops and is facilitated by the amount of amyloid pathology present at the time of injection. The amount of AT8-positive tau pathology was influenced by the interaction of age at which the animal was injected, genotype, and time after injection. Baseline pathology-related power spectra and Higuchi Fractal Dimension (HFD) score alterations were noted in APP.PS1/L166P before any manipulations were performed, indicating a baseline difference associated with genotype. We also report immediate localized hippocampal dysfunction in the electroencephalography (EEG) power spectra associated with tau seeding which returned to comparable levels at 1 month-post-injection. Longitudinal effects of seeding indicated that tau-seeded wild-type mice showed an increase in gamma power earlier than buffer control comparisons which was influenced by the age at which the animal was injected. A reduction of hippocampal broadband power spectra was noted in tau-seeded wild-type mice, but absent in APP.PS1 animals. HFD scores appeared to detect subtle effects associated with tau seeding in APP.PS1 animals, which was differentially influenced by genotype. Notably, while tau histopathological changes were present, a lack of overt longitudinal electrophysiological alterations was noted, particularly in APP.PS1 animals that feature both pathologies after seeding, reiterating and underscoring the difficulty and complexity associated with elucidating physiologically relevant and translatable biomarkers of Alzheimer’s Disease at the early stages of the disease.
Collapse
Affiliation(s)
- S Tok
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium. .,Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - H Maurin
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - C Delay
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Crauwels
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - N V Manyakov
- Data Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W Van Der Elst
- Quantitative Sciences Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Moechars
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W H I M Drinkenburg
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.,Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
107
|
Yuan D, Yang G, Wu W, Li Q, Xu D, Ntim M, Jiang C, Liu J, Zhang Y, Wang Y, Zhu D, Kundu S, Li A, Xiao Z, Ma Q, Li S. Reducing Nav1.6 expression attenuates the pathogenesis of Alzheimer's disease by suppressing BACE1 transcription. Aging Cell 2022; 21:e13593. [PMID: 35353937 PMCID: PMC9124306 DOI: 10.1111/acel.13593] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Aberrant increases in neuronal network excitability may contribute to cognitive deficits in Alzheimer's disease (AD). However, the mechanisms underlying hyperexcitability of neurons are not fully understood. Voltage‐gated sodium channels (VGSC or Nav), which are involved in the formation of excitable cell's action potential and can directly influence the excitability of neural networks, have been implicated in AD‐related abnormal neuronal hyperactivity and higher incidence of spontaneous non‐convulsive seizures. Here, we have shown that the reduction of VGSC α‐subunit Nav1.6 (by injecting adeno‐associated virus (AAV) with short hairpin RNA (shRNA) into the hippocampus) rescues cognitive impairments and attenuates synaptic deficits in APP/PS1 transgenic mice. Concurrently, amyloid plaques in the hippocampus and levels of soluble Aβ are significantly reduced. Interfering with Nav1.6 reduces the transcription level of β‐site APP‐cleaving enzyme 1 (BACE1), which is Aβ‐dependent. In the presence of Aβ oligomers, knockdown of Nav1.6 reduces intracellular calcium overload by suppressing reverse sodium–calcium exchange channel, consequently increasing inactive NFAT1 (the nuclear factor of activated T cells) levels and thus reducing BACE1 transcription. This mechanism leads to a reduction in the levels of Aβ in APP/PS1 transgenic mice, alleviates synaptic loss, improves learning and memory disorders in APP/PS1 mice after downregulating Nav1.6 in the hippocampus. Our study offers a new potential therapeutic strategy to counteract hippocampal hyperexcitability and subsequently rescue cognitive deficits in AD by selective blockade of Nav1.6 overexpression and/or hyperactivity.
Collapse
Affiliation(s)
- De‐Juan Yuan
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
- Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Institute of Neuroscience Soochow University Suzhou China
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University Wuxi China
| | - Guang Yang
- Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wei Wu
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Qi‐Fa Li
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - De‐en Xu
- Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Institute of Neuroscience Soochow University Suzhou China
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University Wuxi China
| | - Michael Ntim
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Chun‐Yan Jiang
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Ji‐Chuan Liu
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
- Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou China
| | - Yue Zhang
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Ying‐Zi Wang
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Dan‐Dan Zhu
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Supratik Kundu
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Ai‐Ping Li
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Zhi‐Cheng Xiao
- Development and Stem Cells Program Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Quan‐Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Institute of Neuroscience Soochow University Suzhou China
| | - Shao Li
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| |
Collapse
|
108
|
Jiang J, Zhang J, Li Z, Li L, Huang B, Alzheimer’s Disease Neuroimaging Initiative. Using Deep Learning Radiomics to Distinguish Cognitively Normal Adults at Risk of Alzheimer's Disease From Normal Control: An Exploratory Study Based on Structural MRI. Front Med (Lausanne) 2022; 9:894726. [PMID: 35530047 PMCID: PMC9070098 DOI: 10.3389/fmed.2022.894726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives We proposed a novel deep learning radiomics (DLR) method to distinguish cognitively normal adults at risk of Alzheimer's disease (AD) from normal control based on T1-weighted structural MRI images. Methods In this study, we selected MRI data from the Alzheimer's Disease Neuroimaging Initiative Database (ADNI), which included 417 cognitively normal adults. These subjects were divided into 181 individuals at risk of Alzheimer's disease (preAD group) and 236 normal control individuals (NC group) according to standard uptake ratio >1.18 calculated by amyloid Positron Emission Tomography (PET). We further divided the preaAD group into APOE+ and APOE- subgroups according to whether APOE ε4 was positive or not. All data sets were divided into one training/validation group and one independent test group. The proposed DLR method included three steps: (1) the pre-training of basic deep learning (DL) models, (2) the extraction, selection and fusion of DLR features, and (3) classification. The support vector machine (SVM) was used as the classifier. In the comparative experiments, we compared our proposed DLR method with three existing models: hippocampal model, clinical model, and traditional radiomics model. Ten-fold cross-validation was performed with 100 time repetitions. Results The DLR method achieved the best classification performance between preAD and NC than other models with an accuracy of 89.85% ± 1.12%. In comparison, the accuracies of the other three models were 72.44% ± 1.37%, 82.00% ± 4.09% and 79.65% ± 2.21%. In addition, the DLR model also showed the best classification performance (85.45% ± 9.04% and 92.80% ± 2.61%) in the subgroup experiment. Conclusion The results showed that the DLR method provided a potentially clinical value to distinguish preAD from NC.
Collapse
Affiliation(s)
- Jiehui Jiang
- Department of Radiology, Gongli Hospital, School of Medicine, Shanghai University, Shanghai, China
- School of Life Sciences, Institute of Biomedical Engineering, Shanghai University, Shanghai, China
| | - Jieming Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Zhuoyuan Li
- School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Lanlan Li
- School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Bingcang Huang
- Department of Radiology, Gongli Hospital, School of Medicine, Shanghai University, Shanghai, China
| | | |
Collapse
|
109
|
Chen K, Hu Q, Gupta R, Stephens J, Xie Z, Yang G. Inhibition of unfolded protein response prevents post-anesthesia neuronal hyperactivity and synapse loss in aged mice. Aging Cell 2022; 21:e13592. [PMID: 35299279 PMCID: PMC9009124 DOI: 10.1111/acel.13592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Delirium is the most common postoperative complication in older patients after prolonged anesthesia and surgery and is associated with accelerated cognitive decline and dementia. The neuronal pathogenesis of postoperative delirium is largely unknown. The unfolded protein response (UPR) is an adaptive reaction of cells to perturbations in endoplasmic reticulum function. Dysregulation of UPR has been implicated in a variety of diseases including Alzheimer's disease and related dementias. However, whether UPR plays a role in anesthesia-induced cognitive impairment remains unexplored. By performing in vivo calcium imaging in the mouse frontal cortex, we showed that exposure of aged mice to the inhalational anesthetic sevoflurane for 2 hours resulted in a marked elevation of neuronal activity during recovery, which lasted for at least 24 hours after the end of exposure. Concomitantly, sevoflurane anesthesia caused a prolonged increase in phosphorylation of PERK and eIF2α, the markers of UPR activation. Genetic deletion or pharmacological inhibition of PERK prevented neuronal hyperactivity and memory impairment induced by sevoflurane. Moreover, we showed that PERK suppression also reversed various molecular and synaptic changes induced by sevoflurane anesthesia, including alterations of synaptic NMDA receptors, tau protein phosphorylation, and dendritic spine loss. Together, these findings suggest that sevoflurane anesthesia causes abnormal UPR in the aged brain, which contributes to neuronal hyperactivity, synapse loss and cognitive decline in aged mice.
Collapse
Affiliation(s)
- Kai Chen
- Department of AnesthesiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Qiuping Hu
- Department of AnesthesiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Riya Gupta
- Barnard College of Columbia UniversityNew YorkNew YorkUSA
| | | | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Guang Yang
- Department of AnesthesiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
110
|
Realising the potential of functional imaging to reveal brain changes after anaesthesia and surgery. Br J Anaesth 2022; 128:897-900. [PMID: 35341583 DOI: 10.1016/j.bja.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
We highlight the ability of functional brain imaging to detect changes in human brain function, even when changes are not seen in cognitive testing. These imaging changes are plausible as they correlate with known activity changes in carriers of APOE4, a genetic variant associated with increased risk for Alzheimer's disease. However, to realise the potential of functional imaging for perioperative neurocognitive disorders, collaborations similar to the Alzheimer's Disease Neuroimaging Initiative (ADNI) with open data sharing will be required. For the practicing anaesthesiologist, we believe that postoperative cognitive issues are important topics to discuss during the informed consent process.
Collapse
|
111
|
Herrmann O, Ficek B, Webster KT, Frangakis C, Spira AP, Tsapkini K. Sleep as a predictor of tDCS and language therapy outcomes. Sleep 2022; 45:zsab275. [PMID: 34875098 PMCID: PMC8919198 DOI: 10.1093/sleep/zsab275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
STUDY OBJECTIVES To determine whether sleep at baseline (before therapy) predicted improvements in language following either language therapy alone or coupled with transcranial direct current stimulation (tDCS) in individuals with primary progressive aphasia (PPA). METHODS Twenty-three participants with PPA (mean age 68.13 ± 6.21) received written naming/spelling therapy coupled with either anodal tDCS over the left inferior frontal gyrus (IFG) or sham condition in a crossover, sham-controlled, double-blind design (ClinicalTrials.gov identifier: NCT02606422). The outcome measure was percent of letters spelled correctly for trained and untrained words retrieved in a naming/spelling task. Given its particular importance as a sleep parameter in older adults, we calculated sleep efficiency (total sleep time/time in bed x100) based on subjective responses on the Pittsburgh Sleep Quality Index (PSQI). We grouped individuals based on a median split: high versus low sleep efficiency. RESULTS Participants with high sleep efficiency benefited more from written naming/spelling therapy than participants with low sleep efficiency in learning therapy materials (trained words). There was no effect of sleep efficiency in generalization of therapy materials to untrained words. Among participants with high sleep efficiency, those who received tDCS benefitted more from therapy than those who received sham condition. There was no additional benefit from tDCS in participants with low sleep efficiency. CONCLUSION Sleep efficiency modified the effects of language therapy and tDCS on language in participants with PPA. These results suggest sleep is a determinant of neuromodulation effects.Clinical Trial: tDCS Intervention in Primary Progressive Aphasia https://clinicaltrials.gov/ct2/show/NCT02606422.
Collapse
Affiliation(s)
- Olivia Herrmann
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bronte Ficek
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kimberly T Webster
- Department of Otolaryngology, Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Constantine Frangakis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adam P Spira
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Johns Hopkins Center on Aging and Health, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
112
|
Cope ZA, Murai T, Sukoff Rizzo SJ. Emerging Electroencephalographic Biomarkers to Improve Preclinical to Clinical Translation in Alzheimer's Disease. Front Aging Neurosci 2022; 14:805063. [PMID: 35250541 PMCID: PMC8891809 DOI: 10.3389/fnagi.2022.805063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Continually emerging data indicate that sub-clinical, non-convulsive epileptiform activity is not only prevalent in Alzheimer's disease (AD) but is detectable early in the course of the disease and predicts cognitive decline in both humans and animal models. Epileptiform activity and other electroencephalographic (EEG) measures may hold powerful, untapped potential to improve the translational validity of AD-related biomarkers in model animals ranging from mice, to rats, and non-human primates. In this review, we will focus on studies of epileptiform activity, EEG slowing, and theta-gamma coupling in preclinical models, with particular focus on its role in cognitive decline and relevance to AD. Here, each biomarker is described in the context of the contemporary literature and recent findings in AD relevant animal models are discussed.
Collapse
Affiliation(s)
| | | | - Stacey J. Sukoff Rizzo
- Aging Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
113
|
Neurophysiological and Brain Structural Markers of Cognitive Frailty Differ from Alzheimer's Disease. J Neurosci 2022; 42:1362-1373. [PMID: 35012965 PMCID: PMC8883844 DOI: 10.1523/jneurosci.0697-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 02/02/2023] Open
Abstract
With increasing life span and prevalence of dementia, it is important to understand the mechanisms of cognitive aging. Here, we focus on a subgroup of the population we term "cognitively frail," defined by reduced cognitive function in the absence of subjective memory complaints, or a clinical diagnosis of dementia. Cognitive frailty is distinct from cognitive impairment caused by physical frailty. It has been proposed to be a precursor to Alzheimer's disease, but may alternatively represent one end of a nonpathologic spectrum of cognitive aging. We test these hypotheses in humans of both sexes, by comparing the structural and neurophysiological properties of a community-based cohort of cognitive frail adults, to people presenting clinically with diagnoses of Alzheimer's disease or mild cognitive impairment, and community-based cognitively typical older adults. Cognitive performance of the cognitively frail was similar to those with mild cognitive impairment. We used a novel cross-modal paired-associates task that presented images followed by sounds, to induce physiological responses of novelty and associative mismatch, recorded by EEG/MEG. Both controls and cognitively frail showed stronger mismatch responses and larger temporal gray matter volume, compared with people with mild cognitive impairment and Alzheimer's disease. Our results suggest that community-based cognitively frail represents a spectrum of normal aging rather than incipient Alzheimer's disease, despite similar cognitive function. Lower lifelong cognitive reserve, hearing impairment, and cardiovascular comorbidities might contribute to the etiology of the cognitive frailty. Critically, community-based cohorts of older adults with low cognitive performance should not be interpreted as representing undiagnosed Alzheimer's disease.SIGNIFICANCE STATEMENT The current study investigates the neural signatures of cognitive frailty in relation to healthy aging and Alzheimer's disease. We focus on the cognitive aspect of frailty and show that, despite performing similarly to the patients with mild cognitive impairment, a cohort of community-based adults with poor cognitive performance do not show structural atrophy or neurophysiological signatures of Alzheimer's disease. Our results call for caution before assuming that cognitive frailty represents latent Alzheimer's disease. Instead, the cognitive underperformance of cognitively frail adults could result in cumulative effects of multiple psychosocial risk factors over the lifespan, and medical comorbidities.
Collapse
|
114
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
115
|
Wang T, Chen Y, Zou Y, Pang Y, He X, Chen Y, Liu Y, Feng W, Zhang Y, Li Q, Shi J, Ding F, Marshall C, Gao J, Xiao M. Locomotor Hyperactivity in the Early-Stage Alzheimer’s Disease-like Pathology of APP/PS1 Mice: Associated with Impaired Polarization of Astrocyte Aquaporin 4. Aging Dis 2022; 13:1504-1522. [PMID: 36186142 PMCID: PMC9466968 DOI: 10.14336/ad.2022.0219] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Non-cognitive behavioral and psychological symptoms often occur in Alzheimer's disease (AD) patients and mouse models, although the exact neuropathological mechanism remains elusive. Here, we report hyperactivity with significant inter-individual variability in 4-month-old APP/PS1 mice. Pathological analysis revealed that intraneuronal accumulation of amyloid-β (Aβ), c-Fos expression in glutamatergic neurons and activation of astrocytes were more evident in the frontal motor cortex of hyperactive APP/PS1 mice, compared to those with normal activity. Moreover, the hyperactive phenotype was associated with mislocalization of perivascular aquaporin 4 (AQP4) and glymphatic transport impairment. Deletion of the AQP4 gene increased hyperactivity, intraneuronal Aβ load and glutamatergic neuron activation, but did not influence working memory or anxiety-like behaviors of 4-month-old APP/PS1 mice. Together, these results demonstrate that AQP4 mislocalization or deficiency leads to increased intraneuronal Aβ load and neuronal hyperactivity in the motor cortex, which in turn causes locomotor over-activity during the early pathophysiology of APP/PS1 mice. Therefore, improving AQP4 mediated glymphatic clearance may offer a new strategy for early intervention of hyperactivity in the prodromal phase of AD.
Collapse
Affiliation(s)
- Tianqi Wang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yan Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ying Zou
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yingting Pang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaoxin He
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yali Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yun Liu
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Weixi Feng
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yanli Zhang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Qian Li
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jingping Shi
- Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Fengfei Ding
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Charles Marshall
- College of Health Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY 41701, USA
| | - Junying Gao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Correspondence should be addressed to: Dr. Ming Xiao (E-mail: ) or Dr. Junying Gao (), Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Correspondence should be addressed to: Dr. Ming Xiao (E-mail: ) or Dr. Junying Gao (), Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| |
Collapse
|
116
|
Ng B, Rowland HA, Wei T, Arunasalam K, Hayes EM, Koychev I, Hedegaard A, Ribe EM, Chan D, Chessell T, Ffytche D, Gunn RN, Kocagoncu E, Lawson J, Malhotra PA, Ridha BH, Rowe JB, Thomas AJ, Zamboni G, Buckley NJ, Cader ZM, Lovestone S, Wade-Martins R. Neurons derived from individual early Alzheimer's disease patients reflect their clinical vulnerability. Brain Commun 2022; 4:fcac267. [PMID: 36349119 PMCID: PMC9636855 DOI: 10.1093/braincomms/fcac267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/20/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Establishing preclinical models of Alzheimer's disease that predict clinical outcomes remains a critically important, yet to date not fully realized, goal. Models derived from human cells offer considerable advantages over non-human models, including the potential to reflect some of the inter-individual differences that are apparent in patients. Here we report an approach using induced pluripotent stem cell-derived cortical neurons from people with early symptomatic Alzheimer's disease where we sought a match between individual disease characteristics in the cells with analogous characteristics in the people from whom they were derived. We show that the response to amyloid-β burden in life, as measured by cognitive decline and brain activity levels, varies between individuals and this vulnerability rating correlates with the individual cellular vulnerability to extrinsic amyloid-β in vitro as measured by synapse loss and function. Our findings indicate that patient-induced pluripotent stem cell-derived cortical neurons not only present key aspects of Alzheimer's disease pathology but also reflect key aspects of the clinical phenotypes of the same patients. Cellular models that reflect an individual's in-life clinical vulnerability thus represent a tractable method of Alzheimer's disease modelling using clinical data in combination with cellular phenotypes.
Collapse
Affiliation(s)
- Bryan Ng
- Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Helen A Rowland
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
- Department of Psychiatry, University of Oxford, Headington, Oxford OX3 7JX, UK
| | - Tina Wei
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kanisa Arunasalam
- Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Emma Mee Hayes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Headington, Oxford OX3 7JX, UK
| | - Anne Hedegaard
- Present address: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Elena M Ribe
- Department of Psychiatry, University of Oxford, Headington, Oxford OX3 7JX, UK
| | - Dennis Chan
- Present address: Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Tharani Chessell
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca AKB, Granta Park, Cambridge, CB21 6GH, UK
| | - Dominic Ffytche
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, SE5 8AF, UK
| | - Roger N Gunn
- Invicro & Department of Brain Sciences, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Ece Kocagoncu
- Medical Research Council Cognition and Brain Sciences Unit, Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 7EF, UK
| | - Jennifer Lawson
- Department of Psychiatry, University of Oxford, Headington, Oxford OX3 7JX, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, Charing Cross Campus, London W6 8RP, UK
| | - Basil H Ridha
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 7EF, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Giovanna Zamboni
- Present address: Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena Italy
| | - Noel J Buckley
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
- Department of Psychiatry, University of Oxford, Headington, Oxford OX3 7JX, UK
| | - Zameel M Cader
- Zameel M. Cader, Nuffield Department of Clinical Neurosciences Kavli Institute for Nanoscience Discovery Dorothy Crowfoot Hodgkin Building University of Oxford, South Parks Road Oxford OX1 3QU, UK E-mail:
| | - Simon Lovestone
- Correspondence may also be addressed to: Simon Lovestone Department of Psychiatry, University of Oxford, Headington, Oxford OX3 7JX, UK E-mail:
| | - Richard Wade-Martins
- Correspondence to: Richard Wade-Martins Department of Physiology, Anatomy and Genetics Kavli Institute for Nanoscience Discovery Dorothy Crowfoot Hodgkin Building University of Oxford, South Parks Road Oxford OX1 3QU, UK E-mail:
| |
Collapse
|
117
|
Tran TT, Speck CL, Gallagher M, Bakker A. Lateral Entorhinal Cortex Dysfunction in Amnestic Mild Cognitive Impairment. Neurobiol Aging 2021; 112:151-160. [PMID: 35182842 PMCID: PMC8976714 DOI: 10.1016/j.neurobiolaging.2021.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022]
Abstract
The entorhinal cortex is the site of some of the earliest pathological changes in Alzheimer's disease, including neuronal, synaptic and volumetric loss. Specifically, the lateral entorhinal cortex shows significant accumulation of tau neurofibrillary tangles in the amnestic mild cognitive impairment (aMCI) phase of Alzheimer's disease. Although decreased entorhinal cortex activation has been observed in patients with aMCI in the context of impaired memory function, it remains unclear if functional changes in the entorhinal cortex can be localized to the lateral or medial entorhinal cortex. To assess subregion specific changes in the lateral and medial entorhinal cortex, patients with aMCI and healthy aged-matched control participants underwent high-resolution structural and functional magnetic resonance imaging. Patients with aMCI showed significantly reduced volume, and decreased activation localized to the lateral entorhinal cortex but not the medial entorhinal cortex. These results show that structural and functional changes associated with impaired memory function differentially engage the lateral entorhinal cortex in patients with aMCI, consistent with the locus of early disease related pathology.
Collapse
Affiliation(s)
- Tammy T Tran
- Department of Psychological and Brain Sciences, Johns Hopkins University School of Arts and Sciences, Baltimore, MD, USA
| | - Caroline L Speck
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University School of Arts and Sciences, Baltimore, MD, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
118
|
Zadey S, Buss SS, McDonald K, Press DZ, Pascual-Leone A, Fried PJ. Higher motor cortical excitability linked to greater cognitive dysfunction in Alzheimer's disease: results from two independent cohorts. Neurobiol Aging 2021; 108:24-33. [PMID: 34479168 PMCID: PMC8616846 DOI: 10.1016/j.neurobiolaging.2021.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
Prior studies have reported increased cortical excitability in people with Alzheimer's disease (AD), but findings have been inconsistent, and how excitability relates to dementia severity remains incompletely understood. The objective of this study was to investigate the association between a transcranial magnetic stimulation (TMS) measure of motor cortical excitability and measures of cognition in AD. A retrospective cross-sectional analysis tested the relationship between resting motor threshold (RMT) and the Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog) across two independent samples of AD participants (a discovery cohort, n=22 and a larger validation cohort, n=129) and a control cohort of cognitively normal adults (n=26). RMT was correlated with ADAS-Cog in the discovery-AD cohort (n=22, β=-.70, p<0.001) but not in the control cohort (n=26, β=-0.13, p=0.513). This relationship was confirmed in the validation-AD cohort (n=129, β=-.35, p<0.001). RMT can be a useful neurophysiological marker of progressive global cognitive dysfunction in AD. Future translational research should focus on the potential of RMT to predict and track individual pathophysiological trajectories of aging.
Collapse
Affiliation(s)
- Siddhesh Zadey
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Indian Institute of Science Education and Research, Pune, India; Duke Global Health Institute, Duke University, Durham, NC, USA; Association for Socially Applicable Research (ASAR), Pune, India
| | - Stephanie S Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Katherine McDonald
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA
| | - Daniel Z Press
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Badalona, Spain; Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew Senior Life, Harvard Medical School, Boston, Massachusetts, USA.
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
119
|
Bagheri S, Haddadi R, Saki S, Kourosh-Arami M, Komaki A. The effect of sodium channels on neurological/neuronal disorders: A systematic review. Int J Dev Neurosci 2021; 81:669-685. [PMID: 34687079 DOI: 10.1002/jdn.10153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Neurological and neuronal disorders are associated with structural, biochemical, or electrical abnormalities in the nervous system. Many neurological diseases have not yet been discovered. Interventions used for the treatment of these disorders include avoidance measures, lifestyle changes, physiotherapy, neurorehabilitation, pain management, medication, and surgery. In the sodium channelopathies, alterations in the structure, expression, and function of voltage-gated sodium channels (VGSCs) are considered as the causes of neurological and neuronal diseases. Online databases, including Scopus, Science Direct, Google Scholar, and PubMed were assessed for studies published between 1977 and 2020 using the keywords of review, sodium channels blocker, neurological diseases, and neuronal diseases. VGSCs consist of one α subunit and two β subunits. These subunits are known to regulate the gating kinetics, functional characteristics, and localization of the ion channel. These channels are involved in cell migration, cellular connections, neuronal pathfinding, and neurite outgrowth. Through the VGSC, the action potential is triggered and propagated in the neurons. Action potentials are physiological functions and passage of impermeable ions. The electrophysiological properties of these channels and their relationship with neurological and neuronal disorders have been identified. Subunit mutations are involved in the development of diseases, such as epilepsy, multiple sclerosis, autism, and Alzheimer's disease. Accordingly, we conducted a review of the link between VGSCs and neurological and neuronal diseases. Also, novel therapeutic targets were introduced for future drug discoveries.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology, School of Pharmacy, Hamadan University of Medical Science, Hamadan, Iran
| | - Sahar Saki
- Vice-Chancellor for Research and Technology, Hamadan University of Medical Science, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
120
|
Wakasugi N, Hanakawa T. It Is Time to Study Overlapping Molecular and Circuit Pathophysiologies in Alzheimer's and Lewy Body Disease Spectra. Front Syst Neurosci 2021; 15:777706. [PMID: 34867224 PMCID: PMC8637125 DOI: 10.3389/fnsys.2021.777706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia due to neurodegeneration and is characterized by extracellular senile plaques composed of amyloid β1 - 42 (Aβ) as well as intracellular neurofibrillary tangles consisting of phosphorylated tau (p-tau). Dementia with Lewy bodies constitutes a continuous spectrum with Parkinson's disease, collectively termed Lewy body disease (LBD). LBD is characterized by intracellular Lewy bodies containing α-synuclein (α-syn). The core clinical features of AD and LBD spectra are distinct, but the two spectra share common cognitive and behavioral symptoms. The accumulation of pathological proteins, which acquire pathogenicity through conformational changes, has long been investigated on a protein-by-protein basis. However, recent evidence suggests that interactions among these molecules may be critical to pathogenesis. For example, Aβ/tau promotes α-syn pathology, and α-syn modulates p-tau pathology. Furthermore, clinical evidence suggests that these interactions may explain the overlapping pathology between AD and LBD in molecular imaging and post-mortem studies. Additionally, a recent hypothesis points to a common mechanism of prion-like progression of these pathological proteins, via neural circuits, in both AD and LBD. This suggests a need for understanding connectomics and their alterations in AD and LBD from both pathological and functional perspectives. In AD, reduced connectivity in the default mode network is considered a hallmark of the disease. In LBD, previous studies have emphasized abnormalities in the basal ganglia and sensorimotor networks; however, these account for movement disorders only. Knowledge about network abnormalities common to AD and LBD is scarce because few previous neuroimaging studies investigated AD and LBD as a comprehensive cohort. In this paper, we review research on the distribution and interactions of pathological proteins in the brain in AD and LBD, after briefly summarizing their clinical and neuropsychological manifestations. We also describe the brain functional and connectivity changes following abnormal protein accumulation in AD and LBD. Finally, we argue for the necessity of neuroimaging studies that examine AD and LBD cases as a continuous spectrum especially from the proteinopathy and neurocircuitopathy viewpoints. The findings from such a unified AD and Parkinson's disease (PD) cohort study should provide a new comprehensive perspective and key data for guiding disease modification therapies targeting the pathological proteins in AD and LBD.
Collapse
Affiliation(s)
- Noritaka Wakasugi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
121
|
The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Mol Cell Neurosci 2021; 117:103683. [PMID: 34775008 DOI: 10.1016/j.mcn.2021.103683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/28/2022] Open
Abstract
Disruptions to the central excitatory-inhibitory (E/I) balance are thought to be related to aging and underlie a host of neural pathologies, including Alzheimer's disease. Aging may induce an increase in excitatory signaling, causing an E/I imbalance, which has been linked to shorter lifespans in mice, flies, and worms. In humans, extended longevity correlates to greater repression of genes involved in excitatory neurotransmission. The repressor element-1 silencing transcription factor (REST) is a master regulator in neural cells and is believed to be upregulated with senescent stimuli, whereupon it counters hyperexcitability, insulin/insulin-like signaling pathway activity, oxidative stress, and neurodegeneration. This review examines the putative mechanisms that distort the E/I balance with aging and neurodegeneration, and the putative roles of REST in maintaining neuronal homeostasis.
Collapse
|
122
|
Kaldun JC, Lone SR, Humbert Camps AM, Fritsch C, Widmer YF, Stein JV, Tomchik SM, Sprecher SG. Dopamine, sleep, and neuronal excitability modulate amyloid-β-mediated forgetting in Drosophila. PLoS Biol 2021; 19:e3001412. [PMID: 34613972 PMCID: PMC8523056 DOI: 10.1371/journal.pbio.3001412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/18/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer disease (AD) is one of the main causes of age-related dementia and neurodegeneration. However, the onset of the disease and the mechanisms causing cognitive defects are not well understood. Aggregation of amyloidogenic peptides is a pathological hallmark of AD and is assumed to be a central component of the molecular disease pathways. Pan-neuronal expression of Aβ42Arctic peptides in Drosophila melanogaster results in learning and memory defects. Surprisingly, targeted expression to the mushroom bodies, a center for olfactory memories in the fly brain, does not interfere with learning but accelerates forgetting. We show here that reducing neuronal excitability either by feeding Levetiracetam or silencing of neurons in the involved circuitry ameliorates the phenotype. Furthermore, inhibition of the Rac-regulated forgetting pathway could rescue the Aβ42Arctic-mediated accelerated forgetting phenotype. Similar effects are achieved by increasing sleep, a critical regulator of neuronal homeostasis. Our results provide a functional framework connecting forgetting signaling and sleep, which are critical for regulating neuronal excitability and homeostasis and are therefore a promising mechanism to modulate forgetting caused by toxic Aβ peptides.
Collapse
Affiliation(s)
- Jenifer C. Kaldun
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Shahnaz R. Lone
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | | | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Yves F. Widmer
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jens V. Stein
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Seth M. Tomchik
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
123
|
Eisenstein T, Giladi N, Hendler T, Havakuk O, Lerner Y. Physically Active Lifestyle Is Associated With Attenuation of Hippocampal Dysfunction in Cognitively Intact Older Adults. Front Aging Neurosci 2021; 13:720990. [PMID: 34690738 PMCID: PMC8527880 DOI: 10.3389/fnagi.2021.720990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Alterations in hippocampal function have been shown in older adults, which are expressed as changes in hippocampal activity and connectivity. While hippocampal activation during memory demands has been demonstrated to decrease with age, some older individuals present increased activity, or hyperactivity, of the hippocampus which is associated with increased neuropathology and poor memory function. In addition, lower functional coherence between the hippocampus and core hubs of the default mode network (DMN), namely, the posteromedial and medial prefrontal cortices, as well as increased local intrahippocampal connectivity, were also demonstrated in cognitively intact older adults. Aerobic exercise has been shown to elicit neuroprotective effects on hippocampal structure and vasculature in aging, and improvements in cardiorespiratory fitness have been suggested to mediate these exercise-related effects. However, how these lifestyle factors relate to hippocampal function is not clear. Fifty-two cognitively intact older adults (aged 65-80 years) have been recruited and divided into physically active (n = 29) or non-active (n = 23) groups based on their aerobic activity lifestyle habits. Participants underwent resting-state and task-based fMRI experiments which included an associative memory encoding paradigm followed by a post-scan memory recognition test. In addition, 44 participants also performed cardiopulmonary exercise tests to evaluate cardiorespiratory fitness by measuring peak oxygen consumption (Vo2peak). While both groups demonstrated increased anterior hippocampal activation during memory encoding, a physically active lifestyle was associated with significantly lower activity level and higher memory performance in the recognition task. In addition, the physically active group also demonstrated higher functional connectivity of the anterior and posterior hippocampi with the core hubs of the DMN and lower local intra-hippocampal connectivity within and between hemispheres. Vo2peak was negatively associated with the hippocampal activation level and demonstrated a positive correlation with hippocampal-DMN connectivity. According to these findings, an aerobically active lifestyle may be associated with attenuation of hippocampal dysfunction in cognitively intact older adults.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Talma Hendler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Havakuk
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yulia Lerner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
124
|
Lengu K, Ryan S, Peltier SJ, Tyszkowski T, Kairys A, Giordani B, Hampstead BM. Effects of High Definition-Transcranial Direct Current Stimulation on Local GABA and Glutamate Levels Among Older Adults with and without Mild Cognitive Impairment: An Exploratory Study. J Alzheimers Dis 2021; 84:1091-1102. [PMID: 34602464 DOI: 10.3233/jad-201091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Prior research, primarily with young adults, suggests transcranial direct current stimulation (tDCS) effects are driven by the primary excitatory and/or inhibitory neurotransmitters, glutamate, and gamma-aminobutyric acid (GABA), respectively. OBJECTIVE We examined the neurometabolic mechanisms of tDCS in older adults with and without mild cognitive impairment (MCI). METHODS We used data from a double-blind, cross-over, randomized controlled trial (NCT01958437) in 32 older adults to evaluate high definition (HD)-tDCS-induced changes in glutamate and GABA via magnetic resonance spectroscopy (MRS). Participants underwent MRS following two counterbalanced HD-tDCS sessions (one active, one sham) that targeted the right superior parietal cortex (center anode at P2) and delivered 2mA for 20 minutes. RESULTS Relative to sham, and when co-varying for MRS voxel overlap and right superior parietal volume, active HD-tDCS significantly increased GABA and decreased the ratio of glutamate to GABA. No changes were observed in a left prefrontal control MRS voxel. Although we did not find a significant correlation between strength of delivered current (measured via MRI-based computational modeling) and neurometabolite change, there was a robust positive relationship between the volume of right superior parietal cortex and neurometabolite change. CONCLUSION Our preliminary findings of increased GABA and reduced glutamate/GABA ratio raise the possibility that (HD-)tDCS effects differ by age. Moreover, age- and disease-related regional brain volume loss may be especially important to consider when planning future studies. Replication would emphasize the importance of developing population-specific tDCS parameters that consider structural and physiologic changes associated with "normal" and pathological aging.
Collapse
Affiliation(s)
- Ketrin Lengu
- Neuropsychology Section, Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.,Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Shannon Ryan
- Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Scott J Peltier
- Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Troy Tyszkowski
- Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Anson Kairys
- Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Bruno Giordani
- Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin M Hampstead
- Neuropsychology Section, Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.,Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
125
|
Ismael S, Sindi G, Colvin RA, Lee D. Activity-dependent release of phosphorylated human tau from Drosophila neurons in primary culture. J Biol Chem 2021; 297:101108. [PMID: 34473990 PMCID: PMC8455371 DOI: 10.1016/j.jbc.2021.101108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
Neuronal activity can enhance tau release and thus accelerate tauopathies. This activity-dependent tau release can be used to study the progression of tau pathology in Alzheimer's disease (AD), as hyperphosphorylated tau is implicated in AD pathogenesis and related tauopathies. However, our understanding of the mechanisms that regulate activity-dependent tau release from neurons and the role that tau phosphorylation plays in modulating activity-dependent tau release is still rudimentary. In this study, Drosophila neurons in primary culture expressing human tau (hTau) were used to study activity-dependent tau release. We found that hTau release was markedly increased by 50 mM KCl treatment for 1 h. A similar level of release was observed using optogenetic techniques, where genetically targeted neurons were stimulated for 30 min using blue light (470 nm). Our results showed that activity-dependent release of phosphoresistant hTauS11A was reduced when compared with wildtype hTau. In contrast, release of phosphomimetic hTauE14 was increased upon activation. We found that released hTau was phosphorylated in its proline-rich and C-terminal domains using phosphorylation site-specific tau antibodies (e.g., AT8). Fold changes in detectable levels of total or phosphorylated hTau in cell lysates or following immunopurification from conditioned media were consistent with preferential release of phosphorylated hTau after light stimulation. This study establishes an excellent model to investigate the mechanism of activity-dependent hTau release and to better understand the role of phosphorylated tau release in the pathogenesis of AD since it relates to alterations in the early stage of neurodegeneration associated with increased neuronal activity.
Collapse
Affiliation(s)
- Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Ghadir Sindi
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Robert A Colvin
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
126
|
Wander CM, Song J. The neurogenic niche in Alzheimer's disease. Neurosci Lett 2021; 762:136109. [PMID: 34271133 PMCID: PMC9013442 DOI: 10.1016/j.neulet.2021.136109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Adult hippocampal neurogenesis is the process of generation and functional incorporation of new neurons, formed by adult neural stem cells in the dentate gyrus. Adult hippocampal neurogenesis is highly dependent upon the integration of dynamic external stimuli and is instrumental in the formation of new spatial memories. Adult hippocampal neurogenesis is therefore uniquely sensitive to the summation of neuronal circuit and neuroimmune environments that comprise the neurogenic niche, and has powerful implications in diseases of aging and neurological disorders. This sensitivity underlies the neurogenic niche alterations commonly observed in Alzheimer's disease, the most common form of dementia. This review summarizes Alzheimer's disease associated changes in neuronal network activity, neuroinflammatory processes, and adult neural stem cell fate choice that ultimately result in neurogenic niche dysfunction and impaired adult hippocampal neurogenesis. A more comprehensive understanding of the complex changes mediating neurogenic niche disturbances in Alzheimer's disease will aid development of future therapies targeting adult neurogenesis.
Collapse
Affiliation(s)
- Connor M Wander
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
127
|
Kannan LN, Bhatt TS. Perturbation-based balance assessment: Examining reactive balance control in older adults with mild cognitive impairments. Physiol Int 2021; 108:353-370. [PMID: 34529584 DOI: 10.1556/2060.2021.00181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
Background Older adults with mild cognitive impairment (OAwMCI) present subtle balance and gait deficits along with subjective memory decline. Although these presentations might not affect activities of daily living (ADLs), they attribute to a two-folded increase in falls. While changes occurring in volitional balance control during ADLs have been extensively examined among OAwMCI, reactive balance control, required to recover from external perturbations, has received little attention. Therefore, this study examined reactive balance control in OAwMCI compared to their healthy counterparts. Methods Fifteen older adults with mild cognitive impairment (OAwMCI), fifteen cognitively intact older adults (CIOA) (>55 years), and fifteen young adults (18-30 years) were exposed to stance perturbations at three different intensities. Behavioral outcomes postural COM state stability, step length, step initiation, and step execution were computed. Results Postural COM state stability was the lowest in OAwMCI compared to CIOA and young adults, and it deteriorated at higher perturbation intensities (P < 0.001). Step length was the lowest among OAwMCI and was significantly different from young adults (P < 0.001) but not from CIOA. Unlike OAwMCI, CIOA and young adults increased their step length at higher perturbation intensities (P < 0.001). OAwMCI showed longer recovery step initiation times and shorter execution times compared to CIOA and young adults at higher perturbation intensities (P < 0.001). Conclusion OAwMCI exhibit exacerbated reactive instability and are unable to modulate their responses as the threat to balance control altered. Thus, they are at a significantly higher risk of falls than their healthy counterparts.
Collapse
Affiliation(s)
- Lakshmi N Kannan
- Department of Physical Therapy, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tanvi S Bhatt
- Department of Physical Therapy, The University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
128
|
Jiménez-Balado J, Ycaza Herrera A, Igwe K, Klem L, Buyukturkoglu K, Irimia A, Chen L, Guo J, Brickman AM, Eich TS. Reduced Hippocampal GABA+ Is Associated With Poorer Episodic Memory in Healthy Older Women: A Pilot Study. Front Behav Neurosci 2021; 15:695416. [PMID: 34512283 PMCID: PMC8427754 DOI: 10.3389/fnbeh.2021.695416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
Background: The current pilot study was designed to examine the association between hippocampal γ-aminobutyric acid (GABA) concentration and episodic memory in older individuals, as well as the impact of two major risk factors for Alzheimer’s disease (AD)—female sex and Apolipoprotein ε4 (ApoE ε4) genotype—on this relationship. Methods: Twenty healthy, community-dwelling individuals aged 50–71 (11 women) took part in the study. Episodic memory was evaluated using a Directed Forgetting task, and GABA+ was measured in the right hippocampus using a Mescher-Garwood point-resolved magnetic resonance spectroscopy (MRS) sequence. Multiple linear regression models were used to quantify the relationship between episodic memory, GABA+, ApoE ɛ4, and sex, controlling for age and education. Results: While GABA+ did not interact with ApoE ɛ4 carrier status to influence episodic memory (p = 0.757), the relationship between GABA+ and episodic memory was moderated by sex: lower GABA+ predicted worse memory in women such that, for each standard deviation decrease in GABA+ concentration, memory scores were reduced by 11% (p = 0.001). Conclusions: This pilot study suggests that sex, but not ApoE ɛ4 genotype, moderates the relationship between hippocampal GABA+ and episodic memory, such that women with lower GABA+ concentration show worse memory performance. These findings, which must be interpreted with caution given the small sample size, may serve as a starting point for larger studies using multimodal neuroimaging to understand the contributions of GABA metabolism to age-related memory decline.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Ycaza Herrera
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Kay Igwe
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Lynda Klem
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.,Corwin D. Denney Research Center, Department of Biomedical Engineering, Andrew Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Liu Chen
- Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Adam M Brickman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States.,Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.,Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
129
|
Logsdon AF, Francis KL, Richardson NE, Hu SJ, Faber CL, Phan BA, Nguyen V, Setthavongsack N, Banks WA, Woltjer RL, Keene CD, Latimer CS, Schwartz MW, Scarlett JM, Alonge KM. Decoding perineuronal net glycan sulfation patterns in the Alzheimer's disease brain. Alzheimers Dement 2021; 18:942-954. [PMID: 34482642 DOI: 10.1002/alz.12451] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/01/2023]
Abstract
The extracellular matrix (ECM) of the brain comprises unique glycan "sulfation codes" that influence neurological function. Perineuronal nets (PNNs) are chondroitin sulfate-glycosaminoglycan (CS-GAG) containing matrices that enmesh neural networks involved in memory and cognition, and loss of PNN matrices is reported in patients with neurocognitive and neuropsychiatric disorders including Alzheimer's disease (AD). Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we show that patients with a clinical diagnosis of AD-related dementia undergo a re-coding of their PNN-associated CS-GAGs that correlates to Braak stage progression, hyperphosphorylated tau (p-tau) accumulation, and cognitive impairment. As these CS-GAG sulfation changes are detectable prior to the regional onset of classical AD pathology, they may contribute to the initiation and/or progression of the underlying degenerative processes and implicate the brain matrix sulfation code as a key player in the development of AD clinicopathology.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kendra L Francis
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA.,Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Nicole E Richardson
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Shannon J Hu
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Chelsea L Faber
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Bao Anh Phan
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Vy Nguyen
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Naly Setthavongsack
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Randy L Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Jarrad M Scarlett
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA.,Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Kimberly M Alonge
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
130
|
Fernandez‐Perez EJ, Muñoz B, Bascuñan DA, Peters C, Riffo‐Lepe NO, Espinoza MP, Morgan PJ, Filippi C, Bourboulou R, Sengupta U, Kayed R, Epsztein J, Aguayo LG. Synaptic dysregulation and hyperexcitability induced by intracellular amyloid beta oligomers. Aging Cell 2021; 20:e13455. [PMID: 34409748 PMCID: PMC8441418 DOI: 10.1111/acel.13455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Intracellular amyloid beta oligomer (iAβo) accumulation and neuronal hyperexcitability are two crucial events at early stages of Alzheimer's disease (AD). However, to date, no mechanism linking iAβo with an increase in neuronal excitability has been reported. Here, the effects of human AD brain-derived (h-iAβo) and synthetic (iAβo) peptides on synaptic currents and action potential firing were investigated in hippocampal neurons. Starting from 500 pM, iAβo rapidly increased the frequency of synaptic currents and higher concentrations potentiated the AMPA receptor-mediated current. Both effects were PKC-dependent. Parallel recordings of synaptic currents and nitric oxide (NO)-associated fluorescence showed that the increased frequency, related to pre-synaptic release, was dependent on a NO-mediated retrograde signaling. Moreover, increased synchronization in NO production was also observed in neurons neighboring those dialyzed with iAβo, indicating that iAβo can increase network excitability at a distance. Current-clamp recordings suggested that iAβo increased neuronal excitability via AMPA-driven synaptic activity without altering membrane intrinsic properties. These results strongly indicate that iAβo causes functional spreading of hyperexcitability through a synaptic-driven mechanism and offers an important neuropathological significance to intracellular species in the initial stages of AD, which include brain hyperexcitability and seizures.
Collapse
Affiliation(s)
| | - Braulio Muñoz
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Denisse A. Bascuñan
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Christian Peters
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Nicolas O. Riffo‐Lepe
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Maria P. Espinoza
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Peter J. Morgan
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Caroline Filippi
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Romain Bourboulou
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Jérôme Epsztein
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Luis G. Aguayo
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| |
Collapse
|
131
|
Goel A, Roy S, Punjabi K, Mishra R, Tripathi M, Shukla D, Mandal PK. PRATEEK: Integration of Multimodal Neuroimaging Data to Facilitate Advanced Brain Research. J Alzheimers Dis 2021; 83:305-317. [PMID: 34308905 DOI: 10.3233/jad-210440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In vivo neuroimaging modalities such as magnetic resonance imaging (MRI), functional MRI (fMRI), magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), and quantitative susceptibility mapping (QSM) are useful techniques to understand brain anatomical structure, functional activity, source localization, neurochemical profiles, and tissue susceptibility respectively. Integrating unique and distinct information from these neuroimaging modalities will further help to enhance the understanding of complex neurological diseases. OBJECTIVE To develop a processing scheme for multimodal data integration in a seamless manner on healthy young population, thus establishing a generalized framework for various clinical conditions (e.g., Alzheimer's disease). METHODS A multimodal data integration scheme has been developed to integrate the outcomes from multiple neuroimaging data (fMRI, MEG, MRS, and QSM) spatially. Furthermore, the entire scheme has been incorporated into a user-friendly toolbox- "PRATEEK". RESULTS The proposed methodology and toolbox has been tested for viability among fourteen healthy young participants. The data-integration scheme was tested for bilateral occipital cortices as the regions of interest and can also be extended to other anatomical regions. Overlap percentage from each combination of two modalities (fMRI-MRS, MEG-MRS, fMRI-QSM, and fMRI-MEG) has been computed and also been qualitatively assessed for combinations of the three (MEG-MRS-QSM) and four (fMRI-MEG-MRS-QSM) modalities. CONCLUSION This user-friendly toolbox minimizes the need of an expertise in handling different neuroimaging tools for processing and analyzing multimodal data. The proposed scheme will be beneficial for clinical studies where geometric information plays a crucial role for advance brain research.
Collapse
Affiliation(s)
- Anshika Goel
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Saurav Roy
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Khushboo Punjabi
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Ritwick Mishra
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Manjari Tripathi
- Department of Neurology, All Indian Institute of Medical Sciences, New Delhi, India
| | - Deepika Shukla
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Pravat K Mandal
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India.,Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| |
Collapse
|
132
|
Koutsodendris N, Nelson MR, Rao A, Huang Y. Apolipoprotein E and Alzheimer's Disease: Findings, Hypotheses, and Potential Mechanisms. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:73-99. [PMID: 34460318 DOI: 10.1146/annurev-pathmechdis-030421-112756] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves dysregulation of many cellular and molecular processes. It is notoriously difficult to develop therapeutics for AD due to its complex nature. Nevertheless, recent advancements in imaging technology and the development of innovative experimental techniques have allowed researchers to perform in-depth analyses to uncover the pathogenic mechanisms of AD. An important consideration when studying late-onset AD is its major genetic risk factor, apolipoprotein E4 (apoE4). Although the exact mechanisms underlying apoE4 effects on AD initiation and progression are not fully understood, recent studies have revealed critical insights into the apoE4-induced deficits that occur in AD. In this review, we highlight notable studies that detail apoE4 effects on prominent AD pathologies, including amyloid-β, tau pathology, neuroinflammation, and neural network dysfunction. We also discuss evidence that defines the physiological functions of apoE and outlines how these functions are disrupted in apoE4-related AD. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nicole Koutsodendris
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA
| | - Maxine R Nelson
- Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA
| | - Antara Rao
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA
| | - Yadong Huang
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA.,Department of Neurology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
133
|
Tok S, Ahnaou A, Drinkenburg W. Functional Neurophysiological Biomarkers of Early-Stage Alzheimer's Disease: A Perspective of Network Hyperexcitability in Disease Progression. J Alzheimers Dis 2021; 88:809-836. [PMID: 34420957 PMCID: PMC9484128 DOI: 10.3233/jad-210397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological indicator of Alzheimer’s disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential indicator of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this readout. Several hypotheses have been put forward to explain the prevalence of NH in animal models through neurophysiological, biochemical, and imaging techniques. However, some of these hypotheses have been built on animal models with limitations and caveats that may have derived NH through other mechanisms or mechanisms without translational validity to sporadic AD patients, potentially leading to an erroneous conclusion of the underlying cause of NH occurring in patients with AD. In this review, we discuss the substantiation for NH in animal models of AD pathology and in human patients, as well as some of the hypotheses considering recently developed animal models that challenge existing hypotheses and mechanisms of NH. In addition, we provide a preclinical perspective on how the development of animal models incorporating AD-specific NH could provide physiologically relevant translational experimental data that may potentially aid the discovery and development of novel therapies for AD.
Collapse
Affiliation(s)
- Sean Tok
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| | - Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| |
Collapse
|
134
|
Zhang H, Chiu PW, Ip I, Liu T, Wong GHY, Song YQ, Wong SWH, Herrup K, Mak HKF. Asymmetric left-right hippocampal glutamatergic modulation of cognitive control in ApoE-isoform subjects is unrelated to neuroinflammation. Eur J Neurosci 2021; 54:5310-5326. [PMID: 34309092 PMCID: PMC9290961 DOI: 10.1111/ejn.15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/03/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
The glutamatergic cycle is essential in modulating memory processing by the hippocampal circuitry. Our combined proton magnetic resonance spectroscopy (1H‐MRS) and task‐based functional magnetic resonance imaging (fMRI) study (using face‐name paired‐associates encoding and retrieval task) of a cognitively normal cohort of 67 healthy adults (18 ApoE4 carriers and 49 non‐ApoE4 carriers) found altered patterns of relationships between glutamatergic‐modulated synaptic signalling and neuronal activity or functional hyperaemia in the ApoE4 isoforms. Our study highlighted the asymmetric left–right hippocampal glutamatergic system in modulating neuronal activities in ApoE4 carriers versus non‐carriers. Such brain differentiation might be developmental cognitive advantages or compensatory due to impaired synaptic integrity and plasticity in ApoE4 carriers. As there was no difference in myoinositol levels measured by MRS between the ApoE4 and non‐ApoE4 subgroups, the mechanism is unlikely to be a response to neuroinflammation.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong
| | - Pui Wai Chiu
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Isaac Ip
- Department of Educational Psychology, Chinese University of Hong Kong, Hong Kong
| | - Tianyin Liu
- Department of Social Work and Administration, The University of Hong Kong, Hong Kong
| | - Gloria Hoi Yan Wong
- Department of Social Work and Administration, The University of Hong Kong, Hong Kong
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Savio Wai Ho Wong
- Department of Educational Psychology, Chinese University of Hong Kong, Hong Kong
| | - Karl Herrup
- Alzheimer Disease Research Centre, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Henry Ka Fung Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
135
|
Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease. Semin Cell Dev Biol 2021; 116:146-159. [PMID: 33573856 PMCID: PMC8292162 DOI: 10.1016/j.semcdb.2021.01.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In this review, we focus on the potential role of the γ-aminobutyric acidergic (GABAergic) system in age-related episodic memory impairments in humans, with a particular focus on Alzheimer's disease (AD). Well-established animal models have shown that GABA plays a central role in regulating and synchronizing neuronal signaling in the hippocampus, a brain area critical for episodic memory that undergoes early and significant morphologic and functional changes in the course of AD. Neuroimaging research in humans has documented hyperactivity in the hippocampus and losses of resting state functional connectivity in the Default Mode Network, a network that itself prominently includes the hippocampus-presaging episodic memory decline in individuals at-risk for AD. Apolipoprotein ε4, the highest genetic risk factor for AD, is associated with GABAergic dysfunction in animal models, and episodic memory impairments in humans. In combination, these findings suggest that GABA may be the linchpin in a complex system of factors that eventually leads to the principal clinical hallmark of AD: episodic memory loss. Here, we will review the current state of literature supporting this hypothesis. First, we will focus on the molecular and cellular basis of the GABAergic system and its role in memory and cognition. Next, we report the evidence of GABA dysregulations in AD and normal aging, both in animal models and human studies. Finally, we outline a model of GABAergic dysfunction based on the results of functional neuroimaging studies in humans, which have shown hippocampal hyperactivity to episodic memory tasks concurrent with and even preceding AD diagnosis, along with factors that may modulate this association.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
136
|
Wang Y, Fu AKY, Ip NY. IL-33/ST2 Signaling Regulates Synaptic Plasticity and Homeostasis in the Adult Hippocampal Circuitry. DNA Cell Biol 2021; 40:1125-1130. [PMID: 34297618 DOI: 10.1089/dna.2021.0491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In response to neuronal activity changes, the adult hippocampal circuits undergo continuous synaptic remodeling, which is essential for information processing, learning, and memory encoding. Glial cells, including astrocytes and microglia, actively regulate hippocampal synaptic plasticity by coordinating the neuronal activity-induced synaptic changes at the circuit level. Emerging evidence suggests that the crosstalk between neurons and glia in the adult hippocampus is region specific and that the mechanisms controlling this process are critically dependent on secreted factors. Interleukin-33 (IL-33), a cytokine of the IL-1 family, is a key factor that modulates such glia-driven neuromodulations in two distinct hippocampal circuits. The activation of IL-33 and its receptor complex is important for maintaining the excitatory synaptic activity in the cornu ammonis 1 subregion and the remodeling of dentate gyrus synapses through activity-dependent astrocyte-synapse and microglia-synapse interactions, respectively. Meanwhile, the dysregulation of this signaling is implicated in multiple neurological disorders, especially Alzheimer's disease. Further investigations of how IL-33/ST2 signaling is regulated in a region-specific manner as well as its diverse functions in glia-synapse communications in the adult hippocampal circuitry will provide insights into the nature of hippocampal synaptic plasticity and homeostasis in health and disease.
Collapse
Affiliation(s)
- Ye Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Amy K Y Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Nancy Y Ip
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| |
Collapse
|
137
|
Li Y, Zhu K, Li N, Wang X, Xiao X, Li L, Li L, He Y, Zhang J, Wo J, Cui Y, Huang H, Zhang J, Wang W, Wang X, Zheng Y. Reversible GABAergic dysfunction involved in hippocampal hyperactivity predicts early-stage Alzheimer disease in a mouse model. Alzheimers Res Ther 2021; 13:114. [PMID: 34127063 PMCID: PMC8204558 DOI: 10.1186/s13195-021-00859-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuronal hyperactivity related to β-amyloid (Aβ) is considered an early warning sign of Alzheimer disease (AD). Although increasing evidence supports this opinion, the underlying mechanisms are still unknown. METHODS Here, we recorded whole-cell synaptic currents and membrane potentials using patch clamping of acute hippocampal slices from human amyloid precursor protein (APP)/presenilin-1 transgenic (5XFAD) mice and their wild-type littermates. Biochemical methods, electron microscopic imaging, behavioral tests, and intraventricular drug delivery applied with osmotic pumps were used in this study. RESULTS We confirmed hyperactivity of hippocampal CA1 pyramidal neurons in 5XFAD mice using whole-cell electrophysiological recording at 2.5 months old, when local Aβ-positive plaques had not developed and only mild cognitive dysfunction occurred. We further discovered attenuated inhibitory postsynaptic currents and unchanged excitatory postsynaptic currents in CA1 pyramidal neurons, in which the intrinsic excitability was unchanged. Moreover, the density of both γ-aminobutyric acid A (GABAA) receptor subunits, α1 and γ2, was reduced in synapses of the hippocampus in transgenic mice. Intriguingly, early intervention with the GABAA receptor agonist gaboxadol reversed the hippocampal hyperactivity and modestly ameliorated cognitive performance in 5XFAD mice under our experimental conditions. CONCLUSIONS Inhibitory postsynaptic disruption critically contributes to abnormalities in the hippocampal network and cognition in 5XFAD mice and possibly in AD. Therefore, strengthening the GABAergic system could be a promising therapy for AD in the early stages.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069 China
| | - Ke Zhu
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| | - Ning Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
| | - Xiaotong Wang
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| | - Xuansheng Xiao
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| | - Linying Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069 China
| | - Lijuan Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Ying He
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| | - Jinglan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Jiaoyang Wo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Yanqiu Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Jianliang Zhang
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Xiaomin Wang
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Yan Zheng
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| |
Collapse
|
138
|
Sciaccaluga M, Megaro A, Bellomo G, Ruffolo G, Romoli M, Palma E, Costa C. An Unbalanced Synaptic Transmission: Cause or Consequence of the Amyloid Oligomers Neurotoxicity? Int J Mol Sci 2021; 22:ijms22115991. [PMID: 34206089 PMCID: PMC8199544 DOI: 10.3390/ijms22115991] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) 1-40 and 1-42 peptides are key mediators of synaptic and cognitive dysfunction in Alzheimer's disease (AD). Whereas in AD, Aβ is found to act as a pro-epileptogenic factor even before plaque formation, amyloid pathology has been detected among patients with epilepsy with increased risk of developing AD. Among Aβ aggregated species, soluble oligomers are suggested to be responsible for most of Aβ's toxic effects. Aβ oligomers exert extracellular and intracellular toxicity through different mechanisms, including interaction with membrane receptors and the formation of ion-permeable channels in cellular membranes. These damages, linked to an unbalance between excitatory and inhibitory neurotransmission, often result in neuronal hyperexcitability and neural circuit dysfunction, which in turn increase Aβ deposition and facilitate neurodegeneration, resulting in an Aβ-driven vicious loop. In this review, we summarize the most representative literature on the effects that oligomeric Aβ induces on synaptic dysfunction and network disorganization.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| | - Alfredo Megaro
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Giovanni Bellomo
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Michele Romoli
- Neurology Unit, Rimini “Infermi” Hospital—AUSL Romagna, 47923 Rimini, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| |
Collapse
|
139
|
Lu MH, Zhao XY, Xu DE, Chen JB, Ji WL, Huang ZP, Pan TT, Xue LL, Wang F, Li QF, Zhang Y, Wang TH, Yanagawa Y, Liu CF, Xu RX, Xia YY, Li S, Ma QH. Transplantation of GABAergic Interneuron Progenitor Attenuates Cognitive Deficits of Alzheimer's Disease Model Mice. J Alzheimers Dis 2021; 75:245-260. [PMID: 32280096 DOI: 10.3233/jad-200010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Excitatory (E) and inhibitory (I) balance of neural network activity is essential for normal brain function and of particular importance to memory. Disturbance of E/I balance contributes to various neurological disorders. The appearance of neural hyperexcitability in Alzheimer's disease (AD) is even suggested as one of predictors of accelerated cognitive decline. In this study, we found that GAD67+, Parvalbumin+, Calretinin+, and Neuropeptide Y+ interneurons were progressively lost in the brain of APP/PS1 mice. Transplanted embryonic medial ganglionic eminence derived interneuron progenitors (IPs) survived, migrated, and differentiated into GABAergic interneuron subtypes successfully at 2 months after transplantation. Transplantation of IPs hippocampally rescued impaired synaptic plasticity and cognitive deficits of APP/PS1 transgenic mice, concomitant with a suppression of neural hyperexcitability, whereas transplantation of IPs failed to attenuate amyloid-β accumulation, neuroinflammation, and synaptic loss of APP/PS1 transgenic mice. These observations indicate that transplantation of IPs improves learning and memory of APP/PS1 transgenic mice via suppressing neural hyperexcitability. This study highlights a causal contribution of GABAergic dysfunction to AD pathogenesis and the potentiality of IP transplantation in AD therapy.
Collapse
Affiliation(s)
- Mei-Hong Lu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu-Yun Zhao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - De-En Xu
- Department of Neurology, the Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - Ji-Bo Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Li Ji
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ze-Ping Huang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting-Ting Pan
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu-Lu Xue
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Fen Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi-Fa Li
- Department of Physiology, National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Yue Zhang
- Department of Physiology, National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi-Yuan Xia
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shao Li
- Department of Physiology, National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
140
|
Yao J, Sun B, Institoris A, Zhan X, Guo W, Song Z, Liu Y, Hiess F, Boyce AKJ, Ni M, Wang R, Ter Keurs H, Back TG, Fill M, Thompson RJ, Turner RW, Gordon GR, Chen SRW. Limiting RyR2 Open Time Prevents Alzheimer's Disease-Related Neuronal Hyperactivity and Memory Loss but Not β-Amyloid Accumulation. Cell Rep 2021; 32:108169. [PMID: 32966798 PMCID: PMC7532726 DOI: 10.1016/j.celrep.2020.108169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Neuronal hyperactivity is an early primary dysfunction in Alzheimer’s disease (AD) in humans and animal models, but effective neuronal hyperactivity-directed anti-AD therapeutic agents are lacking. Here we define a previously unknown mode of ryanodine receptor 2 (RyR2) control of neuronal hyperactivity and AD progression. We show that a single RyR2 point mutation, E4872Q, which reduces RyR2 open time, prevents hyperexcitability, hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset AD mouse model (5xFAD). The RyR2-E4872Q mutation upregulates hippocampal CA1-pyramidal cell A-type K+ current, a well-known neuronal excitability control that is downregulated in AD. Pharmacologically limiting RyR2 open time with the R-carvedilol enantiomer (but not racemic carvedilol) prevents and rescues neuronal hyperactivity, memory impairment, and neuron loss even in late stages of AD. These AD-related deficits are prevented even with continued β-amyloid accumulation. Thus, limiting RyR2 open time may be a hyperactivity-directed, non-β-amyloid-targeted anti-AD strategy. Yao et al. show that genetically or pharmacologically limiting the open duration of ryanodine receptor 2 upregulates the A-type potassium current and prevents neuronal hyperexcitability and hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset Alzheimer’s disease mouse model, even with continued accumulation of β-amyloid.
Collapse
Affiliation(s)
- Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bo Sun
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Medical School, Kunming University of Science and Technology, Kunming 650504, China
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Xiaoqin Zhan
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Zhenpeng Song
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yajing Liu
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Florian Hiess
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andrew K J Boyce
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mingke Ni
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Henk Ter Keurs
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thomas G Back
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael Fill
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Roger J Thompson
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ray W Turner
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
141
|
Yogev-Seligmann G, Eisenstein T, Ash E, Giladi N, Sharon H, Nachman S, Bregman N, Kodesh E, Hendler T, Lerner Y. Neurocognitive Plasticity Is Associated with Cardiorespiratory Fitness Following Physical Exercise in Older Adults with Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2021; 81:91-112. [PMID: 33720893 DOI: 10.3233/jad-201429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Aerobic training has been shown to promote structural and functional neurocognitive plasticity in cognitively intact older adults. However, little is known about the neuroplastic potential of aerobic exercise in individuals at risk of Alzheimer's disease (AD) and dementia. OBJECTIVE We aimed to explore the effect of aerobic exercise intervention and cardiorespiratory fitness improvement on brain and cognitive functions in older adults with amnestic mild cognitive impairment (aMCI). METHODS 27 participants with aMCI were randomized to either aerobic training (n = 13) or balance and toning (BAT) control group (n = 14) for a 16-week intervention. Pre- and post-assessments included functional MRI experiments of brain activation during associative memory encoding and neural synchronization during complex information processing, cognitive evaluation using neuropsychological tests, and cardiorespiratory fitness assessment. RESULTS The aerobic group demonstrated increased frontal activity during memory encoding and increased neural synchronization in higher-order cognitive regions such as the frontal cortex and temporo-parietal junction (TPJ) following the intervention. In contrast, the BAT control group demonstrated decreased brain activity during memory encoding, primarily in occipital, temporal, and parietal areas. Increases in cardiorespiratory fitness were associated with increases in brain activationin both the left inferior frontal and precentral gyri. Furthermore, changes in cardiorespiratory fitness were also correlated with changes in performance on several neuropsychological tests. CONCLUSION Aerobic exercise training may result in functional plasticity of high-order cognitive areas, especially, frontal regions, among older adults at risk of AD and dementia. Furthermore, cardiorespiratory fitness may be an important mediating factor of the observed changes in neurocognitive functions.
Collapse
Affiliation(s)
- Galit Yogev-Seligmann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tamir Eisenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Elissa Ash
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Haggai Sharon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Pain Management & Neuromodulation Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK.,Institute of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shikma Nachman
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noa Bregman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Einat Kodesh
- Department of Physical Therapy Faculty of Social Welfare & Health Sciences, University of Haifa, Haifa, Israel
| | - Talma Hendler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Lerner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
142
|
Abstract
The hippocampus and underlying cortices are highly susceptible to pathologic change with increasing age. Using an associative face-scene (Face-Place) encoding task designed to target these regions, we investigated activation and connectivity patterns in cognitively normal older adults. Functional MRI scans were collected in 210 older participants (mean age = 76.4 yrs) in the Baltimore Longitudinal Study of Aging (BLSA). Brain activation patterns were examined during encoding of novel Face-Place pairs. Functional connectivity of the hippocampus was also examined during encoding, with seed regions placed along the longitudinal axis in the head, body and tail of the structure. In the temporal lobe, task activation patterns included coverage of the hippocampus and underlying ventral temporal cortices. Extensive activation was also seen in frontal, parietal and occipital lobes of the brain. Functional connectivity analyses during overall encoding showed that the head of the hippocampus was connected to frontal and anterior/middle temporal regions, the body with frontal, widespread temporal and occipital regions, and the tail with posterior temporal and occipital cortical regions. Connectivity limited to encoding of subsequently remembered stimuli showed a similar pattern for the hippocampal body, but differing patterns for the head and tail regions. These results show that the Face-Place task produces activation along the occipitotemporal visual pathway including medial temporal areas. The connectivity results also show that patterns of functional connectivity vary throughout the anterior-posterior extent of the hippocampus during memory encoding. As these patterns include regions vulnerable to pathologic change in early stages of Alzheimer's disease, continued longitudinal assessment of these individuals can provide valuable information regarding changes in brain-behavior relationships that may occur with advancing age and the onset of cognitive decline.
Collapse
|
143
|
The effects of lutein and zeaxanthin on resting state functional connectivity in older Caucasian adults: a randomized controlled trial. Brain Imaging Behav 2021; 14:668-681. [PMID: 30680611 DOI: 10.1007/s11682-018-00034-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The carotenoids lutein (L) and zeaxanthin (Z) accumulate in retinal regions of the eye and have long been shown to benefit visual health. A growing literature suggests cognitive benefits as well, particularly in older adults. The present randomized controlled trial sought to investigate the effects of L and Z on brain function using resting state functional magnetic resonance imaging (fMRI). It was hypothesized that L and Z supplementation would (1) improve intra-network integrity of default mode network (DMN) and (2) reduce inter-network connectivity between DMN and other resting state networks. 48 community-dwelling older adults (mean age = 72 years) were randomly assigned to receive a daily L (10 mg) and Z (2 mg) supplement or a placebo for 1 year. Resting state fMRI data were acquired at baseline and post-intervention. A dictionary learning and sparse coding computational framework, based on machine learning principles, was used to investigate intervention-related changes in functional connectivity. DMN integrity was evaluated by calculating spatial overlap rate with a well-established DMN template provided in the neuroscience literature. Inter-network connectivity was evaluated via time series correlations between DMN and nine other resting state networks. Contrary to expectation, results indicated that L and Z significantly increased rather than decreased inter-network connectivity (Cohen's d = 0.89). A significant intra-network effect on DMN integrity was not observed. Rather than restoring what has been described in the available literature as a "youth-like" pattern of intrinsic brain activity, L and Z may facilitate the aging brain's capacity for compensation by enhancing integration between networks that tend to be functionally segregated earlier in the lifespan.
Collapse
|
144
|
Neuronal Network Excitability in Alzheimer's Disease: The Puzzle of Similar versus Divergent Roles of Amyloid β and Tau. eNeuro 2021; 8:ENEURO.0418-20.2020. [PMID: 33741601 PMCID: PMC8174042 DOI: 10.1523/eneuro.0418-20.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent neurodegenerative disorder that commonly causes dementia in the elderly. Recent evidence indicates that network abnormalities, including hypersynchrony, altered oscillatory rhythmic activity, interneuron dysfunction, and synaptic depression, may be key mediators of cognitive decline in AD. In this review, we discuss characteristics of neuronal network excitability in AD, and the role of Aβ and tau in the induction of network hyperexcitability. Many patients harboring genetic mutations that lead to increased Aβ production suffer from seizures and epilepsy before the development of plaques. Similarly, pathologic accumulation of hyperphosphorylated tau has been associated with hyperexcitability in the hippocampus. We present common and divergent roles of tau and Aβ on neuronal hyperexcitability in AD, and hypotheses that could serve as a template for future experiments.
Collapse
|
145
|
Wang Y, Fu AKY, Ip NY. Instructive roles of astrocytes in hippocampal synaptic plasticity: neuronal activity-dependent regulatory mechanisms. FEBS J 2021; 289:2202-2218. [PMID: 33864430 PMCID: PMC9290076 DOI: 10.1111/febs.15878] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
In the adult hippocampus, synaptic plasticity is important for information processing, learning, and memory encoding. Astrocytes, the most common glial cells, play a pivotal role in the regulation of hippocampal synaptic plasticity. While astrocytes were initially described as a homogenous cell population, emerging evidence indicates that in the adult hippocampus, astrocytes are highly heterogeneous and can differentially respond to changes in neuronal activity in a subregion‐dependent manner to actively modulate synaptic plasticity. In this review, we summarize how local neuronal activity changes regulate the interactions between astrocytes and synapses, either by modulating the secretion of gliotransmitters and synaptogenic proteins or via contact‐mediated signaling pathways. In turn, these specific responses induced in astrocytes mediate the interactions between astrocytes and neurons, thus shaping synaptic communication in the adult hippocampus. Importantly, the activation of astrocytic signaling is required for memory performance including memory acquisition and recall. Meanwhile, the dysregulation of this signaling can cause hippocampal circuit dysfunction in pathological conditions, resulting in cognitive impairment and neurodegeneration. Indeed, reactive astrocytes, which have dysregulated signaling associated with memory, are induced in the brains of patients with Alzheimer's disease (AD) and transgenic mouse model of AD. Emerging technologies that can precisely manipulate and monitor astrocytic signaling in vivo enable the examination of the specific actions of astrocytes in response to neuronal activity changes as well as how they modulate synaptic connections and circuit activity. Such findings will clarify the roles of astrocytes in hippocampal synaptic plasticity and memory in health and disease.
Collapse
Affiliation(s)
- Ye Wang
- Division of Life Science, The Hong Kong University of Science and Technology, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China.,Hong Kong Center for Neurodegenerative Diseases, China
| | - Amy K Y Fu
- Division of Life Science, The Hong Kong University of Science and Technology, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China.,Hong Kong Center for Neurodegenerative Diseases, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Nancy Y Ip
- Division of Life Science, The Hong Kong University of Science and Technology, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China.,Hong Kong Center for Neurodegenerative Diseases, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| |
Collapse
|
146
|
Rabipour S, Rajagopal S, Pasvanis S, Rajah MN. Generalization of memory-related brain function in asymptomatic older women with a family history of late onset Alzheimer's Disease: Results from the PREVENT-AD Cohort. Neurobiol Aging 2021; 104:42-56. [PMID: 33964608 DOI: 10.1016/j.neurobiolaging.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/18/2022]
Abstract
Late-onset Alzheimer's disease (AD) disproportionately affects women compared to men. Episodic memory decline is one of the earliest and most pronounced deficits observed in AD. However, it remains unclear whether sex influences episodic memory-related brain function in cognitively intact older adults at risk of developing AD. Here we used task-based multivariate partial least squares analysis to examine sex differences in episodic memory-related brain activity and brain activity-behavior correlations in a matched sample of cognitively intact older women and men with a family history of AD from the PREVENT-AD cohort study in Montreal, Canada (Mage=63.03±3.78; Meducation=15.41±3.40). We observed sex differences in task-related brain activity and brain activity-behavior correlations during the encoding of object-location associative memories and object-only item memory, and the retrieval of object only item memories. Our findings suggest a generalization of episodic memory-related brain activation and performance in women compared to men. Follow up analyses should test for sex differences in the relationship between brain activity patterns and performance longitudinally, in association with risk factors for AD development. This article is part of the Virtual Special Issue titled COGNITIVE NEUROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING. The full issue can be found on ScienceDirect at https://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.
Collapse
Affiliation(s)
- Sheida Rabipour
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | | | - Stamatoula Pasvanis
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Canada
| | - M Natasha Rajah
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada.
| |
Collapse
|
147
|
Diao Y, Yin T, Gruetter R, Jelescu IO. PIRACY: An Optimized Pipeline for Functional Connectivity Analysis in the Rat Brain. Front Neurosci 2021; 15:602170. [PMID: 33841071 PMCID: PMC8032956 DOI: 10.3389/fnins.2021.602170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/26/2021] [Indexed: 01/12/2023] Open
Abstract
Resting state functional MRI (rs-fMRI) is a widespread and powerful tool for investigating functional connectivity (FC) and brain disorders. However, FC analysis can be seriously affected by random and structured noise from non-neural sources, such as physiology. Thus, it is essential to first reduce thermal noise and then correctly identify and remove non-neural artifacts from rs-fMRI signals through optimized data processing methods. However, existing tools that correct for these effects have been developed for human brain and are not readily transposable to rat data. Therefore, the aim of the present study was to establish a data processing pipeline that can robustly remove random and structured noise from rat rs-fMRI data. It includes a novel denoising approach based on the Marchenko-Pastur Principal Component Analysis (MP-PCA) method, FMRIB's ICA-based Xnoiseifier (FIX) for automatic artifact classification and cleaning, and global signal regression (GSR). Our results show that: (I) MP-PCA denoising substantially improves the temporal signal-to-noise ratio, (II) the pre-trained FIX classifier achieves a high accuracy in artifact classification, and (III) both independent component analysis (ICA) cleaning and GSR are essential steps in correcting for possible artifacts and minimizing the within-group variability in control animals while maintaining typical connectivity patterns. Reduced within-group variability also facilitates the exploration of potential between-group FC changes, as illustrated here in a rat model of sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- Yujian Diao
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Laboratoire d’Imagerie Fonctionnelle et Métabolique, EPFL, Lausanne, Switzerland
| | - Ting Yin
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratoire d’Imagerie Fonctionnelle et Métabolique, EPFL, Lausanne, Switzerland
| | - Ileana O. Jelescu
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| |
Collapse
|
148
|
Latent patterns of task-related functional connectivity in relation to regions of hyperactivation in individuals at risk of Alzheimer's disease. NEUROIMAGE-CLINICAL 2021; 30:102643. [PMID: 33813263 PMCID: PMC8050799 DOI: 10.1016/j.nicl.2021.102643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/23/2022]
Abstract
Hyperactivation relates to memory-related network dysfunction in SCD+ and MCI. Hippocampal hyperactivation and connectivity relate to worst memory performance. In contrast, neocortical hyperactivation and connectivity may reflect compensation.
The goal of this study was to assess how task-related hyperactivation relates to brain network dysfunction and memory performance in individuals at risk of Alzheimer’s disease (AD). Eighty participants from the CIMA-Q cohort were included, of which 28 had subjective cognitive decline plus (SCD+), as they had memory complaints and worries in addition to a smaller hippocampal volume and/or an APOE4 allele, 26 had amnestic mild cognitive impairment (MCI) and 26 were healthy controls without memory complaints. Functional magnetic resonance imaging (fMRI) activation was measured during an object-location memory task. Seed-partial least square analyses (seed-PLS) were conducted in controls and in the SCD+/MCI groups to yield sets of orthogonal latent variables (LVs) assessing the triple association between: i) seed activity in brain regions found to be hyperactive in individuals at risk of AD (left hippocampus, left superior parietal lobule, right inferior temporal lobe), ii) latent patterns of whole-brain task-related activation, and iii) associative memory performance. Three LVs in the SCD+ and MCI groups (67.88% of total covariance explained) and two LVs in the controls (77.85% of total covariance explained) were significant. While controls and SCD+/MCI groups shared a common pattern of memory-related connectivity, patterns of hyperactivation-networks interactions were unique to the clinical groups. Interestingly, higher hippocampal connectivity was associated with poorer memory performance whereas higher neocortical connectivity predicted better memory performance in SCD+ and MCI groups. Our data provides empirical evidence that early dysfunction in brain activation and connectivity is present in the very early stages of AD and offers new insights on the relationship between functional brain alterations and memory performance.
Collapse
|
149
|
Reduced Repetition Suppression in Aging is Driven by Tau-Related Hyperactivity in Medial Temporal Lobe. J Neurosci 2021; 41:3917-3931. [PMID: 33731446 DOI: 10.1523/jneurosci.2504-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Tau deposition begins in the medial temporal lobe (MTL) in aging and Alzheimer's disease (AD), and MTL neural dysfunction is commonly observed in these groups. However, the association between tau and MTL neural activity has not been fully characterized. We investigated the effects of tau on repetition suppression, the reduction of activity for repeated stimulus presentations compared to novel stimuli. We used task-based functional MRI (fMRI) to assess MTL subregional activity in 21 young adults (YA) and 45 cognitively normal human older adults (OA; total sample: 37 females, 29 males). AD pathology was measured with position emission tomography (PET), using 18F-Flortaucipir for tau and 11C-Pittsburgh compound B (PiB) for amyloid-β (Aβ). The MTL was segmented into six subregions using high-resolution structural images. We compared the effects of low tau pathology, restricted to entorhinal cortex and hippocampus (Tau- OA), to high tau pathology, also occurring in temporal and limbic regions (Tau+ OA). Low levels of tau (Tau- OA vs YA) were associated with reduced repetition suppression activity specifically in anterolateral entorhinal cortex (alEC) and hippocampus, the first regions to accumulate tau. High tau pathology (Tau+ vs Tau- OA) was associated with widespread reductions in repetition suppression across MTL. Further analyses indicated that reduced repetition suppression was driven by hyperactivity to repeated stimuli, rather than decreased activity to novel stimuli. Increased activation was associated with entorhinal tau, but not Aβ. These findings reveal a link between tau deposition and neural dysfunction in MTL, in which tau-related hyperactivity prevents deactivation to repeated stimuli, leading to reduced repetition suppression.SIGNIFICANCE STATEMENT Abnormal neural activity occurs in the medial temporal lobe (MTL) in aging and Alzheimer's disease (AD). Because tau pathology first deposits in the MTL in aging, this altered activity may be due to local tau pathology, and distinct MTL subregions may be differentially vulnerable. We demonstrate that in older adults (OAs) with low tau pathology, there are focal alterations in activity in MTL subregions that first develop tau pathology, while OAs with high tau pathology have aberrant activity throughout MTL. Tau was associated with hyperactivity to repeated stimulus presentations, leading to reduced repetition suppression, the discrimination between novel and repeated stimuli. Our data suggest that tau deposition is related to abnormal activity in MTL before the onset of cognitive decline.
Collapse
|
150
|
Lamoureux L, Marottoli FM, Tseng KY, Tai LM. APOE4 Promotes Tonic-Clonic Seizures, an Effect Modified by Familial Alzheimer's Disease Mutations. Front Cell Dev Biol 2021; 9:656521. [PMID: 33796539 PMCID: PMC8007905 DOI: 10.3389/fcell.2021.656521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Seizures are emerging as a common symptom in Alzheimer's disease (AD) patients, often attributed to high levels of amyloid β (Aβ). However, the extent that AD disease risk factors modulate seizure activity in aging and AD-relevant contexts is unclear. APOE4 is the greatest genetic risk factor for AD and has been linked to seizures independent of AD and Aβ. The goal of the present study was to evaluate the role of APOE genotype in modulating seizures in the absence and presence of high Aβ levels in vivo. To achieve this goal, we utilized EFAD mice, which express human APOE3 or APOE4 in the absence (EFAD-) or presence (EFAD+) of familial AD mutations that result in Aβ overproduction. When quantified during cage change day, we found that unlike APOE3, APOE4 is associated with tonic-clonic seizures. Interestingly, there were lower tonic-clonic seizures in E4FAD+ mice compared to E4FAD- mice. Restraint handing and auditory stimuli failed to recapitulate the tonic-clonic phenotype in EFAD mice that express APOE4. However, after chemical-induction with pentylenetetrazole, there was a higher incidence of tonic-clonic seizures with APOE4 compared to APOE3. Interestingly, the distribution of seizures to the tonic-clonic phenotype was higher with FAD mutations. These data support that APOE4 is associated with higher tonic-clonic seizures in vivo, and that FAD mutations impact tonic-clonic seizures in a paradigm dependent manner.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Biological Resources Laboratory, University of Illinois at Chicago, Chicago, IL, United States
| | - Felecia M Marottoli
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Leon M Tai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|