101
|
Kato H, Kouno M, Takeda M, Suzuki H, Ishizaki K, Nishihama R, Kohchi T. The Roles of the Sole Activator-Type Auxin Response Factor in Pattern Formation of Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2017; 58:1642-1651. [PMID: 29016901 DOI: 10.1093/pcp/pcx095] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/05/2017] [Indexed: 05/08/2023]
Abstract
Cell division patterning is important to determine body shape in plants. Nuclear auxin signaling mediated by AUXIN RESPONSE FACTOR (ARF) transcription factors affects plant growth and development through regulation of cell division, elongation and differentiation. The evolutionary origin of the ARF-mediated pathway dates back to at least the common ancestor of bryophytes and other land plants. The liverwort Marchantia polymorpha has three phylogenetically distinct ARFs: MpARF1, the sole 'activator' ARF; and MpARF2 and MpARF3, two 'repressor' ARFs. Genetic screens for auxin-resistant mutants revealed that loss of MpARF1 function conferred auxin insensitivity. Mparf1 mutants showed reduced auxin-inducible gene expression and various developmental defects, including thallus twisting and gemma malformation. We further investigated the role of MpARF1 in gemma development, which is traceable at the cellular level. In wild-type plants, a gemma initial first undergoes several transverse divisions to generate a single-celled stalk and a gemma proper, followed by rather synchronous longitudinal divisions in the latter. Mparf1 mutants often contained multicelled stalks and showed defects in the execution and timing of the longitudinal divisions. While wild-type gemmae finally generate two meristem notches, Mparf1 gemmae displayed various numbers of ectopic meristems. These results suggest that MpARF1 regulates formative cell divisions and axis formation through auxin responses. The mechanism for activator ARF regulation of pattern formation may be shared in land plants and therefore important for the general acquisition of three-dimensional body plans.
Collapse
Affiliation(s)
- Hirotaka Kato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Masaru Kouno
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mayuko Takeda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
102
|
Galletti R, Verger S, Hamant O, Ingram GC. Developing a 'thick skin': a paradoxical role for mechanical tension in maintaining epidermal integrity? Development 2017; 143:3249-58. [PMID: 27624830 DOI: 10.1242/dev.132837] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant aerial epidermal tissues, like animal epithelia, act as load-bearing layers and hence play pivotal roles in development. The presence of tension in the epidermis has morphogenetic implications for organ shapes but it also constantly threatens the integrity of this tissue. Here, we explore the multi-scale relationship between tension and cell adhesion in the plant epidermis, and we examine how tensile stress perception may act as a regulatory input to preserve epidermal tissue integrity and thus normal morphogenesis. From this, we identify parallels between plant epidermal and animal epithelial tissues and highlight a list of unexplored questions for future research.
Collapse
Affiliation(s)
- Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Stéphane Verger
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| |
Collapse
|
103
|
Boulard C, Fatihi A, Lepiniec L, Dubreucq B. Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1069-1078. [PMID: 28866096 DOI: 10.1016/j.bbagrm.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
The LAFL genes (LEC2, ABI3, FUS3, LEC1) encode transcription factors that regulate different aspects of seed development, from early to late embryogenesis and accumulation of storage compounds. These transcription factors form a complex network, with members able to interact with various other players to control the switch between embryo development and seed maturation and, at a later stage in the plant life cycle, between the mature seed and germination. In this review, we first summarize our current understanding of the role of each member in the network in the light of recent advances regarding their regulation and structure/function relationships. In a second part, we discuss new insights concerning the evolution of the LAFL genes to address the more specific question of the conservation of LEAFY COTYLEDONS 2 in both dicots and monocots and the putative origin of the network. Last we examine the current major limitations to current knowledge and future prospects to improve our understanding of this regulatory network.
Collapse
Affiliation(s)
- C Boulard
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - A Fatihi
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - L Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - B Dubreucq
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France.
| |
Collapse
|
104
|
Abstract
Given the highly predictable nature of their development, Arabidopsis embryos have been used as a model for studies of morphogenesis in plants. However, early stage plant embryos are small and contain few cells, making them difficult to observe and analyze. A method is described here for characterizing pattern formation in plant embryos under a microscope using the model organism Arabidopsis. Following the clearance of fresh ovules using Hoyer's solution, the cell number in and morphology of embryos could be observed, and their developmental stage could be determined by differential interference contrast microscopy using a 100X oil immersion lens. In addition, the expression of specific marker proteins tagged with Green Fluorescent Protein (GFP) was monitored to annotate cell identity specification during embryo patterning by confocal laser scanning microscopy. Thus, this method can be used to observe pattern formation in wild-type plant embryos at the cellular and molecular levels, and to characterize the role of specific genes in embryo patterning by comparing pattern formation in embryos from wild-type plants and embryo-lethal mutants. Therefore, the method can be used to characterize embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Jinlin Feng
- College of Life Sciences, Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Capital Normal University; College of Life Science, Shanxi Normal University
| | - Ligeng Ma
- College of Life Sciences, Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Capital Normal University;
| |
Collapse
|
105
|
Huang X, Peng X, Sun MX. OsGCD1 is essential for rice fertility and required for embryo dorsal-ventral pattern formation and endosperm development. THE NEW PHYTOLOGIST 2017; 215:1039-1058. [PMID: 28585692 DOI: 10.1111/nph.14625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/25/2017] [Indexed: 05/20/2023]
Abstract
Rice fertility is critical for rice reproduction and is thus a focus of interest. Most studies have addressed male sterility and its relation to rice production. The mechanisms of regulation of embryogenesis and endosperm development are essential for rice reproduction, but remain largely unknown. Here, we report a functional analysis of the rice gene OsGCD1, which encodes a highly conserved homolog of Arabidopsis GCD1 (GAMETE CELLS DEFECTIVE1). OsGCD1 mutants were generated using the CRISPR/Cas9 system and subjected to functional analysis. The homozygote mutants cannot be obtained, whereas heterozygotes showed altered phenotypes. In the majority of aborted seeds, the endosperm nucleus divided a limited number of times. The free nuclei were distributed only at the micropylar end of embryo sacs, and their oriented positioning was blocked. In addition, aleurone differentiation was interrupted. The embryo developed slowly, and pattern formation, particularly the dorsal-ventral pattern and symmetry establishment, of embryos was disturbed. Thus, the embryos showed various morphological and structural dysplasias. Our findings reveal that OsGCD1 is essential for rice fertility and is required for dorsal-ventral pattern formation and endosperm free nucleus positioning, suggesting a critical role in sexual reproduction of both monocotyledon and dicotyledon plants.
Collapse
Affiliation(s)
- Xiaorong Huang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Xiongbo Peng
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
106
|
Zhu C, Wang L, Chen J, Liu C, Zeng H, Wang H. Over-expression of KdSOC1 gene affected plantlet morphogenesis in Kalanchoe daigremontiana. Sci Rep 2017; 7:5629. [PMID: 28717174 PMCID: PMC5514138 DOI: 10.1038/s41598-017-04387-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Kalanchoe daigremontiana reproduces asexually by producing plantlets along the leaf margin. The aim of this study was to identify the function of the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 gene in Kalanchoe daigremontiana (KdSOC1) during plantlet morphogenesis. In this study, KdSOC1 gene expression was detected at stem cell niche during in vitro somatic embryogenesis and plantlet morphogenesis. Disrupting endogenous auxin transportation suppressed the KdSOC1 gene response. Knockdown of the KdSOC1 gene caused a defect in cotyledon formation during the early heart stage of somatic embryogenesis. Over-expression (OE) of the KdSOC1 gene resulted in asymmetric plantlet distribution, a reduced number of plantlets, thicker leaves, and thicker vascular fibers. Higher KdPIN1 gene expression and auxin content were found in OE plant compared to those of wild-type plant leaves, which indicated possible KdSOC1 gene role in affecting auxin distribution and accumulation. KdSOC1 gene OE in DR5-GUS Arabidopsis reporting lines resulted in an abnormal auxin response pattern during different stages of somatic embryogenesis. In summary, the KdSOC1 gene OE might alter auxin distribution and accumulation along leaf margin to initiate plantlet formation and distribution, which is crucial for plasticity during plantlet formation under various environmental conditions.
Collapse
Affiliation(s)
- Chen Zhu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Li Wang
- Sivilculture Forestry department, College of Forestry, Beijing Forestry University, Beijing, China
| | - Jinhua Chen
- Turfgrass Management department, College of Forestry, Beijing forestry university, Beijing, China
| | - Chenglan Liu
- Turfgrass Management department, College of Forestry, Beijing forestry university, Beijing, China
| | - Huiming Zeng
- Turfgrass Management department, College of Forestry, Beijing forestry university, Beijing, China.
| | - Huafang Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
107
|
Navarro BV, Elbl P, De Souza AP, Jardim V, de Oliveira LF, Macedo AF, dos Santos ALW, Buckeridge MS, Floh EIS. Carbohydrate-mediated responses during zygotic and early somatic embryogenesis in the endangered conifer, Araucaria angustifolia. PLoS One 2017; 12:e0180051. [PMID: 28678868 PMCID: PMC5497979 DOI: 10.1371/journal.pone.0180051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
Three zygotic developmental stages and two somatic Araucaria angustifolia cell lines with contrasting embryogenic potential were analyzed to identify the carbohydrate-mediated responses associated with embryo formation. Using a comparison between zygotic and somatic embryogenesis systems, the non-structural carbohydrate content, cell wall sugar composition and expression of genes involved in sugar sensing were analyzed, and a network analysis was used to identify coordinated features during embryogenesis. We observed that carbohydrate-mediated responses occur mainly during the early stages of zygotic embryo formation, and that during seed development there are coordinated changes that affect the development of the different structures (embryo and megagametophyte). Furthermore, sucrose and starch accumulation were associated with the responsiveness of the cell lines. This study sheds light on how carbohydrate metabolism is influenced during zygotic and somatic embryogenesis in the endangered conifer species, A. angustifolia.
Collapse
Affiliation(s)
- Bruno V. Navarro
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Paula Elbl
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Amanda P. De Souza
- Laboratory of Plant Physiological Ecology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Vinicius Jardim
- Laboratory of Plant Physiological Ecology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Leandro F. de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Amanda F. Macedo
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - André L. W. dos Santos
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Marcos S. Buckeridge
- Laboratory of Plant Physiological Ecology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Eny I. S. Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
- * E-mail:
| |
Collapse
|
108
|
Rodrigues AS, Miguel CM. The pivotal role of small non-coding RNAs in the regulation of seed development. PLANT CELL REPORTS 2017; 36:653-667. [PMID: 28289886 DOI: 10.1007/s00299-017-2120-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
Seeds represent a crucial stage of the seed plants life cycle. It is during seed development that the foundations of the future plant body, and the ability to give rise to a new plant capable of growing under sometimes adverse environmental conditions, are established. Small non-coding RNAs are major regulators of gene expression both at the post-transcriptional and transcriptional levels and, not surprisingly, these elements play major roles in seed development and germination. We review here the current knowledge about small RNA expression and functions in seed development, going from the morphogenesis phase comprehending embryo development and patterning, to the several steps of the maturation phase, ending in the transition to the germination. A special focus is given to the small RNAs for which functional studies have been conducted and their participation in regulatory networks operating in seeds. Many challenges remain ahead for dissecting the complex small RNA landscape in seeds, but this is a highly relevant issue in plant biology and advances in this area will most certainly impact plant breeding.
Collapse
Affiliation(s)
- Andreia S Rodrigues
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Célia M Miguel
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa (FCUL), Campo Grande, 1749-016, Lisbon, Portugal.
| |
Collapse
|
109
|
Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo. Proc Natl Acad Sci U S A 2017; 114:E2533-E2539. [PMID: 28265057 DOI: 10.1073/pnas.1616493114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plant organs are typically organized into three main tissue layers. The middle ground tissue layer comprises the majority of the plant body and serves a wide range of functions, including photosynthesis, selective nutrient uptake and storage, and gravity sensing. Ground tissue patterning and maintenance in Arabidopsis are controlled by a well-established gene network revolving around the key regulator SHORT-ROOT (SHR). In contrast, it is completely unknown how ground tissue identity is first specified from totipotent precursor cells in the embryo. The plant signaling molecule auxin, acting through AUXIN RESPONSE FACTOR (ARF) transcription factors, is critical for embryo patterning. The auxin effector ARF5/MONOPTEROS (MP) acts both cell-autonomously and noncell-autonomously to control embryonic vascular tissue formation and root initiation, respectively. Here we show that auxin response and ARF activity cell-autonomously control the asymmetric division of the first ground tissue cells. By identifying embryonic target genes, we show that MP transcriptionally initiates the ground tissue lineage and acts upstream of the regulatory network that controls ground tissue patterning and maintenance. Strikingly, whereas the SHR network depends on MP, this MP function is, at least in part, SHR independent. Our study therefore identifies auxin response as a regulator of ground tissue specification in the embryonic root, and reveals that ground tissue initiation and maintenance use different regulators and mechanisms. Moreover, our data provide a framework for the simultaneous formation of multiple cell types by the same transcriptional regulator.
Collapse
|
110
|
Bayer M, Slane D, Jürgens G. Early plant embryogenesis-dark ages or dark matter? CURRENT OPINION IN PLANT BIOLOGY 2017; 35:30-36. [PMID: 27810634 DOI: 10.1016/j.pbi.2016.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 05/11/2023]
Abstract
In nearly all flowering plants, the basic body plan is laid down during embryogenesis. In Arabidopsis, the crucial cell types are established extremely early as reflected in the stereotypic sequence of oriented cell divisions in the developing young embryo. Research into early embryogenesis was especially focused on the role of the infamous tryptophan derivative auxin in establishing embryo polarity and generating the main body axis. However, it is becoming obvious that the mere link to auxin does not provide any mechanistic understanding of early embryo patterning. Taking recent research into account, we discuss mechanisms underlying early embryonic patterning from an evolutionary perspective.
Collapse
Affiliation(s)
- Martin Bayer
- Department of Cell Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Daniel Slane
- Department of Cell Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gerd Jürgens
- Department of Cell Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Department of Developmental Genetics, Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
111
|
Dalman K, Wind JJ, Nemesio-Gorriz M, Hammerbacher A, Lundén K, Ezcurra I, Elfstrand M. Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development. BMC PLANT BIOLOGY 2017; 17:6. [PMID: 28061815 PMCID: PMC5219727 DOI: 10.1186/s12870-016-0952-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/15/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The NAC family of transcription factors is one of the largest gene families of transcription factors in plants and the conifer NAC gene family is at least as large, or possibly larger, as in Arabidopsis. These transcription factors control both developmental and stress induced processes in plants. Yet, conifer NACs controlling stress induced processes has received relatively little attention. This study investigates NAC family transcription factors involved in the responses to the pathogen Heterobasidion annosum (Fr.) Bref. sensu lato. RESULTS The phylogeny and domain structure in the NAC proteins can be used to organize functional specificities, several well characterized stress-related NAC proteins are found in III-3 in Arabidopsis (Jensen et al. Biochem J 426:183-196, 2010). The Norway spruce genome contain seven genes with similarity to subgroup III-3 NACs. Based on the expression pattern PaNAC03 was selected for detailed analyses. Norway spruce lines overexpressing PaNAC03 exhibited aberrant embryo development in response to maturation initiation and 482 misregulated genes were identified in proliferating cultures. Three key genes in the flavonoid biosynthesis pathway: a CHS, a F3'H and PaLAR3 were consistently down regulated in the overexpression lines. In accordance, the overexpression lines showed reduced levels of specific flavonoids, suggesting that PaNAC03 act as a repressor of this pathway, possibly by directly interacting with the promoter of the repressed genes. However, transactivation studies of PaNAC03 and PaLAR3 in Nicotiana benthamiana showed that PaNAC03 activated PaLAR3A, suggesting that PaNAC03 does not act as an independent negative regulator of flavan-3-ol production through direct interaction with the target flavonoid biosynthetic genes. CONCLUSIONS PaNAC03 and its orthologs form a sister group to well characterized stress-related angiosperm NAC genes and at least PaNAC03 is responsive to biotic stress and appear to act in the control of defence associated secondary metabolite production.
Collapse
Affiliation(s)
- Kerstin Dalman
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Chemistry and Biotechnology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Julia Johanna Wind
- KTH Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Miguel Nemesio-Gorriz
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Almuth Hammerbacher
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Karl Lundén
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ines Ezcurra
- KTH Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Forest Mycology and Plant Pathology, SLU, PO. Box 7026, Uppsala, 75007 Sweden
| |
Collapse
|
112
|
Reimann R, Kost B, Dettmer J. TETRASPANINs in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:545. [PMID: 28458676 PMCID: PMC5394113 DOI: 10.3389/fpls.2017.00545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/27/2017] [Indexed: 05/20/2023]
Abstract
Tetraspanins are small transmembrane proteins that laterally associate with each other and cluster with numerous partner proteins as well as lipids. These interactions result in the formation of a distinct class of membrane domains, the tetraspanin-enriched microdomains (TEMs), which influence numerous cellular processes such as cell adhesion and fusion, intracellular membrane trafficking, signaling, morphogenesis, motility as well as interaction with pathogens and cancer development. The majority of information available about tetraspanins is based on studies using animal models or cell lines, but tetraspanins are also present in fungi and plants. Recent studies indicate that tetraspanins have important functions in plant development, reproduction and stress responses. Here we provide a brief summary of the current state of tetraspanin research in plants.
Collapse
|
113
|
Luptovčiak I, Samakovli D, Komis G, Šamaj J. KATANIN 1 Is Essential for Embryogenesis and Seed Formation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:728. [PMID: 28529520 PMCID: PMC5418335 DOI: 10.3389/fpls.2017.00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/19/2017] [Indexed: 05/10/2023]
Abstract
Cytoskeletal remodeling has a fundamental role, especially during transitional developmental stages when cells rapidly adopt new forms and roles, like gametogenesis, fertilization and concomitant embryogenesis and seed formation. KATANIN 1, a microtubule severing protein, fulfills a major regulatory mechanism of dynamic microtubule turnover in eukaryotes. Herein, we show that three well-established KATANIN 1 mutants, fra2, lue1 and ktn1-2 collectively display lower fertility and seed set in Arabidopsis. These lower fertility and seed set rates of fra2, lue1 and ktn1-2 mutants were correlated to abnormalities in the development of embryo proper and seed. Such phenotypes were rescued by transformation of mutants with functional pKTN1::GFP:KTN1 construct. This study significantly expands the already broad functional repertoire of KATANIN 1 and unravels its new role in embryo and seed development. Thus, KATANIN 1 significantly contributes to the fertility and proper embryo and seed formation in Arabidopsis.
Collapse
|
114
|
Birnbaum KD. How many ways are there to make a root? CURRENT OPINION IN PLANT BIOLOGY 2016; 34:61-67. [PMID: 27780106 DOI: 10.1016/j.pbi.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 05/11/2023]
Abstract
Plants often make the same organ in different development contexts. Roots are a quintessential example, with embryonic, primary, lateral, adventitious, and regenerative roots common to many plants. The cellular origins and early morphologies of different roots can vary greatly, but the adult structures can be remarkably similar. Recent studies have highlighted the diversity of mechanisms that can initiate roots while late patterning mechanisms are frequently shared. In the middle stages when patterning emerges, evidence shows that antagonistic auxin-cytokinin interactions regulate tissue patterns in root embryogenesis, vascular organization, and regeneration but it is not yet clear if a common ontogeny for the root body plan exists.
Collapse
Affiliation(s)
- Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA.
| |
Collapse
|
115
|
Casson SA. Plant Development: Suppression the Key to Asymmetric Cell Fate. Curr Biol 2016; 26:R1137-R1139. [PMID: 27825447 DOI: 10.1016/j.cub.2016.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new study shows that SPEECHLESS determines cell fate in the stomatal lineage but is inherited equally by daughter cells following an asymmetric cell division. The polarity determinant BASL acts as a MAPK scaffold, targeting SPEECHLESS for degradation in the larger daughter cell.
Collapse
Affiliation(s)
- Stuart A Casson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| |
Collapse
|
116
|
Johnsson C, Fischer U. Cambial stem cells and their niche. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:239-245. [PMID: 27717460 DOI: 10.1016/j.plantsci.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/28/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
Unlike animals, plants often have an indefinite genetic potency to form new organs throughout their entire lifespan. Growth and organogenesis are driven by cell divisions in meristems at distinct sites within the plant. Since the meristems contributing to axial thickening in dicots (cambia) are separated from places where axes elongate (apical meristems); there is a need of communication to coordinate growth. In their behavior, some meristematic cells resemble animal stem cells whose daughter cells either maintain the capacity to divide over a long period of time or undergo differentiation. The behavior of stem cells is regulated by their microenvironment, the so called niche. The stem- and niche-cell concept is now also widely accepted for apical meristems. An integral part of the cambial niche has recently been localized to the phloem. It steers cell division activity in the cambium via the release of a peptide signal and may be a hub to integrate signals from other stem cell populations to coordinate growth. Although these signals have yet to be determined, the discovery of the cambial niche cells will pave the way for a better understanding of inter-meristematic communication and cambial stem cell behavior.
Collapse
Affiliation(s)
- Christoffer Johnsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| | - Urs Fischer
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|
117
|
Ehlers K, Bhide AS, Tekleyohans DG, Wittkop B, Snowdon RJ, Becker A. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana. PLoS One 2016; 11:e0165075. [PMID: 27776173 PMCID: PMC5077141 DOI: 10.1371/journal.pone.0165075] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/05/2016] [Indexed: 01/07/2023] Open
Abstract
Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner.
Collapse
Affiliation(s)
- Katrin Ehlers
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| | - Amey S. Bhide
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| | - Dawit G. Tekleyohans
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| | - Benjamin Wittkop
- Justus Liebig University, Department of Plant Breeding, Heinrich-Buff-Ring 26-32, D 35392, Gießen, Germany
| | - Rod J. Snowdon
- Justus Liebig University, Department of Plant Breeding, Heinrich-Buff-Ring 26-32, D 35392, Gießen, Germany
| | - Annette Becker
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| |
Collapse
|
118
|
Feng J, Ma L. NatA is required for suspensor development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2016; 11:e1231293. [PMID: 27610925 PMCID: PMC5257170 DOI: 10.1080/15592324.2016.1231293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Suspensor development is essential for early embryogenesis. The filamentous suspensor plays vital roles in supporting the embryo proper and in exchanging nutrients and information between the embryo proper and embryo sac. In addition, at the globular stage, the uppermost suspensor cell differentiates into the hypophysis, which generates the progenitors of the quiescent center and columella stem cells. In naa10 and naa15 mutant plants, suspensor cell identity was found to be abnormal and embryo development was disturbed, leading to embryonic lethality. Therefore, the NatA complex is required for proper suspensor development in Arabidopsis.
Collapse
Affiliation(s)
- Jinlin Feng
- College of Life Sciences, Capital Normal University, Beijing, China
- College of Life Sciences, Shanxi Normal University, Linfen, Shanxi, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
119
|
Couzigou JM, Combier JP. Plant microRNAs: key regulators of root architecture and biotic interactions. THE NEW PHYTOLOGIST 2016; 212:22-35. [PMID: 27292927 DOI: 10.1111/nph.14058] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/08/2016] [Indexed: 05/24/2023]
Abstract
Contents 22 I. 22 II. 24 III. 25 IV. 27 V. 29 VI. 10 31 References 32 SUMMARY: Plants have evolved a remarkable faculty of adaptation to deal with various and changing environmental conditions. In this context, the roots have taken over nutritional aspects and the root system architecture can be modulated in response to nutrient availability or biotic interactions with soil microorganisms. This adaptability requires a fine tuning of gene expression. Indeed, root specification and development are highly complex processes requiring gene regulatory networks involved in hormonal regulations and cell identity. Among the different molecular partners governing root development, microRNAs (miRNAs) are key players for the fast regulation of gene expression. miRNAs are small RNAs involved in most developmental processes and are required for the normal growth of organisms, by the negative regulation of key genes, such as transcription factors and hormone receptors. Here, we review the known roles of miRNAs in root specification and development, from the embryonic roots to the establishment of root symbioses, highlighting the major roles of miRNAs in these processes.
Collapse
Affiliation(s)
- Jean-Malo Couzigou
- UMR5546, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Jean-Philippe Combier
- UMR5546, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
120
|
Zhou LZ, Höwing T, Müller B, Hammes UZ, Gietl C, Dresselhaus T. Expression analysis of KDEL-CysEPs programmed cell death markers during reproduction in Arabidopsis. PLANT REPRODUCTION 2016; 29:265-72. [PMID: 27349421 DOI: 10.1007/s00497-016-0288-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 05/23/2023]
Abstract
CEP cell death markers. Programmed cell death (PCD) is essential for proper plant growth and development. Plant-specific papain-type KDEL-tailed cysteine endopeptidases (KDEL-CysEPs or CEPs) have been shown to be involved in PCD during vegetative development as executors for the last step in the process. The Arabidopsis genome encodes three KDEL-CysEPs: AtCEP1, AtCEP2 and AtCEP3. With the help of fluorescent fusion reporter lines, we report here a detailed expression analysis of KDEL-CysEP (pro)proteins during reproductive processes, including flower organ and germline development, fertilization and seed development. AtCEP1 is highly expressed in different reproductive tissues including nucellus cells of mature ovule and the connecting edge of anther and filament. After fertilization, AtCEP1 marks integument cell layers of the seeds coat as well as suspensor and columella cells of the developing embryo. Promoter activity of AtCEP2 is detected in the style of immature and mature pistils, in other floral organs including anther, sepal and petal. AtCEP2 mainly localizes to parenchyma cells next to xylem vessels. Although there is no experimental evidence to demonstrate that KDEL-CysEPs are involved in PCD during fertilization, the expression pattern of AtCEPs, which were previously shown to represent cell death markers during vegetative development, opens up new avenues to investigate PCD in plant reproduction.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany
| | - Timo Höwing
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85350, Freising, Germany
| | - Benedikt Müller
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany
| | - Ulrich Z Hammes
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany
| | - Christine Gietl
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85350, Freising, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
121
|
Goh T, Toyokura K, Wells DM, Swarup K, Yamamoto M, Mimura T, Weijers D, Fukaki H, Laplaze L, Bennett MJ, Guyomarc'h S. Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor. Development 2016; 143:3363-71. [PMID: 27510971 DOI: 10.1242/dev.135319] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/26/2016] [Indexed: 01/24/2023]
Abstract
Lateral root formation is an important determinant of root system architecture. In Arabidopsis, lateral roots originate from pericycle cells, which undergo a program of morphogenesis to generate a new lateral root meristem. Despite its importance for root meristem organization, the onset of quiescent center (QC) formation during lateral root morphogenesis remains unclear. Here, we used live 3D confocal imaging to monitor cell organization and identity acquisition during lateral root development. Our dynamic observations revealed an early morphogenesis phase and a late meristem formation phase as proposed in the bi-phasic growth model. Establishment of lateral root QCs coincided with this developmental phase transition. QC precursor cells originated from the outer layer of stage II lateral root primordia, within which the SCARECROW (SCR) transcription factor was specifically expressed. Disrupting SCR function abolished periclinal divisions in this lateral root primordia cell layer and perturbed the formation of QC precursor cells. We conclude that de novo QC establishment in lateral root primordia operates via SCR-mediated formative cell division and coincides with the developmental phase transition.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Kamal Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Mayuko Yamamoto
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Laurent Laplaze
- Institut de Recherche pour le Développement, Unité Mixte de Recherche (UMR) Diversité Adaptation et Développement des plantes (DIADE), Montpellier 34394 Cedex 5, France
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Soazig Guyomarc'h
- Université de Montpellier, Unité Mixte de Recherche (UMR) Diversité Adaptation et Développement des plantes (DIADE), Montpellier 34394 Cedex 5, France
| |
Collapse
|
122
|
Ribosomal protein L18aB is required for both male gametophyte function and embryo development in Arabidopsis. Sci Rep 2016; 6:31195. [PMID: 27502163 PMCID: PMC4977502 DOI: 10.1038/srep31195] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Ribosomal proteins are involved in numerous essential cell activities in plants. However, the regulatory role in specific plant developmental processes has not yet been fully elucidated. Here we identified the new ribosomal protein L18aB, which is specifically involved in sexual reproduction and plays a critical role in male gametophyte development and embryo pattern formation. In rpl18aB mutant plants, the mature pollen grains can germinate normally, but their competitiveness for growing in the style is significantly reduced. More interestingly, RPL18aB is required in early embryogenesis. rpl18aB embryos displayed irregular cell division orientations in the early pro-embryo and arrested at the globular stage with possible, secondary pattern formation defects. Further investigations revealed that the polar transportation of auxin is disturbed in the rpl18aB mutant embryos, which may explain the observed failure in embryo pattern formation. The cell type-specific complementation of RPL18aB in rpl18aB was not able to recover the phenotype, indicating that RPL18aB may play an essential role in early cell fate determination. This work unravels a novel role in embryo development for a ribosomal protein, and provides insight into regulatory mechanism of early embryogenesis.
Collapse
|
123
|
Feng J, Li R, Yu J, Ma S, Wu C, Li Y, Cao Y, Ma L. Protein N-terminal acetylation is required for embryogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4779-89. [PMID: 27385766 PMCID: PMC4973746 DOI: 10.1093/jxb/erw257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Early embryonic development generates precursors of all major cell types in Arabidopsis. Among these precursors, the hypophysis divides asymmetrically to form the progenitors of the quiescent center and columella stem cells. A great deal has been learnt about the mechanisms that control the asymmetric division of the hypophysis and embryogenesis at the transcriptional level; however, no evidence of regulation at the co- or post-translational level has been reported. Here, we show that mutation of the catalytic subunit (Naa10) or auxiliary subunit (Naa15) of NatA, an N-terminal acetyltransferase that catalyzes protein N-terminal acetylation, produces an embryo-lethal phenotype. In addition, Naa10 and Naa15 were found to interact physically in planta Further analysis revealed that the observed embryonic patterning defects started at the early globular stage and that the asymmetric division of the hypophysis was irregular; thus, no quiescent center progenitor cells were generated in naa10 and naa15 embryos. We further observed that the polar distributions of auxin and its efflux carrier PIN1 were disturbed in naa10 embryos. Our results suggest that NatA is required for asymmetric division of the hypophysis and early embryonic patterning in Arabidopsis, and provides a link between protein N-terminal acetylation and embryogenesis in plants.
Collapse
Affiliation(s)
- Jinlin Feng
- College of Life Sciences, Capital Normal University, and Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government; Beijing 100048, China
| | - Ruiqi Li
- College of Life Sciences, Capital Normal University, and Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government; Beijing 100048, China
| | - Junya Yu
- College of Life Sciences, Capital Normal University, and Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government; Beijing 100048, China
| | - Shuangshuang Ma
- College of Life Sciences, Capital Normal University, and Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government; Beijing 100048, China
| | - Chunyan Wu
- College of Life Sciences, Capital Normal University, and Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government; Beijing 100048, China
| | - Yan Li
- College of Life Sciences, Capital Normal University, and Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government; Beijing 100048, China
| | - Ying Cao
- College of Life Sciences, Capital Normal University, and Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government; Beijing 100048, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, and Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government; Beijing 100048, China
| |
Collapse
|
124
|
Van Norman JM. Asymmetry and cell polarity in root development. Dev Biol 2016; 419:165-174. [PMID: 27426272 DOI: 10.1016/j.ydbio.2016.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 01/08/2023]
Abstract
Within living systems, striking juxtapositions in symmetry and asymmetry can be observed and the superficial appearance of symmetric organization often gives way to cellular asymmetries at higher resolution. It is frequently asymmetry and polarity that fascinate and challenge developmental biologists. In multicellular eukaryotes, cell polarity and asymmetry are essential for diverse cellular, tissue, and organismal level function and physiology and are particularly crucial for developmental processes. In plants, where cells are surrounded by rigid cell walls, asymmetric cell divisions are the foundation of pattern formation and differential cell fate specification. Thus, cellular asymmetry is a key feature of plant biology and in the plant root the consequences of these asymmetries are elegantly displayed. Yet despite the frequency of asymmetric (formative) cell divisions, cell/tissue polarity and the proposed roles for directional signaling in these processes, polarly localized proteins, beyond those involved in auxin or nutrient transport, are exceedingly rare. Indeed, although half of the asymmetric cell divisions in root patterning are oriented parallel to the axis of growth, laterally localized proteins directly involved in patterning are largely missing in action. Here, various asymmetric cell divisions and cellular and structural polarities observed in roots are highlighted and discussed in the context of the proposed roles for positional and/or directional signaling in these processes. The importance of directional signaling and the weight given to polarity in the root-shoot axis is contrasted with how little we currently understand about laterally oriented asymmetry and polarity in the root.
Collapse
|
125
|
Rensing SA. (Why) Does Evolution Favour Embryogenesis? TRENDS IN PLANT SCIENCE 2016; 21:562-573. [PMID: 26987708 DOI: 10.1016/j.tplants.2016.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 05/05/2023]
Abstract
Complex multicellular organisms typically possess life cycles in which zygotes (formed by gamete fusion) and meiosis occur. Canonical animal embryogenesis describes development from zygote to birth. It involves polarisation of the egg/zygote, asymmetric cell divisions, establishment of axes, symmetry breaking, formation of organs, and parental nutrition (at least in early stages). Similar developmental patterns have independently evolved in other eukaryotic lineages, including land plants and brown algae. The question arises whether embryo-like structures and associated developmental processes recurrently emerge because they are local optima of the evolutionary landscape. To understand which evolutionary principles govern complex multicellularity, we need to analyse why and how similar processes evolve convergently - von Baer's and Haeckel's phylotypic stage revisited in other phyla.
Collapse
Affiliation(s)
- Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
126
|
Efroni I, Mello A, Nawy T, Ip PL, Rahni R, DelRose N, Powers A, Satija R, Birnbaum KD. Root Regeneration Triggers an Embryo-like Sequence Guided by Hormonal Interactions. Cell 2016; 165:1721-1733. [PMID: 27212234 DOI: 10.1016/j.cell.2016.04.046] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/02/2016] [Accepted: 04/14/2016] [Indexed: 01/09/2023]
Abstract
Plant roots can regenerate after excision of their tip, including the stem cell niche. To determine which developmental program mediates such repair, we applied a combination of lineage tracing, single-cell RNA sequencing, and marker analysis to test different models of tissue reassembly. We show that multiple cell types can reconstitute stem cells, demonstrating the latent potential of untreated plant cells. The transcriptome of regenerating cells prior to stem cell activation resembles that of an embryonic root progenitor. Regeneration defects are more severe in embryonic than in adult root mutants. Furthermore, the signaling domains of the hormones auxin and cytokinin mirror their embryonic dynamics and manipulation of both hormones alters the position of new tissues and stem cell niche markers. Our findings suggest that plant root regeneration follows, on a larger scale, the developmental stages of embryonic patterning and is guided by spatial information provided by complementary hormone domains.
Collapse
Affiliation(s)
- Idan Efroni
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Alison Mello
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Tal Nawy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Pui-Leng Ip
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Ramin Rahni
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Nicholas DelRose
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | | | - Rahul Satija
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
127
|
Jeong S, Eilbert E, Bolbol A, Lukowitz W. Going mainstream: How is the body axis of plants first initiated in the embryo? Dev Biol 2016; 419:78-84. [PMID: 27207388 DOI: 10.1016/j.ydbio.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Vascular plants have an open body plan and continuously generate new axes of growth, such as shoot or root branches. Apical-to-basal transport of the hormone auxin is a hallmark of every axis, and the resulting pattern of auxin distribution affects plant development across scales, from overall architecture to cellular differentiation. How the first axis is initiated in the early embryo is a long-standing question. While our knowledge is still sparse, some of the key players of axialization have emerged, and recent work points to specific models for connecting cellular polarity to the asymmetric division of the zygote and domain specific gene expression to the organization of basipetal auxin flux.
Collapse
Affiliation(s)
- Sangho Jeong
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602-7271, United States.
| | - Emily Eilbert
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602-7271, United States.
| | - Ahmed Bolbol
- Botany Department, Faculty of Science, Zagazig University, 44519 Sharkira, Egypt.
| | - Wolfgang Lukowitz
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602-7271, United States.
| |
Collapse
|
128
|
Cridge AG, Dearden PK, Brownfield LR. Convergent occurrence of the developmental hourglass in plant and animal embryogenesis? ANNALS OF BOTANY 2016; 117:833-843. [PMID: 27013176 PMCID: PMC4845807 DOI: 10.1093/aob/mcw024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The remarkable similarity of animal embryos at particular stages of development led to the proposal of a developmental hourglass. In this model, early events in development are less conserved across species but lead to a highly conserved 'phylotypic period'. Beyond this stage, the model suggests that development once again becomes less conserved, leading to the diversity of forms. Recent comparative studies of gene expression in animal groups have provided strong support for the hourglass model. How and why might such an hourglass pattern be generated? More importantly, how might early acting events in development evolve while still maintaining a later conserved stage? SCOPE The discovery that an hourglass pattern may also exist in the embryogenesis of plants provides comparative data that may help us explain this phenomenon. Whether the developmental hourglass occurs in plants, and what this means for our understanding of embryogenesis in plants and animals is discussed. Models by which conserved early-acting genes might change their functional role in the evolution of gene networks, how networks buffer these changes, and how that might constrain, or confer diversity, of the body plan are also discused. CONCLUSIONS Evidence of a morphological and molecular hourglass in plant and animal embryogenesis suggests convergent evolution. This convergence is likely due to developmental constraints imposed upon embryogenesis by the need to produce a viable embryo with an established body plan, controlled by the architecture of the underlying gene regulatory networks. As the body plan is largely laid down during the middle phases of embryo development in plants and animals, then it is perhaps not surprising this stage represents the narrow waist of the hourglass where the gene regulatory networks are the oldest and most robust and integrated, limiting species diversity and constraining morphological space.
Collapse
Affiliation(s)
- Andrew G Cridge
- Laboratory for Evolution and Development, Genetics Otago and Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand and
| | - Peter K Dearden
- Laboratory for Evolution and Development, Genetics Otago and Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand and
| | | |
Collapse
|
129
|
Yi J, Lee YS, Lee DY, Cho MH, Jeon JS, An G. OsMPK6 plays a critical role in cell differentiation during early embryogenesis in Oryza sativa. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2425-37. [PMID: 26912801 PMCID: PMC4809295 DOI: 10.1093/jxb/erw052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The formation of body axes is the basis of morphogenesis during plant embryogenesis. We identified embryo-lethal mutants of rice (Oryza sativa) in which T-DNAs were inserted in OsMPK6 Embryonic organs were absent because their development was arrested at the globular stage. Similar to observations made with gle4, shootless, and organless, the osmpk6 mutations affected the initial step of cell differentiation. Expression of an apical-basal axis marker gene, OSH1, was reduced in the mutant embryos while that of the radial axes marker genes OsSCR and OsPNH1 was not detected. The signal for ROC1, a protodermal cell marker, was weak at the globular stage and gradually disappeared. Transcript levels of auxin and gibberellin biosynthesis genes were diminished in osmpk6 embryos. In addition, phytoalexin biosynthesis genes were down-regulated in osmpk6 and a major diterpene phytoalexin, momilactone A, did not accumulate in the mutant embryos. These results indicate that OsMPK6 begins to play a critical role during early embryogenesis, especially when the L1 radial axis is being formed.
Collapse
Affiliation(s)
- Jakyung Yi
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Yang-Seok Lee
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Dong-Yeon Lee
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Man-Ho Cho
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Jong-Seong Jeon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| |
Collapse
|
130
|
Zhai L, Xu L, Wang Y, Zhu X, Feng H, Li C, Luo X, Everlyne MM, Liu L. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Sci Rep 2016; 6:21652. [PMID: 26902837 PMCID: PMC4763228 DOI: 10.1038/srep21652] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/28/2016] [Indexed: 11/09/2022] Open
Abstract
Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish.
Collapse
Affiliation(s)
- Lulu Zhai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Haiyang Feng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chao Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Muleke M. Everlyne
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
131
|
Salvini M, Fambrini M, Giorgetti L, Pugliesi C. Molecular aspects of zygotic embryogenesis in sunflower (Helianthus annuus L.): correlation of positive histone marks with HaWUS expression and putative link HaWUS/HaL1L. PLANTA 2016; 243:199-215. [PMID: 26377219 DOI: 10.1007/s00425-015-2405-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
The link HaWUS/ HaL1L , the opposite transcriptional behavior, and the decrease/increase in positive histone marks bond to both genes suggest an inhibitory effect of WUS on HaL1L in sunflower zygotic embryos. In Arabidopsis, a group of transcription factors implicated in the earliest events of embryogenesis is the WUSCHEL-RELATED HOMEOBOX (WOX) protein family including WUSCHEL (WUS) and other 14 WOX protein, some of which contain a conserved WUS-box domain in addition to the homeodomain. WUS transcripts appear very early in embryogenesis, at the 16-cell embryo stage, but gradually become restricted to the center of the developing shoot apical meristem (SAM) primordium and continues to be expressed in cells of the niche/organizing center of SAM and floral meristems to maintain stem cell population. Moreover, WUS has decisive roles in the embryonic program presumably promoting the vegetative-to-embryonic transition and/or maintaining the identity of the embryonic stem cells. However, data on the direct interaction between WUS and key genes for seed development (as LEC1 and L1L) are not collected. The novelty of this report consists in the characterization of Helianthus annuus WUS (HaWUS) gene and in its analysis regarding the pattern of the methylated lysine 4 (K4) of the Histone H3 and of the acetylated histone H3 during the zygotic embryo development. Also, a parallel investigation was performed for HaL1L gene since two copies of the WUS-binding site (WUSATA), previously identified on HaL1L nucleotide sequence, were able to be bound by the HaWUS recombinant protein suggesting a not described effect of HaWUS on HaL1L transcription.
Collapse
Affiliation(s)
- Mariangela Salvini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Marco Fambrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology (IBBA), Italian National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
132
|
Smit ME, Weijers D. The role of auxin signaling in early embryo pattern formation. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:99-105. [PMID: 26495766 DOI: 10.1016/j.pbi.2015.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 05/09/2023]
Abstract
Pattern formation of the early Arabidopsis embryo generates precursors to all major cell types, and is profoundly controlled by the signaling molecule auxin. Here we discuss recent milestones in our understanding of auxin-dependent embryo patterning. Auxin biosynthesis, transport and response mechanisms interact to generate local auxin accumulation in the early embryo. New auxin-dependent reporters help identifying these sites, while atomic structures of transcriptional response mediators help explain the diverse outputs of auxin signaling. Key auxin outputs are control of cell identity and cell division orientation, and progress has been made towards understanding the cellular basis of each. Importantly, a number of studies have combined computational modeling and experiments to analyze the developmental role, genetic circuitry and molecular mechanisms of auxin-dependent cell division control.
Collapse
Affiliation(s)
- Margot E Smit
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
133
|
Uddenberg D, Akhter S, Ramachandran P, Sundström JF, Carlsbecker A. Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology. FRONTIERS IN PLANT SCIENCE 2015; 6:970. [PMID: 26579190 PMCID: PMC4630563 DOI: 10.3389/fpls.2015.00970] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/22/2015] [Indexed: 05/20/2023]
Abstract
Conifers, Ginkgo, cycads and gnetophytes comprise the four groups of extant gymnosperms holding a unique position of sharing common ancestry with the angiosperms. Comparative studies of gymnosperms and angiosperms are the key to a better understanding of ancient seed plant morphologies, how they have shifted over evolution to shape modern day species, and how the genes governing these morphologies have evolved. However, conifers and other gymnosperms have been notoriously difficult to study due to their long generation times, inaccessibility to genetic experimentation and unavailable genome sequences. Now, with three draft genomes from spruces and pines, rapid advances in next generation sequencing methods for genome wide expression analyses, and enhanced methods for genetic transformation, we are much better equipped to address a number of key evolutionary questions relating to seed plant evolution. In this mini-review we highlight recent progress in conifer developmental biology relevant to evo-devo questions. We discuss how genome sequence data and novel techniques might allow us to explore genetic variation and naturally occurring conifer mutants, approaches to reduce long generation times to allow for genetic studies in conifers, and other potential upcoming research avenues utilizing current and emergent techniques. Results from developmental studies of conifers and other gymnosperms in comparison to those in angiosperms will provide information to trace core molecular developmental control tool kits of ancestral seed plants, but foremost they will greatly improve our understanding of the biology of conifers and other gymnosperms in their own right.
Collapse
Affiliation(s)
- Daniel Uddenberg
- Physiological Botany, Department of Organismal Biology and Linnean Centre for Plant Biology, Uppsala BioCenter, Uppsala University, Uppsala, Sweden
| | - Shirin Akhter
- Department of Plant Biology and Linnean Centre for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Prashanth Ramachandran
- Physiological Botany, Department of Organismal Biology and Linnean Centre for Plant Biology, Uppsala BioCenter, Uppsala University, Uppsala, Sweden
| | - Jens F. Sundström
- Department of Plant Biology and Linnean Centre for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Annelie Carlsbecker
- Physiological Botany, Department of Organismal Biology and Linnean Centre for Plant Biology, Uppsala BioCenter, Uppsala University, Uppsala, Sweden
| |
Collapse
|
134
|
Nikonorova N, Vu LD, Czyzewicz N, Gevaert K, De Smet I. A phylogenetic approach to study the origin and evolution of the CRINKLY4 family. FRONTIERS IN PLANT SCIENCE 2015; 6:880. [PMID: 26557128 PMCID: PMC4617170 DOI: 10.3389/fpls.2015.00880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/02/2015] [Indexed: 05/03/2023]
Abstract
Cell-cell communication plays a crucial role in plant growth and development and relies to a large extent on peptide ligand-receptor kinase signaling mechanisms. The CRINKLY4 (CR4) family of receptor-like kinases is involved in a wide range of developmental processes in plants, including mediating columella stem cell identity and differentiation in the Arabidopsis thaliana root tip. Members of the CR4 family contain a signal peptide, an extracellular part, a single-pass transmembrane helix and an intracellular cytoplasmic protein kinase domain. The main distinguishing features of the family are the presence of seven "crinkly" repeats and a TUMOR NECROSIS FACTOR RECEPTOR (TNFR)-like domain in the extracellular part. Here, we investigated the evolutionary origin of the CR4 family and explored to what extent members of this family are conserved throughout the green lineage. We identified members of the CR4 family in various dicots and monocots, and also in the lycophyte Selaginella moellendorffii and the bryophyte Physcomitrella patens. In addition, we attempted to gain insight in the evolutionary origin of different CR4-specific domains, and we could detect "crinkly" repeat containing proteins already in single celled algae. Finally, we related the presence of likely functional CR4 orthologs to its best described signaling module comprising CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 40 (CLE40), WUSCHEL RELATED HOMEOBOX 5 (WOX5), CLAVATA 1 (CLV1), and ARABIDOPSIS CR4 (ACR4), and established that this module likely is already present in bryophytes and lycophytes.
Collapse
Affiliation(s)
- Natalia Nikonorova
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB)Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
| | - Lam D. Vu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB)Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Department of Medical Protein Research, Flanders Institute for Biotechnology (VIB), Ghent UniversityGhent, Belgium
- Department of Biochemistry, Ghent UniversityGhent, Belgium
| | - Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
| | - Kris Gevaert
- Department of Medical Protein Research, Flanders Institute for Biotechnology (VIB), Ghent UniversityGhent, Belgium
- Department of Biochemistry, Ghent UniversityGhent, Belgium
| | - Ive De Smet
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB)Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
- Center for Plant Integrative Biology, University of NottinghamLoughborough, UK
| |
Collapse
|
135
|
Wu MF, Yamaguchi N, Xiao J, Bargmann B, Estelle M, Sang Y, Wagner D. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. eLife 2015; 4:e09269. [PMID: 26460543 PMCID: PMC4600763 DOI: 10.7554/elife.09269] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022] Open
Abstract
Reprogramming of cell identities during development frequently requires changes in the chromatin state that need to be restricted to the correct cell populations. Here we identify an auxin hormone-regulated chromatin state switch that directs reprogramming from transit amplifying to primordium founder cell fate in Arabidopsis inflorescences. Upon auxin sensing, the MONOPTEROS transcription factor recruits SWI/SNF chromatin remodeling ATPases to increase accessibility of the DNA for induction of key regulators of flower primordium initiation. In the absence of the hormonal cue, auxin sensitive Aux/IAA proteins bound to MONOPTEROS block recruitment of the SWI/SNF chromatin remodeling ATPases in addition to recruiting a co-repressor/histone deacetylase complex. This simple and elegant hormone-mediated chromatin state switch is ideally suited for iterative flower primordium initiation and orchestrates additional auxin-regulated cell fate transitions. Our findings establish a new paradigm for nuclear response to auxin. They also provide an explanation for how this small molecule can direct diverse plant responses.
Collapse
Affiliation(s)
- Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Bastiaan Bargmann
- Section of Cell and Developmental Biology, Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States
| | - Mark Estelle
- Section of Cell and Developmental Biology, Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States
| | - Yi Sang
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|