101
|
Mosna F, Sensebé L, Krampera M. Human Bone Marrow and Adipose Tissue Mesenchymal Stem Cells: A User's Guide. Stem Cells Dev 2010; 19:1449-70. [DOI: 10.1089/scd.2010.0140] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Federico Mosna
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, Policlinico “G.B. Rossi”—University of Verona, Verona, Italy
| | - Luc Sensebé
- Etablissement Français du Sang (EFS), Centre-Atlantique and EA3855 University François Rabelais, Tours, France
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, Policlinico “G.B. Rossi”—University of Verona, Verona, Italy
| |
Collapse
|
102
|
Jeon ES, Heo SC, Lee IH, Choi YJ, Park JH, Choi KU, Park DY, Suh DS, Yoon MS, Kim JH. Ovarian cancer-derived lysophosphatidic acid stimulates secretion of VEGF and stromal cell-derived factor-1 alpha from human mesenchymal stem cells. Exp Mol Med 2010; 42:280-93. [PMID: 20177148 DOI: 10.3858/emm.2010.42.4.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lysophosphatidic acid (LPA) stimulates growth and invasion of ovarian cancer cells and tumor angiogenesis. Cancer-derived LPA induces differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) to alpha-smooth muscle actin (alpha-SMA)-positive cancer-associated fibroblasts. Presently, we explored whether cancer-derived LPA regulates secretion of pro-angiogenic factors from hASCs. Conditioned medium (CM) from the OVCAR-3 and SKOV3 ovarian cancer cell lines stimulated secretion angiogenic factors such as stromal-derived factor-1 alpha (SDF-1 alpha) and VEGF from hASCs. Pretreatment with the LPA receptor inhibitor Ki16425 or short hairpin RNA lentiviral silencing of the LPA((1)) receptor abrogated the cancer CM-stimulated expression of alpha-SMA, SDF-1, and VEGF from hASCs. LPA induced expression of myocardin and myocardin-related transcription factor-A, transcription factors involved in smooth muscle differentiation, in hASCs. siRNA-mediated depletion of endogenous myocardin and MRTF-A abrogated the expression of alpha-SMA, but not SDF-1 and VEGF. LPA activated RhoA in hASCs and pretreatment with the Rho kinase inhibitor Y27632 completely abrogated the LPA-induced expression of alpha-SMA, SDF-1, and VEGF in hASCs. Moreover, LPA-induced alpha-SMA expression was abrogated by treatment with the ERK inhibitor U0126 or the phosphoinositide-3-kinase inhibitor LY294002, but not the PLC inhibitor U73122. LPA-induced VEGF secretion was inhibited by LY294002, whereas LPA-induced SDF-1 secretion was markedly attenuated by U0126, U73122, and LY294002. These results suggest that cancer-secreted LPA induces differentiation of hASCs to cancer-associated fibroblasts through multiple signaling pathways involving Rho kinase, ERK, PLC, and phosphoinositide-3-kinase.
Collapse
Affiliation(s)
- Eun Su Jeon
- Medical Research Center for Ischemic Tissue Regeneration, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 626-870, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Gao L, McBeath R, Chen CS. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells 2010; 28:564-72. [PMID: 20082286 DOI: 10.1002/stem.308] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells that can differentiate into many cell types. Chondrogenesis is induced in hMSCs cultured as a micromass pellet to mimic cellular condensation during cartilage development, and exposed to transforming growth factor beta (TGFbeta). Interestingly, TGFbeta can also induce hMSC differentiation to smooth-muscle-like cell types, but it remains unclear what directs commitment between these two lineages. Our previous work revealed that cell shape regulates hMSC commitment between osteoblasts and adipocytes through RhoA signaling. Here we show that cell shape also confers a switch between chondrogenic and smooth muscle cell (SMC) fates. Adherent and well-spread hMSCs stimulated with TGF beta 3 upregulated SMC genes, whereas cells allowed to attach onto micropatterned substrates, but prevented from spreading and flattening, upregulated chondrogenic genes. Interestingly, cells undergoing SMC differentiation exhibited little change in RhoA, but significantly higher Rac1 activity than chondrogenic cells. Rac1 activation inhibited chondrogenesis and was necessary and sufficient for inducing SMC differentiation. Furthermore, TGF beta 3 and Rac1 signaling upregulated N-cadherin, which was required for SMC differentiation. These results demonstrate a chondrogenic-SMC fate decision mediated by cell shape, Rac1, and N-cadherin, and highlight the tight coupling between lineage commitment and the many changes in cell shape, cell-matrix adhesion, and cell-cell adhesion that occur during morphogenesis.
Collapse
Affiliation(s)
- Lin Gao
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
104
|
Jeong H, Bae S, An SY, Byun MR, Hwang JH, Yaffe MB, Hong JH, Hwang ES. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB J 2010; 24:3310-20. [PMID: 20466877 DOI: 10.1096/fj.09-151324] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myoblast differentiation is indispensable for skeletal muscle formation and is governed by the precisely coordinated regulation of a series of transcription factors, including MyoD and myogenin, and transcriptional coregulators. TAZ (transcriptional coactivator with PDZ-binding motif) has been characterized as a modulator of mesenchymal stem cell differentiation into osteoblasts and adipocytes through its regulation of lineage-specific master transcription factors. In this study, we investigated whether TAZ affects myoblast differentiation, which is one of the differentiated lineages of mesenchymal stem cells. Ectopic overexpression of TAZ in myoblasts increases myogenic gene expression in a MyoD-dependent manner and hastens myofiber formation, whereas TAZ knockdown delays myogenic differentiation. In addition, enforced coexpression of TAZ and MyoD in fibroblasts accelerates MyoD-induced myogenic differentiation. TAZ physically interacts with MyoD through the WW domain and activates MyoD-dependent gene transcription. TAZ additionally enhances the interaction of MyoD with the myogenin gene promoter. These results strongly suggest that TAZ functions as a novel transcriptional modulator of myogenic differentiation by promoting MyoD-mediated myogenic gene expression.
Collapse
Affiliation(s)
- Hana Jeong
- College of Pharmacy and Division of Life and Pharmaceutical Sciences, Ewha Woman's University, Science Bldg C206, 11-1 Daehyun-Dong, Sudaemun-Ku, Seoul 120-750, Korea
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Chou MT, Chang SN, Ke C, Chang HI, Sung ML, Kuo HC, Chen CN. The proliferation and differentiation of placental-derived multipotent cells into smooth muscle cells on fibrillar collagen. Biomaterials 2010; 31:4367-75. [PMID: 20199810 DOI: 10.1016/j.biomaterials.2010.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/05/2010] [Indexed: 01/10/2023]
Abstract
Type I collagen constitutes a major portion of the extracellular matrix (ECM) in arterial wall and it is the major substrate for cell growth and differentiation. The goal of this study was to evaluate the differentiation and proliferation of placenta-derived multipotent cells (PDMCs) on polymerized type I collagen fibrils and monomer collagen. PDMCs grown on both polymerized collagen and monomer collagen with transforming growth factor (TGF)-beta treatment increases the expression of smooth muscle cell (SMC)-specific markers, including calponin, alpha-smooth muscle actin (alpha-SMA) and smooth muscle-myosin heavy chain (SM-MHC). Polymerized collagen increased the expressions of p21(CIP1) and p27(KIP1); decreased cyclin A, cyclin D1, cyclin-dependent protein kinase 2 (Cdk2); and led to G(0)/G(1) arrest in PDMCs. Furthermore, PDMC-differentiated SMCs exhibited significant collagen contractility in the presence or absence of endothelin-1 (ET-1) stimulation. By using specific inhibitors and small interfering RNA (siRNA), we demonstrated that p38 MAPK pathway and serum response factor (SRF)-DNA binding activity is critical for the polymerized collagen-induced PDMC differentiation into SMCs. Thus, polymerized collagen exhibits the great potential in inducing PDMCs differentiation into SMCs, and exerts anti-proliferative effect on PDMC-differentiated SMCs.
Collapse
Affiliation(s)
- Mou-Tsy Chou
- Department of Gynecology, St. Martin De Porres Hospital, Chiayi City, Taiwan
| | | | | | | | | | | | | |
Collapse
|
106
|
Petschnik AE, Fell B, Kruse C, Danner S. The role of α-smooth muscle actin in myogenic differentiation of human glandular stem cells and their potential for smooth muscle cell replacement therapies. Expert Opin Biol Ther 2010; 10:853-61. [DOI: 10.1517/14712591003769832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
107
|
Resident and bone marrow-derived mesenchymal stem cells in head and neck squamous cell carcinoma. Oral Oncol 2010; 46:336-42. [PMID: 20219413 DOI: 10.1016/j.oraloncology.2010.01.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 12/25/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major healthcare problem worldwide affecting more than half a million patients each year. Despite considerable advances in the treatment of HNSCC, a high rate of recurrences aggravates the clinical situation and disease outcomes have only modestly improved. Recent insights show that cancer is not only a disease of the transformed epithelium but is also influenced and dependent on its stromal environment. In this review we suggest that resident and bone marrow (BM)-derived mesenchymal stem cells (MSCs) are precursors of the stroma associated with HNSCC and contribute to blood- and lymph angiogenesis, modulate the immune system and produce tumor-associated myofibroblasts. In addition, the impact of radiation therapy on the stromal reaction in HNSCC is discussed. Understanding the mechanisms of how MSCs promote invasive growth and metastasis in HNSCC and respond to cancer management strategies is of profound medical importance and will help us to design improved therapeutic protocols.
Collapse
|
108
|
Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V. Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 2010; 10:409-20. [PMID: 20132061 PMCID: PMC4580374 DOI: 10.1517/14712590903563352] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. AREAS COVERED IN THIS REVIEW We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. WHAT THE READER WILL GAIN The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. TAKE HOME MESSAGE It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.
Collapse
Affiliation(s)
- Richard P Visconti
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Vladimir Kasyanov
- Riga Stradins University, Department of Anatomy and Anthropology, Riga, Latvia
| | - Carmine Gentile
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Jing Zhang
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Roger R Markwald
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Vladimir Mironov
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
109
|
Pepe AE, Xiao Q, Zampetaki A, Zhang Z, Kobayashi A, Hu Y, Xu Q. Crucial role of nrf3 in smooth muscle cell differentiation from stem cells. Circ Res 2010; 106:870-9. [PMID: 20093628 DOI: 10.1161/circresaha.109.211417] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RATIONALE Nuclear factor erythroid 2-related factor (Nrf)3, a member of the cap 'N' collar family of transcription factors that bind to the DNA-antioxidant responsive elements, is involved in reactive oxygen species balancing and in muscle precursor migration during early embryo development. OBJECTIVE To investigate the functional role of Nrf3 in smooth muscle cell (SMC) differentiation in vitro and in vivo. METHODS AND RESULTS Nrf3 was upregulated significantly following 1 to 8 days of SMC differentiation. Knockdown of Nrf3 resulted in downregulation of smooth muscle specific markers expression, whereas enforced expression of Nrf3 enhanced SMC differentiation in a dose-dependent manner. SMC-specific transcription factor myocardin, but not serum response factor, was significantly upregulated by Nrf3 overexpression. Strikingly, the binding of SRF and myocardin to the promoter of smooth muscle differentiation genes was dramatically increased by Nrf3 overexpression, and Nrf3 can directly bind to the promoters of SMC differentiation genes as demonstrated by chromatin immunoprecipitation assay. Moreover, NADPH-derived reactive oxygen species production during SMC differentiation was further enhanced by Nrf3 overexpression through upregulation of NADPH oxidase and inhibition of antioxidant signaling pathway. In addition, Nrf3 was involved in the endoplasmic reticulum stressor induced SMC differentiation. CONCLUSION Our findings demonstrate for the first time that Nrf3 has a crucial role in SMC differentiation from stem cells indicating that Nrf3 could be a potential target for manipulation of stem cell differentiation toward vascular lineage.
Collapse
Affiliation(s)
- Anna Elena Pepe
- Cardiovascular Division, King's College London, The James Black Centre, 125 Coldharbour Ln, London SE5 9NU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
110
|
Han Y, Li N, Tian X, Kang J, Yan C, Qi Y. Endogenous transforming growth factor (TGF) beta1 promotes differentiation of smooth muscle cells from embryonic stem cells: stable plasmid-based siRNA silencing of TGF beta1 gene expression. J Physiol Sci 2010; 60:35-41. [PMID: 19784879 PMCID: PMC10717952 DOI: 10.1007/s12576-009-0063-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/09/2009] [Indexed: 02/06/2023]
Abstract
Transforming growth factor (TGF) beta1 has been shown to promote differentiation of smooth muscle cells (SMC) from some precursor cells. Whether endogenous TGF beta1 also contributes to SMC differentiation during embryogenesis, however, remains unclear. In this study, a plasmid-based TGF beta1 RNA interference embryonic stem (ES) cell line was constructed. Morphological observation showed that TGF beta1 knockdown significantly prevented differentiated cells from outgrowing from ES cells-derived embryoid bodies (EBs). Immunofluorescence staining indicated that SM alpha-actin-positive cells were confluent and dense in the control group but dispersed in the TGF beta1 knockdown group. RT-PCR and western blot suggested that TGF beta1 knockdown resulted in a decrease in the expression of early SMC markers SM alpha-actin and myocardin in EBs. Both the retarded extension of cell outgrowth and the decrease in SM alpha-actin and myocardin expression could not be rescued by addition of exogenous TGF beta1. These data suggest that endogenous TGF beta1 promotes differentiation of SMC from ES cells.
Collapse
Affiliation(s)
- Yaling Han
- Department of Cardiology, Cardiovascular Research Institute, Shenyang Northern Hospital, 110016 Shenyang, Liaoning, China.
| | | | | | | | | | | |
Collapse
|
111
|
Tian H, Bharadwaj S, Liu Y, Ma H, Ma PX, Atala A, Zhang Y. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering. Biomaterials 2009; 31:870-7. [PMID: 19853294 DOI: 10.1016/j.biomaterials.2009.10.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/01/2009] [Indexed: 01/01/2023]
Abstract
Current strategies for engineering bladder tissues include a bladder biopsy for in vitro cell expansion for use in reconstructive procedures. However, this approach cannot be used in patients with bladder cancer who need a complete bladder replacement. Bone marrow mesenchymal stem cells (BMSC) might be an alternative cell source to better meet this need. We investigated the effects of soluble growth factors, bladder extracellular matrix (ECM), and 3D dynamic culture on cell proliferation and differentiation of human BMSC into smooth muscle cells (SMC). Myogenic growth factors (PDGF-BB and TGF-beta1) alone, or combined either with bladder ECM or dynamic cultures, induced BMSC to express smooth muscle-specific genes and proteins. Either ECM or the dynamic culture alone promoted cell proliferation but did not induce myogenic differentiation of BMSC. A highly porous poly-l-lactic acid (PLLA) scaffold provided a 3D structure for maximizing the cell-matrix penetration, maintained myogenic differentiation of the induced BMSC, and promoted tissue remolding with rich capillary formation in vivo. Our results demonstrate that myogenic-differentiated BMSC seeded on a nano fibrous PLLA scaffold can be potentially used for cell-based tissue engineering for bladder cancer patients requiring cystoplasty.
Collapse
Affiliation(s)
- Hong Tian
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Martin K, Weiss S, Metharom P, Schmeckpeper J, Hynes B, O'Sullivan J, Caplice N. Thrombin Stimulates Smooth Muscle Cell Differentiation From Peripheral Blood Mononuclear Cells via Protease-Activated Receptor-1, RhoA, and Myocardin. Circ Res 2009; 105:214-8. [DOI: 10.1161/circresaha.109.199984] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Smooth muscle precursor cells have previously been reported to reside in bone marrow and in the circulation, but little is currently known regarding the proximate stimuli for smooth muscle cell differentiation of these putative progenitors.
Objective:
Because local thrombin generation occurs as an initial response to vascular injury, we hypothesized that thrombin may influence the differentiation of circulating smooth muscle progenitor cells.
Methods and Results:
Peripheral blood mononuclear cells were cultured on type I collagen using a protocol optimized to stimulate smooth muscle cell outgrowth. Thrombin-stimulated upregulation of the transcription factor myocardin and smooth muscle myosin heavy chain, and both were inhibited by hirudin or the RhoA inhibitor Y27632. After 10 days of culture, smooth muscle outgrowth colonies formed, which stained positive for α-smooth muscle actin, smooth muscle myosin heavy chain, and calponin, in addition to having a contractile response to 100 nmol/L angiotensin II. Coincubation of peripheral blood mononuclear cells with thrombin, 10 μmol/L protease-activated receptor-1, but not protease-activated receptor-4 activating peptide significantly increased the number of smooth muscle outgrowth colonies formed. Thrombin-induced enhancement of smooth muscle outgrowth colony formation was inhibited by hirudin, Y27632, and an antibody against protease-activated receptor-1.
Conclusions:
These data illustrate a novel thrombin-induced pathway for smooth muscle differentiation from putative smooth muscle progenitors in peripheral blood.
Collapse
Affiliation(s)
- Kenneth Martin
- From the Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Ireland
| | - Sharon Weiss
- From the Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Ireland
| | - Pat Metharom
- From the Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Ireland
| | - Jeffrey Schmeckpeper
- From the Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Ireland
| | - Brian Hynes
- From the Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Ireland
| | - John O'Sullivan
- From the Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Ireland
| | - Noel Caplice
- From the Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Ireland
| |
Collapse
|
113
|
Li H, Wang D, Singh LS, Berk M, Tan H, Zhao Z, Steinmetz R, Kirmani K, Wei G, Xu Y. Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1. PLoS One 2009; 4:e5705. [PMID: 19479052 PMCID: PMC2684630 DOI: 10.1371/journal.pone.0005705] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 05/05/2009] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK) activation and nitric oxide (NO) production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases.
Collapse
Affiliation(s)
- Hui Li
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Dongmei Wang
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Lisam Shanjukumar Singh
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Biotechnology, Manipur University, Canchipur, Manipur, India
| | - Michael Berk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Haiyan Tan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Zhenwen Zhao
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Rosemary Steinmetz
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kashif Kirmani
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gang Wei
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
114
|
Abstract
G protein-coupled receptors (GPCRs) detect a great diversity of extracellular stimuli ranging from hormonal peptides, chemokines, neurotransmitters, lipids, nucleotides, amino acids, biogenic amines to ions. G protein-coupled pathways regulate a rich collection of biological processes involved in normal physiological function of the body as well as in pathological progression of diseases. In addition to their function in postmitotic steady-state tissues, GPCRs have been implicated in the differentiation of stem cells and tissue specific progenitor cells during development. Examples of these include the functions of nucleotides and neuropeptides in neuronal differentiation and axon growth, chemokines in lymphocyte differentiation and activation, and other GPCR-mediated processes in the differentiation of adipocytes, osteoblasts and smooth muscle cells. This review summarizes the recent advances in our understanding of the importance of GPCR-linked signaling cascades in the differentiation of different cell lineages.
Collapse
Affiliation(s)
- Kepeng Wang
- Department of Biochemistry, The Molecular Neuroscience Center, The Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | |
Collapse
|
115
|
Yun DH, Song HY, Lee MJ, Kim MR, Kim MY, Lee JS, Kim JH. Thromboxane A(2) modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells. Exp Mol Med 2009; 41:17-24. [PMID: 19287196 DOI: 10.3858/emm.2009.41.1.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostanoid metabolites are key mediators in inflammatory responses, and accumulating evidence suggests that mesenchymal stem cells (MSCs) can be recruited to injured or inflamed tissues. In the present study, we investigated whether prostanoid metabolites can regulate migration, proliferation, and differentiation potentials of MSCs. We demonstrated herein that the stable thromboxane A(2) (Tx(2)) mimetic U46619 strongly stimulated migration and proliferation of human adipose tissue-derived MSCs (hADSCs). Furthermore, U46619 treatment increased expression of alpha-smooth muscle actin (alpha-SMA), a smooth muscle marker, in hADSCs, suggesting differentiation of hADSCs into smooth muscle-like cells. U46619 activated ERK and p38 MAPK, and pretreatment of the cells with the MEK inhibitor U0126 or the p38 MAPK inhibitor SB202190 abrogated the U46619-induced migration, proliferation, and alpha-SMA expression. These results suggest that TxA2 plays a key role in the migration, proliferation, and differentiation of hADSCs into smooth muscle-like cells through signaling mechanisms involving ERK and p38 MAPK.
Collapse
Affiliation(s)
- Doo Hee Yun
- Department of Physiology, Pusan National UniversityBusan 602-739, Korea
| | | | | | | | | | | | | |
Collapse
|
116
|
Bonnet P, Awede B, Rochefort GY, Mirza A, Lermusiaux P, Domenech J, Eder V. Electrophysiological maturation of rat mesenchymal stem cells after induction of vascular smooth muscle cell differentiation in vitro. Stem Cells Dev 2009; 17:1131-40. [PMID: 19006452 DOI: 10.1089/scd.2007.0219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies have suggested that mesenchymal stem cells (MSCs) can differentiate into smooth muscle-like cells. However their functionalities remain questionable. The aim of this study was to investigate the functionality of MSCs differentiated into smooth muscle (SM) in vitro by SM-inducing medium. MSCs have been isolated from rat bone marrow and cultured in SM-inducing medium. After 21 days in culture, messenger RNA and specific SM proteins such as myosin heavy chain and myosin light chain 2 were expressed in the in vitro differentiated MSCs to a similar level of that in freshly isolated SM cells (SMCs). At the electrophysiological level, MSCs presented an outward K+ current with an IK(DR) component and IK(Ca) component. In vitro differentiation induced an enhancement of the IK(Ca) current to a level similar to that observed in aortic SMCs. Calcium homeostasis measurements revealed that both differentiated and undifferentiated MSCs responded to extracellular adenosine triphosphate (ATP) in a similar fashion to SMCs. However MSCs failed to contract in response to ATP. This data shows that despite specific SM protein expression and modification of electrophysiological properties similar to that of aortic SMCs, MSCs cultured in differentiation medium failed to display contractile properties. These results underline the necessity to find the ideal cultured conditions to induce complete SMC function.
Collapse
Affiliation(s)
- Pierre Bonnet
- LAB.P.ART. EA3852, Medicine Faculty, University François Rabelais, Tours, France
| | | | | | | | | | | | | |
Collapse
|
117
|
Thromboxane A2Induces Differentiation of Human Mesenchymal Stem Cells to Smooth Muscle-Like Cells. Stem Cells 2009; 27:191-9. [DOI: 10.1634/stemcells.2008-0363] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
118
|
Xiao Q, Luo Z, Pepe AE, Margariti A, Zeng L, Xu Q. Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2. Am J Physiol Cell Physiol 2008; 296:C711-23. [PMID: 19036941 DOI: 10.1152/ajpcell.00442.2008] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NADPH oxidase (Nox4) produces reactive oxygen species (ROS) that are important for vascular smooth muscle cell (SMC) behavior, but the potential impact of Nox4 in stem cell differentiation is unknown. When mouse embryonic stem (ES) cells were plated on collagen IV-coated dishes/flasks, a panel of SMC-specific genes was significantly and consistently upregulated. Nox4 expression was markedly correlated with such a gene induction as confirmed by real-time PCR, immunofluorescence, and Western blot analysis. Overexpression of Nox4 specifically resulted in increased SMC marker production, whereas knockdown of Nox4 induced a decrease. Furthermore, SMC-specific transcription factors, including serum response factor (SRF) and myocardin were activated by Nox4 gene expression. Moreover, Nox4 was demonstrated to drive SMC differentiation through generation of H(2)O(2). Confocal microscopy analysis indicates that SRF was translocated into the nucleus during SMC differentiation in which SRF was phosphorylated. Additionally, autosecreted transforming growth factor (TGF)-beta(1) activated Nox4 and promoted SMC differentiation. Interestingly, cell lines generated from stem cells by Nox4 transfection and G418 selection displayed a characteristic of mature SMCs, including expression of SMC markers and cells with contractile function. Thus we demonstrate for the first time that Nox4 is crucial for SMC differentiation from ES cells, and enforced Nox4 expression can maintain differentiation status and functional features of stem cell-derived SMCs, highlighting its impact on vessel formation in vivo and vascular tissue engineering in the future.
Collapse
Affiliation(s)
- Qingzhong Xiao
- Cardiovascular Div., King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU
| | | | | | | | | | | |
Collapse
|
119
|
|
120
|
Vaahtomeri K, Ventelä E, Laajanen K, Katajisto P, Wipff PJ, Hinz B, Vallenius T, Tiainen M, Mäkelä TP. Lkb1 is required for TGFbeta-mediated myofibroblast differentiation. J Cell Sci 2008; 121:3531-40. [PMID: 18840652 DOI: 10.1242/jcs.032706] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inactivating mutations of the tumor-suppressor kinase gene LKB1 underlie Peutz-Jeghers syndrome (PJS), which is characterized by gastrointestinal hamartomatous polyps with a prominent smooth-muscle and stromal component. Recently, it was noted that PJS-type polyps develop in mice in which Lkb1 deletion is restricted to SM22-expressing mesenchymal cells. Here, we investigated the stromal functions of Lkb1, which possibly underlie tumor suppression. Ablation of Lkb1 in primary mouse embryo fibroblasts (MEFs) leads to attenuated Smad activation and TGFbeta-dependent transcription. Also, myofibroblast differentiation of Lkb1(-/-) MEFs is defective, resulting in a markedly decreased formation of alpha-smooth muscle actin (SMA)-positive stress fibers and reduced contractility. The myofibroblast differentiation defect was not associated with altered serum response factor (SRF) activity and was rescued by exogenous TGFbeta, indicating that inactivation of Lkb1 leads to defects in myofibroblast differentiation through attenuated TGFbeta signaling. These results suggest that tumorigenesis by Lkb1-deficient SM22-positive cells involves defective myogenic differentiation.
Collapse
Affiliation(s)
- Kari Vaahtomeri
- Genome-Scale Biology Program, Institute of Biomedicine, Biomedicum Helsinki, P.O. Box 63, 00014 University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Tamama K, Sen CK, Wells A. Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells Dev 2008; 17:897-908. [PMID: 18564029 PMCID: PMC2973839 DOI: 10.1089/scd.2007.0155] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 10/05/2007] [Indexed: 12/28/2022] Open
Abstract
Smooth muscle cells (SMCs) are major components of blood vessels and other hollow visceral organs required for tissue engineering of these organs. This study aims to evaluate whether adult bone marrow-derived mesenchymal stem cells (BMMSCs), multipotent cells, can be converted into SMCs. We examined the ERK/MAPK pathway as it exerts anti-myogenic signals in SMCs. Undifferentiated BMMSCs express most SMC marker genes, albeit mainly at low levels, except smooth muscle myosin heavy chain (SMMHC), the most definitive marker of differentiated SMC. The treatment of BMMSC with MEK inhibitor up-regulated the expression of alpha-smooth muscle actin (ASMA), h-caldesmon, and SMMHC in BMMSC in low serum condition. MEK inhibitor-treated BMMSC also contracted a collagen gel in response to endothelin. Interestingly, inhibition of MEK induced myocardin expression in BMMSC. In conclusion, BMMSCs treated MEK inhibitor gain a SMC-like phenotype with ligand-induced cell contractility to endothelin in vitro. This approach has obvious implications for cell therapeutics and tissue engineering of hollow visceral organs such as blood vessels.
Collapse
Affiliation(s)
- Kenichi Tamama
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
122
|
Jeon ES, Park WS, Lee MJ, Kim YM, Han J, Kim JH. A Rho Kinase/Myocardin-Related Transcription Factor-A–Dependent Mechanism Underlies the Sphingosylphosphorylcholine-Induced Differentiation of Mesenchymal Stem Cells Into Contractile Smooth Muscle Cells. Circ Res 2008; 103:635-42. [DOI: 10.1161/circresaha.108.180885] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eun Su Jeon
- From the Medical Research Center for Ischemic Tissue Regeneration (E.S.J., M.J.L., Y.M.K., J.H.K.), the Medical Research Institute, Department of Physiology, College of Medicine, Pusan National University; and National Research Laboratory for Mitochondrial Signaling (W.S.P., J.H.), FIRST Mitochondria Research Group, Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Won Sun Park
- From the Medical Research Center for Ischemic Tissue Regeneration (E.S.J., M.J.L., Y.M.K., J.H.K.), the Medical Research Institute, Department of Physiology, College of Medicine, Pusan National University; and National Research Laboratory for Mitochondrial Signaling (W.S.P., J.H.), FIRST Mitochondria Research Group, Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Mi Jeong Lee
- From the Medical Research Center for Ischemic Tissue Regeneration (E.S.J., M.J.L., Y.M.K., J.H.K.), the Medical Research Institute, Department of Physiology, College of Medicine, Pusan National University; and National Research Laboratory for Mitochondrial Signaling (W.S.P., J.H.), FIRST Mitochondria Research Group, Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Young Mi Kim
- From the Medical Research Center for Ischemic Tissue Regeneration (E.S.J., M.J.L., Y.M.K., J.H.K.), the Medical Research Institute, Department of Physiology, College of Medicine, Pusan National University; and National Research Laboratory for Mitochondrial Signaling (W.S.P., J.H.), FIRST Mitochondria Research Group, Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- From the Medical Research Center for Ischemic Tissue Regeneration (E.S.J., M.J.L., Y.M.K., J.H.K.), the Medical Research Institute, Department of Physiology, College of Medicine, Pusan National University; and National Research Laboratory for Mitochondrial Signaling (W.S.P., J.H.), FIRST Mitochondria Research Group, Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jae Ho Kim
- From the Medical Research Center for Ischemic Tissue Regeneration (E.S.J., M.J.L., Y.M.K., J.H.K.), the Medical Research Institute, Department of Physiology, College of Medicine, Pusan National University; and National Research Laboratory for Mitochondrial Signaling (W.S.P., J.H.), FIRST Mitochondria Research Group, Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| |
Collapse
|
123
|
Yu JM, Jun ES, Bae YC, Jung JS. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev 2008; 17:463-73. [PMID: 18522494 DOI: 10.1089/scd.2007.0181] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs for tumor growth in vivo and the long-term safety of the clinical applications of MSCs can be understood more thoroughly. In this study, MSCs derived from human adipose tissues (hASCs) together with tumor cells were transplanted subcutaneously or intracranially into BALB/c nude mice to observe tumor outgrowth. The results indicated that hASCs with H460 or U87MG cells promoted tumor growth in nude mice. Our histopathological analyses indicated that the co-injection of tumor cells with hASCs exerted no influence on the formation of intratumoral vessels. Co-culture of tumor cells with hASCs or the addition of conditioned medium (CM) from hASCs effected an increase in the proliferation of H460 or U87MG cells. Co-injection of hASCs with tumor cells effected an increase in tumor cell viability in vivo, and also induced a reduction in apoptotic cell death. CM from hASCs inhibited hydrogen peroxide-induced cell death in H460 or U87MG cells. These findings indicated that MSCs could favor tumor growth in vivo. Thus, it is necessary to conduct a study concerning the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Ji Min Yu
- Department of Physiology, School of Medicine, Pusan National University, Pusan (602-739), Korea
| | | | | | | |
Collapse
|
124
|
Narita Y, Yamawaki A, Kagami H, Ueda M, Ueda Y. Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell Tissue Res 2008; 333:449-59. [PMID: 18607632 DOI: 10.1007/s00441-008-0654-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/29/2008] [Indexed: 12/29/2022]
Abstract
Bone-marrow-derived mesenchymal stem cells (MSCs) can differentiate into a variety of cell types including smooth muscle cells (SMCs). We have attempted to demonstrate that, following treatment with transforming growth factor-beta 1 (TGF-beta1) and ascorbic acid (AA), human bone-marrow-derived MSCs differentiate into the SMC lineage for use in tissue engineering. Quantitative polymerase chain reaction for SMC-specific gene (alpha smooth muscle actin, h1-calponin, and SM22alpha) expression was performed on MSCs, which were cultured with various concentrations of TGF-beta1 or AA. TGF-beta1 had a tendency to up-regulate the expression of SMC-specific genes in a dose-dependent manner. The expression of SM22alpha was significantly up-regulated by 30 microM AA. We also investigated the additive effect of TGF-beta1 and AA for differentiation into SMCs and compared this effect with that of other factors including platelet-derived growth factor BB (PDGF-BB). In addition to SMC-specific gene expression, SMC-specific proteins increased by two to four times when TGF-beta1 and AA were used together compared with their administration alone. PDGF did not increase the expression of SMC-specific markers. MSCs cultured with TGF-beta1 and AA did not differentiate into osteoblasts and adipocytes. These results suggest that a combination of TGF-beta1 and AA is useful for the differentiation of MSCs into SMCs for use in tissue engineering.
Collapse
Affiliation(s)
- Yuji Narita
- Department of Clinical Cell Therapy and Tissue Engineering, Nagoya University School of Medicine, Showa-ku, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
125
|
Imamura T, Kinebuchi Y, Ishizuka O, Seki S, Igawa Y, Nishizawa O. Implanted Mouse Bone Marrow-Derived Cells Reconstruct Layered Smooth Muscle Structures in Injured Urinary Bladders. Cell Transplant 2008; 17:267-78. [DOI: 10.3727/096368908784153850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study is a preliminary investigation to determine if bone marrow-derived cells, when implanted into freeze-injured urinary bladders, differentiate into smooth muscle cells and reconstruct smooth muscle layers. Bone marrow cells were harvested from femurs of male ICR mice and cultured in collagen-coated dishes for 7 days. After 5 days of culture, the cells were transfected with green fluorescent protein (GFP) genes for identification in recipient tissues. Three days prior to implantation, the posterior urinary bladder walls of female nude mice were injured with an iron bar refrigerated by dry ice. Seven days after the culture and 3 days after the injury, adherent, proliferating GFP-labeled bone marrow-derived cells (1.0 × 105 cells) were implanted into the injured regions. For controls, a cell-free solution was injected. At 14 days after implantation, the experimental urinary bladders were analyzed by histological, gene expression, and cystometric investigations. Just prior to implantation, the injured regions did not have any smooth muscle layers. After 14 days, the implanted cells surviving in the recipient tissues were detected with GFP antibody. The implanted regions had distinct smooth muscle layers composed of regenerated smooth muscle marker-positive cells. The implanted GFP-labeled cells differentiated into smooth muscle cells that formed into layers. The differentiated cells contacted each other within the implanted region as well as smooth muscle cells of the host. As a result, the reconstructed smooth muscle layers were integrated into the host tissues. Control mice injected with cell-free solution developed only few smooth muscle cells and no layers. Cystometric investigations showed that mice with implanted the cells developed bladder contractions similar to normal mice, whereas control mice did not. In summary, mouse bone marrow-derived cells can reconstruct layered smooth muscle structures in injured bladders to remediate urinary dysfunction.
Collapse
Affiliation(s)
- Tetsuya Imamura
- Department of Urology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Yoshiaki Kinebuchi
- Department of Urology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Osamu Ishizuka
- Department of Urology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Satoshi Seki
- Department of Urology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Yasuhiko Igawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Osamu Nishizawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| |
Collapse
|
126
|
Nixon GF, Mathieson FA, Hunter I. The multi-functional role of sphingosylphosphorylcholine. Prog Lipid Res 2008; 47:62-75. [DOI: 10.1016/j.plipres.2007.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 10/23/2007] [Accepted: 11/01/2007] [Indexed: 02/02/2023]
|
127
|
Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem 2007; 20:867-76. [PMID: 17982269 DOI: 10.1159/000110447] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2007] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Although transplantation of MSC derived from bone marrow or adipose tissues has been shown in proangiogenic action in hindlimb ischemia model of nude mice, little information is available regarding comparison of the angiogenic potency between human adipose stromal cells (hADSC) and bone marrow stromal cells (hBMSC). We compared their therapeutic potential by transplantation of equal numbers of hADSC or hBMSC in a nude mice model of hindlimb ischemia. METHODS AND RESULTS One day after creating hindlimb ischemia, mice were randomized to receive hADSC transplantation (hADSC group), hBMSC transplantation (hBMSC group), or vehicle transplantation (Control group). Two weeks after transplantation, the laser Doppler perfusion index was significantly higher in the hADSC group and hBMSC group than in the control group. Comparison between hADSC and hBMSC group showed better recovery of blood flow in hADSC group than in hBMSC group. Conditioned media from hADSC (hADSC-CM) showed better in vitro tube formation of hADSC than conditioned media from hBMSC (hBMSC-CM). hADSC showed higher expression of MMP3 and MMP9 than hBMSC. A MMP inhibitor, GM6001, and the transfection of MMP3 or MMP9 siRNA oligonucleotides inhibited in vitro tube formation of hADSC. Transplantation of MMP3 or MMP9 siRNA oligonucleotieds-transfected hADSC showed lower blood flow recovery and higher tissue injury than control oligonucelotide-transfected cells. CONCLUSION This study showed that hADSC can be an ideal source for therapeutic angiogenesis in ischemic disease in terms of efficacy, accessibility and available tissue amounts.
Collapse
Affiliation(s)
- Yeon Kim
- Department of Physiology, School of Medicine, Pusan National University, Pusan, Korea
| | | | | | | | | | | |
Collapse
|
128
|
Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Cho M, Suh DS, Yoon MS, Chang CL, Jung JS, Kim JH. Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells 2007; 26:789-97. [PMID: 18065393 DOI: 10.1634/stemcells.2007-0742] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysophosphatidic acid (LPA) is enriched in ascites of ovarian cancer patients and is involved in growth and invasion of ovarian cancer cells. Accumulating evidence suggests cancer-associated myofibroblasts play a pivotal role in tumorigenesis through secreting stromal cell-derived factor-1 (SDF-1). In the present study, we demonstrate that LPA induces expression of alpha-smooth muscle actin (alpha-SMA), a marker for myofibroblasts, in human adipose tissue-derived mesenchymal stem cells (hADSCs). The LPA-induced expression of alpha-SMA was completely abrogated by pretreatment of the cells with Ki16425, an antagonist of LPA receptors, or by silencing LPA(1) or LPA(2) isoform expression with small interference RNA (siRNA). LPA elicited phosphorylation of Smad2/3, and siRNA-mediated depletion of endogenous Smad2/3 or adenoviral expression of Smad7, an inhibitory Smad, abrogated the LPA induced expression of alpha-SMA and phosphorylation of Smad2/3. LPA-induced secretion of transforming growth factor (TGF)-beta1 in hADSCs, and pretreatment of the cells with SB431542, a TGF-beta type I receptor kinase inhibitor, or anti-TGF-beta1 neutralizing antibody inhibited the LPA-induced expression of alpha-SMA and phosphorylation of Smad2. Furthermore, ascites from ovarian cancer patients or conditioned medium from ovarian cancer cells induced expression of alpha-SMA and phosphorylation of Smad2, and pretreatment of the cells with Ki16425 or SB431542 abrogated the expression of alpha-SMA and phosphorylation of Smad2. In addition, LPA increased the expression of SDF-1 in hADSCs, and pretreatment of the cells with Ki16425 or SB431562 attenuated the LPA-stimulated expression of SDF-1. These results suggest that cancer-derived LPA stimulates differentiation of hADSCs to myofibroblast-like cells and increases SDF-1 expression through activating autocrine TGF-beta1-Smad signaling pathway.
Collapse
Affiliation(s)
- Eun Su Jeon
- Department of Physiology, School of Medicine, Pusan National University, 1-Ga, Ami-Dong, Suh-Gu, Busan 602-739, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue represents an abundant and accessible source of adult stem cells with the ability to differentiate along multiple lineage pathways. The isolation, characterization, and preclinical and clinical application of adipose-derived stem cells (ASCs) are reviewed in this article.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Stem Cell Biology Laboratory and Clinical Nutrition Research Unit, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|
130
|
Dyatlovitskaya EV. The role of lysosphingolipids in the regulation of biological processes. BIOCHEMISTRY (MOSCOW) 2007; 72:479-84. [PMID: 17573701 DOI: 10.1134/s0006297907050033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes data on the role of lysosphingolipids (glucosyl- and galactosylsphingosines, sphingosine-1-phosphate, sphingosine-1-phosphocholine) in the regulation of various biological processes in normal and pathological states.
Collapse
Affiliation(s)
- E V Dyatlovitskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia.
| |
Collapse
|
131
|
Moon HJ, Jeon ES, Kim YM, Lee MJ, Oh CK, Kim JH. Sphingosylphosphorylcholine stimulates expression of fibronectin through TGF-beta1-Smad-dependent mechanism in human mesenchymal stem cells. Int J Biochem Cell Biol 2007; 39:1224-34. [PMID: 17481939 DOI: 10.1016/j.biocel.2007.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 03/18/2007] [Accepted: 03/23/2007] [Indexed: 01/14/2023]
Abstract
Sphingosylphosphorylcholine (SPC) has been reported to stimulate the expression of fibronectin (FN), which plays a key role in cell recruitment and adhesion during wound healing. In a previous study, we reported that SPC induces differentiation of human adipose tissue-derived mesenchymal stem cells (hATSCs) to smooth muscle-like cell types through ERK-dependent autocrine secretion of TGF-beta1 and delayed activation of the TGF-beta1-Smad pathway. In the present study, we demonstrated that SPC dose- and time-dependently increased the expression of FN in hATSCs. Pretreatment of the cells with U0126, an MEK inhibitor, markedly attenuated the SPC-induced expression of FN and delayed phosphorylation of Smad2, suggesting that ERK is involved in the SPC induction of FN expression through activation of Smad2. In addition, the SPC-induced expression of FN and delayed activation of Smad2 were abrogated by SB-431542, a TGF-beta type I receptor kinase inhibitor, or anti-TGF-beta1 neutralizing antibody. Furthermore, the SPC-induced expression of FN was abrogated by adenoviral expression of Smad7, an inhibitory Smad, or short interference RNA (siRNA)-mediated depletion of endogenous Smad2 expression, suggesting that SPC induces the expression of FN through ERK-dependent activation of the TGF-beta1-Smad2 crosstalk pathway. Adhesion of U937 monocytic cells to hATSCs was enhanced by pretreatment of hATSCs with SPC or TGF-beta1 for 4 days, and the peptide GRGDSP (an antagonist of fibronectin receptors) blocked the adhesion of U937 cells to the hATSCs. These results led us to suggest that SPC-induced FN expression plays a pivotal role in the wound healing by stimulating adhesion and recruitment of leukocytes.
Collapse
Affiliation(s)
- Hyun Jung Moon
- Medical Research Center for Ischemic Tissue Regeneration of Pusan National University, Medical Research Institute, Busan 602-739, Republic of Korea
| | | | | | | | | | | |
Collapse
|