101
|
Rudramurthy GR, Swamy MK. Potential applications of engineered nanoparticles in medicine and biology: an update. J Biol Inorg Chem 2018; 23:1185-1204. [PMID: 30097748 DOI: 10.1007/s00775-018-1600-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Abstract
Nanotechnology advancements have led to the development of its allied fields, such as nanoparticle synthesis and their applications in the field of biomedicine. Nanotechnology driven innovations have given a hope to the patients as well as physicians in solving the complex medical problems. Nanoparticles with a size ranging from 0.2 to 100 nm are associated with an increased surface to volume ratio. Moreover, the physico-chemical and biological properties of nanoparticles can be modified depending on the applications. Different nanoparticles have been documented with a wide range of applications in various fields of medicine and biology including cancer therapy, drug delivery, tissue engineering, regenerative medicine, biomolecules detection, and also as antimicrobial agents. However, the development of stable and effective nanoparticles requires a profound knowledge on both physico-chemical features of nanomaterials and their intended applications. Further, the health risks associated with the use of engineered nanoparticles needs a serious attention.
Collapse
Affiliation(s)
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
102
|
Pradhan M, Alexander A, Singh MR, Singh D, Saraf S, Saraf S, Ajazuddin. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed Pharmacother 2018; 107:447-463. [PMID: 30103117 DOI: 10.1016/j.biopha.2018.07.156] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a consistently recurring, inflammatory, autoimmune disorder of the skin, affecting about 2-5% of the world population. Abundant therapeutic agents are accessible for the treatment of psoriasis. Nevertheless, none of them are entirely secure and effective to treat the disease without compromising patient compliance. Furthermore, already existing drugs are supposed to restrain the ailment and alleviate the sign and symptoms with no complete cure. However, they focus on restraining the disease and alleviating the symptoms without providing an absolute cure. Therefore there remains a vital challenge, to explore a new drug moiety or delivery system which could safely and effectively manage psoriasis without compromising patient compliance. Furthermore, conventional formulations offer reduced benefit/risk ratio of anti-psoriatic drugs, which limits the use of existing conventional formulations. Novel formulations based on nanocarriers are a promising prospect to overcome the limitation of conventional formulations by offering a reduction in dose, dosing frequency, dose-dependent, side effects with enhanced efficacy. Presently nano-formulations have gained widespread application for effective and safe treatment of psoriasis. The present review primarily focuses on conventional therapeutic strategy and recent advances in lipid-based, polymer-based and metallic nano-formulations of a variety of anti-psoriatic drugs. The practicability of various nanocarrier systems including liposomes, nanostructured lipid carriers, ethosomes, solid lipid nanoparticles, nanocapsules, micelles, dendrimers, gold nanoparticles and silver nanoparticles have been discussed in detail. The review also traces related patents to exemplify the role of various nanoparticles in psoriasis treatment. In a nutshell, nano-formulations remain established as a promising modality for treating psoriasis treatment as they propose better penetration, targeted delivery, enhanced safety, and efficacy.
Collapse
Affiliation(s)
- Madhulika Pradhan
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Amit Alexander
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 4920110, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 4920110, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 4920110, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 4920110, India; Durg University, Govt. Vasudev Vaman Patankar Girls' P.G. College Campus, Raipur Naka, Durg, Chhattisgarh, 491001, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India.
| |
Collapse
|
103
|
Rao BR, Kotcherlakota R, Nethi SK, Puvvada N, Sreedhar B, Chaudhuri A, Patra CR. Ag2[Fe(CN)5NO] Nanoparticles Exhibit Antibacterial Activity and Wound Healing Properties. ACS Biomater Sci Eng 2018; 4:3434-3449. [DOI: 10.1021/acsbiomaterials.8b00759] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | | | - Bojja Sreedhar
- Training and Development Complex, Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, CSIR Road, Taramani, Chennai 600 113, India
| | | | | |
Collapse
|
104
|
Matharu RK, Ciric L, Edirisinghe M. Nanocomposites: suitable alternatives as antimicrobial agents. NANOTECHNOLOGY 2018; 29:282001. [PMID: 29620531 DOI: 10.1088/1361-6528/aabbff] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The exploration of nanocomposites has gained a strong research following over the last decade. These materials have been heavily exploited in several fields, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of microbiology, specifically as antimicrobial agents. This review aims to provide a comprehensive account of various nanocomposites that elucidate promising antimicrobial activity. The composition, physical and chemical properties, as well as the antimicrobial performance of these nanocomposites, are discussed in detail.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom. Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
105
|
Choi G, Jeong GM, Oh MS, Joo M, Im SG, Jeong KJ, Lee E. Robust Thin Film Surface with a Selective Antibacterial Property Enabled via a Cross-Linked Ionic Polymer Coating for Infection-Resistant Medical Applications. ACS Biomater Sci Eng 2018; 4:2614-2622. [PMID: 33435124 DOI: 10.1021/acsbiomaterials.8b00241] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fabrication of new antibacterial surfaces has become a primary strategy for preventing device-associated infections (DAIs). Although considerable progress has recently been made in reducing DAIs, current antibacterial coating methods are technically complex and do not allow selective bacterial killing. Here, we propose novel anti-infective surfaces made of a cross-linked ionic polymer film that achieve selective bacteria killing while simultaneously favoring the survival of mammalian cells. A one-step polymerization process known as initiated chemical vapor deposition was used to generate a cross-linked ionic polymer film from 4-vinylbenzyl chloride and 2-(dimethylamino) ethyl methacrylate monomers in the vapor phase. In particular, the deposition process produced a polymer network with quaternary ammonium cross-linking sites, which provided the surface with an ionic moiety with an excellent antibacterial contact-killing property. This method confers substrate compatibility, which enables various materials to be coated with ionic polymer films for use in medical implants. Moreover, the ionic polymer-deposited surfaces supported the healthy growth of mammalian cells while selectively inhibiting bacterial growth in coculture models without any detectable cytotoxicity. Thus, the cross-linked ionic polymer-based antibacterial surface developed in this study can serve as an ideal platform for biomedical applications that require a highly sterile environment.
Collapse
Affiliation(s)
- Goro Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Gu Min Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Myung Seok Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Munkyu Joo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Eunjung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
106
|
Gold K, Slay B, Knackstedt M, Gaharwar AK. Antimicrobial Activity of Metal and Metal‐Oxide Based Nanoparticles. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201700033] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Karli Gold
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Buford Slay
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Mark Knackstedt
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
- Department of Materials Science and Engineering Texas A&M University College Station TX 77843 USA
- Center for Remote Health and Technology Texas A&M University College Station TX 77843 USA
| |
Collapse
|
107
|
In vitro percutaneous penetration of silver nanoparticles in pig and human skin. Regul Toxicol Pharmacol 2018; 95:314-322. [DOI: 10.1016/j.yrtph.2018.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
|
108
|
Antimicrobial peptide delivery: an emerging therapeutic for the treatment of burn and wounds. Ther Deliv 2018; 9:375-386. [DOI: 10.4155/tde-2017-0061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The management of wounds and burns is becoming difficult using conventional therapeutics available due to resistance development by microbes. Therefore, there is an utmost need to develop therapeutic alternatives to these agents. Antimicrobial peptides have emerged as a novel class of agents for the effective management of wounds and burns due to their potent nature along with minimal chances of resistance development against them. This article focuses on highlighting the importance of these antimicrobial peptides among the various therapeutic alternatives for burns and wounds. Further, effective delivery strategies for these agents that are being employed and investigated are reported along with an overview of the importance of these agents in the coming years.
Collapse
|
109
|
In Vitro Dermal Safety Assessment of Silver Nanowires after Acute Exposure: Tissue vs. Cell Models. NANOMATERIALS 2018; 8:nano8040232. [PMID: 29641466 PMCID: PMC5923562 DOI: 10.3390/nano8040232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Silver nanowires (AgNW) are attractive materials that are anticipated to be incorporated into numerous consumer products such as textiles, touchscreen display, and medical devices that could be in direct contact with skin. There are very few studies on the cellular toxicity of AgNW and no studies that have specifically evaluated the potential toxicity from dermal exposure. To address this question, we investigated the dermal toxicity after acute exposure of polymer-coated AgNW with two sizes using two models, human primary keratinocytes and human reconstructed epidermis. In keratinocytes, AgNW are rapidly and massively internalized inside cells leading to dose-dependent cytotoxicity that was not due to Ag⁺ release. Analysing our data with different dose metrics, we propose that the number of NW is the most appropriate dose-metric for studies of AgNW toxicity. In reconstructed epidermis, the results of a standard in vitro skin irritation assay classified AgNW as non-irritant to skin and we found no evidence of penetration into the deeper layer of the epidermis. The findings show that healthy and intact epidermis provides an effective barrier for AgNW, although the study does not address potential transport through follicles or injured skin. The combined cell and tissue model approach used here is likely to provide an important methodology for assessing the risks for skin exposure to AgNW from consumer products.
Collapse
|
110
|
Karthik CS, Manukumar HM, Sandeep S, Sudarshan BL, Nagashree S, Mallesha L, Rakesh KP, Sanjay KR, Mallu P, Qin HL. Development of piperazine-1-carbothioamide chitosan silver nanoparticles (P1C-Tit*CAgNPs) as a promising anti-inflammatory candidate: a molecular docking validation. MEDCHEMCOMM 2018; 9:713-724. [PMID: 30108962 DOI: 10.1039/c7md00628d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Natural products are important leads in drug discovery. The search for effective plant-derived agents or their synthetic analogues has continued to be of interest to biologists and chemists for a long time. Herein, we have synthesized a novel compound, P1C, and P1C-Tit*CAgNPs from chitosan; P1C is a precursor and an anti-inflammatory candidate, which has been validated by molecular docking studies. The synthesized P1C-Tit*CAgNPs showed monodisperse, spherical, and cationic nature and antioxidant properties, protecting destabilization of the erythrocyte membrane by the azo compound 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH); the involvement of NPs as a protective agent for biomolecules, such as DNA and protein, followed by the treatment of NPs with AAPH was confirmed. The inhibition of cellular damage and leakage of cellular inflammatory agents was confirmed by AFM, SEM, TEM, SDS-PAGE, LDH, and PLA2 enzyme inhibition via in vitro studies. The anti-inflammatory property of P1C was further validated by in silico molecular docking studies and showed that, the P1C best pose aligned to PLA2 compared to standard drug. The significant anticancer property of P1C-Tit*CAgNPs was confirmed against MCF7, U373, and C6 cancer cell lines. Thus, the present study highlights the synthesized P1C in P1C-Tit*CAgNPs as a target PLA2-specific anti-inflammatory candidate, and further tuning of small and development-functionalized nanoparticles has a great future in medicine; hence, their clinical applications are warranted.
Collapse
Affiliation(s)
- C S Karthik
- Department of Chemistry , Sri Jayachamarajendra College of Engineering , Mysuru-570 006 , Karnataka , India .
| | - H M Manukumar
- Department of Chemistry , Sri Jayachamarajendra College of Engineering , Mysuru-570 006 , Karnataka , India . .,Department of Studies in Biotechnology , University of Mysore , Manasagangotri , Mysuru-570006 , Karnataka , India
| | - S Sandeep
- Department of Chemistry , Sri Jayachamarajendra College of Engineering , Mysuru-570 006 , Karnataka , India .
| | - B L Sudarshan
- Department of Biotechnology , Sri Jayachamarajendra College of Engineering , Mysuru-570 006 , Karnataka , India
| | - S Nagashree
- Department of Chemistry , Sri Jayachamarajendra College of Engineering , Mysuru-570 006 , Karnataka , India .
| | - L Mallesha
- PG Department of Chemistry , JSS College of Arts, Commerce and Science , Mysuru-570 025 , Karnataka , India
| | - K P Rakesh
- Department of Pharmaceutical Engineering , School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 205 Luoshi Road , Wuhan , 430073 , PR China . ; ; ; Fax: +86 27 87749300
| | - K R Sanjay
- Department of Biotechnology , Sri Jayachamarajendra College of Engineering , Mysuru-570 006 , Karnataka , India
| | - P Mallu
- Department of Chemistry , Sri Jayachamarajendra College of Engineering , Mysuru-570 006 , Karnataka , India .
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering , School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 205 Luoshi Road , Wuhan , 430073 , PR China . ; ; ; Fax: +86 27 87749300
| |
Collapse
|
111
|
Liu M, Zhang H, Song X, Wei C, Xiong Z, Yu F, Li C, Ai F, Guo G, Wang X. NaCl: for the safer in vivo use of antibacterial silver based nanoparticles. Int J Nanomedicine 2018; 13:1737-1748. [PMID: 29606867 PMCID: PMC5868575 DOI: 10.2147/ijn.s153168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background As antibiotics progressively cease to be effective, silver based nanoparticles (SBNs), with broad antibacterial spectrum, might be the last line of defense against malicious bacteria. Unfortunately, there are still no proper SBNs-based strategies for in vivo antibacterial therapies. In this article, new carbon membrane packaged Ag nanoparticles (Ag-C) were synthesized. We assessed the effect of Ag-C with NaCl on size, cytotoxicity, antibacterial properties, metabolism and sepsis models. Methods The size of Ag-C with NaCl was accessed with UV-vis, TEM and SEM. Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were used to illustrate the antibacterial properties of SBNs affected by NaCl. L929 and 3T3 cell lines were cultured in vitro; CCK-8 assay was used to test cytotoxicity. Then, we explored the metabolism of Ag-C with NaCl in vivo. Finally, the effect of Ag-C with 4× NaCl on sepsis was observed. Results NaCl could regulate the size of Ag-C. Ag-C exhibited superior antibacterial properties compared to similar sized pure Ag nanoparticles. Furthermore, the addition of NaCl could not only reduce the cytotoxicity of Ag-C, but could also continue to discharge Ag-C from major organs. Based on these factors, this method was used to treat a sepsis model (induced via cecal ligation and puncture), and it achieved satisfactory survival results. Conclusion This discovery, though still in its infancy, could significantly improve the safety and feasibility of SBNs and could potentially play an important role in modern in vivo antibacterial applications. Thus, a new method to combating the growing threat from drug-resistant bacteria could be possible. NaCl is the key to excretion of SBNs after in vivo antibacterial use.
Collapse
Affiliation(s)
- Mingzhuo Liu
- Department of Burns, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Huiqing Zhang
- Department of Burns, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Xiangwei Song
- Department of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Chaochao Wei
- Department of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenfang Xiong
- Department of Pathology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fen Yu
- Department of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fanrong Ai
- School of Mechanical & Electronic Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Guanghua Guo
- Department of Burns, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaolei Wang
- Department of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
112
|
Parveen A, Malashetty VB, Mantripragada B, Yalagatti MS, Abbaraju V, Deshpande R. Bio-functionalized gold nanoparticles: Benign effect in Sprague-Dawley rats by intravenous administration. Saudi J Biol Sci 2018; 24:1925-1932. [PMID: 29551946 PMCID: PMC5851920 DOI: 10.1016/j.sjbs.2017.11.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 01/28/2023] Open
Abstract
Gold nanoparticles offer a great promise in clinical research. Despite various applications of the metal nanoparticles it is challenging to implement in vivo in clinical applications. This aspect is deprived of understanding the biological mechanisms that occurs in the cells. In this report we have evaluated application of AuNP on the safety profile at different doses (100, 200, and 500 μg/kg Bwt/day) on intravenous administration in rats regularly for 28 days. The study was performed based on the OECD test guideline 407. No clinical signs and mortalities were observed in any groups of rat treated with AuNP. No evidence of toxicity was observed in any of the diverse studies performed which is noteworthy. The study includes survival, behavior, animal weight, organ morphology, blood biochemistry and tissue histology. The results indicate that tissue accumulation pattern of gold nanoparticles depends on the surface, size and doses of the nanoparticle. The accumulation of the particles does not produce subacute physiological damage.
Collapse
Affiliation(s)
- Asra Parveen
- H.K.E.S's Matoshree Taradevi Rampure Institute of Pharmaceutical Sciences, Gulbarga-585105, Karnataka, India
| | | | | | | | - Venkataraman Abbaraju
- Department of Chemistry & Department of Material Science, Gulbarga University, Gulbarga-585106, Karnataka, India
| | - Raghunandan Deshpande
- H.K.E.S's Matoshree Taradevi Rampure Institute of Pharmaceutical Sciences, Gulbarga-585105, Karnataka, India
| |
Collapse
|
113
|
Matharu RK, Charani Z, Ciric L, Illangakoon UE, Edirisinghe M. Antimicrobial activity of tellurium-loaded polymeric fiber meshes. J Appl Polym Sci 2018. [DOI: 10.1002/app.46368] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering; University College London; London WC1E 7JE United Kingdom
- Department of Civil, Environmental and Geomatic Engineering; University College London; London WC1E 7JE United Kingdom
| | - Zhalan Charani
- Department of Mechanical Engineering; University College London; London WC1E 7JE United Kingdom
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering; University College London; London WC1E 7JE United Kingdom
| | | | - Mohan Edirisinghe
- Department of Mechanical Engineering; University College London; London WC1E 7JE United Kingdom
| |
Collapse
|
114
|
Villeret B, Dieu A, Straube M, Solhonne B, Miklavc P, Hamadi S, Le Borgne R, Mailleux A, Norel X, Aerts J, Diallo D, Rouzet F, Dietl P, Sallenave JM, Garcia-Verdugo I. Silver Nanoparticles Impair Retinoic Acid-Inducible Gene I-Mediated Mitochondrial Antiviral Immunity by Blocking the Autophagic Flux in Lung Epithelial Cells. ACS NANO 2018; 12:1188-1202. [PMID: 29357226 DOI: 10.1021/acsnano.7b06934] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silver nanoparticles (AgNPs) are microbicidal agents which could be potentially used as an alternative to antivirals to treat human infectious diseases, especially influenza virus infections where antivirals have generally proven unsuccessful. However, concerns about the use of AgNPs on humans arise from their potential toxicity, although mechanisms are not well-understood. We show here, in the context of an influenza virus infection of lung epithelial cells, that AgNPs down-regulated influenza induced CCL-5 and -IFN-β release (two cytokines important in antiviral immunity) through RIG-I inhibition, while enhancing IL-8 production, a cytokine important for mobilizing host antibacterial responses. AgNPs activity was independent of coating and was not observed with gold nanoparticles. Down-stream analysis indicated that AgNPs disorganized the mitochondrial network and prevented the antiviral IRF-7 transcription factor influx into the nucleus. Importantly, we showed that the modulation of RIG-I-IRF-7 pathway was concomitant with inhibition of either classical or alternative autophagy (ATG-5- and Rab-9 dependent, respectively), depending on the epithelial cell type used. Altogether, this demonstration of a AgNPs-mediated functional dichotomy (down-regulation of IFN-dependent antiviral responses and up-regulation of IL-8-dependent antibacterial responses) may have practical implications for their use in the clinic.
Collapse
Affiliation(s)
- Berengere Villeret
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Alexandra Dieu
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Marjolene Straube
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Brigitte Solhonne
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Pika Miklavc
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford , Salford, United Kingdom
| | - Sena Hamadi
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC , F-94320 Thiais, France
| | - Rémi Le Borgne
- ImagoSeine, Electron Microscopy Facility, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot , Sorbonne Paris Cité, 75205 Cedex 13 Paris, France
| | - Arnaud Mailleux
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Xavier Norel
- Inserm U1148, UMR-S1148, University Paris Nord , 75018 Paris, France
| | - Joel Aerts
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Médecine Nucléaire, Université Denis Diderot-Paris 7, U1148, Inserm , 75013 Paris, France
| | - Devy Diallo
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Médecine Nucléaire, Université Denis Diderot-Paris 7, U1148, Inserm , 75013 Paris, France
| | - Francois Rouzet
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Médecine Nucléaire, Université Denis Diderot-Paris 7, U1148, Inserm , 75013 Paris, France
| | - Paul Dietl
- Institute of General Physiology, University of Ulm , Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Jean-Michel Sallenave
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Ignacio Garcia-Verdugo
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| |
Collapse
|
115
|
Go MR, Yu J, Bae SH, Kim HJ, Choi SJ. Effects of Interactions between ZnO Nanoparticles and Saccharides on Biological Responses. Int J Mol Sci 2018; 19:E486. [PMID: 29415484 PMCID: PMC5855708 DOI: 10.3390/ijms19020486] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 11/16/2022] Open
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are widely used as a Zn supplement, because Zn plays a role in many cellular and immune functions but public concern about their potentially undesirable effects on the human body is growing. When NPs are added in food matrices, interactions between NPs and food components occur, which can affect biological systems. In this study, interactions between ZnO NPs and saccharides were investigated by measuring changes in hydrodynamic radius, zeta potential and solubility and by quantifying amounts of adsorbed saccharides on NPs; acacia honey, sugar mixtures (containing equivalent amounts of fructose, glucose, sucrose and maltose) and monosaccharide solutions were used as model compounds. Biological responses of NPs dispersed in different saccharides were also evaluated in human intestinal cells and rats in terms of cytotoxicity, cellular uptake, intestinal transport and oral absorption. The results demonstrate that the hydrodynamic radii and zeta potentials of NPs were highly affected by saccharides. In addition, trace nutrients influenced NP/saccharide interactions and interactive effects between saccharides on the interactions were found. NPs in all saccharides increased inhibition of cell proliferation and enhanced cellular uptake. Oral absorption of NPs was highly enhanced by 5% glucose, which is in-line with intestinal transport result. These findings show that ZnO NPs interact with saccharides and these interactions affects biological responses.
Collapse
Affiliation(s)
- Mi-Ran Go
- Major of Food Science & Technology, Department of Applied Food System, Seoul Women's University, Seoul 01797, Korea.
| | - Jin Yu
- Major of Food Science & Technology, Department of Applied Food System, Seoul Women's University, Seoul 01797, Korea.
| | - Song-Hwa Bae
- Major of Food Science & Technology, Department of Applied Food System, Seoul Women's University, Seoul 01797, Korea.
| | - Hyeon-Jin Kim
- Major of Food Science & Technology, Department of Applied Food System, Seoul Women's University, Seoul 01797, Korea.
| | - Soo-Jin Choi
- Major of Food Science & Technology, Department of Applied Food System, Seoul Women's University, Seoul 01797, Korea.
| |
Collapse
|
116
|
Ullah Khan S, Saleh TA, Wahab A, Khan MHU, Khan D, Ullah Khan W, Rahim A, Kamal S, Ullah Khan F, Fahad S. Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int J Nanomedicine 2018; 13:733-762. [PMID: 29440898 PMCID: PMC5799856 DOI: 10.2147/ijn.s153167] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Silver nanotechnology has received tremendous attention in recent years, owing to its wide range of applications in various fields and its intrinsic therapeutic properties. In this review, an attempt is made to critically evaluate the chemical, physical, and biological synthesis of silver nanoparticles (AgNPs) as well as their efficacy in the field of theranostics including microbiology and parasitology. Moreover, an outlook is also provided regarding the performance of AgNPs against different biological systems such as bacteria, fungi, viruses, and parasites (leishmanial and malarial parasites) in curing certain fatal human diseases, with a special focus on cancer. The mechanism of action of AgNPs in different biological systems still remains enigmatic. Here, due to limited available literature, we only focused on AgNPs mechanism in biological systems including human (wound healing and apoptosis), bacteria, and viruses which may open new windows for future research to ensure the versatile application of AgNPs in cosmetics, electronics, and medical fields.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- College of Plant Sciences and Technology
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat
| | - Muhammad Hafeez Ullah Khan
- College of Plant Sciences and Technology
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Dilfaraz Khan
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Wasim Ullah Khan
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Sajid Kamal
- School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China
| | - Farman Ullah Khan
- Department of Chemistry, University of Science and Technology, Bannu
| | - Shah Fahad
- College of Plant Sciences and Technology
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| |
Collapse
|
117
|
Raju G, Katiyar N, Vadukumpully S, Shankarappa SA. Penetration of gold nanoparticles across the stratum corneum layer of thick-Skin. J Dermatol Sci 2018; 89:146-154. [DOI: 10.1016/j.jdermsci.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
|
118
|
Souza LRR, da Silva VS, Franchi LP, de Souza TAJ. Toxic and Beneficial Potential of Silver Nanoparticles: The Two Sides of the Same Coin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:251-262. [DOI: 10.1007/978-3-319-72041-8_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
119
|
Larue L, Ben Mihoub A, Youssef Z, Colombeau L, Acherar S, André JC, Arnoux P, Baros F, Vermandel M, Frochot C. Using X-rays in photodynamic therapy: an overview. Photochem Photobiol Sci 2018; 17:1612-1650. [DOI: 10.1039/c8pp00112j] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy is a therapeutic option to treat cancer and other diseases.
Collapse
|
120
|
Marassi V, Di Cristo L, Smith SGJ, Ortelli S, Blosi M, Costa AL, Reschiglian P, Volkov Y, Prina-Mello A. Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171113. [PMID: 29410826 PMCID: PMC5792903 DOI: 10.1098/rsos.171113] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/20/2017] [Indexed: 05/25/2023]
Abstract
Silver nanoparticle-based antimicrobials can promote a long lasting bactericidal effect without detrimental toxic side effects. However, there is not a clear and complete protocol to define and relate the properties of the particles (size, shape, surface charge, ionic content) with their specific activity. In this paper, we propose an effective multi-step approach for the identification of a 'purpose-specific active applicability window' to maximize the antimicrobial activity of medical devices containing silver nanoparticles (Ag NPs) (such as surface coaters), minimizing any consequent risk for human health (safety by design strategy). The antimicrobial activity and the cellular toxicity of four types of Ag NPs, differing in their coating composition and concentration have been quantified. Through the implementation of flow-field flow fractionation, Ag NPs have been characterized in terms of metal release, size and shape. The particles are fractionated in the process while being left unmodified, allowing for the identification of biological particle-specific contribution. Toxicity and inflammatory response in vitro have been assessed on human skin models, while antimicrobial activity has been monitored with both non-pathogenic and pathogenic Escherichia coli. The main benefit associated with such approach is the comprehensive assessment of the maximal effectiveness of candidate nanomaterials, while simultaneously indexing their properties against their safety.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry ‘G. Ciamician’, Via Selmi 2, 40126 Bologna, Italy
| | - Luisana Di Cristo
- Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College, Dublin 8, Republic of Ireland
| | - Stephen G. J. Smith
- Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College, Dublin 8, Republic of Ireland
- Department of Clinical Microbiology, Sir Patrick Dun Research Laboratory, School of Medicine, Trinity College, Dublin 8, Republic of Ireland
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Anna L. Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | | | - Yuri Volkov
- Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College, Dublin 8, Republic of Ireland
| | - Adriele Prina-Mello
- Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College, Dublin 8, Republic of Ireland
- AMBER Centre and CRANN Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
121
|
Qin Y, Han L, Yang D, Wei H, Liu Y, Xu J, Autrup H, Deng F, Guo X. Silver nanoparticles increase connexin43-mediated gap junctional intercellular communication in HaCaT cells through activation of reactive oxygen species and mitogen-activated protein kinase signal pathway. J Appl Toxicol 2017; 38:564-574. [PMID: 29235124 DOI: 10.1002/jat.3563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 01/17/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in health and consumer products that routinely contact skin. However, the biological effects and possible mechanisms of AgNPs on skin remain unclear. Gap junctional intercellular communication (GJIC) plays a critical role in multicellular organisms to maintain tissue homeostasis. The aim of this study is to examine if non-coated AgNPs affect GJIC in human keratinocytes (HaCaT cells), and to identify the possible molecular mechanisms responsible for the effects. GJIC, connexin (Cx)43 protein and mRNA expression, and the effect of siRNA-mediated knockdown of Cx43 on GJIC were assessed. HaCaT cells exposed to non-coated AgNPs at different doses after a 24 hour exposure. To explore further the underlying mechanism, reactive oxygen species and mitogen-activated protein kinase pathway were evaluated after 2, 6, 12 and 24 hours. Our results revealed that non-coated AgNP exposure at subcytotoxic doses increase GJIC partially via Cx43 upregulation. Reactive oxygen species and extracellular signal-regulated kinase and activation of c-Jun N-terminal kinase were involved in the AgNP-induced upregulation of Cx43. This study provides new insight into the potential mechanism of AgNP biological activity.
Collapse
Affiliation(s)
- Yu Qin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Limin Han
- Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Hongying Wei
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yue Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Herman Autrup
- Department of Environmental and Occupational Medicine, Aarhus University Institute of Public Health, Aarhus, Denmark
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| |
Collapse
|
122
|
Mathur P, Jha S, Ramteke S, Jain NK. Pharmaceutical aspects of silver nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:115-126. [DOI: 10.1080/21691401.2017.1414825] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Prateek Mathur
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| | - Swati Jha
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| | - Suman Ramteke
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| | - N. K. Jain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| |
Collapse
|
123
|
Cho YM, Mizuta Y, Akagi JI, Toyoda T, Sone M, Ogawa K. Size-dependent acute toxicity of silver nanoparticles in mice. J Toxicol Pathol 2017; 31:73-80. [PMID: 29479144 PMCID: PMC5820107 DOI: 10.1293/tox.2017-0043] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/22/2017] [Indexed: 01/04/2023] Open
Abstract
In this study, we aimed to evaluate changes in the acute toxicity of intraperitoneally administered silver nanoparticles (AgNPs) of varying sizes in BALB/c mice. Seven-week-old female BALB/c mice were intraperitoneally administered AgNPs measuring 10, 60, or 100 nm in diameter (0.2 mg/mouse) and then sacrificed 1, 3, or 6 h after treatment. In mice administered 10 nm AgNPs, reduced activity and piloerection were observed at 5 h post administration, and lowered body temperature was observed at 6 h post administration, with histopathological changes of congestion, vacuolation, single cell necrosis, and focal necrosis in the liver; congestion in the spleen; and apoptosis in the thymus cortex. These histopathological changes were not evident following administration of either 60 or 100 nm AgNPs. These results suggested that smaller AgNPs, e.g., those measuring 10 nm in diameter, had higher acute toxicity in mice.
Collapse
Affiliation(s)
- Young-Man Cho
- Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yasuko Mizuta
- Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Jun-Ichi Akagi
- Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Takeshi Toyoda
- Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Mizuki Sone
- Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Kumiko Ogawa
- Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
124
|
Lustosa AKMF, de Jesus Oliveira AC, Quelemes PV, Plácido A, da Silva FV, Oliveira IS, de Almeida MP, Amorim ADGN, Delerue-Matos C, de Oliveira RDCM, da Silva DA, Eaton P, de Almeida Leite JRDS. In Situ Synthesis of Silver Nanoparticles in a Hydrogel of Carboxymethyl Cellulose with Phthalated-Cashew Gum as a Promising Antibacterial and Healing Agent. Int J Mol Sci 2017; 18:ijms18112399. [PMID: 29137157 PMCID: PMC5713367 DOI: 10.3390/ijms18112399] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/01/2022] Open
Abstract
Silver nanoparticles have been shown to possess considerable antibacterial activity, but in vivo applications have been limited due to the inherent, but low, toxicity of silver. On the other hand, silver nanoparticles could provide cutaneous protection against infection, due to their ability to liberate silver ions via a slow release mechanism, and their broad-spectrum antimicrobial action. Thus, in this work, we describe the development of a carboxymethyl cellulose-based hydrogel containing silver nanoparticles. The nanoparticles were prepared in the hydrogel in situ, utilizing two variants of cashew gum as a capping agent, and sodium borohydride as the reducing agent. This gum is non-toxic and comes from a renewable natural source. The particles and gel were thoroughly characterized through using rheological measurements, UV-vis spectroscopy, nanoparticles tracking analysis, and transmission electron microscopy analysis (TEM). Antibacterial tests were carried out, confirming antimicrobial action of the silver nanoparticle-loaded gels. Furthermore, rat wound-healing models were used and demonstrated that the gels exhibited improved wound healing when compared to the base hydrogel as a control. Thus, these gels are proposed as excellent candidates for use as wound-healing treatments.
Collapse
Affiliation(s)
- Ana Karina Marques Fortes Lustosa
- Center for Biodiversity Research and Biotechnology, Biotec, Federal University of Piauí, Av. São Sebastião, 2819, Reis Veloso, 64202-020 Parnaíba-PI, Brazil.
| | - Antônia Carla de Jesus Oliveira
- Center for Biodiversity Research and Biotechnology, Biotec, Federal University of Piauí, Av. São Sebastião, 2819, Reis Veloso, 64202-020 Parnaíba-PI, Brazil.
| | - Patrick Veras Quelemes
- Center for Biodiversity Research and Biotechnology, Biotec, Federal University of Piauí, Av. São Sebastião, 2819, Reis Veloso, 64202-020 Parnaíba-PI, Brazil.
| | - Alexandra Plácido
- REQUIMTE/LAQV, Superior Engineering Institute of Porto, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal.
| | - Francilene Vieira da Silva
- Medicinal Plants Reserarch Center, NPPM, Federal University of Piauí, Campus Ministro Petrônio Portella, Bairro Ininga, 64049-550 Teresina- PI, Brazil.
| | - Irisdalva Sousa Oliveira
- Medicinal Plants Reserarch Center, NPPM, Federal University of Piauí, Campus Ministro Petrônio Portella, Bairro Ininga, 64049-550 Teresina- PI, Brazil.
| | - Miguel Peixoto de Almeida
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Adriany das Graças Nascimento Amorim
- Center for Biodiversity Research and Biotechnology, Biotec, Federal University of Piauí, Av. São Sebastião, 2819, Reis Veloso, 64202-020 Parnaíba-PI, Brazil.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Superior Engineering Institute of Porto, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal.
| | - Rita de Cássia Meneses de Oliveira
- Medicinal Plants Reserarch Center, NPPM, Federal University of Piauí, Campus Ministro Petrônio Portella, Bairro Ininga, 64049-550 Teresina- PI, Brazil.
| | - Durcilene Alves da Silva
- Center for Biodiversity Research and Biotechnology, Biotec, Federal University of Piauí, Av. São Sebastião, 2819, Reis Veloso, 64202-020 Parnaíba-PI, Brazil.
| | - Peter Eaton
- Center for Biodiversity Research and Biotechnology, Biotec, Federal University of Piauí, Av. São Sebastião, 2819, Reis Veloso, 64202-020 Parnaíba-PI, Brazil.
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - José Roberto de Souza de Almeida Leite
- Center for Biodiversity Research and Biotechnology, Biotec, Federal University of Piauí, Av. São Sebastião, 2819, Reis Veloso, 64202-020 Parnaíba-PI, Brazil.
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
- Area Morphology, Faculty of Medicine, University of Brasília (UnB), University campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília-DF, Brazil.
| |
Collapse
|
125
|
Zou Y, Celli A, Zhu H, Elmahdy A, Cao Y, Hui X, Maibach H. Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro. Int J Nanomedicine 2017; 12:8035-8041. [PMID: 29184403 PMCID: PMC5673047 DOI: 10.2147/ijn.s139139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.
Collapse
Affiliation(s)
- Ying Zou
- Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, People's Republic of China.,Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Anna Celli
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA.,San Francisco Veterans Medical Center, San Francisco, CA, USA
| | - Hanjiang Zhu
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Akram Elmahdy
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yachao Cao
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Xiaoying Hui
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Howard Maibach
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
126
|
Shao J, Yu N, Kolwijck E, Wang B, Tan KW, Jansen JA, Walboomers XF, Yang F. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes. Nanomedicine (Lond) 2017; 12:2771-2785. [PMID: 28967828 DOI: 10.2217/nnm-2017-0172] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. MATERIALS & METHODS Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and cytotoxicity in vitro and for tissue response in a rabbit subcutaneous model. RESULTS The nanoparticles displayed dose-dependent antibacterial properties against Porphyromonas gingivalis and Fusobacterium nucleatum, without showing noticeable cytotoxicity. The membranes with silver nanoparticles evoked a similar inflammatory response compared with the membranes without silver nanoparticles. CONCLUSION The antibacterial effect, combined with the findings on cyto- and biocompatibility warrants further investigation to the usefulness of chitosan/poly(ethylene oxide) membranes with silver nanoparticles, for clinical applications like guided tissue regeneration.
Collapse
Affiliation(s)
- Jinlong Shao
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Na Yu
- National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore.,Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Eva Kolwijck
- Department of Medical Microbiology, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Bing Wang
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Ke Wei Tan
- National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
127
|
Petrochenko PE, Zheng J, Casey BJ, Bayati MR, Narayan RJ, Goering PL. Nanosilver-PMMA composite coating optimized to provide robust antibacterial efficacy while minimizing human bone marrow stromal cell toxicity. Toxicol In Vitro 2017; 44:248-255. [DOI: 10.1016/j.tiv.2017.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/05/2017] [Accepted: 07/18/2017] [Indexed: 01/28/2023]
|
128
|
Capanema NSV, Mansur AAP, Carvalho SM, Mansur LL, Ramos CP, Lage AP, Mansur HS. Physicochemical properties and antimicrobial activity of biocompatible carboxymethylcellulose-silver nanoparticle hybrids for wound dressing and epidermal repair. J Appl Polym Sci 2017. [DOI: 10.1002/app.45812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology and Innovation-CeNano I, Department of Metallurgical and Materials Engineering; Federal University of Minas Gerais/UFMG, Av. Antônio Carlos, 6627-Escola de Engenharia, Bloco 2-Sala 2233, 31.270-901; Belo Horizonte MG Brazil
| | - Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology and Innovation-CeNano I, Department of Metallurgical and Materials Engineering; Federal University of Minas Gerais/UFMG, Av. Antônio Carlos, 6627-Escola de Engenharia, Bloco 2-Sala 2233, 31.270-901; Belo Horizonte MG Brazil
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology and Innovation-CeNano I, Department of Metallurgical and Materials Engineering; Federal University of Minas Gerais/UFMG, Av. Antônio Carlos, 6627-Escola de Engenharia, Bloco 2-Sala 2233, 31.270-901; Belo Horizonte MG Brazil
| | - Lorena L. Mansur
- Center of Nanoscience, Nanotechnology and Innovation-CeNano I, Department of Metallurgical and Materials Engineering; Federal University of Minas Gerais/UFMG, Av. Antônio Carlos, 6627-Escola de Engenharia, Bloco 2-Sala 2233, 31.270-901; Belo Horizonte MG Brazil
| | - Carolina P. Ramos
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva; Escola de Veterinária, UFMG; Belo Horizonte MG Brazil
| | - Andrey P. Lage
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva; Escola de Veterinária, UFMG; Belo Horizonte MG Brazil
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology and Innovation-CeNano I, Department of Metallurgical and Materials Engineering; Federal University of Minas Gerais/UFMG, Av. Antônio Carlos, 6627-Escola de Engenharia, Bloco 2-Sala 2233, 31.270-901; Belo Horizonte MG Brazil
| |
Collapse
|
129
|
Naik K, Kowshik M. The silver lining: towards the responsible and limited usage of silver. J Appl Microbiol 2017. [DOI: 10.1111/jam.13525] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- K. Naik
- Department of Biological Sciences; BITS Pilani K K Birla Goa Campus; Zuarinagar Goa India
| | - M. Kowshik
- Department of Biological Sciences; BITS Pilani K K Birla Goa Campus; Zuarinagar Goa India
| |
Collapse
|
130
|
Syafiuddin A, Salmiati, Salim MR, Beng Hong Kueh A, Hadibarata T, Nur H. A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700067] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Achmad Syafiuddin
- Department of Environmental Engineering, Faculty of Civil Engineering; Universiti Teknologi Malaysia; Johor Malaysia
| | - Salmiati
- Department of Environmental Engineering, Faculty of Civil Engineering; Universiti Teknologi Malaysia; Johor Malaysia
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE); Universiti Teknologi Malaysia; Johor Malaysia
| | - Mohd Razman Salim
- Department of Environmental Engineering, Faculty of Civil Engineering; Universiti Teknologi Malaysia; Johor Malaysia
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE); Universiti Teknologi Malaysia; Johor Malaysia
| | - Ahmad Beng Hong Kueh
- Construction Research Centre (CRC), Institute for Smart Infrastructure and Innovative Construction (ISIIC), Faculty of Civil Engineering; Universiti Teknologi Malaysia; Johor Malaysia
| | - Tony Hadibarata
- Department of Environmental Engineering, Faculty of Engineering and Science; Curtin University; Sarawak Malaysia
| | - Hadi Nur
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research; Universiti Teknologi Malaysia; Johor Malaysia
- Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Science; State University of Malang; East Java Indonesia
| |
Collapse
|
131
|
Soni N, Jyoti K, Jain UK, Katyal A, Chandra R, Madan J. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells. Biomed Pharmacother 2017; 90:906-913. [PMID: 28441716 DOI: 10.1016/j.biopha.2017.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Noscapine (Nos) and reduced brominated analogue of noscapine (Red-Br-Nos) prevent cellular proliferation and induce apoptosis in cancer cells either alone or in combination with other chemotherapeutic drugs. However, owing to poor physicochemical properties, Nos and Red-Br-Nos have demonstrated their anticancer activity at higher and multiple doses. Therefore, in present investigation, silver nanocrystals of noscapinoids (Nos-Ag2+ nanocrystals and Red-Br-Nos-Ag2+ nanocrystals) were customized to augment drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1 mouse melanoma cancer cells. METHODS AND RESULTS Nos-Ag2+ nanocrystals and Red-Br-Nos-Ag2+ nanocrystals were prepared separately by precipitation method. The mean particle size of Nos-Ag2+ nanocrystals was measured to be 25.33±3.52nm, insignificantly (P>0.05) different from 27.43±4.51nm of Red-Br-Nos-Ag2+ nanocrystals. Furthermore, zeta-potential of Nos-Ag2+ nanocrystals was determined to be -25.3±3.11mV significantly (P<0.05) different from -15.2±3.33mV of Red-Br-Nos-Ag2+ nanocrystals. The shape of tailored nanocrystals was slightly spherical and or irregular in shape. The architecture of Nos-Ag2+ nanocrystals and Red-Br-Nos-Ag2+ nanocrystals was crystalline in nature. FT-IR spectroscopy evinced the successful interaction of Ag2+ nanocrystals with Nos and Red-Br-Nos, respectively. The superior therapeutic efficacy of tailored nanocrystals was measured in terms of enhanced cytotoxicity, apoptosis and cellular uptake. The Nos-Ag2+ nanocrystals and Red-Br-Nos-Ag2+ nanocrystals exhibited an IC50 of 16.6μM and 6.5μM, significantly (P<0.05) lower than 38.5μM of Nos and 10.3μM of Red-Br-Nos, respectively. Finally, cellular morphological alterations in B16F1 cells upon internalization of Nos-Ag2+ nanocrystals and Red-Br-Nos-Ag2+ nanocrystals provided the evidences for accumulation within membrane-bound cytoplasmic vacuoles and in enlarged lysosomes and thus triggered mitochondria mediated apoptosis via caspase activation. CONCLUSION Preliminary investigations substantiated that Nos-Ag2+ nanocrystals and Red-Br-Nos-Ag2+ nanocrystals must be further explored and utilized for the delivery of noscapinoids to melanoma cancer cells.
Collapse
Affiliation(s)
- Naina Soni
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | - Kiran Jyoti
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | - Upendra Kumar Jain
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | - Anju Katyal
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Ramesh Chandra
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India; Department of Chemistry, University of Delhi, Delhi, India
| | - Jitender Madan
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India.
| |
Collapse
|
132
|
Chandran P, Riviere JE, Monteiro-Riviere NA. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells. Nanotoxicology 2017; 11:507-519. [PMID: 28420299 DOI: 10.1080/17435390.2017.1314036] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigated the role of nanoparticle size and surface chemistry on biocorona composition and its effect on uptake, toxicity and cellular responses in human umbilical vein endothelial cells (HUVEC), employing 40 and 80 nm gold nanoparticles (AuNP) with branched polyethyleneimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings. Proteomic analysis identified 59 hard corona proteins among the various AuNP, revealing largely surface chemistry-dependent signature adsorbomes exhibiting human serum albumin (HSA) abundance. Size distribution analysis revealed the relative instability and aggregation inducing potential of bare and corona-bound BPEI-AuNP, over LA- and PEG-AuNP. Circular dichroism analysis showed surface chemistry-dependent conformational changes of proteins binding to AuNP. Time-dependent uptake of bare, plasma corona (PC) and HSA corona-bound AuNP (HSA-AuNP) showed significant reduction in uptake with PC formation. Cell viability studies demonstrated dose-dependent toxicity of BPEI-AuNP. Transcriptional profiling studies revealed 126 genes, from 13 biological pathways, to be differentially regulated by 40 nm bare and PC-bound BPEI-AuNP (PC-BPEI-AuNP). Furthermore, PC formation relieved the toxicity of cationic BPEI-AuNP by modulating expression of genes involved in DNA damage and repair, heat shock response, mitochondrial energy metabolism, oxidative stress and antioxidant response, and ER stress and unfolded protein response cascades, which were aberrantly expressed in bare BPEI-AuNP-treated cells. NP surface chemistry is shown to play the dominant role over size in determining the biocorona composition, which in turn modulates cell uptake, and biological responses, consequently defining the potential safety and efficacy of nanoformulations.
Collapse
Affiliation(s)
- Parwathy Chandran
- a Department of Anatomy and Physiology, Nanotechnology Innovation Center of Kansas State , Kansas State University , Manhattan , KS , USA
| | - Jim E Riviere
- b Department of Anatomy and Physiology, Institute of Computational Comparative Medicine , Kansas State University , Manhattan , KS , USA
| | - Nancy A Monteiro-Riviere
- a Department of Anatomy and Physiology, Nanotechnology Innovation Center of Kansas State , Kansas State University , Manhattan , KS , USA
| |
Collapse
|
133
|
Stolzoff M, Burns JE, Aslani A, Tobin EJ, Nguyen C, De La Torre N, Golshan NH, Ziemer KS, Webster TJ. Decreased bacterial growth on titanium nanoscale topographies created by ion beam assisted evaporation. Int J Nanomedicine 2017; 12:1161-1169. [PMID: 28223804 PMCID: PMC5310640 DOI: 10.2147/ijn.s119750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Titanium is one of the most widely used materials for orthopedic implants, yet it has exhibited significant complications in the short and long term, largely resulting from poor cell-material interactions. Among these many modes of failure, bacterial infection at the site of implantation has become a greater concern with the rise of antibiotic-resistant bacteria. Nanostructured surfaces have been found to prevent bacterial colonization on many surfaces, including nanotextured titanium. In many cases, specific nanoscale roughness values and resulting surface energies have been considered to be "bactericidal"; here, we explore the use of ion beam evaporation as a novel technique to create nanoscale topographical features that can reduce bacterial density. Specifically, we investigated the relationship between the roughness and titanium nanofeature shapes and sizes, in which smaller, more regularly spaced nanofeatures (specifically 40-50 nm tall peaks spaced ~0.25 μm apart) were found to have more effect than surfaces with high roughness values alone.
Collapse
Affiliation(s)
| | | | | | | | - Congtin Nguyen
- Department of Bioengineering, Northeastern University, Boston
| | | | - Negar H Golshan
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Katherine S Ziemer
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Department of Bioengineering, Northeastern University, Boston; Department of Chemical Engineering, Northeastern University, Boston, MA, USA; Center of Excellence for Advanced Materials Research, University of King Abdulaziz, Jeddah, Saudi Arabia
| |
Collapse
|
134
|
Impact of semi-solid formulations on skin penetration of iron oxide nanoparticles. J Nanobiotechnology 2017; 15:14. [PMID: 28212635 PMCID: PMC5316225 DOI: 10.1186/s12951-017-0249-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/10/2017] [Indexed: 11/11/2022] Open
Abstract
Background This work aimed to provide useful information on the incidence of the choice of formulation in semi-solid preparations of iron-oxide nanoparticles (IONs). The appropriate analytical methods to assess the IONs physical stability and the effect of the semi-solid preparations on IONs human skin penetration were discussed. The physical stability of IONs (Dh = 31 ± 4 nm; ζ = −65 ± 5 mV) loaded in five semi-solid preparations (0.3% w/v), namely Carbopol gel (CP), hydroxyethyl cellulose gel (HEC), carboxymethylcellulose gel (CMC), cetomacrogol cream (Cet) and cold cream was assessed by combining DLS and low-field pulsed NMR data. The in vitro penetration of IONs was studied using human epidermis or isolated stratum corneum (SC). Results Reversible and irreversible IONs aggregates were evidenced only in HEC and CMC, respectively. IONs diffused massively through SC preferentially by an intercellular pathway, as assessed by transmission electron microscopy. The semi-solid preparations differently influenced the IONs penetration as compared to the aqueous suspension. Cet cream allowed the highest permeation and the lowest retained amount, while cold cream and CP favored the accumulation into the skin membrane. Conclusion Basic cutaneous semi-solid preparations could be used to administer IONs without affecting their permeation profile if they maintained their physical stability over time. This property is better discriminated by low-field pulsed NMR measurements than the commonly used DLS measurements. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0249-6) contains supplementary material, which is available to authorized users.
Collapse
|
135
|
Shekh MI, Patel NN, Patel KP, Patel RM, Ray A. Nano silver-embedded electrospun nanofiber of poly(4-chloro-3-methylphenyl methacrylate): use as water sanitizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5701-5716. [PMID: 28039633 DOI: 10.1007/s11356-016-8254-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Water contaminated with microorganisms causes numerous diseases and is a major concern for public health. In search of a simple material which can provide clean water free from pathogens, nanofibers of poly(4-chloro-3-methylphenyl methacrylate, abbreviated as CMPMA, and nano Ag-doped poly(CMPMA) composite nanofibers were used to decontaminate water from microorganisms such as Escherichia coli and Bacillus subtilis. Nanofibers were prepared by electrospinning. X-ray diffraction (XRD) and transmission electron microscopy (TEM) provide the diameters of the Ag nanoparticles which are in the range 18-21 and 13-18 nm. The diameter of the poly(CMPMA) and nano Ag-doped poly(CMPMA) composite nanofiber is seen to vary between 400 and 700 nm with the change of the processing parameters. Optimum parameters for uniform nanofibers have been obtained. The morphology of the fibers is derived from scanning electron microscopy (SEM). The superiority of the nano Ag-doped poly(CMPMA) composite nanofiber was established.
Collapse
Affiliation(s)
- Mehdihasan I Shekh
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Nirmal N Patel
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Kaushal P Patel
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India.
| | - Rajnikant M Patel
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Arabinda Ray
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| |
Collapse
|
136
|
Ferreira LEN, Muniz BV, Burga-Sánchez J, Volpato MC, de Paula E, Rosa EAR, Groppo FC. The effect of two drug delivery systems in ropivacaine cytotoxicity and cytokine release by human keratinocytes and fibroblasts. J Pharm Pharmacol 2016; 69:161-171. [DOI: 10.1111/jphp.12680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/12/2016] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
Modified drug delivery systems have been developed to improve pharmacological properties of local anaesthetics. However, the inflammatory potential of these formulations was not investigated. This study compared the in-vitro effects of ropivacaine (ropi) in plain, liposomal (MLV) or 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) formulations on cell viability, apoptosis and cytokine (IL-1α, TNF-α, IL-6 and IL-10) release.
Methods
Human immortalized keratinocytes (HaCaT) and human immortalized gingival fibroblasts (HGF) were exposed to 1–100 μm ropi concentrations. The cell viability was measured by XTT and LIVE/DEAD assay. Apoptosis was performed by flow cytometry, and cytokine release was measured by ELISA assay.
Key findings
Human immortalized keratinocyte viability was reduced by ropi and both drug delivery systems. However, none of the formulations induced apoptosis. Results showed a differential regulation of IL-1α TNF-α, IL-6 and IL-10 by HaCaT and HGF. Ropi-HP-β-CD increased twofold the IL-6 release by HGF in comparison with the control, while 100 μm ropi-MLV led to an increased release of all pro-inflammatory cytokines by HGF.
Conclusion
The loss in cell viability was not related to cellular apoptosis. Ropi complexed with HP-β-CD showed a similar cytokine release pattern when compared to the plain formulation. Thus, the HP-β-CD form was a better drug carrier than the MLV form for ropivacaine drug delivery.
Collapse
Affiliation(s)
- Luiz Eduardo Nunes Ferreira
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP – Piracicaba, São Paulo, Brazil
| | - Bruno Vilela Muniz
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP – Piracicaba, São Paulo, Brazil
| | - Jonny Burga-Sánchez
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP – Piracicaba, São Paulo, Brazil
| | - Maria Cristina Volpato
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP – Piracicaba, São Paulo, Brazil
| | - Eneida de Paula
- Department of Biochemistry, Biology Institute, University of Campinas – UNICAMP – Campinas, São Paulo, Brazil
| | - Edvaldo Antonio Ribeiro Rosa
- Xenobiotics Research Unit, Laboratory of Stomatology, Biological and Health Sciences Center, The Pontifical Catholic University of Paraná – Curitiba, Paraná, Brazil
| | - Francisco Carlos Groppo
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP – Piracicaba, São Paulo, Brazil
| |
Collapse
|
137
|
Chen RJ, Lee YH, Yeh YL, Wang YJ, Wang BJ. The Roles of Autophagy and the Inflammasome during Environmental Stress-Triggered Skin Inflammation. Int J Mol Sci 2016; 17:E2063. [PMID: 27941683 PMCID: PMC5187863 DOI: 10.3390/ijms17122063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammatory skin diseases are the most common problem in dermatology. The induction of skin inflammation by environmental stressors such as ultraviolet radiation (UVR), hexavalent chromium (Cr(VI)) and TiO₂/ZnO/Ag nanoparticles (NPs) has been demonstrated previously. Recent studies have indicated that the inflammasome is often wrongly activated by these environmental irritants, thus inducing massive inflammation and resulting in the development of inflammatory diseases. The regulation of the inflammasome with respect to skin inflammation is complex and is still not completely understood. Autophagy, an intracellular degradation system that is associated with the maintenance of cellular homeostasis, plays a key role in inflammasome inactivation. As a housekeeping pathway, cells utilize autophagy to maintain the homeostasis of the organ structure and function when exposed to environmental stressors. However, only a few studies have examined the effect of autophagy and/or the inflammasome on skin pathogenesis. Here we review recent findings regarding the involvement of autophagy and inflammasome activation during skin inflammation. We posit that autophagy induction is a novel mechanism inter-modulating environmental stressor-induced skin inflammation. We also attempt to highlight the role of the inflammasome and the possible underlying mechanisms and pathways reflecting the pathogenesis of skin inflammation induced by UVR, Cr(VI) and TiO₂/ZnO/Ag NPs. A more profound understanding about the crosstalk between autophagy and the inflammasome will contribute to the development of prevention and intervention strategies against human skin disease.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Yu-Hsuan Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70428, Taiwan.
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| |
Collapse
|
138
|
Zhang C, Hu Z, Li P, Gajaraj S. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:852-873. [PMID: 27542630 DOI: 10.1016/j.scitotenv.2016.07.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Silver nanoparticles (nanosilver or AgNPs) enter municipal wastewater from various sources, raising concerns about their potential adverse effects on wastewater treatment processes. We argue that the biological effects of silver nanoparticles at environmentally realistic concentrations (μgL-1 or lower) on the performance of a full-scale municipal water resource recovery facility (WRRF) are minimal. Reactor configuration is a critical factor that reduces or even mutes the toxicity of silver nanoparticles towards wastewater microbes in a full-scale WRRF. Municipal sewage collection networks transform silver nanoparticles into silver(I)-complexes/precipitates with low ecotoxicity, and preliminary/primary treatment processes in front of biological treatment utilities partially remove silver nanoparticles to sludge. Microbial functional redundancy and microbial adaptability to silver nanoparticles also greatly alleviate the adverse effects of silver nanoparticles on the performance of a full-scale WRRF. Silver nanoparticles in a lab-scale bioreactor without a sewage collection system and/or a preliminary/primary treatment process, in contrast to being in a full scale system, may deteriorate the reactor performance at relatively high concentrations (e.g., mgL-1 levels or higher). However, in many cases, silver nanoparticles have minimal impacts on lab-scale bioreactors, such as sequencing batch bioreactors (SBRs), especially when at relatively low concentrations (e.g., less than 1mgL-1). The susceptibility of wastewater microbes to silver nanoparticles is species-specific. In general, silver nanoparticles have higher toxicity towards nitrifying bacteria than heterotrophic bacteria.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Ping Li
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shashikanth Gajaraj
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
139
|
Li Y, Monteiro-Riviere NA. Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine (Lond) 2016; 11:3185-3203. [DOI: 10.2217/nnm-2016-0303] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: To assess inflammation, cellular uptake and endocytic mechanisms of gold nanoparticles (AuNP) in human epidermal keratinocytes with and without a protein corona. Materials & methods: Human epidermal keratinocytes were exposed to 40 and 80 nm AuNP with lipoic acid, polyethylene glycol (PEG) and branched polyethyleneimine (BPEI) coatings with and without a protein corona up to 48 h. Inhibitors were selected to characterize endocytosis. Results & conclusion: BPEI-AuNP showed the greatest uptake, while PEG-AuNP had the least. Protein coronas decreased uptake and affected their mechanism. AuNP uptake was energy-dependent, except for 40 nm lipoic-AuNP. Most AuNP were internalized by clathrin and lipid raft-mediated endocytosis, except for 40 nm PEG was by raft/noncaveolae mediated endocytosis. Coronas inhibited caveolae-mediated-endocytosis with lipoic acid and BPEI-AuNP and altered 40 nm PEG-AuNP from raft/noncaveolae to clathrin. Inflammatory responses decreased with a plasma corona. Results suggest protein coronas significantly affect cellular uptake and inflammatory responses of AuNP.
Collapse
Affiliation(s)
- Yang Li
- Nanotechnology Innovation Center of Kansas State University (NICKS), Kansas State University, Manhattan, KS, USA
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State University (NICKS), Kansas State University, Manhattan, KS, USA
| |
Collapse
|
140
|
Mahmoud WM, Abdelmoneim TS, Elazzazy AM. The Impact of Silver Nanoparticles Produced by Bacillus pumilus As Antimicrobial and Nematicide. Front Microbiol 2016; 7:1746. [PMID: 27891113 PMCID: PMC5102886 DOI: 10.3389/fmicb.2016.01746] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 10/19/2016] [Indexed: 01/13/2023] Open
Abstract
This study evaluates the potential application of silver nanoparticles (AgNPs) as antimicrobial or nematicidal agents produced by the extremophile Bacillus pumilus, which was isolated from the alkaline Wadi El-Natrun Lake in Egypt. The AgNPs were characterized by ultraviolet-visible absorption spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. The size of AgNPs formed ranged from 20.12 to 29.48 nm. Panagrellus redivivus was exposed to different concentrations (0, 50, 100, 150, and 200 μg/mL) of AgNPs in a 5 mL nematode suspension (1 × 103 mL-1). The best result occurred at AgNP concentrations of 150 and 200 μg/mL, with death rates of 80 and 91%, respectively, following 48 h of exposure. AgNPs also exhibited potent antimicrobial properties when using Gram-negative and Gram-positive human pathogens, with MIC and MBC values of 5 and 10 μg/mL, respectively. These laboratory assays prove that biologically synthesized AgNPs are an ecofriendly material that can be used in lieu of solvents or toxic chemicals.
Collapse
Affiliation(s)
- Wael M. Mahmoud
- Medical Genetics Department, Faculty of Medicine, University of JeddahJeddah, Saudi Arabia
| | - Tamer S. Abdelmoneim
- Biology Department, Faculty of Science, University of JeddahJeddah, Saudi Arabia
- Department of Agricultural Botany, Faculty of Agriculture, Suez Canal UniversityIsmailia, Egypt
| | - Ahmed M. Elazzazy
- Biology Department, Faculty of Science, University of JeddahJeddah, Saudi Arabia
- Chemistry of Natural and Microbial Products Department, National Research CentreGiza, Egypt
| |
Collapse
|
141
|
Chen R, Riviere JE. Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27863136 DOI: 10.1002/wnan.1440] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023]
Abstract
The understanding of nano-bio interactions is deemed essential in the design, application, and safe handling of nanomaterials. Proper characterization of the intrinsic physicochemical properties, including their size, surface charge, shape, and functionalization, is needed to consider the fate or impact of nanomaterials in biological and environmental systems. The characterizations of their interactions with surrounding chemical species are often hindered by the complexity of biological or environmental systems, and the drastically different surface physicochemical properties among a large population of nanomaterials. The complexity of these interactions is also due to the diverse ligands of different chemical properties present in most biomacromolecules, and multiple conformations they can assume at different conditions to minimize their conformational free energy. Often these interactions are collectively determined by multiple physical or chemical forces, including electrostatic forces, hydrogen bonding, and hydrophobic forces, and calls for multidimensional characterization strategies, both experimentally and computationally. Through these characterizations, the understanding of the roles surface physicochemical properties of nanomaterials and their surface interactions with biomacromolecules can play in their applications in biomedical and environmental fields can be obtained. To quantitatively decipher these physicochemical surface interactions, computational methods, including physical, statistical, and pharmacokinetic models, can be used for either analyses of large amounts of experimental characterization data, or theoretical prediction of the interactions, and consequent biological behavior in the body after administration. These computational methods include molecular dynamics simulation, structure-activity relationship models such as biological surface adsorption index, and physiologically-based pharmacokinetic models. WIREs Nanomed Nanobiotechnol 2017, 9:e1440. doi: 10.1002/wnan.1440 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ran Chen
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA.,Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, USA
| | - Jim E Riviere
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA.,Department of Anatomy and Physiology, College of Veterinary Medicine, Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
142
|
Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of silver nanoparticles and their applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1272-1291. [PMID: 27825269 DOI: 10.1080/21691401.2016.1241792] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of reliable and eco-accommodating methods for the synthesis of nanoparticles is a vital step in the field of nanotechnology. Silver nanoparticles are important because of their exceptional chemical, physical, and biological properties, and hence applications. In the last decade, numerous efforts were made to develop green methods of synthesis to avoid the hazardous byproducts. This review describes the methods of green synthesis for Ag-NPs and their numerous applications. It also describes the comparison of efficient synthesis methods via green routes over physical and chemical methods, which provide strong evidence for the selection of suitable method for the synthesis of Ag-NPs.
Collapse
Affiliation(s)
- Muhammad Rafique
- a Department of Physics , University of Engineering and Technology , Lahore , Pakistan.,b Department of Physics , University of Gujrat , Gujrat , Pakistan
| | - Iqra Sadaf
- b Department of Physics , University of Gujrat , Gujrat , Pakistan
| | - M Shahid Rafique
- a Department of Physics , University of Engineering and Technology , Lahore , Pakistan
| | - M Bilal Tahir
- b Department of Physics , University of Gujrat , Gujrat , Pakistan
| |
Collapse
|
143
|
Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro 2016; 38:179-192. [PMID: 27816503 DOI: 10.1016/j.tiv.2016.10.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/29/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Abstract
Silver nanoparticles (AgNPs) have generated a great deal of interest in the research, consumer product, and medical product communities due to their antimicrobial and anti-biofouling properties. However, in addition to their antimicrobial action, concerns have been expressed about the potential adverse human health effects of AgNPs. In vitro cytotoxicity studies often are used to characterize the biological response to AgNPs and the results of these studies may be used to identify hazards associated with exposure to AgNPs. Various factors, such as nanomaterial size (diameter), surface area, surface charge, redox potential, surface functionalization, and composition play a role in the development of toxicity in in vitro test systems. In addition, the interference of AgNPs with in vitro cytotoxicity assays may result in false negative or false positive results in some in vitro biological tests. The goal of this review is to: 1) summarize the impact of physical-chemical parameters, including size, shape, surface chemistry and aggregate formation on the in vitro cytotoxic effects of AgNPs; and 2) explore the nature of AgNPs interference in in vitro cytotoxicity assays.
Collapse
|
144
|
Das S, Baker AB. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front Bioeng Biotechnol 2016; 4:82. [PMID: 27843895 PMCID: PMC5087310 DOI: 10.3389/fbioe.2016.00082] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin , Austin, TX , USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
145
|
Kim H, Choi J, Lee H, Park J, Yoon BI, Jin SM, Park K. Skin Corrosion and Irritation Test of Nanoparticles Using Reconstructed Three-Dimensional Human Skin Model, EpiDerm TM. Toxicol Res 2016; 32:311-316. [PMID: 27818733 PMCID: PMC5080854 DOI: 10.5487/tr.2016.32.4.311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022] Open
Abstract
Effects of nanoparticles (NPs) on skin corrosion and irritation using three-dimensional human skin models were investigated based on the test guidelines of Organization for Economic Co-operation and Development (OECD TG431 and TG439). EpiDermTM skin was incubated with NPs including those harboring iron (FeNPs), aluminum oxide (AlNPs), titanium oxide (TNPs), and silver (AgNPs) for a defined time according to the test guidelines. Cell viabilities of EpiDermTM skins were measured by the 3-(4, 5-dimethylthi-azol-2-yl)-2.5-diphenyltetrazolium bromide based method. FeNPs, AlNPs, TNPs, and AgNPs were non-corrosive because the viability was more than 50% after 3 min exposure and more than 15% after 60 min exposure, which are the non-corrosive criteria. All NPs were also non-irritants, based on viability exceeding 50% after 60 min exposure and 42 hr post-incubation. Release of interleukin 1-alpha and histopathological analysis supported the cell viability results. These findings suggest that FeNPs, AlNPs, TNPs, and AgNPs are ‘non-corrosive’ and ‘non-irritant’ to human skin by a globally harmonized classification system.
Collapse
Affiliation(s)
- Hyejin Kim
- College of Pharmacy, Dongduk Women's University, Seoul, Korea
| | - Jonghye Choi
- College of Pharmacy, Dongduk Women's University, Seoul, Korea
| | - Handule Lee
- College of Pharmacy, Dongduk Women's University, Seoul, Korea
| | - Juyoung Park
- College of Pharmacy, Dongduk Women's University, Seoul, Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Seon Mi Jin
- College of Medicine, Eulji University, Daejeon, Korea
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women's University, Seoul, Korea
| |
Collapse
|
146
|
Zielinska E, Tukaj C, Radomski MW, Inkielewicz-Stepniak I. Molecular Mechanism of Silver Nanoparticles-Induced Human Osteoblast Cell Death: Protective Effect of Inducible Nitric Oxide Synthase Inhibitor. PLoS One 2016; 11:e0164137. [PMID: 27716791 PMCID: PMC5055295 DOI: 10.1371/journal.pone.0164137] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) show strong antibacterial properties, making them excellent candidates to be used in orthopaedic repair and regeneration. However, there are concerns regarding the cytotoxicity of AgNPs and molecular mechanisms underlying AgNPs-induced bone cells toxicity have not been elucidated. Therefore, the aim of our study was to explore mechanisms of AgNPs-induced osteoblast cell death with particular emphasis on the role of nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS). METHODS AND RESULT Silver nanoparticles used in this study were 18.3±2.6 nm in size, uncoated, spherical, regular shape and their zeta potential was -29.1±2.4 mV as measured by transmission electron microscopy (TEM) and zetasizer. The release of silver (Ag) from AgNPs was measured in cell culture medium by atomic absorption spectroscopy (AAS). The exposure of human osteoblast cells (hFOB 1.19) to AgNPs at concentration of 30 or 60 μg/mL for 24 or 48 hours, respectively resulted in cellular uptake of AgNPs and changes in cell ultrastructure. These changes were associated with apoptosis and necrosis as shown by flow cytometry and lactate dehydrogenase (LDH) assay as well as increased levels of pro-apoptotic Bax and decreased levels of anti-apoptotic Bcl-2 mRNA and protein. Importantly, we have found that AgNPs elevated the levels of nitric oxide (NO) with concomitant upregulation of inducible nitric oxide synthase (iNOS) mRNA and protein. A significant positive correlation was observed between the concentration of AgNPs and iNOS at protein and mRNA level (r = 0.837, r = 0.721, respectively; p<0.001). Finally, preincubation of osteoblast cells with N-iminoethyl-l-lysine (L-NIL), a selective iNOS inhibitor, as well as treating cells with iNOS small interfering RNAs (siRNA) significantly attenuated AgNPs-induced apoptosis and necrosis. Moreover, we have found that AgNPs-induced cells death is not related to Ag dissolution is cell culture medium. CONCLUSION These results unambiguously demonstrate that increased expression of iNOS and generation of NO as well as NO-derived reactive species is involved in AgNPs-induced osteoblast cell death. Our findings may help in development of new strategies to protect bone from AgNPs-induced cytotoxicity and increase the safety of orthopaedic tissue repair.
Collapse
Affiliation(s)
- Ewelina Zielinska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Cecylia Tukaj
- Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland
| | - Marek Witold Radomski
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Kardio-Med Silesia, Zabrze, Poland
| | | |
Collapse
|
147
|
Ullah H, Wahid F, Santos HA, Khan T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 2016; 150:330-52. [PMID: 27312644 DOI: 10.1016/j.carbpol.2016.05.029] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022]
Abstract
Bacterial cellulose (BC) synthesized by certain species of bacteria, is a fascinating biopolymer with unique physical and mechanical properties. BC's applications range from traditional dessert, gelling, stabilizing and thickening agent in the food industry to advanced high-tech applications, such as immobilization of enzymes, bacteria and fungi, tissue engineering, heart valve prosthesis, artificial blood vessels, bone, cartilage, cornea and skin, and dental root treatment. Various BC-composites have been designed and investigated in order to enhance its biological applicability. This review focuses on the application of BC-based composites for microbial control, wound dressing, cardiovascular, ophthalmic, skeletal, and endodontics systems. Moreover, applications in controlled drug delivery, biosensors/bioanalysis, immobilization of enzymes and cells, stem cell therapy and skin tissue repair are also highlighted. This review will provide new insights for academia and industry to further assess the BC-based composites in terms of practical applications and future commercialization for biomedical and pharmaceutical purposes.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan; Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Fazli Wahid
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Taous Khan
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan.
| |
Collapse
|
148
|
Holmes AM, Lim J, Studier H, Roberts MS. Varying the morphology of silver nanoparticles results in differential toxicity against micro-organisms, HaCaT keratinocytes and affects skin deposition. Nanotoxicology 2016; 10:1503-1514. [DOI: 10.1080/17435390.2016.1236993] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Amy M. Holmes
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia,
| | - Julian Lim
- School of Applied Science, Temasak Polytechnic, Singapore, and
| | - Hauke Studier
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia,
| | - Michael S. Roberts
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia,
- The University of Queensland, Therapeutics Research Center, Brisbane, Australia
| |
Collapse
|
149
|
Sonet J, Bulteau AL, Chavatte L, García-Barrera T, Gómez-Ariza JL, Callejón-Leblic B, Nischwitz V, Theiner S, Galvez L, Koellensperger G, Keppler BK, Roman M, Barbante C, Neth K, Bornhorst J, Michalke B. Biomedical and Pharmaceutical Applications. Metallomics 2016. [DOI: 10.1002/9783527694907.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan Sonet
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Anne-Laure Bulteau
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Laurent Chavatte
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Tamara García-Barrera
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - José Luis Gómez-Ariza
- University of Huelva, Research Center of Health and Environment (CYSMA); Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Belén Callejón-Leblic
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Volker Nischwitz
- Forschungszentrum Jülich; Central Institute for Engineering, Electronics and Analytics; Analytics (ZEA-3), Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Sarah Theiner
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Luis Galvez
- University of Vienna, Research Platform ‘Translational Cancer Therapy Research’; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna, Department of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Marco Roman
- Ca' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS); Via Torino 155 30172 Venice Italy
| | - Carlo Barbante
- National Research Council; Institute for the Dynamics of Environmental Processes (IDPA-CNR); Via Torino 155 30172 Venice Italy
| | - Katharina Neth
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Julia Bornhorst
- University of Potsdam; Department of Food Chemistry, Institute of Nutritional Science; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| |
Collapse
|
150
|
Karunamuni R, Naha PC, Lau KC, Al-Zaki A, Popov AV, Delikatny EJ, Tsourkas A, Cormode DP, Maidment ADA. Development of silica-encapsulated silver nanoparticles as contrast agents intended for dual-energy mammography. Eur Radiol 2016; 26:3301-9. [PMID: 26910906 PMCID: PMC4974128 DOI: 10.1007/s00330-015-4152-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/13/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Dual-energy (DE) mammography has recently entered the clinic. Previous theoretical and phantom studies demonstrated that silver provides greater contrast than iodine for this technique. Our objective was to characterize and evaluate in vivo a prototype silver contrast agent ultimately intended for DE mammography. METHODS The prototype silver contrast agent was synthesized using a three-step process: synthesis of a silver core, silica encapsulation and PEG coating. The nanoparticles were then injected into mice to determine their accumulation in various organs, blood half-life and dual-energy contrast. All animal procedures were approved by the institutional animal care and use committee. RESULTS The final diameter of the nanoparticles was measured to be 102 (±9) nm. The particles were removed from the vascular circulation with a half-life of 15 min, and accumulated in macrophage-rich organs such as the liver, spleen and lymph nodes. Dual-energy subtraction techniques increased the signal difference-to-noise ratio of the particles by as much as a factor of 15.2 compared to the single-energy images. These nanoparticles produced no adverse effects in mice. CONCLUSION Silver nanoparticles are an effective contrast agent for dual-energy x-ray imaging. With further design improvements, silver nanoparticles may prove valuable in breast cancer screening and diagnosis. KEY POINTS • Silver has potential as a contrast agent for DE mammography. • Silica-coated silver nanoparticles are biocompatible and suited for in vivo use. • Silver nanoparticles produce strong contrast in vivo using DE mammography imaging systems.
Collapse
Affiliation(s)
- Roshan Karunamuni
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 1 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Kristen C Lau
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ajlan Al-Zaki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Anatoliy V Popov
- Department of Radiology, University of Pennsylvania, 1 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Edward J Delikatny
- Department of Radiology, University of Pennsylvania, 1 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 1 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Andrew D A Maidment
- Department of Radiology, University of Pennsylvania, 1 Silverstein, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|